胶带范文10篇

时间:2024-02-10 10:32:59

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇胶带范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

传输胶带跑偏分析论文

一般矿山上大量使用胶带传输煤炭,沙土等物质、胶带在运行过程中,由于传输动力较大,胶带与滚筒涨紧力和磨擦力较大,加之运行速度较快,因此,在园柱型动力滚洞上的胶带经常偏离滚筒的中心位置串向滚筒一端的现象。这种现象可称之为胶带跑偏现象,也称之为胶带跑偏问题。

胶带跑偏问题不解决,工作无法正常进行,也会出现重大事故。一旦胶带跑偏严重,胶带会被其它机件刮伤或撕裂几十米长的口子。

胶带跑偏问题是属于正常现象,也是胶带在运行过程中一时刻都在发生的现象。很有必要研究传输胶带出现跑偏的原因,找出解决调整胶带跑偏的方法。

研究其胶带跑偏有两方面的原因,一方面是胶带和滚筒的垂直度在胶带涨紧时调整的不精确。这方面,可以人为地进行精确调整比较容易做到。另一方面就是胶带在生产制造时,胶带各处的密度和厚度都有差别。因此胶带在涨紧后,在运行过程中,被拉伸变形的长度不同,产生的拉力和磨擦力不向。因此产生了胶带在滚筒上运行时出现跑偏现象。这方面是胶带跑偏的主要原因。胶带自身存在的向题是无法解决的。胶带跑偏是不可避免的,也是经常出现的。

知道了胶还跑偏产生的原因,就能够研究出一种在胶带跑偏时,将胶带调整到正常位置上的方法。

下面针对具体设备进行研究,找出一个行之有效的方法,来解决胶带在滚筒上跑偏问题。

查看全文

自动胶带封装机创新设计研究

摘要:针对电子、IT、制造等行业的胶带封装效率较低、劳动强度大、不能实现自动封装等特点,设计了一种自动胶带封装机,对该封装机的结构进行了研究,设计了该自动胶带封装机的结构原理图,并对重要零部件进行了设计。应用三维软件Pro/E设计出了自动胶带封装机的三维图,最后对该胶带封装机的控制系统进行了设计,以PLC为核心控制器,给出了该胶带封装机的硬件结构图和软件流程图。研究表明,设计的自动胶带封装机能够实现胶带的自动旋转封装和自动剪切,工作效率高、封装质量好、自动化程度高、封装速度易控制,具有较大的研究推广价值。

关键词:胶带;自动封装机;Pro/E;PLC;自动剪切

随着社会经济和人们生活水平的快速提高,胶带已经完全融入到各行各业及人们日常生活的使用中,胶带广泛应用于食品、医药、卷烟、家用电器、日用化工、电子、制造等几乎各个行业的包装封口和粘贴[1-2]。目前,包装盒、包装箱等的封装主要是由人工完成的,电子、IT、制造等行业的胶带封装也是以人工为主,尤其是对于一些塑料件、尼龙件、铁件、铝件等硬质类零散件的胶带包裹封装和剪切都是由操作人员手工缠绕和裁剪,效率低、劳动强度高,长时间操作过程中工作人员手指容易受伤,且胶带封装剪切质量较差[3-4]。目前市场上的一些胶带封装机构大多都是纯机械的结构,而且需要人工操作粘贴和剪切,自动化程度低,容易出现故障,而且操作人员工作强度较大[5-6]。针对以上问题,为了提高胶带封装效率和封装质量、减轻工人劳动强度、减少工时、提高生产效率,本文设计了一种自动胶带封装机,主要应用于食品、包装、电子、IT、制造等行业的胶带旋转包裹封装,能适应不同宽度的胶带粘贴,能实现胶带的自动旋转封装和自动剪切。

1总体方案设计

1.1自动胶带封装机结构设计

本文设计的自动胶带封装机能够对塑料件、尼龙件、铁件、铝件等硬质类零散件等材料实现胶带的自动旋转封装和自动剪切。根据设计要求设计的自动胶带封装机主要由机架和胶带滚贴剪切器组成,机架由1块底板、4条侧板连接而成,机架上安装胶带滚贴剪切器,胶带滚贴剪切器由滚贴机构和滚贴剪切机构两部分组成。设计的自动胶带封装机结构原理如图1所示。图1中,底板4与4条侧板3连接形成机架,机架上安装胶带滚贴剪切器构成自动胶带封装机,胶带滚贴剪切器由滚贴机构和滚贴剪切机构两部分组成。滚贴机构包括滚贴电动机5,在底板4上伸缩支撑杆1的上方位,一号支架10、二号支架19被固定在2个平行的调整滑槽17上,一号支架和二号支架上对应安装有一号固定杆11及二号固定杆18,底板4上的滚贴电动机5经联轴器7连接一号固定杆11;滚贴剪切机构包括滚贴剪切电动机6、滚贴剪切齿形带8和滚贴剪切器12,滚贴剪切齿形带8经支架、带轮平行于调整滑槽17安装在底板4上,带轮连接滚贴剪切电动机6,带滚贴剪切刀14的滚贴剪切器12安装在滚贴剪切齿形带8上,滚贴剪切齿形带8的两端分别安装一号行程开关9和二号行程开关20。

查看全文

煤矿井胶带监控分析论文

摘要:介绍了Profibus现场总线技术的主要特点,并结合祁东煤矿井下监控系统介绍了基于Profibus现场总线的煤矿胶带监控系统的软、硬件配置以及两者之间接口的实现方法。

关键词:监控系统胶带ProfibusFIXMPI

现场总线是20世界80年代中期在国际上发展起来的。它应用在生产现场,实现微机化测量设备之间的散化、网络化、智能化方向的发展,一经产生便成为全球工业自动化技术的热点,到全世界的普遍关注。自80年代末以来,几种现场总线技术如FF、Lonworks、Canbus、Profibus等已逐渐成熟并对工业自动化进程形成影响。Profibus等已逐渐成熟并对工业自动化进程形成影响。Profibus是ProcessFieldBus的缩写,是一种用于工厂自动化车间级监控和现场设备层数据通信与控制的现场总线技术,可实现现场设备层到车间级监控的分散式数字控制和现场通信,从而为实现工厂综合自动化和现场设备智能化提供可行的解决方案。

胶带运输是煤矿生产中十分重要的环节,监控系统在该环节的投入是煤矿现场化生产的趋势。本文以皖北矿务局祁东煤矿的井下胶带监控系统为例,简介Profibus现场总线技术在监控系统中的应用。

1Profibus现场总线技术

1.1Profibus概貌

查看全文

传输胶带跑偏研究论文

一般矿山上大量使用胶带传输煤炭,沙土等物质、胶带在运行过程中,由于传输动力较大,胶带与滚筒涨紧力和磨擦力较大,加之运行速度较快,因此,在园柱型动力滚洞上的胶带经常偏离滚筒的中心位置串向滚筒一端的现象。这种现象可称之为胶带跑偏现象,也称之为胶带跑偏问题。

胶带跑偏问题不解决,工作无法正常进行,也会出现重大事故。一旦胶带跑偏严重,胶带会被其它机件刮伤或撕裂几十米长的口子。

胶带跑偏问题是属于正常现象,也是胶带在运行过程中一时刻都在发生的现象。很有必要研究传输胶带出现跑偏的原因,找出解决调整胶带跑偏的方法。

研究其胶带跑偏有两方面的原因,一方面是胶带和滚筒的垂直度在胶带涨紧时调整的不精确。这方面,可以人为地进行精确调整比较容易做到。另一方面就是胶带在生产制造时,胶带各处的密度和厚度都有差别。因此胶带在涨紧后,在运行过程中,被拉伸变形的长度不同,产生的拉力和磨擦力不向。因此产生了胶带在滚筒上运行时出现跑偏现象。这方面是胶带跑偏的主要原因。胶带自身存在的向题是无法解决的。胶带跑偏是不可避免的,也是经常出现的。

知道了胶还跑偏产生的原因,就能够研究出一种在胶带跑偏时,将胶带调整到正常位置上的方法。

下面针对具体设备进行研究,找出一个行之有效的方法,来解决胶带在滚筒上跑偏问题。

查看全文

胶带机控制改革论文

摘要:结合现场胶带机的实际情况及经常出现的设备故障,对胶带机的控制系统做了改造,主要有:胶带机启停机控制原理的改造、胶带机的控制中增加下游皮带打滑保护的改造。

关键词:控制系统启停机控制堵料打滑

引言

随着计算机控制技术的迅速发展,以微处理器为核心的可编程控制器(PLC)已逐步取代继电器控制,选煤厂也不例外。神华集团准格尔能源有限责任公司选煤厂,其原煤车间的输煤系统即为PLC控制,控制系统采用美国AB公司的ControLogix控制系统。PLC控制器采用32位总线的Logix5562,基本内存750K,扩展内存1.5M,通过SRM热备模块实现双CPU间的互为备用。控制系统各框架通过连接模块CNBR组成双通道冗余(ControlNet)网络,网络传输速率可达5M/s。画面监控软件为ifix4.0中文版,采用OPC通讯方式通过上位机内置的网卡连接到控制网上。整个控制过程具有自动化程度高、方便维护、运行可靠等特点。在使用过程中,结合现场胶带机的实际情况及经常出现的设备故障,对胶带机的控制系统做了改造,主要有:胶带机启停机控制原理的改造、胶带机的控制中增加下游皮带打滑保护的改造,现具体简述如下:

一、胶带机启停机控制原理的改造

在原煤车间哈尔乌素分区设备刚投入生产运行期间,由于各种原因,导致设备忽然停电的事故时有发生。但是发现,在设备忽然断电情况下,个别设备,如胶带机M11、M21、M13、M23,不能正常闭锁停机,即使由集控发出停机命令也不能起到控制的作用,而且现场的保护装置也不起作用,造成设备堵料严重,若发现不及时,会造成胶带机机头滚筒包胶损坏、胶带磨擦损伤及机头保护开关砸坏等事故,给设备和生产造成很大的影响。联系电工,翻阅这几条胶带机的控制图纸,发现这几条胶带的控制原理和黑矿分区的M11胶带机极为相似,其启停控制继电器是触发式的,其起机及停机需要两个继电器,发出的起机及停机信号是个脉冲信号,起机信号采集发出起机命令的上升沿信号,停机命令采集发出停机命令的上升沿信号,在起机信号发出后,控制系统会对各个保护进行扫描。当具备起机条件时,对起机继电器发出吸合指令,起机继电器吸合,电机运行,电机的运行返回信号是通过综保保住的,待电机运行信号正常,起机继电器断开,皮带正常运转。停机的过程和起机过程是类同的,但是,当设备忽然发生断电事故,控制模块得不到设备发出的连锁停机信号,即采集不到停机信号的上升沿指令,停机继电器无法吸合,设备便无法正常停机。

查看全文

带式输送机胶带分析论文

摘要:本文根据多年现场实践,对电厂输煤系统主要设备带式输送机最常见故障胶带跑偏原因利用力学原理加以分析,以及提出相应的处理方法。

关键词:带式输送机胶带跑偏力学分析

带式输送机是输煤系统的主要设备,它的安全稳定运行直接影响到发电机组的燃煤供应。而胶带的跑偏是带式输送机的最常见故障,对其及时准确的处理是其安全稳定运行的保障。跑偏的现象和原因很多,要根据不同的跑偏现象和原因采取不同的调整方法,才能有效地解决问题。本文是根据多年现场实践,从使用者角度出发,利用力学原理分析与说明此类故障的原因及处理方法。

一、承载托辊组安装位置与输送机中心线的垂直度误差较大,导致胶带在承载段向一则跑偏。如下图所示,胶带向前运行时给托辊一个向前的牵引力Fq,这个牵引力分解为使托辊转动的分力Fz和一个横向分力Fc,这个横向分力使托辊轴向窜动,由于托辊支架的固定托辊是无法轴向窜动的,它必然就会对胶带产生一个反作用力Fy,它使胶带向另一侧移动,从而导致了跑偏。

搞清楚了承载托辊组安装偏斜时的受力情况,就不难理解胶带跑偏的原因了,调整的方法也就明了了,第一种方法就是在制造时托辊组的两侧安装孔都加工成长孔,以便进行调整。具体调整方法见图二,具体方法是皮带偏向哪一侧,托辊组的哪一侧朝皮带前进方向前移,或另外一侧后移。如图二所示皮带向上方向跑偏则托辊组的下位处应当向左移动,托辊组的上位处向右移动。

第二种方法是安装调心托辊组,调心托辊组有多种类型如中间转轴式、四连杆式、立辊式等,其原理是采用阻挡或托辊在水平面内方向转动阻挡或产生横向推力使皮带自动向心达到调整皮带跑偏的目的,其受力情况和承载托辊组偏斜受力情况相同。一般在带式输送机总长度较短时或带式输送机双向运行时采用此方法比较合理,原因是较短带式输送机更容易跑偏并且不容易调整。而长带式输送机最好不采用此方法,因为调心托辊组的使用会对胶带的使用寿命产生一定的影响。

查看全文

矿井主胶带问题的优化设计

1存在问题

(1)二矿庚组煤开采成本低,但高富硫、高灰分,受市场制约比较严重;己组煤是优质炼焦煤,市场前景好。但二矿井下胶带运输系统己、庚组煤无单独的储煤仓,不能分采分运,无法实现资源的合理配采,难于满足市场的需要,综合经济效益低。而合理配采、实现分装分运分销,可以调整产品结构,提高产品附加值,增加经济效益。(2)污染环境。二矿紧邻市中心,原地面储煤仓容量仅1750m3,无法满足不少于2d储量要求的规定,绝大部分原煤在储煤场落地露天储存,不仅造成了煤炭资源丢失,还污染了环境。(3)胶带运输和储装运系统能力不足,与矿井发展不匹配。筛选系统简易安装,设备处理能力低;矿井主斜井胶带输送机运量仅400t/h,整个系统能力为150万t/a,无法满足生产需求。(4)胶带运输系统复杂,装载点多,设备档次低,效率低。

2优化设计基本思路

二矿可简单分为东西2大采区,井下西部己庚二和己庚一采区生产己、庚组煤,东部庚三及三水平只生产庚组煤,如果在井下实现2种煤炭分运,需要在主胶带斜井下部、暗斜胶带增加2个储煤仓,根据煤种分时段运输;地面新建1套储装运筛选系统和4座储煤仓,增大原储装运系统能力,使己、庚组煤分别储存;将主系统普强胶带更换为高强胶带,这样可实现己、庚组煤炭分运、分储、分销,主运输能力和煤仓储装能力相应提高。

3实施情况

(1)储装运生产系统优化。在主斜井胶带机上延方向新建筛选系统,原煤由明斜胶带输送机(主斜井胶带输送机)运送到筛分楼上,由分叉溜槽进入到振动筛,经过筛分处理后,粒径大于50mm的原煤流入手选胶带输送机被人工手选,选出的矸石及其他杂物进入矸石仓,经矿车运送至翻矸系统翻入矸石山;块煤经破碎机破碎后,和粒径小于50mm的筛下煤混合转载到上仓胶带输送机上,经过配仓胶带输送机,用卸料器按不同品种的煤卸入相应的新建煤仓中,煤仓中的煤经过仓下给煤机、仓下胶带输送机和上铁路胶带输送机进入新装车点或原煤仓中,通过火车外运。当储煤仓满仓时,原煤进入储煤场储存,然后经汽车外运销售。另外,煤仓侧面留有汽车装车口,也可用于汽车外运销售。(2)主要筛选设备选型。选用2台4DL2467型单梁激振筛,1用1备,处理量1000t/h;选用FP63AS型双滚齿破碎机,处理量400t/h;地面储装运系统共计安装6部胶带机,带宽均为1200mm,V=2.5m/s,Q=1000t/h。仓下给煤机选用甲带式给煤机,新建4座储煤仓,总容量26000m3,己组煤和庚组煤各占2个仓。(3)由于明斜胶带运输巷第3部机头处有水平夹角,先将主斜井胶带输送机前2部更换为高强胶带(明斜胶带)。拆除部分地面建筑,在原筛分楼延长线方向建新筛选楼,高强胶带输送机的驱动装置和卸载滚筒放在新筛选楼上部,液压拉紧装置放在地面,待土建工程、胶带机驱动、张紧装置安装完工后,拆除主斜井前两部普强胶带,更换为1部高强胶带,这样减少了施工和安装时对生产系统的影响。改造后运输能力为1000t/h,提高了600t/h。(4)恢复完善井下原有部分巷道(安装庚组集中胶带),新施工暗斜巷道1500m,新建庚三煤仓(2000m3)、己一煤仓(1000m3)、己二煤仓(1200m3)。(5)拆除庚三集中胶带和庚三上山普强胶带机。在暗斜、庚三上山各安装DTL100/800/4×315S高强胶带。(6)明斜巷道下段取直后,拆除普强胶带,将明斜胶带下延,合为1部高强胶带。(7)己二集中巷新煤仓建好后,拆除原来的3部普强胶带,更换为1部高强胶带输送机。以上方案分步实施,自2009年5月起开工,历时3a,于2012年4月全部竣工。

查看全文

胶带生产调度制度

生产调度管理制度

1.目的

为协调生产各环节,确保生产顺利有序进行,特制订本制度。

2.范围

适用于整个生产过程中生产调度的管理和大轿车、叉车的管理

3.职责

查看全文

胶带生产设备制度

1.目的

对生产设备进行综合管理,保持生产设备完好,满足生产需要,充分发挥生产设备的

效能,特制定本制度。

2.范围

本制度适用于公司生产过程中的设备控制。

3.职责

查看全文

双刀四轴胶带裁切机机械设计研究

摘要:介绍了半自动双刀四轴三伺服胶带裁切机的总体设计,针对单主轴分切效率较低、卸料与切料不能同时进行、停机次数增加、生产效率低下等问题,设计了一种四轴自动回转换位装置;针对圆盘刀具在作用力的影响下发生偏移,导致加工出的成品产生断面不平、毛边等不良现象,设计了一种刀架角度自动调节装置。实验结果表明,该机运行稳定可靠、操作方便、各项参数测试准确,能够满足用户的要求。

关键词:胶带裁切机;双刀;四轴;主轴自动回转换位装置;刀架角度自动调节装置

近年来,随着经济的快速发展,软包装行业已经成为迅速兴起的朝阳产业,以其高速增长的产值和广阔的市场,显示了巨大的发展前景,其软包装市场中(如快递包装),离不开用量巨大的胶带,而胶带分切是胶带行业的末端环节,其作用是将涂布过的大幅卷半成品胶带分切成不同宽度的成品应用胶带。根据用户的要求,采用非标设计的方法,研制了一种半自动双刀四轴三伺服胶带裁切机(如图1),具有双轴双刀同时切料、四轴自动翻转换位、卸料与切料同时进行、可设定多种不同规格宽度及刀切裁切角度进行胶带或布基等材料的分切作业等功能。

1总体方案设计

胶带裁切机主要技术参数要求:机械有效幅宽为1300mm,最大裁切直径为160mm,最小分切宽度为3mm,最大分切速度70次/min,分切精度为±0.05mm,材料管芯内径为25~76mm,主轴最大机械转速为700r/min,主电动机功率为2.2kW,圆刀电动机功率为0.75kW,使用电压三相四线380V等。主要由机械系统、电气控制系统、气动控制系统、润滑冷却系统四部分组成,由中央控制系统PLC可程式控制器集中控制,可同时设定多种不同宽度、不同切刀角度的裁切作业,实现进刀、主轴翻转、主轴高低速旋转、单或自动循环裁切等操作功能,分切时可自动或手动控制;其中机械系统主要包括旋转主轴部件、双圆刀刀架部件、双轴尾架支承部件、主轴回转部件、刀架横向移动部件、裁切轴部件、伺服进刀部件、刀架角度自动调节部件、机床动力部件、机架框架结构等。电气控制系统采用数字化设计方案,以实现机床的半自动控制,提高胶带裁切质量,由液压泵控制、裁切行程控制、裁切压力控制、其他辅助控制等功能模块组成;液压泵采用5.5kW的三相异步电动机,主电路为PLC程序控制接触器直接启动,以实现液压泵启停;通过安装齿条啮合传动中齿轮轴端的编码器来实现裁切行程位置的采集,配合PLC、电磁阀组的控制从而控制裁切运动部件的移动,可实现自动或手动裁切行程位置的确定及调整;裁切压力的调整由电液比例阀完成,裁切时,快速到达待切位置速度变慢并加压保持,以期达到良好的分切效果及能切断胶带;为了保证操作的安全性,本机设置了过载安全保护功能。气动控制系统的设计包括旋转主轴夹持单元、收卷动力离合单元、双轴尾架支承单元、跟刀架移位单元、圆刀冷却单元、主轴翻转离合、支承、定位单元等气动控制单元的设计,由电磁阀、节流调整阀、减压阀、单向阀、消音器、快插接头等气动元件组成。机床采用整体架构设计,总体装箱尺寸约为2860mm×1300mm×1380mm,电气控制系统、气动控制系统、机械动力部件、主轴回转部件集中分布在机床左侧(如图1);刀架横向移动系统采用精密伺服电动机(施耐德)、高精度滚珠丝杆螺母副及直线导轨配合进行驱动,以保证切刀行程顺畅、定位准确,分切精度达到±0.05mm;伺服进刀部件采用法国施耐德精密伺服电动机控制、弹性联轴器连接、配合直线导轨驱动的设计,可自由调整进刀速度的快慢,以保证切刀行程顺畅、高稳定性;双圆刀刀架部件及刀架角度自动调节部件联动,增设伺服马达(施耐德)可手动或自动调整圆刀裁切角度,解决了胶带产品横断面裁切凹凸不平的现象;裁切轴部件采用轴承钢GCr15材料主轴外套1in的PE管,端部采用气压背压控制的双轴尾架支承,且切管压力可调,以提高切管特别是小径胶管裁切作业的稳定性;主轴采用无级变速AC马达配合同步带、齿轮系、分度装置传动,主轴翻转采用气动控制的齿轮齿条传动系统;增设的矽溶液冷却系统,避免了切刀粘胶,确保切管作业顺畅。

2主轴回转部件的设计

查看全文