焊接范文10篇

时间:2024-02-04 22:38:39

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇焊接范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

焊接

焊接工艺对不锈钢焊接的影响

摘要:随着科技发展和技术进步,不锈钢焊接在汽车、建筑、机器制造业等行业的应用非常广泛,但是,不锈钢焊接经常会出现变形的问题,这就会导致不锈钢构件质量不达标,从而影响焊接工作效率。此类问题需要得到解决,不锈钢焊接构件变形问题需要得到改善。因此,本研究以不锈钢焊接变形问主要研究问题,分析在焊接工艺中造成不锈钢焊接构件变形的原因以及焊接工艺对不锈钢焊接变形的影响,并根据原因提出一些解决建议,从而避免出现不锈钢焊接变形的问题。

关键词:焊接工艺;不锈钢焊接变形;影响因素;解决措施

焊接工艺是保障焊接技术的技术性保障,若焊接工艺出现问题则极有可能造成构件的变形。不锈钢构件在生活中的应用范围非常广泛,且不锈钢的焊接也是目前焊接工作中的关键构成,若存在不锈钢焊接变形的问题,不仅会影响焊接效率,还会给人们生活和企业运作带来比较恶劣的影响。因此避免不锈钢焊接变形,提高焊接工艺质量的问题需要得到重视。

1不锈钢焊接变形的影响

由于不锈钢构件在人们日常生活以及各类型行业中应用非常广泛,一般情况下,焊接制造公司在签下一个订单时需要向甲方明确工作周期和具体交工日期,若超过交工日期仍然未完成构件的制作,则乙方焊接公司需向甲方赔偿一定违约金,严重甚至会造成企业间的法律纠纷。此外,乙方在合作前还应进行资金预算,以便向甲方要价,若要价过低,则会降低工作成本,若要价过高,则会增加竞争性。因此,若不锈钢焊接构件出现变形,则需要使用新材料重新进行焊接,不仅会大大增加工作成本,还会导致交工日期延长,影响焊接制造公司的业界口碑。

2焊接工艺对不锈钢焊接变形的影响

查看全文

合金焊接材料选择与焊接工艺技术

摘要:随着社会经济的快速发展,社会对合金焊接材料的选择以及焊接工艺技术的要求越来越高,不仅能够增加机械设备的可靠性能,更能有效的提高机械设备的安全性能。基于此,本文以合金焊接材料的选择与焊接工艺技术为研究对象,从5个方面分析了焊接技术对机械设备整体性能的影响以及焊接工艺流程要点,文章总结了常见的焊接工艺流程,为提高机械设备焊接质量提供帮助。

关键词:合金焊接材料;焊接工艺;焊接方法

合金焊接材料的选择与焊接工艺技术是影响机械设备整体构造的关键环节,影响着机械整体安全性能,尤其是对用于的体验使用有着显著的影响作用[1]。因此,加强合金焊接材料的选择与焊接工艺技术的研究是提高汽车整体流线感的基础,这就要求焊接工人在开展工作中必须严格按照施工要求进行车架焊接,可以有效的控制焊接过程中出现的变形等问题,对提高焊接工艺技术的整体效果积极作用。

1机械设备焊接重要性分析

机械设备骨架的功能与人体骨骼基本一致,是机械设备主要的承重结构,也是连接机械设备各节点的基础框架和承受载荷的基础构件。理论上讲,当设备在制造完成之后,机械设备骨架所承受的载荷不仅包含汽车的静载荷量,还包含了机械设备的动载荷量。机械设备骨架的稳定性能直接影响着汽车的使用寿命,因此,如何提高机械设备骨架的焊接能力和降低骨架形变量是当前亟待解决的问题之一。常见的机械设备骨架焊接方式有边梁式焊接,在具体操作过程中要确保驾驶位支架、发动机支架等严格按照要求焊接。汽车焊接点数目多,导致节点附近的焊接缝较多,任意一个焊接节点以及焊接缝都会对设备的整体性能产生影响。因此,完善机械设备骨架焊接工艺是有效提高设备骨架质量的基础。

2机械设备焊接工艺要点分析

查看全文

铝合金构件焊接变形与焊接工艺论文

1铝合金构件焊接变形与控制

1.1焊接变形原因

焊接的热过程是导致残余应力和塑性应变的根源。在焊接过程中,焊接热过程对焊接质量和焊接效率的影响,主要来自以下几个方面的深层次原因:(1)在焊接件上,熔池的形状和尺寸直接影响焊接质量,而熔池大小与尺寸作用到焊接件上的热量分布和大小息息相关;(2)焊接的热过程包含加热和冷却两个过程,这两个过程中的加热和冷却参数会直接影响熔池的相变过程,对金属的凝固产生重要的影响,对热影响区的金属组织产生一定的破坏;(3)焊接中的热过程直接决定热量的输入过程和热量的传递效率,这直接导致焊接的母材的熔化速度;(4)焊接的热过程如果不均匀,会对金属构件各部分产生不同的热响应,导致出现不同的应力,产生应力形变。从以上理论探讨,我们可知在金属构件焊接过程中出现变形,主要是由于焊接热源是处于局部加热,使得铝合金构件上的热量分布存在差异,在构件与母材之间的焊缝区域附近热量吸收的较多,引起周围铝合金材料和母材都出现一定程度的受热膨胀,而远离焊缝区域的铝合金材料和母材材料由于吸收到的热量相对较少,发生的体积膨胀相对较小甚至不发生体积膨胀,使得焊缝区域的体积膨胀过程受到一定的抑制,导致焊接过程中,焊接构件和母材之间出现瞬间的热变形,但是当铝合金构件在焊接过程中产生的内应力超过了自身材料的弹性极限后,会出现一定的塑性应变,当焊接过程结束之后,焊接件又逐步冷却而产生残余变形。

1.2焊接变形分类

从机械领域考虑整个焊接过程,可以将焊接过程中出现的变形分为瞬间变形和残余变形。其中,焊接过程瞬间热变形分为三种,依次是面内位移、面外位移和相变组织形变。焊后残余变形分为面内变形和面外变形两大类,面内变形又分为焊缝纵向收缩、焊缝横向收缩、回转变形;面外变形又分为角变形、弯曲变形、扭曲变形。

1.3铝合金的焊接性能分析

查看全文

钣金焊接成型常见问题及焊接质量控制

摘要:钣金焊接加工是我国制造业中的重要内容。相对于发达国家,不管是从技术方面还是设备方面,我国都还有一定的差距。基于此,本文将重点阐述当前钣金焊接成型常见的问题以及焊接质量控制的有效措施。

关键词:钣金焊接成型;常见问题;质量控制

钣金工件本身具有精度高、质量轻的有点,因此经常被用作零部件用于实际加工生产中。近年来,在技术和设备的推动下,钣金加工工艺水平不断提升,但在具体的加工过程中,由于流程相对繁琐,加工依然存在一定的问题,需要结合实际情况采取针对性的措施做好质量控制工作。

1钣金焊接成型常见的质量问题

1.1工序质量

产品质量对于整个焊接作业具有重要影响,产品质量和加工质量息息相关。因此,为了保证产品的质量,需要不断提升工件的质量。工件的质量需要以完善的机械设备作为前提,并全面控制好焊接过程中的变形问题。第一,刚性裂纹。主要指的是纵向裂纹、测量位置的裂纹以及地板的焊缝。在焊接的过程中,由于电流较小,焊丝的直径过大,点焊的密度过小,因此容易造成开裂。第二,夹渣问题。在焊接之后,焊缝通常会残留少量的焊渣。由于焊渣的存在,会降低焊接的密度和强度,严重影响焊接的质量。第三,气孔问题。在焊接的过程中,如果熔池的气泡不能有效跑出,就会形成气泡。造成气泡问题的原因较多,主要由环境因素、焊接物体的表面不够清洁等。

查看全文

Plasma焊接工艺在车门焊接的运用

摘要:Plasma焊接工艺因其较好的焊接外观广泛运用于汽车行业的车门内外板与窗框的连接中,但由于Plasma焊接工艺影响因素较多,焊接不稳定,容易造成焊接咬边、烧穿、焊偏、未熔合、表面凹坑等缺陷,极大影响了生产效率及产品质量,本文通过验证Plasma焊枪导电嘴与车门较长母材的距离;焊枪导电嘴与车门较短母材的距离;车门焊接母材之间的间隙三种关键参数对焊接质量的影响,得出这三种因数控制的合理范围,从而提升Plasma焊接工艺稳定性和质量。

关键词:Plasma;焊接缺陷;参数;距离;母材间隙

1引言

随着我国科技开发能力和经济实力的发展,近年来以奇瑞、吉利、比亚迪、长城以及一汽、上汽、东风、长安、广汽、北汽等自主品牌为代表的一大批本土轿车企业纷纷崛起,再加上一大批的合资汽车企业,汽车行业的竞争日趋激烈。要想在激烈的竞争环境中脱颖而出,不仅仅需要过硬的产品质量,更需要有竞争力的价格。这就需要企业在保证产品质量的前提下降低成本。其中车门使用分体式窗框代替传统的整体式窗框大大的减少了板材成本,此种窗框在现在的车型中被广泛运用。窗框与门内外板的连接无法采用传统的电阻焊技术完成,Plasma被广泛运用四门于窗框与门内外板的连接。Plasma焊接技术虽然已经运用到了航空航天[1][2][3]、船舶[4]、汽车[5]等各种领域,但是Plasma焊接在焊接质量上仍然存在很多问题,通过研究Plasma焊在汽车车门焊接过程中焊枪与板材的距离及板材间的间隙对焊接质量的影响,从而得到合理的控制范围,达到最终提升Plasma焊接的效率和质量的目的。

2Plasma焊的优点

Plasma焊接是最短电弧的焊接方法,使用钨极焊接,因此属于非熔化极气体保护焊,使用压缩电弧,其与普通的气体保护焊相比,有以下优点:潘飞李钢上汽通用汽车有限公司武汉分公司车身车间湖北省武汉市430200摘要:Plasma焊接工艺因其较好的焊接外观广泛运用于汽车行业的车门内外板与窗框的连接中,但由于Plasma焊接工艺影响因素较多,焊接不稳定,容易造成焊接咬边、烧穿、焊偏、未熔合、表面凹坑等缺陷,极大影响了生产效率及产品质量,本文通过验证Plasma焊枪导电嘴与车门较长母材的距离;焊枪导电嘴与车门较短母材的距离;车门焊接母材之间的间隙三种关键参数对焊接质量的影响,得出这三种因数控制的合理范围,从而提升Plasma焊接工艺稳定性和质量。关键词:Plasma;焊接缺陷;参数;距离;母材间隙(1)相同的材料及板厚具有较高的焊接速度;(2)焊接飞溅小[6]的优良焊缝质量;(3)更小的热影响区,较少变形;(4)单面焊双面成形;(5)通过精确控制填充材料提高焊缝搭桥能力;(6)使用热丝功能降低焊缝高度;(7)等离子小、弧提高、钨极使用周期长;

查看全文

剖析焊接接头失效原因

摘要:通过对焊接接头性能影响因素的分析和实验,调整相应的结构参数和焊接工艺参数,防止焊接接头缺陷的产生,提高接头机械性能,从而提高产品的使用寿命,减少损失,节约了材料。

关键词:焊接接头;失效分析;结构因素

热交换器产品中的固定式不带法兰的管板与壳体的连接焊接接头是产品上的主要焊接接头,制造过程中焊接接头内部组织的缺陷,如夹渣、气孔、未熔合、未焊透、裂纹以及组织粗大等,将影响焊接接头的机械性能,也影响产品使用的可靠性,给使用单位带来不必要的经济损失,是个不可忽视的问题。通过对焊接接头性能影响因素的分析和实验,调整相应的结构参数和焊接工艺参数,防止焊接接头缺陷的产生,提高接头机械性能,从而提高产品的使用寿命,减少损失,节约了材料。

一、问题的提出

在产品生产过程中,焊接结构参数、焊接工艺参数、焊接前的准备和操作方法等因素都会影响焊接接头的质量,在焊接时就要通过控制相关技术参数来控制焊接接头内部质量,尽可能提高焊接接头的机械性能。在诸多技术因素中以结构参数和焊接工艺参数对焊接接头质量影响最大,为此,坡口尺寸变化对焊接接头质量的影响及焊接工艺参数对焊接接头质量的影响是本课题的主要内容。

通过研究不同尺寸的坡口用相同焊接工艺参数下焊成的接头在焊接接头组织、机械性能、焊接应力分布的变化;比较对焊接接头质量影响最小的结构尺寸,选出最优技术参数。

查看全文

焊接机器人在侧架支撑座焊接的运用

【摘要】对IGM焊接机器人系统及其特点、K6侧架支撑座焊接结构特点做了简单介绍,并结合焊接机器人的姿态控制和程序布点设置以及相关工艺要求,分析机器人应用中存在的问题以及问题的来源,进而提出有效解决措施。

【关键词】焊接机器人;侧架支撑座;焊接;应用

1引言

转向架由多个重要部件组成,其中包括交叉杆装置,它的存在促进了抗菱刚度的增强,而支撑座又是组成交叉杆的受力点,一般情况下通过焊接连接支撑座与侧架,在车辆正常运行下,焊缝需要承受的动载荷较大,因此,这就对焊接的质量提出了更高的要求。实行机器人焊接,如果不按照要求应用焊接机器人,焊接过程中将会出现偏焊、气孔、咬边等现象,应结合焊接机器人的特点,对焊接程序进行合理编制,以确保焊接质量。

2IGM焊接机器人系统及焊接特点

2.1焊接机器人系统。主要由焊接设备、控制系统、外部轴、机器人本体和轨道轴组成焊接机器人,如图1所示。轨道轴主要包括Z、Y、X轴,它的作用是让机器人顺着Z、Y、X做直线运动;机器人本体是六轴联动的机器人,且具有柔性,不仅能实现六轴联动的直线运动,也可以做单轴运动,同时,焊枪还能顺着圆点在空间位置内做任意转动[1]。在各种运动方式的应用下,机器人逐步实现对焊枪姿态的调整以及对焊接动作的完成;垂向旋转与水平旋转是外部轴的运动方式,外部轴的作用是与机器人运动相配以及调整工件位置;计算机组合形成了控制系统,该系统与人的大脑有异曲同工之处,主要通过发出指令,达到操控机器人的目的,让机器人自动调整参数、完成各项任务。产品的焊接质量在很大程度上取决于焊接电源是否完好,特别是对机器人的焊接,IGM公司大多采用FroniusTPS系列焊接机作为焊接电源进行机器人焊接,该系列焊接为逆变电源,具有智能化、数字化的特点。2.2焊接特点。焊接特点主要包括:1)焊接质量稳定。在对不规则或长焊缝进行焊接时,利用手工焊焊接很难连续不断弧,如果焊枪不断抖动,最后也很难成形,这种方式较容易被环境和人为因素所影响。而利用机器人进行焊接,则不容易受到外界因素的影响,在对批量产品实施焊接时,因运动姿态与参数具有一致性,这也就确保了机器人焊接质量的稳定。2)焊接位置最佳。利用机器人实施焊接时,机器人外部轴和本体进行联动,以此将工件安放在方便后期操作的位置上,在工件位置和焊枪角度相互配合下,呈现出最佳状态。3)焊接效率高。利用机器人进行焊接效率较高。焊接工作能够持续不断的开展,这样不仅能避免消耗更多的工时,且能够输出较大热量,加快焊接速度,缩短焊接时间;因最后成形的焊缝较好,也极大地减少了焊后清理工作[2]。

查看全文

9Ni钢焊接材料选用及焊接工艺性研究

摘要:LNG产业发展迅速,目前制造LNG储罐普遍采用9Ni钢材料。文章介绍了9Ni钢储罐的焊接材料研究状况,以及9Ni钢的化学组成成分和力学性能,重点介绍了9Ni钢焊接材料的选用方法和焊接过程中出现的质量缺陷,如热裂纹、冷裂纹、电弧磁偏吹、焊接件变形,并给出了相应的焊接质量控制措施,为9Ni钢储罐的制造企业提供一定的参考依据。

关键词:9Ni钢;焊接材料;焊接工艺性

19Ni钢焊接材料的应用

我国的LNG产业发展迅速,到2017年,中国已是世界第二大LNG进口国,据标准普尔公司分析,到2023年我国的LNG需求量将会大幅增加,达到6800万吨/年,比2017年的需求量翻一番。9Ni钢能广泛应用于制造LNG储罐,得益于其优良的特性,9Ni钢具有强度高、焊接性能好和低温韧性好等特性。相较于镍基合金钢和奥氏体不锈钢,其价格便宜,成本较低。虽然9Ni钢焊接材料在国内有一定的应用,但仍旧主要依赖国外进口。笔者对9Ni钢及焊接材料的选用和焊接性进行分析,对9Ni钢储罐的制造企业或单位在使用上提供一定的参考依据[1-2]。9Ni合金钢的材料化学元素组成和含量决定其力学性能,尤其C元素和镍Ni元素起到了关键性的作用。9Ni钢碳元素含量过高会使钢材的碳当量提高,导致9Ni钢焊接性变差,碳元素含量应控制在低碳范围区间内。若在钢中增加镍元素的含量,可使Ac3点降低,脆性转变温度将向低温方向变化,可提高其低温韧性。若在钢中添加9Ni,温度变化时,冲击韧性值将减小[3-4]。同时,9Ni钢力学性能还与钢的纯净度和微观组织结构有关。钢中的有害的S、P会与Fe、Ni形成的低熔点共晶化合物,从而增加9Ni钢的热裂倾向,导致低温冲击韧性恶化。S、P元素的含量必须控制在较低的范围内。9Ni钢的化学成分和力学性能如表1、表2所示。9Ni钢主要热处理方法:两相区淬火+回火(QLT)、淬火+回火(QT)和双正火+回火(NNT)。经过QLT低温韧性最好,QT次之,NNT最差。造成低温韧性差异的原因在于:1)在相同回火温度下,9Ni钢经过QLT处理比经过QT处理获得的逆转奥氏体数量要多些。例如回火温度在560℃,QLT处理的逆转奥氏体体积为5.60%,而QT处理的逆转奥氏体体积为2.30%,表现为QLT处理的9Ni钢冲击功比QT处理的冲击功大的多。2)逆转奥氏体在9Ni钢中的分布不同。QT热处理的逆转奥氏体析出部位主要集中分布在原奥氏体晶界与马氏体束界上;QLT热处理的逆转奥氏体分布较均匀,不仅在原奥氏体晶界与马氏体束界上分布,而且还在马氏体板条间析出,这种弥散均匀分布有利于低温韧性的提高[5-6]。

29Ni钢焊接材料

在9Ni储罐制造过程中,主要采取的焊接工艺有焊条电弧焊(SMAW)和埋弧自动焊(SAW)。SAW是焊接效率比较高的一种焊接方法,尤其是在环焊缝焊接时,使用了环缝焊接机械系统,它的优点较为突出,几乎适用于焊接所有水平位置焊缝和横焊缝。SMAW虽然没有SAW焊接效率高,但其焊接灵活,适合于结构件全位置焊接,也很受使用者欢迎。焊条电弧焊(SMAW)焊接9Ni钢,采用的焊接材料主要有以下四种。1)w(Ni)=11的铁素体型:材料在室内能较好实施热处理工序,易处理焊后焊缝的质量缺陷问题,对于大型的开放式储罐施工现场却不易或不能实施热处理工序,现在通常不采用这类焊接材料[7-8]。2)w(Ni)=13和w(Cr)=16的奥氏体不锈钢型:材料性能特点是强度高,线膨胀系数没有9Ni钢理想,易出现脆性组织,低温韧性较差。脆性组织为高硬度马氏体带,在扩散氢作用下,材料就会出现裂纹缺陷。3)w(Ni)≈40的Fe-Ni基型(Fe-Ni-Cr系合金):这类焊材膨胀系数接近于9Ni钢,低温韧性也较好,但强度较低,在一定程度上制约着其的广泛应用。4)w(Ni)=60的镍基型(Ni-Cr-Mo系合金):这类焊材线膨胀系数也接近于9Ni钢,无需焊接前预热和焊后进行热处理,低温韧性高,抗冷裂性能好,适合大型结构的野外施工,虽然价格高,但应用最为广泛。

查看全文

焊接工艺技术及焊接质量控制措施

[摘要]文章对金属结构的焊接工艺及施工技术、焊接质量控制进行了分析。

[关键词]金属结构;焊接工艺;焊缝;坡口;焊缝检验

1焊接对象

1.1常用国内钢材分类

1.1.1水工金属结构的钢材分类在水利工程中,常用的钢材按类别可分为Ⅰ~Ⅴ类,按组别可分为:Ⅰ-1标称屈服强度≤295MPa、Ⅱ-1标称屈服强度>295MPa且≤370MPa、Ⅱ-2标称屈服强度>370MPa且≤420MPa、Ⅲ-1组织类别为奥氏体型不锈钢、Ⅳ-1组织类别为奥氏体-铁素体型双相不锈钢、Ⅴ-1组织类别为马氏体-奥氏体型双相不锈钢。1.1.2建筑金属结构的钢材分类在建筑类工程中,经常使用的钢材在按类别分为Ⅰ~Ⅳ类,Ⅰ类标称屈服强度≤295MPa、Ⅱ类标称屈服强度>295MPa且≤370MPa、Ⅲ类标称屈服强度>370MPa且≤420MPa、Ⅳ类标称屈服强度>420MPa。在各类工程中所使用的钢材的分类方法基本类似,都是根据钢材强度及特性划分,也能体现出各类工程所使用的各类种类有所不同。

1.2钢结构焊接难度等级

查看全文

厚钢板焊接质量控制研究

【摘要】无锡会展中心一期采用鱼腹式钢屋架,施工过程中,厚钢板的焊接质量非常关键。论文主要介绍了无锡会展中心114m大跨度钢屋架厚钢板焊接的质量控制措施。

【关键词】超厚钢板;焊接;工艺评定;质量控制

1钢结构简介

无锡会展中心一期钢屋架总用钢量约1.18×104t,25榀鱼腹式屋面长288m、宽114m,净跨度94.5m,两端分别悬挑10.5m和9m。钢屋架由于跨度大,钢板厚度也较大,最厚的钢屋架下弦钢板达到140㎜厚,安装效果如图1所示。在工期紧、工程量大、施工难度高的情况下,如何保证厚钢板的焊接质量是确保本工程工期、质量、安全的前提和基础。

2厚钢板焊接质量控制

本工程钢屋架钢材以Q345b、60~140mm的中厚板为主,钢屋架下弦钢板厚度最大达到140mm。为了保证超厚钢板的焊接质量,施工前制定了详细的超厚钢板焊接方案,并且该焊接方案通过了焊接工艺评定并检测合格。施工中,主要从以下几个方面进行厚钢板焊缝焊接质量的控制。2.1焊工选择。焊接人员的技术素质直接决定了焊缝的焊接质量,为了保证关键节点的焊接质量,选择参与重要节点焊接施工的焊工时,对有资格的焊工中进行考试选拔,考试合格人员方可参与重要节点的焊接任务,其他普通焊工只能在普通部位施焊,从焊接人员方面抓好焊接质量的人员保障工作。2.2焊接材料选择。本工程焊接材料结合钢结构设计说明建议,根据焊接工艺评定结果,合理选择配套焊材、焊剂;结合以往工程经验,本工程屋架钢钢材种类、施焊方法及焊接材料如表1所示。2.3焊缝坡口形式的设计。对于钢板的对接焊缝,尽量采用X形坡口,这样可以大大减小焊接填充量,减小焊接残余应力和焊接变形。坡口形式如对于T形角焊缝,应尽量采用相对填充量较小的坡口角焊缝代替双侧角焊缝,坡口形式如图3所示。对于单边T形焊缝,应在Z向应力的一侧开坡口。图3坡口形式2.4焊接工艺评定———参数确定。对本工程钢屋架采用的钢材种类、焊条焊剂、钢构件接头连接形式、焊缝坡口加工形式及焊接的具体施工工艺,在钢屋架正式施工前,应首先进行焊接工艺评定,焊接工艺评定结果应符合规范及钢结构设计要求。焊接工艺作业指导书应根据本工程采用的不同钢材的种类、节点形式、板厚、接头形式等选用相配的焊接材料、焊接方法(手工电弧焊、自动和半自动埋弧焊、气体保护焊、电渣焊等)、焊丝直径、焊接顺序、焊接参数(电流、电弧电压、焊接速度)。焊接前的预热、焊接层间温度、焊后保温缓冷等措施应根据材质、焊件厚度、焊接工艺、施焊时气温等综合因素确定。应特别重视厚壁焊件及线能量敏感的钢材的焊接方式。焊接工作必须在焊接工程师的指导下进行,根据焊接工艺评定结果,编制详细焊接工艺作业指导书。焊工焊接要严格按照焊接工艺作业指导书进行焊接施工。对各种厚度的钢板在正式施工前进行焊接工艺评定试验,焊接工艺评定经历连续20h的操作结束,采取全程监督,确定了极为重要的过程数据(焊接参数、预热温度、持续时间等),在正式施工中便于焊工焊接操作和监督检查人员检查超厚板材的焊接工艺执行情况(见图4)。2.5焊接位置顺序确定。针对超厚钢板焊接位置顺序,为减少超厚板焊接过程中的残余应力和变形,本工程采用跳跃式接头焊接。通过实践证明这种焊接顺序是非常合理的,同时,这些高难部位的焊接安排焊接技术较好、经验较丰富的焊工进行施焊。主焊缝焊接按照同向、同步、同规范、2台焊机同时对称施焊的原则一次性完成焊接,以防止焊接构件焊接扭曲变形。较厚板的主焊缝焊接时,为了控制弯曲变形,当焊缝高度为板厚的2/3时,应翻身焊对面的两条主焊缝,焊完后再翻身焊未焊完的2条主焊缝。2.6母材预热。根据建筑钢结构焊接规范和焊接工艺评定,母材板厚超过35mm时,在焊接前要对母材进行焊前预热,焊前预热温度约为60℃。焊前预热区域为焊接坡口两侧,预热宽度为焊件施焊处母材厚度的1.5倍以上且不小于100mm,在焊件反面测量预热温度,测温点距离电弧经过前的焊接点不小于75mm,一般采用氧气乙炔中性火焰预热。2.7焊缝的层温控制。每个焊接接头应一次性焊接完成,层温即焊缝的层间温度,一般应控制在85~110℃,焊接过程中焊工要及时用测温笔检查层间温度,焊接工长在施工过程中要用测温仪抽查,施工前要注意收集天气资料,当天气恶劣时应停止施焊(见图5);如已开始,必须抢在恶劣天气到来前,焊完板厚的1/3以上才能停止焊接,并要及时做好已完焊缝的后热处理工作,及时记录层间温度。2.8做好寒冷天气下焊缝的后热与保温工作。为了避免焊缝延迟裂纹的产生,必须保证焊缝中的氢元素有足够的时间扩散,因此,在寒冷天气下,焊缝焊接完成后必须进行后热和保温处理,一般后热处理温度控制在200~250℃,测温点选在加热点的相对位置,禁止在加热点直接进行温度测试;达到后热温度之后,将焊缝用多层石棉布紧紧包裹保温。保温时间主要考虑接头区域、焊缝表面和环境温度,保温时间尽量延长。2.9焊缝探伤时间的确定。对于板材超厚和应力过于集中的情况,原来24h后的探伤工作经研究后决定延长至36h后进行,使残余应力和氢元素能够充分扩散,使探伤检测更为准确,可以避免后续应力导致的缺陷问题存在。

查看全文