航天员范文10篇
时间:2024-02-04 21:52:17
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇航天员范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
航天员论文:航天员建模与仿真办法探索
本文作者:李昊李东旭陈善广工作单位:中国航天员科研训练中心人因工程国防科技重点实验室
理论与方法基础
虽然航天员舱外作业动力学具有特殊的物理背景,并且非常复杂,但究其本质,仍然符合普遍意义下的运动学和动力学规律,这些基本规律,构成了本文的研究基础。非惯性系中的相对动力学根据动坐标系中对矢量求导的运算,有:(3)其中,n=μ/R3S姨为航天器平均轨道角速度,Δax,Δay,Δaz分别为Δa在相对轨道坐标系中的分量。式(3)描述了舱外航天员在与航天器固连的非惯性系中的动力学规律。多刚体动力学多刚体动力学研究中通常使用的方法包括:牛顿—欧拉法、拉格朗日法和凯恩法。文献[9]对这些方法进行了比较。事实上,这些方法所建立方程中的运动变量可以通过数学变换证明是等价的[10]。换句话说,从数学角度,这些方法只是表达形式的不同,没有本质区别;其主要不同在于方程在物理意义上的差异。由于着舱外航天服航天员多刚体模型的体段和关节较多,关节类型复杂,连接结构复杂,使用复杂的动力学方法难以给出其运动规律的直观解释,也不便用仿真实现,因此使用物理意义最为明确的牛顿—欧拉法建模。牛顿—欧拉法可以用如下方程组进行描述(4)其中,下标i表示体段编号,mi和Ii分别表示体段i的质量和惯量张量;第一个方程为牛顿方程,描述了该体段的平动动力学,第二个方程为欧拉方程,描述了该体段的转动动力学。通过对系统中每个刚体的平动和转动的迭代或回归计算,就可以描述整个多刚体系统的动力学。对于式(4),若沿等号由左至右计算,则为正向动力学,若沿等号由右至左计算,则为逆向动力学。在实际应用中,通常根据已知条件和求解需要,选择正向动力学或逆向动力学解算。
动力学建模
非惯性动力学环境建模根据节的分析可以发现,在以航天器为非惯r咬•图1着舱外航天服航天员的几何模型在该模型性动力学环境中,舱外作业航天员作为研究对象,时时受到非惯性环境的影响,因此,需要对一般在惯性环境中适用的动力学方程进行修改。修改后的牛顿—欧拉法所用的动力学方程变为:(5)其中,F軋t,C表示非惯性环境产生的牵连惯性力和科氏惯性力之和,h軋为该体段其质心到转轴的矢量。按上述模型,将非惯性环境对舱外航天员的影响进一步转化为一组时变的外力和外力矩的作用,能够大大简化整个系统动力学模型的复杂程度。着舱外航天服航天员动力学建模首先建立着舱外航天服航天员体段-关节的几何模型。在传统Hanavan人体模型的基础上,结合着舱外航天服航天员的运动特点,建立几何模型如图1所示。图中,小圆圈表示各体段之间的关节,小圆圈内的数字表示该关节的自由度数,该模型是一个具有16个体段、37个自由度的多刚体模型。在上述基础上做进一步分析,可建立如图2所示的拓扑结构模型。这是一个有向无环图,能够支持文献所提出的动力学分析方法。任一体段的物理模型L定义为如下8元式:L=<ID,CG,m,IT,shape,scale,NoJ,PoJ>(6)其中:ID是该体段的编号;CG是该体段的质心坐标;m是该体段的质量;IT是该体段的惯量张量,用一个3×3矩阵表示,研究中为了简化,一般只取其惯量主轴方向的值,即转动惯量,因此这里的IT为一对角阵;shape表示该体段的形状;scale表示该体段的大小;NoJ表示与该体段连接的关节的数目;PoJ表示与该体段连接关节的位置。根据对L的形式化表示,就可在仿真模型中为着舱外航天服的航天员各体段的物理参数。任一关节的物理模型J定义为如下7元式:J=<ID,DOF,B,F,position,orientation,range>(7)其中,ID是该关节的编号;DOF是该关节的自由度数;B是该关节所连接的基准体段;F是该关节连接的从属体段;position是该关节的位置坐标,可以灵活地选取局部基准坐标系或B的体段坐标系作为参考坐标系;orientation是该关节的方向表示,通常以B的体段坐标系为参考坐标系;range表示该关节每个自由度的取值范围。根据对J的形式化表示,就可在仿真模型中为着舱外航天服的航天员各关节的物理参数。航天服约束力建模舱外航天服除了对航天员的质量和运动属性影响外,由于舱外航天服织物的作用,以及航天服工作状态下内外压强差的存在,导致航天服对航天员各关节的力/力矩表现出一种“迟滞”现象[11],如图3所示。针对这种“迟滞”现象,目前有许多模型可供使用,如表1。在上述模型的基础上,深入分析舱外航天服的约束力特性,提出一种基于历史信息的加权模型[4],表示为:其中,τ表示舱外航天服的约束力矩,α表示与约束力矩相对应方向的自由度的关节角,集合{αi}表示α的历史信息,集合{βj}表示其它自由度方向的关节角信息,qa,b为权值,通过物理实验,参数分析等途径获得。使用此模型,能够充分描述舱外航天服的“迟滞”效应,并适用于关节具有2个以上自由度的情况。图4给出本文模型与美国EMU航天服肘关节的约束力测量曲线[12]的对比,可以看出二者曲线变化趋势基本一致。
仿真实现
航天员安全工作会主持词
各位老师,各位同学:
下午好!
神舟六号载人飞船的成功发射,是中华民族在攀登世界科技高峰征程上完成的又一伟大壮举,它标志着中华民族为人类探索太空的事业做出了新的重大贡献,它既鼓舞了全国人民为实现中华民族伟大复兴而奋斗的士气,也再次向世人证明:中国人民不但站起来了,而且正昂首阔步地前行!
今天我们有幸请来了中国载人航天航天员系统的总指挥兼总设计师*教授,他是我们的校友,现任中国载人航天工程航天员系统总指挥兼总设计师,同时,他还兼任中国空间科学学会理事,中国宇航学会理事,作为中国航天医学工程学科与航天飞行训练仿真技术方向学术带头人,负责并参与了中国载人航天工程研制的全过程。
大家都知道,神舟六号与神舟五号相比,进行了110余项技术改进,其中,对航天员系统的改进是其中的重要组成部分之一。*教授作为航天员系统的总指挥和总设计师,提出了借助模糊数学原理选拔航天员,并在研制航天员的个人装备和飞行过程中数据传输的有关设备,对航天员进行医学监督和医学保障,对飞船工程设计的医学要求等方面提出了许多改进方案,实践证明,神舟六号载人飞船为航天员创造了一个适于工作和生活的大气环境。
*教授现为我校兼职教授,我们真切的希望陈教授多回母校为同学们讲课、讲学、作报告。现在让我们以热烈的掌声欢迎*教授回来看望母校!
杨利伟:培养世界胸怀的中国太空人
新华网北京10月18日电(记者易凌孙彦新)自从杨利伟在2003年乘坐中国自行研制的神舟五号飞船进入太空后,中国成为继苏联和美国之后,世界上第三个成功实施载人航天项目的国家。中国航天员因此被赋予了一个独特的称谓——Taikonaut(太空人)——中国词汇“太空”的汉语拼音与宇航员的英文单词“astronaut”的结合体。
如同这个特殊称谓同时包含中国特色与国际化色彩一样,正参加中共十七大的杨利伟代表说,在太空中,中国航天员也会像国际同行一样,坚持自己的信仰。
目前,中国航天员大队14名队员都是共产党员。杨利伟说,将来中国有了自己的空间站,执行飞行任务的航天员也会坚持在太空过党组织生活。“如果我们在太空成立一个党支部,那或许是世界上最‘高’的党支部。”
“就像国外的航天员也有自己的信仰一样,中国的航天员信仰共产主义,这是一种精神力量。”杨利伟说,“在执行任务前,我们不会像外国同行一样祷告,但是我们这个共同的信仰会成为集体的一股强大的凝聚力,在太空这样一个没有国界,也没有地球上的一些规范的环境中,使我们更为团结,也成为我们完成任务的有力保证。”
现任中国航天员科研训练中心副主任的杨利伟表示,不同的信仰并不会妨碍各国航天员友好合作、和睦相处,“中国培养的航天员是要具有世界胸怀和全球眼光的”。
“人类航天事业的发展不是一个国家能够独立完成的,当我们从宇宙回头看自己的飞船的时候,感受到整个人类的伟大——将近10吨重的东西弄到距离地球几百公里外的地方飞行,这凝聚了人类的共同智慧。”杨利伟说。
食品航天论文:航天营养与食品工程回顾与展望
本文作者:陈斌董海胜工作单位:航天医学基础与应用国家重点实验室
航天食品工程研究的基本要求
航天食品工程包括航天食品与包装工程二部分内容.航天食品的服务对象是航天员,航天食品必须是安全、营养、方便、高效能、可接受性好的食谱食品,它集营养供能、心理调节和机能调节三大功能于一身.航天特因环境,特别是失重环境对航天食品的使用性能具有特殊的要求,受到多种条件的限制.工程条件限制受运载火箭推力的限制,载人航天器的重量和体积是有限的,这样分配给航天食品系统的重量和体积也必须精打细算,都是以“g”和“cm3”计,表1列出了美国不同型号和我国航天食品提供的能量、重量、体积及重量体积比.从表1中可以看出航天食品所受工程条件限制的严格程度.航天食品作为装船产品还要经受航天发射、运行、返回过程中各种特殊环境因素的作用如振动、冲击、泄复压、加速度等,因此航天食品的形态、包装形式、强度等都有严格的要求[1].安全要求体现在航天食品的卫生安全和操作安全两个方面,卫生安全包括物理因素如骨、刺等不可食用部分,化学因素包括农药残留、兽药残留、有毒有害物质等,生物因素如致病菌、生物毒素及过敏原等.这些可通过制定标准、过程控制和严格的检验评估来控制,从而促进了HACCP的产生和完善.操作安全是指航天员在食物准备和就餐过程中防止发生物理性伤害,与系统设计、产品加工和航天员操作的熟练程度直接相关[2].如凡是航天员徒手操作能接触到的硬件部位都要进行光洁处理,以防锐利部位引起创伤;又如刀叉勺之类的餐具若不慎脱离束缚或抛出,在失重状态下很可能伤害航天员.营养要求航天食品的首要功能是提供营养素,营养素指能为人体活动提供热能、维持新陈代谢及调节生理功能的营养物质,包括蛋白质、脂肪、碳水化合物、矿物质、维生素、水和膳食纤维七大类数十种物质.根据航天飞行任务的不同有所区别,如出舱活动期间就需要配置低产气的航天食品.可接受性要求食品作为营养素的载体,其感官接受性直接关系到营养素的摄入量,国内外的历次航天飞行实验证明,除航天食品本身的感官品质外,食品的种类、食谱与饮食制度、航天员个人的饮食习惯及嗜好、航天飞行过程中味觉与嗅觉的变化、硬件支持设施与就餐环境等都会对航天食品的感官接受性产生直接影响[2].保健功能要求从空间特因环境看,微重力、噪声、振动、辐射、昼夜节律改变、狭小生活空间、有害气体及心理应激等,这些都会直接或间接对人机体多个生理系统如骨骼肌肉系统、心血管系统、神经内分泌及消化系统等产生消极影响,长期航天飞行会导致航天员机体发生骨质疏松、肌肉萎缩、贫血症、胰岛素抵抗、食欲减退、免疫力下降、肾结石及便秘等一系列风险.针对机体生理功能发生的变化,需要开展相应的对抗措施研究,以减缓或避免上述失重生理效应的不良影响[2].从饮食的角度,开发研制系列抗疲劳、抗辐射、抗氧化、延缓骨钙丢失和肌肉萎缩、免疫调节等具有保健功能的航天食品,不但能为航天员提供必要的营养支持,而且具有特定的生理活性,无毒副作用,可长期服用,能作为航天飞行尤其是中长期飞行的有效防护措施,从一定程度上缓解航天特因环境对航天员的不利影响.使用性能要求航天食品使用性能要求主要包括在失重条件下使用的可行性、可靠性及方便性.要经过地面试验验证及模拟环境实验测试,并符合人机工效学要求.航天食品的类型航天食品按用途可分为食谱食品、储备食品、救生食品、压力应急食品及舱外航天食品,以适用于航天飞行的不同环境工况[2].食谱食品是指在轨道正常飞行期间供航天员食用的食品.根据航天员工作、生活和锻炼情况合理地提供不同种类和数量的食品,它不仅要满足航天员对食品的生理需求,还要尽可能满足航天员的心理和感官要求,尽量符合航天员的饮食习惯和爱好.食谱食品是航天食品的核心,占有的重量和体积最大,使用期最长,类型和品种最多.储备食品是考虑飞行计划中可能会遇到一些意外情况需延长飞行时供航天员食用的食品,如着陆地区气候条件恶劣不宜按时返回降落等.储备食品的使用条件与食谱食品相同,又称非压力应急食品.因此,储备食品的类型与食谱食品基本一致.压力应急食品是指在乘员舱发生压力应急时,航天员着航天服进行应急飞行期间食用的食品.根据压力应急飞行时间的长短,压力应急食品又分为航天服内进食和航天服外进食的应急食品.与食谱食品和储备食品明显不同,由于是在压力应急情况下食用,与航天服间存在界面接口关系,必须与航天服相匹配.舱外航天食品是指航天员着舱外航天服进行舱外活动期间食用的食品.航天服内供食装置由两部分组成:一是流质供食器,二是固体供食器.救生食品是航天员返回着陆(或溅水)后等待救援期间食用的食品.由于救生食品是在返回后食用,所以不必符合失重时的进食要求,但必须考虑在地面可能出现的各种气候条件下的进食要求,如在海上和沙漠地区.救生食品是从地面携带,返回后在地面食用,要求具有重量轻、体积小和热能密度高的特点.
国外航天食品研究发展历程
概述1961年4月12日,前苏联航天员加加林乘坐东方1号飞船首次航天飞行成功,人类从此进入载人航天时代[20].美国已完成和正在进行的载人航天计划有水星号、双子星座号、阿波罗号、天空实验室和航天飞机,1984年又开始了自由号国际空间站计划,后因俄罗斯的加入,改名为阿尔法国际空间站.前苏联/俄罗斯已完成和正在进行的载人航天计划有东方号、上升号、礼炮号、暴风雪号、和平号空间站,现参与国际空间站计划.载人航天任务从简单的体验人在太空失重条件下生存的可能性,到完成各种科学研究、观测、组装、加工、维修等繁重科学实验活动;航天飞行时间从十几分钟的亚轨道飞行到438天长期在太空生活和工作;航天器从简单的单人飞船到多人长期航天飞行的国际空间站,载人航天事业取得了巨大成就[1].在载人航天飞行之前,人们对这些特殊要求只能推测和想象.当时有些专家曾担心,在失重条件下吞咽可能会很困难,食物可能会卡在咽喉处.前苏联的加加林和美国第一位航天员格林的航天飞行任务之一,就是在太空失重条件下进行进食试验.随着航天营养与食品工程研究的不断深入,航天食品的类型和品种逐渐增加,食品的支持硬件也日益完善,当二者的复杂程度达到一定水平时,便形成了一个相对独立的完整体系———航天食品系统.航天食品系统通常包括食品、包装以及相应的储存、制备、伺服、清洁、废弃物收集与处理、漂浮物清除等一整套设备、装置和用品[21].航天食品系统的主要设计指标是安全、营养、方便、可靠,同时还要求重量轻、体积小、操作简便、包装要便于在失重条件下使用及较好的可接受性[21].要达到这些目标,主要考虑三方面的因素:生物因素、操作因素和工程因素(见表2),这些限制因素将3.2早期的航天飞行计划以美国为例,航天食品系统是为满足水星号和双子星座号飞船工程设计的严格要求而发展起来的[23].在水星号和双子星座号计划的短期航天中,食品的品种比较单一,由于没有足够的卫浴设施,加之食物贮藏能力有限,为减少排泄物,促进了低纤维食品的开发;后来,随着飞行时间的延长,航天食品得以进一步发展,但此时的设计原则多是考虑到水的供给方法[21].在阿波罗飞船上,水作为燃料电池的副产物可以充足供给,由此脱水食品得到广泛应用.但当水是从地面运往太空再进行复水时,脱水食品的优势则大大降低.“阿波罗”任务大大地推动了航天食品系统的发展,第一次在进食中使用了餐具,第一次使用了蒸煮袋,第一次食用辐照食品,这在美国航天食品系统的发展史上有着特别重要的意义[22].天空实验室计划[24]天空实验室食品系统是迄今为止最先进的食品系统,它包括冷冻、冷藏冰箱,食品的多样性提高了感官接受性和营养价值.天空实验室是美国第一个试验型空间站,主要任务之一是研究长期失重对人体的影响,其中也进行了最广泛的代谢研究,包括蛋白质,矿物质和水的代谢平衡研究.为了开展代谢平衡研究,天空实验室采用了6天周期的标准食谱.食谱食品包括18种热稳定食品,8种冷冻食品,3种中水分食品,11种干燥、辐照和自然型食品,25种复水食品以及10种复水饮料,并用这些食品搭配成代谢膳食.飞行前在地面密封舱内进行了3人56天的代谢实验,对代谢膳食和实验中37种营养素进行了分析.并从飞行前21天开始,到飞行后第18天为止,航天员一直食用航天食品,对飞行前、中、后的代谢样品进行了6种特殊营养素的分析,提出了航天营养的基本要求.天空实验室的食品系统比阿波罗、双子星座和水星号计划的食品系统有了很大改进.天空实验室的内部容积比前几个型号飞船都大,可居住空间为361m3(阿波罗为4.5m3,双子星座为2.26m3,水星号为1.56m3).天空实验室上有相当大的贮藏空间,并配备了冷冻、冷藏箱和食品加热器.天空实验室食品系统的最大特点是包装全面改观,支持硬件配套齐全.如研制了折叠式聚乙烯饮水瓶,整盖拉开式铝罐包装,配备了3种食品储箱:一是食品普通储箱,储存温度为5~30℃,用于储存热稳定食品、即食食品、复水食品和饮料;二是食品冷藏箱,储存温度为7℃,用于存放自然型食品中容易变质的食品和制备冷饮;三是食品冷冻箱,储存温度为-23℃,用于存放地面烹调好的冷冻食品和冰淇淋等.食品制备设备包括食品加热器和水分配器;食品伺服设备包括餐桌、餐盘和餐具.餐盘用于固定一餐的各种食品.后改为食品加热伺服箱,其表面有4大4小共8个凹槽,能卡住大小两种铝罐和复水饮料瓶.加热器能将食品加热到66℃,且有计时器可控制加热时间.勺、刀、叉3种餐具和安全剪刀都经磁化,他们可被吸附在箱体表面,以防止飞走.这种设备和这种进食方法颇受航天员欢迎.航天飞机计划[25]航天飞机是一种短期飞行的天地往返运载工具,可重复使用,代替一次性使用的运载工具飞船.具有将7名航天员和30t有效载荷运送到地球轨道的能力,由于航天飞机提供的质量和体积不大,可居住空间为74m3,而天空实验室可居住空间为361m3,所以工程技术方面对食品系统的质量和体积限制要比天空实验室严格得多,食品包装和支持硬件也不同于天空实验室,如电能和重量的限制排除了冷冻冷藏箱和微波炉的使用,用燃料电池水复水的脱水食品约占一半,其他由热稳定食品、辐照食品、中水分食品及液体或半固体的调味品等组成.食品的总数要远远大于以前的任务阶段,达150多种,大都不需要冷冻和冷藏的即食食品,或经简单加水或加热就可以食用的食品.在航天飞机上还为出舱活动研制了舱外航天食品和饮水,可提供2093kJ的14北京工商大学学报(自然科学版)2012年11月能量和1000mL的饮水.自STS-41D(航天飞机飞行任务编号)开始,航天员可以用标准食谱,也可从所列的150多种食品清单中选择个人喜好的食品,来替换标准食谱中的食品,或自己设计食谱,但必须经营养专家的评价以满足营养平衡的需要.在每次飞行中,还为每名航天员提供了2天的储备食品,每天总热量为8790.6kJ,以防着陆点恶劣天气或不可预测的原因而需延长飞行时食用.由于在飞行中航天员有机会从储备食品中自选点心或其他爱吃的食品,所以常常改变食谱.因此,在飞行中实际的膳食摄入情况与飞行前设计的营养平衡的食谱可能不一致,航天员很少抱怨食品质量或食品种类,但是,尽管如此航天员的营养摄入还是不足.在食品包装方面,为减少食物系统所产生废物的重量和体积,并考虑对废物进行压缩,对食品的包装进行了改进,大量采用铝箔包装以降低包装所占比例.随着食品包装的改进,进餐方式也发生了全新的变化.航天飞机厨柜是一个多功能食品支持设备.集成了包括食品储柜、调味品储柜、水分配器、强制对流加热箱、餐盘和餐具储柜、清洁卫生用品储柜、废弃物储柜、个人卫生台和食品制备台.该厨柜的所有组件及内装物品均采用了可靠的束缚、固定和连接装置.水分配器可定量提供冷、热水,强制对流加热炉用于食品加热.航天飞机食品系统的最大特点是趋于“地面化”,从食品的选择到伺服方式都与地面接近,食品的种类和品种越来越丰富.由于航天飞机执行任务时间较短,没有配备冷冻冷藏箱,复水食品采用燃料电池水复水.舱压为一个大气压,在一定程度上可适当放宽对食品包装的要求.航天飞机与和平号空间站联合计划[26]航天飞机与和平号空间站联合飞行(Shuttle-Mir)计划,是美国、欧空局、加拿大、巴西、日本和俄罗斯的一个合作项目,使用的是含有美国和俄罗斯食品的食品系统.美、俄航天员在和平号空间站上进行了111天至184天的长期飞行.和平号空间站的食品类型与航天飞机的类似,食品最短保质期为9个月.突出的特点是食品管理采用双语(俄语和英语)数据库,输入两国预先设计的食品条形码,就餐时采用读码器扫描标签并记录食品摄入情况,用以进行航天飞行期间的代谢研究.国际空间站食品系统[27]国际空间站建造期间以航天飞机-和平号空间站型食品为主.居住舱提供居住和食品厨柜,包括放置不同食品的贮藏间,还有冷冻冷藏箱、微波炉.空间站的食品设计是尽可能接近地面食品,因此可接受性大大提高.国际空间站将利用太阳能电池帆板发电,部分水来自空间站的再生水循环使用,但不能满足食品复水的需要.因此在空间站食品的设计时,大多数食品是不需复水的冷冻、冷藏食品和热稳定食品,食品和水的补给多由俄罗斯的进步号货运飞船运送,提供90天正常任务飞行的食谱食品和45天的储备食品,以及舱外活动所需食品.食谱食品有冷冻食品、冷藏食品和常温耐贮存的食品组成,按30天食谱周期设计,90天任务所需的食品放在多功能的后勤舱中,固定在轨道舱后再转移到居住舱.居住舱中的食品橱柜只能储存14天的食品,每隔2周从加压后勤舱取,没有用完的食品要重新放回后勤舱中,以备后用.储备食品要求尽可能小的体积和重量,但至少提供每人每天8732kJ的能量,保质期不少于2年.舱外活动食品与航天飞机相同.航天飞行期间的膳食摄入量研究营养摄入是航天员健康保证的基础,美国从阿波罗、天空实验室和航天飞机飞行期间对膳食摄入情况进行了监控,为了收集飞行中的数据,让航天员在他们的日志中记录食物摄入量,因手工记录既不完全又不方便,后改用读码器扫描食品标签,记录下食品的名称和一系列数据,同时输入个人的ID码及摄入量,自动记录数据和时间.飞行结束后,根据记录来计算营养摄入量[22].天空实验室任务进行了详细的营养代谢研究,航天员的能量摄入量高于“阿波罗”和航天飞机计划,达到推荐摄入量要求.阿波罗计划中,航天员则由于废物收集困难限制了他们的食物摄入[22].航天飞机任务中,航天员没有充足的时间去准备和进餐,加上空间运动病或没有饥饿感,食欲有所下降[24].在天空实验室和航天飞机任务期间,与飞行前相比,航天员摄入的碳水化合物较多而脂肪少.天空实验室计划中的航天员每天消耗的流质食品更多.饮料和食物中水分的摄入充足,每天水的推荐摄入量大约是238~357mL/(MJ•d)或者最少2000mL/d,可有效预防脱水和肾结石的形成,但与飞行前相比,飞行期间摄入的水量仍然偏少[22,28].在矿物质方面[29],在天空实验室和航天飞机任务期间,钠的摄入量大约是4~5g/d,比1100~3500mg/d的推荐摄入量高,接近于各自飞行前的水平,分别为5141.7±886.8mg/d和3925±920mg/d,阿波罗计划中,钠摄入量低于其推荐摄入量,这也许是因为他们的食物摄入总量只达到规定能量要求的64%所致.天空实验室飞行期间钾的摄入量为3853.8±566.9mg/d,也超出其推荐摄入量.阿波罗和航天飞机计划中航天员的钾摄入量低于3500mg/d.骨中矿物质损失,尤其是在承重骨中,3个计划中钙的摄入量比1000~1200mg/d推荐摄入量低.在天空实验室计划中,钙的摄入量(894.2±141.5mg/d)最接近规定值,这可能是因为航天员摄入了足够的能量.阿波罗和航天飞机飞行中,航天员磷的摄入量在推荐摄入量内,但在天空实验室中的摄入量则超过推荐摄入量.在天空实验室和航天飞机计划中,磷的摄入量比钙摄入量的1.5倍(每日营养推荐量中磷的摄入量应小于1.5倍钙的摄入量)要高.较高的磷钙比不利于钙的吸收.在天空实验室和航天飞机计划飞行中镁和锌的摄入与飞行前接近,但都是低于其推荐摄入量.低锌会降低味觉和嗅觉的功能,进而会影响整个膳食的摄入.在微重力环境中,血红细胞数量减少且血清铁浓度升高.在航天飞机计划飞行期间,铁的平均摄入量为15.6±4mg/d,比飞行前(18±4.6mg/d)低,但是高于推荐摄入量.高铁摄入有可能导致组织氧化损伤.铁的推荐摄入量是航天飞行中持续关注的问题,尤其是在执行长期任务时.微重力会引起免疫系统细胞信号传导的改变.航天飞行过程中乘组的能量及营养摄入量降低,直接的表现就是体重减轻,同时也观察到免疫功能的改变.比如:分裂素的增殖反应降低与VB6、VB12、生物素、VE、铜或硒缺乏有关.迟发型超敏反应的降低与VB6、VB12、VC或铁缺乏相关.蛋白质及个别氨基酸缺乏对多种免疫功能有深远的影响.为航天员提供特殊营养是对抗航天飞行期间免疫功能失调最有效的措施[30-31].航天飞行中VD、抗氧化剂(VA、VC、VE和β胡萝卜素)及膳食纤维的摄入量没有全面研究.关注VD是因为座舱内缺乏紫外线,紫外线是促进皮肤合成VD的关键因子.由于食谱和食品清单中VD偏少,需要额外补充.航天飞行使航天员暴露在比地面更大剂量的射线中,抗氧化剂可以防止因辐射引起的体内自由基损伤,所以研究它们的摄入量对航天员十分重要.以前报道表明,微重力环境条件下航天员出现便秘和航天运动病会影响胃肠道功能,膳食纤维和大量流质食物摄入有助于防止便秘[32].膳食摄入监控研究表明,在摄入足够能量的情况下,其他营养素都接近推荐摄入量.这可以认为航天飞行中营养素的生物利用率与在地面上基本相同.对于长期航天飞行,提供美味可口的食品,摄入足够食物以满足营养要求非常重要,需要鼓励航天员尽可能广泛食用食谱设计中的食品种类以确保营养平衡[33].
我国航天营养与食品工程发展趋势
国外航天发展综合解析论文
重型运载火箭研发计划稳步推进,新型运载火箭技术发展受到高度重视
2012年,主要航天国家继续推进一次性重型运载火箭研发,同时通过改进发动机设计、研制新燃料等技术革新降低发射成本。此外,新型运载技术、先进空间推进技术也是运载领域发展的重点。2012年,美国新型重型运载火箭研发继续稳步推进,J-2X上面级发动机、五段式固体火箭助推器按计划进行地面测试。7月,航天发射系统(SLS)先后完成了系统需求、系统定义和初步设计评审,NASA将着手开始火箭芯级初步的制造加工,为2014年的关键设计评审做准备。俄罗斯积极推进安加拉火箭的研发,目前该火箭已运抵发射场,等待2013年的首飞。此外,俄罗斯还计划发展具备探月能力的新型运载火箭,能源公司提交了与乌、哈两国联合建造超重型运载火箭计划。火箭将使用“能源-暴风雪”项目中的技术,运载能力最高达70吨。11月,欧洲航天局部长级会议决定,未来两年将继续推进“阿里安”-5ME和“阿里安”-6小型火箭的研制计划,以及两种运载火箭的通用技术。日本航空航天探索局(JAXA)则在2月宣布将改进H-2A火箭,使其运载能力提高一倍以上,从而提高在商业领域的竞争力。针对未来发展的需求,各国在研制新一代重型运载火箭的同时,也在积极推进可重复使用、亚轨道飞行、低成本快速发射等新型运载火箭技术。美国SpaceX公司于9月、11月和12月三次进行“蚱蜢”可重复使用火箭原型机的验证飞行,目标是研制两级可重复使用的“猎鹰”运载火箭,火箭能够用自身引擎实现基于起落架的着陆。“猎鹰”9火箭燃料成本只占发射成本的二百五十分之一,如果该计划成功,将极大降低“猎鹰”火箭的发射费用。欧洲航天局(ESA)正在准备“过渡性试验飞行器”(IXV)的首次下降着陆试验,为研制可重复使用飞行器提供技术支撑。此外,NASA正在与美国军方联合研制用于发射纳卫星的低成本运载火箭,该火箭能够以100万美元的成本实现24h内的快速发射。日本也计划在2013年进行“艾普西隆”(Epsilon)新型运载火箭的首次发射。该火箭采用了一系列新技术实现低成本和快速航天发射,目标是2017年将火箭的发射成本降低到3900万美元,并争取实现每月发射。在加强深空探索的大背景下,先进空间推进技术成为2012年发展的一个热点。1月,NASA授予诺•格公司合同,目标是研制一种用于“太空拖船”的高功率太阳能电推进系统,这种系统能够从低地球轨道(LEO)向地球同步轨道(GEO)运送卫星,以节省燃料成本和二级推进器的成本。由于太阳能在远离地球轨道的地方作为能源存在劣势,因此,核动力推进技术用于未来深空探索前景广阔。3月,斯科尔科沃基金会核分部负责人称,俄罗斯将在2017年前制造出适用于长距离载人飞行航天器的兆瓦级核推进系统,预计耗资超过2.47亿美元。NASA也正在研制“高级斯特林放射性同位素发电机”(ASRGs),与传统的放射性同位素热电发电机相比,每台ASRG只用1kg钚-238就能产生130W~140W的电力,而现有放射性同位素热电发电机需要4倍以上的钚才能产生同样电力。
国际空间站应用价值凸显,新型航天器发展稳步推进
2012年,国际空间站进入全面运营。俄罗斯的“联盟”飞船完成了4次载人运输服务,“进步”号货运飞船进行了4次货运补给,日本HTV和欧洲ATV货运飞船各进行一次补给任务。航天员进行了4次出舱活动,有效保障了国际空间站的常态运营。欧洲和美国分别召开专题研讨会,讨论如何将国际空间站作为一个技术试验平台为未来空间探索技术发展提供支持。2012年,国际空间站开展了多项空间科学实验和技术试验,空间科学成果倍出。技术试验包括:俄罗斯首次利用激光通信手段将电子数据传送到地面;ESA和NASA测试了星际通信协议,实现对地面机器人的远程操控;JAXA和NASA首次使用机械臂释放5颗立方体卫星,用于科学探测、教育及科技研发;NASA利用“进步”号货运飞船验证“零推进机动”(ZPM)试验;NASA使用加拿大机械臂在国际空间站上成功进行6次在轨燃料加注演示验证(RRM)试验。另外,还开展了几项维持国际空间站长期运行的技术试验,如新型交会对接系统试验、新型前定空间碎片规避机动(PDAM)系统等。这些技术试验的开展,不仅推动科学技术的进步,还为支持小行星、火星探索活动以及月球居住等未来深空探索技术的开发提供支持。2012年,在NASA及私营公司的联合推动下,美国商业航天器研制进展顺利。“龙”飞船完成首次国际空间站货运任务,负责载人商业航天器研制的波音公司、内华达山脉公司及空间探索技术公司(SpaceX)公司均已进入商业乘员开发计划的第三阶段,制定了满足NASA安全和性能要求的商业乘员运输认证计划。NASA“猎户座”飞船进行了系列降落伞试验及水上溅落试验,完成了包括对接窗在内的硬件组装,进行了压力检验测试,在进行热防护装置安装的同时,正在进行与“德尔它”4运载火箭连接适配器的制造,地面发射与运行系统也转入初步设计阶段,为“猎户座”飞船2014年首次验证飞行奠定了基础。2012年12月,俄罗斯宣布已完成其新型载人飞船的设计工作,相比现有的“联盟”飞船,新型飞船具有能发射至国际空间站以远和登月飞行等多重优势,计划于2017年试验飞行。波音公司和SpaceX公司还正在开发创新的发射中止系统,其设计理念是将发射中止系统集成到载人飞船上,在不需要提供逃逸救生功能时,可将燃料转移给飞船的动力系统,在某些情况下甚至具备可重复使用能力,从而在为航天员提供可靠逃逸救生支持的同时,进一步降低了近地轨道载人航天运输成本。
航天员系统研究成果显著,载人飞行逐步向深空探索迈进
2012年,美国和俄罗斯的航天员选拔工作进展顺利,各项航天医学实验全面展开,获得大量珍贵科学数据,NASA新一代航天服Z1通过初步测试。国际空间站航天员驻站时间计划延至一年,标志着未来载人航天飞行正逐步向长期飞行阶段过渡。2012年1月,俄罗斯加加林航天员中心从304位报名者中筛选出8位获选航天员候选人,这是俄罗斯首次公开选拔航天员,也是航天员选拔改革的第一步。未来,俄罗斯联邦航天局还将逐步淡化军事色彩,航天员大队的17名军人航天员退出现役,航天员训练中心余留军人也都转为预备役。2012年,多项医学实验取得阶段性成果:一是航天飞行引发的骨质疏松防治研究取得新进展。NASA研究发现快速诊断骨丢失方法,ESA研究人员发现航天员减少盐摄入量可以预防骨质疏松;二是长期飞行对航天员健康的影响成为研究重点,NASA科学家发现,微重力环境下,视力变化与身体上下肢体液的变化造成颅内压增高之间可能存在联系。视力变化的部分原因可能是由于“叶酸依赖型单碳代谢途径”发生变化,此项研究结果对NASA和未来航天员有着重要影响;三是航天员免疫系统变化影响实验广泛开展,NASA成功运用定量聚合酶链式反应(PCR)技术,针对困扰航天员的皮肤疾病带状疱疹,在早期病变开始前即可检测出免疫系统的变化,使得航天员在病痛出现之前即可接受治疗。11月,俄罗斯联邦航天局和NASA各选定1名航天员,计划进行为期一年驻站考察活动,将于2015年3月搭乘俄罗斯“联盟”号飞船启程。目前航天员及专家已经开始飞行前的准备工作,并确定以下七个重点研究领域:微重力环境下飞行如何影响航天员的视力问题;评估防治骨质流失和肌肉萎缩的锻炼和营养学方法;长时间生活在微重力环境下对免疫系统的影响;评估可以影响平衡和感知的神经前庭系统变化;乘员的行为、表现及人与人之间的关系可能发生的变化;辐射暴露的影响;评估乘员培训程序和可能发生的变化。NASA为航天员设计X1骨骼服与传统的骨骼服相比,X1可增大航天员的活动幅度,令其在空间行走也能感受如地球上一样的重力,这一功能可帮助航天员有效避免肌肉损耗。NASA研制新型舱外航天服Z1这套历时20年研制的新型舱外服拥有更有效的冷却设备以及处理二氧化碳的能力。目前该型航天服已通过初步测试,预计2015年将用于实际的飞行任务。研究人员还将根据Z1的设计继续研发其升级版Z2和Z3,如果试验进展顺利,Z3可能在2017年投入使用。
航天企业安全文化建设论文
一、安全文化建设在航天企业文化建设中的特殊性和重要性
航天科技工业汇聚了大量的高精尖技术,代表了国家先进制造业的发展水平。产品设计过程需要科研人员进行大量的科学论证,生产制造过程需要技术人员转化大量的工程难题。同时,需要技能人员操控大量的尖端设备,才能保证产品的性能达标。加之,技术和商业保密等方面的要求。因而,重视并加快建设航天企业安全文化显得尤为重要。
1.保障航天事业稳健发展需要建设安全文化。航天事业的发展是国防建设的重要组成部分,是维护国家安全,保障社会主义现代化建设顺利进行的一项重要事业。同时,航天事业又肩负强国威、壮军威,增加民族自信心的重任。为国防建设、国家经济建设、科技发展和社会进步做出的战略性贡献是航天企业存在的价值核心,而实现使命必须建立在安全发展的基础之上。航天产品是集众多高新技术于一体的精密产品,其组成的零部件数以万计,安全对全局至关重要,任何闪失都可能招致高额投资和人力付出化为泡影,更重要的是还可能会造成巨大的人员和财产伤亡事故;同时,航天产品的高昂价格和在国际斗争中的特殊地位,也容不得安全工作出现任何问题,因为我们国家是一个发展中国家,航天事业失败不起。另外,航天事业是一项系统工程,需要众多的企业共同协作,任何一个环节出现安全问题,都会影响大局。因此,航天事业的发展必须以安全为前提,离开安全,稳健发展无从谈起。
2.维护良好的航天企业形象需要重视安全文化。从我国第一代领导人审时度势开创中国航天事业以来,航天科技取得了举世瞩目的辉煌成就。尤其是,神舟系列飞船和嫦娥探月卫星的成功发射,在人们心目中树立了良好的航天企业形象。高科技、现代化的企业形象已经成为大多数人对航天企业的普遍认识。因而,必须将经验性、事后性的传统安全管理向依靠科技进步和不断提高员工安全文化素质的现代化安全管理转变,这是航天企业安全管理的必然发展趋势,更是展示企业形象的重要因素。只有通过开展安全文化建设,树立安全生产意识,并形成安全文化体系,才能带动航天员工队伍素质全面提高、推动航天企业安全管理水平和层次上台阶,才能确保航天企业优秀形象历久弥新、代代相传,这些也正是航天精神薪火相传的要义。
3.保障航天员工生命安全需要打造安全文化。员工是企业最宝贵的财富。任何企业的发展都离不开员工的辛勤努力和默默奉献。所有的航天产品中,都凝聚了数以万计航天人的智慧和汗水。因此,任何航天员工的伤亡都可能会影响航天企业的稳定,甚至影响整个航天事业发展。安全工作的重点在基层一线、在生产岗位,只有全面开展安全文化建设,并常抓不懈,才能让安全制度落地,帮助员工掌握安全知识,熟练安全技能,主动辨识危险源;树立安全意识,敬畏安全规章制度,自觉遵守安全操作规程,减少低层次习惯性违章;重塑安全价值观,认识到人人都是安全主体;继而从“要我安全”向“我要安全”、“我会安全”、“确保安全”转变,才能真正使航天员工的生命安全有保障,把人身伤害降低到最小程度。
二、航天企业安全文化建设的途径
电视科技新闻报道特色分析论文
一、“神舟七号载人航天飞行”电视科技新闻报道特色分析
笔者通过对中央电视台《新闻联播》、《中国新闻》、《走近科学》、《面对面》、《今日关注》等栏目中与“神舟七号载人航天飞行”相关的电视新闻报道、新闻频道的“神七问天特别直播”节目进行统计分析后发现,“神舟七号载人航天飞行”的电视科技新闻报道特色主要表现在以下几个方面。
1、神舟七号飞船工程的主要负责人、相关系统的设计者及宇航员成为报道的主角。据笔者初步统计,《面对面》、《今日关注》、《走近科学》及《中国新闻》(12点)栏目中“神舟七号工程”方面专家(包括设计师、负责人)及宇航员参与报道人次数量累计达到155以上如图一、二,专家的采访报道的主要有以下几种形式:早期的现场报道采访、视频连线现场采访、演播室访谈、早期访谈等。如图二“作为新闻频道惟一的长篇人物访谈类节目。《面对面》栏目在神七报道中发挥自身节目特色和优势,以神七发射任务中的高端人物——航天员、七大系统总指挥、我国载人航天工程领军人物为采访对象,由主持人董倩面对面作深度人物访谈,揭秘鲜为人知的幕后故事,讲述航天人在备战神七过程中酸甜苦辣的人生经历。在发射之前,《面对面》栏目就独家专访了三位航天员:翟志刚、刘伯明、景海鹏,近距离深入地采访,讲述他们的种种经历,人生感受,这在国内媒体仅此一家。”而中央电视台四套的《今日关注》栏目作了7期与“神舟七号载人航天飞行”有关的特别节目,每期节目演播室邀请两位相关的专家,就事态进展穿插相关新闻背景展开话题讨论,播出时间分别在“神七发前”和“神七宇航员安全返回地面”两个时间段。《走近科学》栏目作了9期与“神七”相关的特别节目,重点在于通过报道普及相关的航空航天知识。中央电视台四套12点整播出的《中国新闻》从9月20日到9月29日每天都有15——25分钟与神舟七号相关的新闻资讯。同时在9月20日至9月24目播出的报道中贴上了“期待神七”的显著标签,国内专家及宇航员的采访形式比较多,每期都有直播的现场采访,而关于国外的专家及宇航员的采访大多是早期记者采访的报道,就报道的主要内容而言大部分专家在“神七发射前后”给予热情的祝贺与积极的评价肯定,采访的宇航员主要是有过太空经历的以及产生过重大影响的宇航员。国外的航天专家及宇航员从国家分布来看主要有美国、俄罗斯、巴西、印度等。
2、“专家解读”、“揭秘”等名词是“神七”电视科技新闻报道中的显著标签,是报道的主要内容。笔者对中央电视台“神七”电视新闻报道就报道内容进行筛选后,节选出专家解读内容的部分报道,如资料二所示,主要解读内容为神七工程相关系统及硬件的设计及功能等,这同时也是“神七”电视科技新闻报道的主要内容与亮点。
中央电视台神七新闻报道专家解读内容节选
火箭系统总指挥详解负8小时的工作(09月25日)
行政职业能力测验模拟试题
一、言语理解与表达
1.滨海湿地系指沿海区域以及湿地范围的岛屿和低潮时水深不超过6烽的水域,包括河口、滩涂、盐沼、海湾、海峡、红树森与珊瑚礁等等,是介于海洋与陆地之间的一种特殊的生态系统,拥有多种多样的生态种类,中国滨海湿地的生物种类约有8200种,其中植物5000种,动物3200种,是生物多样性最丰富的生态系统之一。
对“滨海湿地”有关内容的理解,正确的一项是()。
a.是介于海洋与陆地之间、拥有多种多样生态种类的特殊生态系统
b.是指沿海区域和湿地范围内的岛屿,以及水深不超过6米的水域
c.具体是指河口、滩涂、盐沼、海湾、海峡、红树森与珊瑚礁等
科学家建国60周年优秀征文
一条大河,历经几千年,流淌的尽是汉字。
甲骨文的波纹、金文的涟漪、篆书的漩涡、隶书的浪花……沿路讲述着仓颉造字的传说,传颂着中华民族博大精深、源远流长的文明。
汉字起源于中原,但汉字没有国界边陲。在历史上,越南、朝鲜和日本都曾经用汉字记录他们的语言。越南的本国文字——字喃,是以汉字为基础创制出来的;韩国至今使用的还是汉字和韩字(即谚文)的混合体文字;已在世界占据重要地位的日本文字目前仍保留有1945个简体汉字。将汉文化和汉字象种子一样撒向欧洲、美洲、非洲等世界各地的,其功绩莫过于张骞两通西域、唐朝“对外开放”,以及郑和七下西洋。
国兴则汉字热,国衰则汉字冷。新中国成立后,汉字饱尝“世态炎凉”,才又开始活跃起来。进入二十一世纪,中国日益强盛,经济实力排名世界第三,综合国力排名世界第四,汉文化和汉字也随之风靡世界。据国家汉办主任许琳介绍,到目前,全世界已有81个国家建立了256所孔子学院和58所孔子课堂。世界著名大学中有44所大学建立了孔子学院。此外,还有40多个国家150多个学校和机构已经提出申请设立孔子学院,到2010年孔子学院将多达500所。同时有109个国家、3000多所高等学校开设了汉语课程。全世界学习汉语的人数,已经超过了4000万。美国3年前只有200所学校开汉语课,到现在已经发展到1000多所,并提出了到2015年5%的高中生要学汉语的目标。作为英语发源地的英国,几乎所有的大学都或多或少地开设了汉语课;开设汉语课程的中小学数量,已从2002年的57所增加到目前的近500所。
随着南极长城站、中山站、昆仑站和北极黄河站等科学考察站的相继建立,汉字便同五星红旗一起在冰天雪地,荒无人烟的极地落户。从此,地球的每片土地上都生长着汉字。
活字印刷让汉字广泛传播。但汉字在科技世界的游刃有余,则是在新中国以后,尤其是改革开放的三十多年。1975年国家科技发展规划748工程的启动,推动和产生了我们今天使用的汉字操作系统、汉字应用软件和各种汉字输入输出设备,彻底扫除了“中文不适于信息处理”的障碍。从1981年汉字激光照排系统样机研制成功到后来的广泛使用,我国的印刷出版业告别“铅与火”、进入“光与电”时代,汉字活力与日俱增。随着汉字操作系统、汉字编辑排版系统、汉字识别系统、手写汉字输入系统、机器翻译系统的不断创新和换代,汉字在计算机的王国里进出自由,没有禁区。
飞天圆梦造型设计和文化内涵研究
摘要;紫砂套组“飞天圆梦”以中国载人航天飞船发射成功、飞天梦的实现为创作立意,应用现代化艺术设计理念,融入航天飞机、中国地理图标等元素进行创作,以新颖独特、不拘一格的造型呈现出载人航天飞船这一伟大的科技成果,从而体现出紫砂用具无与伦比的造型和深厚的文化价值。
关键词;飞天圆梦;航天飞机;探索宇宙
宜兴紫砂壶是中国传统文化之林的一朵奇葩,自北宋发展至今,历经漫长的历史和无数朝代的更迭,至今保持着新鲜的活力。紫砂壶作为使用和观赏价值兼备的手工艺品,凝结了无数紫砂艺人、文人雅士的智慧和情怀,融合了多种艺术形式,创造了一个又一个艺术传奇,成为中国传统文化的优秀载体,丰富了人们的精神生活,也为世界文化的发展注入了新鲜的血液。
1造型设计
以形写神,以形写意,造型是紫砂壶最基本的表现形式和载体,唯有生动鲜明的造型,才能体现紫砂壶的精神气,使文化内涵得以具象地表现出来。“方非一式,圆不一相”,紫砂壶造型精彩纷呈,其创作题材丰富,自然中的花草虫鸟、历史典故和神话故事等等,都能成为创作的灵感来源,经过艺人的抽象提炼和加工设计,形成鲜明的个性特征。此壶以中国的飞天梦为立意,通过具体的壶型及装饰表达,融入艺术的力量,体现出人们探索宇宙的热情。此壶运用现代艺术思想和设计理念进行创作,体现了崭新的现代艺术风格。在传统的紫砂壶艺术创作中,色彩很少,没有充分发挥色彩巨大的艺术作用。此壶运用紫泥、红泥、段泥等多种泥料,通过不同泥料的搭配、组合运用,表现出鲜明的意象并形成强烈对比,色彩在此套组的设计中发挥了巨大作用,使作品更加丰富有味。紫砂壶套组讲究作品间的统一关系和独立个性,它们相辅相成、又具有相对独立性。纵观此套组,由茶盘、茶壶、品茗杯组成,彼此运用了相同的元素,风格一致、相得益彰,搭配的恰到好处。先看茶盘,紫砂茶盘为雄鸡状、俨然是一幅中国的地理图,茶盘上各大地理脉络清晰,构成了鲜明的区域划分,茶盘一圈有突出、便于端拿。再看紫砂壶,壶身上赫然写着“中国航天”四字,上半部分有一面显眼的五星红旗,此壶以航天飞船为原型创作,分为三部分:推进舱、返回舱和轨道舱,轨道舱为一个圆柱体,周围环绕四个发射器,最上方的推进舱两旁贴合制作壶流和壶把,造型新颖,以云纹装饰,呈展翅飞翔、翱翔天际之状,代表着中国的飞天梦。此壶造型惟妙惟肖,以简练抽象的形体表现出航天飞机的形态特征,赋予作品雄健的力量。再看品茗杯,宛若太空空间站和航天飞机接轨的瞬间,杯盖盖面上饰以奇妙行星轨道和浩瀚的星辰,下半部分宛如航天飞机的轨道舱,周身饰有突出的舱口,十分形象。该作品集传统和创新于一体,以新颖的组合效果,展现出不拘一格的结构美,呈现出完美的视觉艺术效果。
2文化内涵
相关期刊
精品范文
7航天发展