光电子范文10篇
时间:2024-02-01 21:13:52
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇光电子范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
光电子技术研究论文
1世界光电子技术和产业的发展
光纤通信技术的发展速度远远超过当初人们的预料,光纤已经成为通信网的重要传输媒介,现在世界上大约有60%的通信业务经光纤传输,到20世纪末将达到85%,但从目前光纤通信的整体水平来看,仍处于初级阶段,光纤通信的巨大潜力还没有完全开发出来。目前,各种新技术层出不穷,密集波分复用技术(DWDM,在同一根光纤内传输多路不同波长的光信号,以提高单根光纤的传输能力)、掺铒光纤放大器技术(EDFA,可将光信号直接放大,具有输出功率高、噪声小,增益带宽等优点)已取得突破性进展并得到广泛的应用。现在DWDM系统和光传输设备中,光电技术的比例将从过去比重不到10%达到90%。一种全新的、无需进行任何光电变换的光波通信——“全光通信”,由于波分复用技术和掺铒光纤放大器技术的进展,也日趋成熟,将在横跨太平洋和大西洋的通信系统上首次使用,给全球的通信业带来蓬勃生机。为此提供支撑的就是半导体光电子器件和部件。光电子器件和技术已形成一个快速增长的、巨大的光电子产业,对国民经济的发展起着越来越大的作用。美国光电子产业振兴协会估计,到2003年,光电子产业的总产值将达2000亿美元。
Internet应用的飞速增长对电信骨干网带宽提出越来越高的需求,为满足需求的增长,人们可以铺设更多的光纤,或靠提高单路光的信息运载量(现在主干网可以分别工作在2.5Gbps和10Gbps,并已有40Gbps的演示性设备)。但更主要的方法却是靠发展波分复用技术,增加光纤内通光的路数(光波分复用的实验记录已经达到2.64Tbps)。波分复用技术的普遍运用为光电子器件和部件提供了广阔的、快速增长的市场。无限战略公司的报告指出:“信号传输用1.31μm和1.55μm激光器市场1999年达到13亿美元,比去年增加23%;1.48μm信号放大用激光器1999年市场份额达到1.6亿美元,比去年增加33%;980nm信号放大用激光器销售额达2.9亿美元,比去年增长121%。整个激光器市场的份额1999年达18亿美元,预期2003年将达到30亿美元”。美国通信工业研究公司(CIR)的研究预测,北美市场光电子部件的市场规模将由目前的28亿美元增长到2003年的61亿美元,约每年增长18.5%。密集波分复用设备销售额也将从1998年的22亿美元增加到2004年的94亿美元。报告称虽然10年内全光通信还不会全面商业化,但是全光交换将在几年内成为市场主流,报告也指出尽管光学部件市场被大公司所占据,但仍有创新性公司进入的可能。
2我国的光电子技术和产业
近10年来我国光电子技术研究在国家“863”计划和有关部门的支持下有了突飞猛进的进展,在很多领域同国外先进国家只有两三年的距离,个别领域还处于世界领先地位。
国内光电子有关产业基地在光电子器件、部件和子系统(如激光器、探测器、光收发模块、EDFA、无源光器件)等已经占领了国内较大的市场份额,初步具备同国外大公司竞争的能力,在毫无市场保护的情况下,靠自己的力量争得了一席之地,市场营销逐年有较大的增长,个别产品还取得国际市场相关产品中的销量最大的成绩。我国相应研究发展基地和本领域高技术公司的许多产品填补了国内相关产品的空白,打破国外产品在市场上的垄断地位,同时争取进入国际市场。
光电子器件研究论文
一、薄膜制备技术
薄膜制备方法多种多样,总的说来可以分为两种——物理的和化学的。物理方法指在薄膜的制备过程中,原材料只发生物理的变化,而化学方法中,则要利用到一些化学反应才能得到薄膜。
1.化学气相淀积法(CVD)
目前光电子器件的制备中常用的化学方法主要有等离子体增强化学气相淀积(PECVD)和金属有机物化学气相淀积(MOCVD)。
化学气相淀积是制备各种薄膜的常用方法,利用这一技术可以在各种基片上制备多种元素及化合物薄膜。传统的化学气相淀积一般需要在高温下进行,高温常常会使基片受到损坏,而等离子体增强化学气相淀积(PECVD)则能解决这一问题。等离子体的基本作用是促进化学反应,等离子体中的电子的平均能量足以使大多数气体电离或分解。用电子动能代替热能,这就大大降低了薄膜制备环境的温度,采用PECVD技术,一般在1000℃以下。利用PECVD技术可以制备SiO2、Si3N4、非晶Si:H、多晶Si、SiC等介电和半导体膜,能够满足光电子器件的研发和制备对新型和优质材料的大量需求。
金属有机物化学气相淀积(MOCVD)是利用有机金属热分解进行气相外延生长的先进技术,目前主要用于化合物半导体的薄膜气相生长,因此在以化合物半导体为主的光电子器件的制备中,它是一种常用的方法。利用MOCVD技术可以合成组分按任意比例组成的人工合成材料,薄膜厚度可以精确控制到原子级,从而可以很方便的得到各种薄膜结构型材料,如量子阱、超晶格等。这种技术使得量子阱结构在激光器和LED等器件中得到广泛的应用,大大提高了器件性能。2.物理气相淀积(PVD)
光电子产业发展研究论文
论文关键词:世界光电子技术和产业的发展;我国的光电子技术和产业
论文摘要:光电子器件和部件广泛应用于长距离大容量光纤通信、光存储、光显示、光互联、光信息处理、激光加工、激光医疗和军事武器装备,预期还会在未来的光计算中发挥重要作用。本文将介绍国内外光电子技术及光电子产业的发展。
如果说微电子技术推动了以计算机、因特网、光纤通信等为代表的信息技术的高速发展,改变了人们的生活方式,使得知识经济初见端倪,那么随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。美国商务部指出:“90年代,全世界的光子产业以比微电子产业高得多的速度发展,谁在光电子产业方面取得主动权,谁就将在21世纪的尖端科技较量中夺魁”。日本《呼声》月刊也有类似的评论:“21世纪具有代表意义的主导产业,第一是光电子产业,第二是信息通信产业,第三是健康和福利产业……”,可以断言,光电子技术将继微电子技术之后再次推动人类科学技术的革命。
1世界光电子技术和产业的发展
光纤通信技术的发展速度远远超过当初人们的预料,光纤已经成为通信网的重要传输媒介,现在世界上大约有60%的通信业务经光纤传输,到20世纪末将达到85%,但从目前光纤通信的整体水平来看,仍处于初级阶段,光纤通信的巨大潜力还没有完全开发出来。目前,各种新技术层出不穷,密集波分复用技术(DWDM,在同一根光纤内传输多路不同波长的光信号,以提高单根光纤的传输能力)、掺铒光纤放大器技术(EDFA,可将光信号直接放大,具有输出功率高、噪声小,增益带宽等优点)已取得突破性进展并得到广泛的应用。现在DWDM系统和光传输设备中,光电技术的比例将从过去比重不到10%达到90%。一种全新的、无需进行任何光电变换的光波通信——“全光通信”,由于波分复用技术和掺铒光纤放大器技术的进展,也日趋成熟,将在横跨太平洋和大西洋的通信系统上首次使用,给全球的通信业带来蓬勃生机。为此提供支撑的就是半导体光电子器件和部件。光电子器件和技术已形成一个快速增长的、巨大的光电子产业,对国民经济的发展起着越来越大的作用。美国光电子产业振兴协会估计,到2003年,光电子产业的总产值将达2000亿美元。
Internet应用的飞速增长对电信骨干网带宽提出越来越高的需求,为满足需求的增长,人们可以铺设更多的光纤,或靠提高单路光的信息运载量(现在主干网可以分别工作在2.5Gbps和10Gbps,并已有40Gbps的演示性设备)。但更主要的方法却是靠发展波分复用技术,增加光纤内通光的路数(光波分复用的实验记录已经达到2.64Tbps)。波分复用技术的普遍运用为光电子器件和部件提供了广阔的、快速增长的市场。无限战略公司的报告指出:“信号传输用1.31μm和1.55μm激光器市场1999年达到13亿美元,比去年增加23%;1.48μm信号放大用激光器1999年市场份额达到1.6亿美元,比去年增加33%;980nm信号放大用激光器销售额达2.9亿美元,比去年增长121%。整个激光器市场的份额1999年达18亿美元,预期2003年将达到30亿美元”。美国通信工业研究公司(CIR)的研究预测,北美市场光电子部件的市场规模将由目前的28亿美元增长到2003年的61亿美元,约每年增长18.5%。密集波分复用设备销售额也将从1998年的22亿美元增加到2004年的94亿美元。报告称虽然10年内全光通信还不会全面商业化,但是全光交换将在几年内成为市场主流,报告也指出尽管光学部件市场被大公司所占据,但仍有创新性公司进入的可能。
“光电子技术”课程教学研究
摘要:在地方性高校应用型人才培养模式的定位下,“光电子技术”课程应以培养学生具有解决实际光电问题的知识和技能为目标。文章对现有“光电子技术”课程内容进行了优化整合,增加了前沿模块和应用模块,提高了教学内容的针对性和应用性;采用探讨式课堂教学和专家讲座相结合的教学方法,并在一些独立章节引入“翻转课堂”的教学模式,提高了学生的课堂参与度;建立了分层实验项目和设计性实验平台,提高学生应用所学知识解决实际问题的能力;拓展了课程考核内容,改变了评价方式,进一步保障了各项改革措施的最终落实。
关键词:应用型人才培养;光电子技术;课程内容;教学方法
基于应用性人才培养的定位[1],“光电子技术”课程应将光电基础知识和现代应用结合起来,以培养学生具有解决实际光电问题的知识和技能为目的,在课程内容、教学方法、实验项目和考核评价方面进行改革[2-3]。
1调整课程教学内容
1.1删旧增新,整合课程内容。删旧,即删除或压缩陈旧的或已学过的内容。如阴极射线管现在应用较少,可以少讲或者不讲;有关光辐射的知识已经在光学和工程光学讲过,可以删减。增新,即增加现代光电子技术的发展前沿、新技术及新需求,相关内容都可以编入前沿模块,既可以提高教学内容的时效性和应用性,又可以拓宽学生的视野,培养学生的科研意识。同时,“光电子技术”课程涉及的知识面非常广,各章内容比较独立,学生普遍反映这门课程“杂”“难”[4]。针对章节内容缺乏逻辑关系的问题,整合课程内容,按照光学系统的源、信息加载、传输通道、探测、信号处理和显示为主线整合内容,增加章与章之间的逻辑联系,建立“光电子技术”课程的知识框架,具体如图1所示。1.2增加技术应用及市场需求的教学内容。鉴于光电子技术与光电子产业市场的密切关系,课程的内容需要紧跟技术的发展和市场需求[5]。通过对光电子相关本土企业(如长虹电子等)的大量研究,实现生产、学习、科研一体化的模式,了解企业的具体需求,确定课程培训目标,整合课程内容,增加应用专题模块,如图1所示。通过与企业的深度合作,尝试与企业共同编写校本教材,提高课程中应用性知识比例,提升学生的应用能力、实践能力和专业竞争力。
2采用多元化的教学方法和手段
纳米光电子器件研究论文
1纳米导线激光器
2001年,美国加利福尼亚大学伯克利分校的研究人员在只及人的头发丝千分之一的纳米光导线上制造出世界最小的激光器-纳米激光器。这种激光器不仅能发射紫外激光,经过调整后还能发射从蓝色到深紫外的激光。研究人员使用一种称为取向附生的标准技术,用纯氧化锌晶体制造了这种激光器。他们先是"培养"纳米导线,即在金层上形成直径为20nm~150nm,长度为10000nm的纯氧化锌导线。然后,当研究人员在温室下用另一种激光将纳米导线中的纯氧化锌晶体激活时,纯氧化锌晶体会发射波长只有17nm的激光。这种纳米激光器最终有可能被用于鉴别化学物质,提高计算机磁盘和光子计算机的信息存储量。
2紫外纳米激光器
继微型激光器、微碟激光器、微环激光器、量子雪崩激光器问世后,美国加利福尼亚伯克利大学的化学家杨佩东及其同事制成了室温纳米激光器。这种氧化锌纳米激光器在光激励下能发射线宽小于0.3nm、波长为385nm的激光,被认为是世界上最小的激光器,也是采用纳米技术制造的首批实际器件之一。在开发的初始阶段,研究人员就预言这种ZnO纳米激光器容易制作、亮度高、体积小,性能等同甚至优于GaN蓝光激光器。由于能制作高密度纳米线阵列,所以,ZnO纳米激光器可以进入许多今天的GaAs器件不可能涉及的应用领域。为了生长这种激光器,ZnO纳米线要用催化外延晶体生长的气相输运法合成。首先,在蓝宝石衬底上涂敷一层1nm~3.5nm厚的金膜,然后把它放到一个氧化铝舟上,将材料和衬底在氨气流中加热到880℃~905℃,产生Zn蒸汽,再将Zn蒸汽输运到衬底上,在2min~10min的生长过程内生成截面积为六边形的2μm~10μm的纳米线。研究人员发现,ZnO纳米线形成天然的激光腔,其直径为20nm~150nm,其大部分(95%)直径在70nm~100nm。为了研究纳米线的受激发射,研究人员用Nd:YAG激光器(266nm波长,3ns脉宽)的四次谐波输出在温室下对样品进行光泵浦。在发射光谱演变期间,光随泵浦功率的增大而激射,当激射超过ZnO纳米线的阈值(约为40kW/cm)时,发射光谱中会出现最高点,这些最高点的线宽小于0.3nm,比阈值以下自发射顶点的线宽小1/50以上。这些窄的线宽及发射强度的迅速提高使研究人员得出结论:受激发射的确发生在这些纳米线中。因此,这种纳米线阵列可以作为天然的谐振腔,进而成为理想的微型激光光源。研究人员相信,这种短波长纳米激光器可应用在光计算、信息存储和纳米分析仪等领域中。
3量子阱激光器
2010年前后,蚀刻在半导体片上的线路宽度将达到100nm以下,在电路中移动的将只有少数几个电子,一个电子的增加和减少都会给电路的运行造成很大影响。为了解决这一问题,量子阱激光器就诞生了。在量子力学中,把能够对电子的运动产生约束并使其量子化的势场称之成为量子阱。而利用这种量子约束在半导体激光器的有源层中形成量子能级,使能级之间的电子跃迁支配激光器的受激辐射,这就是量子阱激光器。目前,量子阱激光器有两种类型:量子线激光器和量子点激光器。
光电子产业发展论文
论文关键词:世界光电子技术和产业的发展;我国的光电子技术和产业
论文摘要:光电子器件和部件广泛应用于长距离大容量光纤通信、光存储、光显示、光互联、光信息处理、激光加工、激光医疗和军事武器装备,预期还会在未来的光计算中发挥重要作用。本文将介绍国内外光电子技术及光电子产业的发展。
如果说微电子技术推动了以计算机、因特网、光纤通信等为代表的信息技术的高速发展,改变了人们的生活方式,使得知识经济初见端倪,那么随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。美国商务部指出:“90年代,全世界的光子产业以比微电子产业高得多的速度发展,谁在光电子产业方面取得主动权,谁就将在21世纪的尖端科技较量中夺魁”。日本《呼声》月刊也有类似的评论:“21世纪具有代表意义的主导产业,第一是光电子产业,第二是信息通信产业,第三是健康和福利产业……”,可以断言,光电子技术将继微电子技术之后再次推动人类科学技术的革命。
1世界光电子技术和产业的发展
光纤通信技术的发展速度远远超过当初人们的预料,光纤已经成为通信网的重要传输媒介,现在世界上大约有60%的通信业务经光纤传输,到20世纪末将达到85%,但从目前光纤通信的整体水平来看,仍处于初级阶段,光纤通信的巨大潜力还没有完全开发出来。目前,各种新技术层出不穷,密集波分复用技术(DWDM,在同一根光纤内传输多路不同波长的光信号,以提高单根光纤的传输能力)、掺铒光纤放大器技术(EDFA,可将光信号直接放大,具有输出功率高、噪声小,增益带宽等优点)已取得突破性进展并得到广泛的应用。现在DWDM系统和光传输设备中,光电技术的比例将从过去比重不到10%达到90%。一种全新的、无需进行任何光电变换的光波通信——“全光通信”,由于波分复用技术和掺铒光纤放大器技术的进展,也日趋成熟,将在横跨太平洋和大西洋的通信系统上首次使用,给全球的通信业带来蓬勃生机。为此提供支撑的就是半导体光电子器件和部件。光电子器件和技术已形成一个快速增长的、巨大的光电子产业,对国民经济的发展起着越来越大的作用。美国光电子产业振兴协会估计,到2003年,光电子产业的总产值将达2000亿美元。
Internet应用的飞速增长对电信骨干网带宽提出越来越高的需求,为满足需求的增长,人们可以铺设更多的光纤,或靠提高单路光的信息运载量(现在主干网可以分别工作在2.5Gbps和10Gbps,并已有40Gbps的演示性设备)。但更主要的方法却是靠发展波分复用技术,增加光纤内通光的路数(光波分复用的实验记录已经达到2.64Tbps)。波分复用技术的普遍运用为光电子器件和部件提供了广阔的、快速增长的市场。无限战略公司的报告指出:“信号传输用1.31μm和1.55μm激光器市场1999年达到13亿美元,比去年增加23%;1.48μm信号放大用激光器1999年市场份额达到1.6亿美元,比去年增加33%;980nm信号放大用激光器销售额达2.9亿美元,比去年增长121%。整个激光器市场的份额1999年达18亿美元,预期2003年将达到30亿美元”。美国通信工业研究公司(CIR)的研究预测,北美市场光电子部件的市场规模将由目前的28亿美元增长到2003年的61亿美元,约每年增长18.5%。密集波分复用设备销售额也将从1998年的22亿美元增加到2004年的94亿美元。报告称虽然10年内全光通信还不会全面商业化,但是全光交换将在几年内成为市场主流,报告也指出尽管光学部件市场被大公司所占据,但仍有创新性公司进入的可能。
光电子技术下煤炭安全生产论文
1光电子技术的相关概述
光电子技术是现代化新技术,具有无可比拟的先进性,它是光子技术和电子技术结合而成的新技术,涉及光的显示、光的存储以及激光等众多领域。它不仅是未来信息产业的核心技术,也是煤炭安全生产的重要技术保障。该技术涉及的课程体系众多,包括光学与物理、IED的生产与检测、生产管理、3D显示、光电半导体元件等内容,与多种学科交叉渗透。该技术的兴起运用也带动了它在煤炭生产企业中的运用,它能够为生产安全性提供保障。但是据调查统计,由于该技术在我国的发展时间尚短,我国又缺乏与该技术相关的专业人才,导致其应用面临严峻的困难,它的效能难以得到发挥。提高我国该领域的核心技术能力,培养高技术人才,并在煤炭安全生产中科学发挥它的作用,就成为我国煤炭企业降低事故发生率、减少企业资金浪费、切实提升企业竞争力的关键。
2光电子技术在煤炭安全生产中的应用
2.1近红外波长瓦斯浓度检测技术
瓦斯爆炸是造成煤炭生产不安全的最重要的因素之一,做好瓦斯的检测工作,明确气体的浓度就显得极其重要。利用光电子技术中的近红外波长瓦斯浓度检测手段,能够准确检测出煤炭井下的气体浓度,改善原有瓦斯传感器只能检测黑白元件的弊端,并且不需要每隔一周进行调试,从而减小误差,缓解人员工作压力,大大降低瓦斯爆炸事故发生的可能性。此外,由于光电子元件的发展,近红外波长瓦斯浓度检测技术还具有相对的稳定性,使用操作简便易行,使用年限也更长。
2.2LED矿灯
纳米光电子器件发展论文
论文关键词:纳米导线激光器;紫外纳米激光器;量子阱激光器;微腔激光器;新型纳米激光器
论文摘要:纳米光电子技术是一门新兴的技术,近年来越来越受到世界各国的重视,而随着该技术产生的纳米光电子器件更是成为了人们关注的焦点。主要介绍了纳米光电子器件的发展现状。
1纳米导线激光器
2001年,美国加利福尼亚大学伯克利分校的研究人员在只及人的头发丝千分之一的纳米光导线上制造出世界最小的激光器-纳米激光器。这种激光器不仅能发射紫外激光,经过调整后还能发射从蓝色到深紫外的激光。研究人员使用一种称为取向附生的标准技术,用纯氧化锌晶体制造了这种激光器。他们先是"培养"纳米导线,即在金层上形成直径为20nm~150nm,长度为10000nm的纯氧化锌导线。然后,当研究人员在温室下用另一种激光将纳米导线中的纯氧化锌晶体激活时,纯氧化锌晶体会发射波长只有17nm的激光。这种纳米激光器最终有可能被用于鉴别化学物质,提高计算机磁盘和光子计算机的信息存储量。
2紫外纳米激光器
继微型激光器、微碟激光器、微环激光器、量子雪崩激光器问世后,美国加利福尼亚伯克利大学的化学家杨佩东及其同事制成了室温纳米激光器。这种氧化锌纳米激光器在光激励下能发射线宽小于0.3nm、波长为385nm的激光,被认为是世界上最小的激光器,也是采用纳米技术制造的首批实际器件之一。在开发的初始阶段,研究人员就预言这种ZnO纳米激光器容易制作、亮度高、体积小,性能等同甚至优于GaN蓝光激光器。由于能制作高密度纳米线阵列,所以,ZnO纳米激光器可以进入许多今天的GaAs器件不可能涉及的应用领域。为了生长这种激光器,ZnO纳米线要用催化外延晶体生长的气相输运法合成。首先,在蓝宝石衬底上涂敷一层1nm~3.5nm厚的金膜,然后把它放到一个氧化铝舟上,将材料和衬底在氨气流中加热到880℃~905℃,产生Zn蒸汽,再将Zn蒸汽输运到衬底上,在2min~10min的生长过程内生成截面积为六边形的2μm~10μm的纳米线。研究人员发现,ZnO纳米线形成天然的激光腔,其直径为20nm~150nm,其大部分(95%)直径在70nm~100nm。为了研究纳米线的受激发射,研究人员用Nd:YAG激光器(266nm波长,3ns脉宽)的四次谐波输出在温室下对样品进行光泵浦。在发射光谱演变期间,光随泵浦功率的增大而激射,当激射超过ZnO纳米线的阈值(约为40kW/cm)时,发射光谱中会出现最高点,这些最高点的线宽小于0.3nm,比阈值以下自发射顶点的线宽小1/50以上。这些窄的线宽及发射强度的迅速提高使研究人员得出结论:受激发射的确发生在这些纳米线中。因此,这种纳米线阵列可以作为天然的谐振腔,进而成为理想的微型激光光源。研究人员相信,这种短波长纳米激光器可应用在光计算、信息存储和纳米分析仪等领域中。
光电子技术产业管理论文
论文关键词:世界光电子技术和产业的发展;我国的光电子技术和产业
论文摘要:光电子器件和部件广泛应用于长距离大容量光纤通信、光存储、光显示、光互联、光信息处理、激光加工、激光医疗和军事武器装备,预期还会在未来的光计算中发挥重要作用。本文将介绍国内外光电子技术及光电子产业的发展。
如果说微电子技术推动了以计算机、因特网、光纤通信等为代表的信息技术的高速发展,改变了人们的生活方式,使得知识经济初见端倪,那么随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。美国商务部指出:“90年代,全世界的光子产业以比微电子产业高得多的速度发展,谁在光电子产业方面取得主动权,谁就将在21世纪的尖端科技较量中夺魁”。日本《呼声》月刊也有类似的评论:“21世纪具有代表意义的主导产业,第一是光电子产业,第二是信息通信产业,第三是健康和福利产业……”,可以断言,光电子技术将继微电子技术之后再次推动人类科学技术的革命。
1世界光电子技术和产业的发展
光纤通信技术的发展速度远远超过当初人们的预料,光纤已经成为通信网的重要传输媒介,现在世界上大约有60%的通信业务经光纤传输,到20世纪末将达到85%,但从目前光纤通信的整体水平来看,仍处于初级阶段,光纤通信的巨大潜力还没有完全开发出来。目前,各种新技术层出不穷,密集波分复用技术(DWDM,在同一根光纤内传输多路不同波长的光信号,以提高单根光纤的传输能力)、掺铒光纤放大器技术(EDFA,可将光信号直接放大,具有输出功率高、噪声小,增益带宽等优点)已取得突破性进展并得到广泛的应用。现在DWDM系统和光传输设备中,光电技术的比例将从过去比重不到10%达到90%。一种全新的、无需进行任何光电变换的光波通信——“全光通信”,由于波分复用技术和掺铒光纤放大器技术的进展,也日趋成熟,将在横跨太平洋和大西洋的通信系统上首次使用,给全球的通信业带来蓬勃生机。为此提供支撑的就是半导体光电子器件和部件。光电子器件和技术已形成一个快速增长的、巨大的光电子产业,对国民经济的发展起着越来越大的作用。美国光电子产业振兴协会估计,到2003年,光电子产业的总产值将达2000亿美元。
Internet应用的飞速增长对电信骨干网带宽提出越来越高的需求,为满足需求的增长,人们可以铺设更多的光纤,或靠提高单路光的信息运载量(现在主干网可以分别工作在2.5Gbps和10Gbps,并已有40Gbps的演示性设备)。但更主要的方法却是靠发展波分复用技术,增加光纤内通光的路数(光波分复用的实验记录已经达到2.64Tbps)。波分复用技术的普遍运用为光电子器件和部件提供了广阔的、快速增长的市场。无限战略公司的报告指出:“信号传输用1.31μm和1.55μm激光器市场1999年达到13亿美元,比去年增加23%;1.48μm信号放大用激光器1999年市场份额达到1.6亿美元,比去年增加33%;980nm信号放大用激光器销售额达2.9亿美元,比去年增长121%。整个激光器市场的份额1999年达18亿美元,预期2003年将达到30亿美元”。美国通信工业研究公司(CIR)的研究预测,北美市场光电子部件的市场规模将由目前的28亿美元增长到2003年的61亿美元,约每年增长18.5%。密集波分复用设备销售额也将从1998年的22亿美元增加到2004年的94亿美元。报告称虽然10年内全光通信还不会全面商业化,但是全光交换将在几年内成为市场主流,报告也指出尽管光学部件市场被大公司所占据,但仍有创新性公司进入的可能。
光电子技术理论应用基础论文
论文摘要:通过对教学实践工作的不断探索与总结,从教学内容安排、教学内容拓展和教学手段运用三个方面对“光电技术”课程的教学方法进行了研究,并将其运用到课堂,取得了良好的教学效果。
论文关键词:光电技术教学内容教学手段
1960年第一台红宝石激光器的问世可以说是光学发展史上的里程碑,该发明解决了光频载波问题,此后光电子技术得以蓬勃发展,在现代信息产业结构中扮演着重要角色。…由于社会发展的需要,近十多年来许多高校纷纷开设“光信息科学与技术”或“光电子技术”专业,着力培养专门的光电子人才“光电技术”作为该学科的主干课程,将系统地介绍光电子技术的理论和应用基础。在讲授这门课程的过程中,笔者对其具体的教学方法有一些体会和思考,文章将进行详细的论述。
一、教学内容的合理安排
一门课程教学效果的好坏在很大程度上取决于课堂教学内容对学生是否具有吸引力,能否激发学生学习的兴趣和积极性。而教学内容又来源于老师选择教材是否合适。在图书库中键入“光电子技术”的检索词会出现十几本相同名称的教材,但是否每本书都适合课堂教学呢?答案是否定的。虽然书的名称都叫做《光电子技术》,但细细翻阅,每本书的侧重点都是不相同的,有的大部分章节是介绍激光原理和激光器工艺,对光电检测和显示涉及较少;有的偏重于理论推导,对实际的应用涉及很少。还有一些教材虽然内容较为全面,但书本页数很多,在三十多个课时内难以讲完。针对长沙理工大学实际的课时要求和学生专业背景,通过仔细比较选择了安毓英编写的《光电子技术》(电子工业出版社)一书。
教材选好后,在实际的教学过程中教师仍需对教学内容进行认真斟酌。教材共有七个章节,分别为“光辐射、发光源与光传播基本定律”、“光辐射的传播”、“光束的调制和扫描”、“光辐射的探测技术”、“光电成像系统”、“显示技术”和“光电子技术应用实例”。其中“光辐射的传播”一章中主要从理论上介绍光束在各种媒质中的传播规律,在光电子应用中较为重要的是光波在电光晶体(2.2节)、声光晶体(2.3节)、磁光介质(2.4节)和光纤波导中的传播(2.5节)。而这四部分内容应用在实际中恰好是电光调制器(3.2节)、声光调制器(3.3节)、磁光调制器(3.4节)和光纤通信技术(7.1节)。所以在讲课的时候可以把2.2节和3.2节、2.3节和3.3节、2.4节和3.4节、2.5节和7.1节内容综合起来讲授,第二章将不作为独立的一章来专门讲述理论推导。在讲第三章中每一种调制器工作原理的时候,先讲第二章涉及的理论知识,随后在学生对理论还有深刻记忆的情况下紧接着把这一理论在工业中的应用进行讲授,这样就增强了学生在学习理论时的目的性。对教材的其他内容细细推敲,还有很多地方可以这样来安排。这种将理论知识和实际应用综合讲解的方法让学生明白了理论并非空洞的理论,既提高了注意力,又激发了学生的学习热情,在实践中收到了很好的教学效果。