光电互感器范文10篇
时间:2024-02-01 19:34:00
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇光电互感器范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
光电互感器论文
[论文关键词]数字化变电站光电互感器组成传统互感器有源式无源式电能计量
[论文摘要]对数字化变电站中光电互感器的工作原理、结构上的特点和优点进行简单分析,同时阐述光电互感器的应用对电能计量方面的影响。
数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约构建通信网络,保护、测控、计量、监控、远动、VQC等系统,均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。
随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。
光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。
光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。
数字化变电站中光电互感器研究论文
1.
数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约构建通信网络,保护、测控、计量、监控、远动、VQC等系统,均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。
随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。
光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。
光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。
相对于传统的电磁式互感器,光电互感器有明显的优点:(1)在高电压、大电流的测量环境中,光纤或光介质是良好的绝缘体,它可以满足高压工作环境下的绝缘要求;(2)没有传统电流互感器二次开路产生高压的危险,以及传统充油电压、电流互感器漏油、爆炸等危险;(3)不会产生磁饱和及铁磁共振现象,它尤其适用于高电压、大电流环境下的故障诊断;(4)频带宽,可以从直流到几百千赫,适用于继电保护和谐波检测;(5)动态范围大,能在大的动态范围内产生高线性度的响应;(6)适应了现在电力系统的数字化信号处理要求,它还可用于以保护、监控和测量为目的高速遥感、遥测系统;(7)整套测量装置结构紧凑、重量轻、体积小;(8)各个功能模块相对独立,便于安装和维护,适于网络化测量。
数字化变电站光电互感器机械论文
摘要:对数字化变电站中光电互感器的工作原理、结构上的特点和优点进行简单分析,同时阐述光电互感器的应用对电能计量方面的影响。
关键词:数字化变电站光电互感器组成传统互感器有源式无源式电能计量
数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约构建通信网络,保护、测控、计量、监控、远动、VQC等系统,均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。
随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。
光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。
光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。
数字化变电站研究论文
数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约构建通信网络,保护、测控、计量、监控、远动、VQC等系统,均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。
随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。
光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。
光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。
相对于传统的电磁式互感器,光电互感器有明显的优点:(1)在高电压、大电流的测量环境中,光纤或光介质是良好的绝缘体,它可以满足高压工作环境下的绝缘要求;(2)没有传统电流互感器二次开路产生高压的危险,以及传统充油电压、电流互感器漏油、爆炸等危险;(3)不会产生磁饱和及铁磁共振现象,它尤其适用于高电压、大电流环境下的故障诊断;(4)频带宽,可以从直流到几百千赫,适用于继电保护和谐波检测;(5)动态范围大,能在大的动态范围内产生高线性度的响应;(6)适应了现在电力系统的数字化信号处理要求,它还可用于以保护、监控和测量为目的高速遥感、遥测系统;(7)整套测量装置结构紧凑、重量轻、体积小;(8)各个功能模块相对独立,便于安装和维护,适于网络化测量。
由于光电互感器的诸多优点,光电互感器取代传统互感器将只是一个时间问题。国际上,光电互感器已逐步成熟,正已越来越快的速度推广运用。其中ABB、西门子等公司生产的光电互感器已有十几年的成功运行业绩。采用光电互感器的数字化变电站在欧洲也已经投入运行。我国光电互感器的研制和运用相对比较落后,仅有为数不多的变电站使用了一些进口的光电互感器。国内有二十余家企业和高校涉足了光电互感器的开发,经过多年的努力,已有若干套设备在现场试运行。
继电保护互感器技术的应用与不足
【摘要】互感器技术是继电保护工作的重要组成部分,是确保继电保护装置正常运行的基础。简要介绍了互感器技术在继电保护工作中的应用,提出了当前互感器技术的不足和新式光电互感器的优点。互感器技术是电网安全保护工作的重要组成部分,呼吁技术人员关注和研究互感器技术,为电网安全保护工作贡献力量。
【关键词】互感器技术;继电保护;光电式互感器
1引言
随着科技的发展,人们对电力的需求和质量要求都在不断提升,导致电网输配变容量不断增加,电网的安全保护工作压力也越来越大。作为电力系统检测、继电保护的基础,互感器技术成为电网运行中不可或缺的重要组成部分。
2互感器技术原理
互感器在原理上类似于变压器,是利用电磁感应原理将一次电压、电流转换成二次侧小电压、电流的测量设备。继电保护及测量仪表都是通过互感器二次侧电压、电流来判断二次侧运行状况,继而实现对被测电路的测量和保护工作。互感器按类型分为电压互感器和电流互感器两种。电压互感器是将一次侧高电压转变成二次侧低电压,用来测量被测电路电压的设备。电压互感器的一次线圈并联在被测回路上,并且二次回路电压较高,阻抗很大,工作电流小,如果电压互感器二次回路短路,将产生很大的短路电流,损坏电压互感器甚至危害工作人员安全[1]。因此电压互感器的二次回路不允许短路,可装设熔断保护。电流互感器是将一次侧高电流转变成二次侧低电流,用来测量被测电路输送的电流、电能等数据。电流互感器一次线圈串联在被测回路上,并且起二次回路电压很低,阻抗很小。起二次回路电流取决于一次线圈的电流大小,与其所带负荷无关。电流互感器二次回路开路,会使一次电流全部转化为励磁电流,导致互感器磁心饱和发热损坏,二次侧产生高压危害人身安全。因此电流互感器二次回路不允许开路,且不能装设熔断保护[2]。
电力系统计算机技术论文
1计算机技术在电力系统的应用分析
计算机技术促进电力系统自动化的发展速度,计算机在电力系统中的发展体现在:电力系统所用的智能化设备。电力系统设备可实现在线监测。光电式电力互感器的广泛使用;适应光电互感器技术的新型继电保护及测控装置广泛使用;特高压电网中的二次设备的开发与应用。⑴电力系统设备的智能化。在一般电力系统里,一次设备和二次设备安装相距地点从几十米到几百米之间,使用信号较强的电力电缆和控制电流的电缆连接,电力设计一次设备智能化的含义是这样定义的:在进行一次设备设计时,同时也满足了二次设备部分或是全部的功能,可以节约不少的电力信号电缆和控制电缆,简称一次设备自带测量与自带保护。⑵电力系统中一次设备的在线监测对象电站锅炉、蒸汽轮机、燃气轮机、水轮机等等,对于它们运行的参数进行长期和连续的监测,这样做的目的不仅可以保证运行的设备实施状况进行监督测量,还且各种参数的变化也可以及时反映出来,一旦出现什么机器故障,可以及时的进行解决,也会对机器的维修和保养得到及时的技术支持,提高设备的利用率。⑶传输电路中不可或缺的就是光电式电力互感器,它的主要功能是保证输线电路中高电压和高电流值按照一定的堵塞比例调整至测量的标准数值。但是它也有自身的不足之处就是,电压级数升高它也会跟着升高,因此绝缘的难度相应的加大。再者就是在一些运行信号范围小的情况下会造成它出现饱和,或是导致信号变畸形。而且它是无法和微化机和具有保护设备直接接口的。⑷电力系统在采用光电互感器技术后,对于电力系统中二次设备的内部构件和功能都会发生较大的变化。这样的变化首先体现在设备内部响应的速度将会大大提升。但是这样技术的应用也存在着一点问题就是进行数值计算时,需要不同的互感器进行同步数据采样,还有就是要设计相关的高效和高速的数据通信协议。
2计算机在电力系统中的发展
计算机普及应用于电力系统中,得到了非常不错的发展,但是就目前来看,计算机技术应用于电力系统的发展也遇到了不少的问题。主要表现之一就是我国电力系统自动化的速度要远比计算机发展的速度相比,在计算机技术快速更新的时候,电力系统也在不断的更新,但也就是如此,更新的速度加快,也就更加容易产生系统知识的断层。新的技术产生往往是带着巨大的机遇,但是也会面临不少的挑战,新的计算机技术是否可以很好的和电力系统结合在一起,什么样的方式将它们连接,成为新计算机技术产生后值得思考的问题。表现之二,计算机技术的发展,要求电力系统设备也要进行相应变更,这就涉及到一个兼容性问题,电力系统对于较大电磁干扰会出现机器故障,而且每个厂家生产的设备相应的指数也会不一样,如何使电力系统与电磁环境相互统一协调,是每一个生产电力设备的厂家要克服和解决的难题。举一个例子来说,光电互感器的按照一定比例调试,在仪表范围内的高电压和强电流,因而准确的测量电压和电流的数值,这样的设备是电力系统中用于电网自动化控制系统的重要工具。如何提高设备的精确性,避免因电压过高导致的信号失控,我们要做的就是解决电磁的兼容性和绝缘技术,才可以确保设备正常准确的工作。计算机技术对于电力系统的发展具有非常重要的促进作用,这是我们在应用的过程中所看到的非常大变化,为了进一步推进计算机技术在电力系统中的发挥,作为电力部门,要重视新技术的开发研究,重视实践和理论的相结合,重视人才的引进,为提高行业的专业水平而不断的探索研究。
3结语
随着科学技术的日益更新发展,计算机已经普及应用于各行各业,电力系统也是一样,行业之间要不断的交流学习,不断的借鉴好的经验,更好的用于管理。随着新时期科学技术自动化技术不断发展,为电力系统的进一步发展提供了发展的前景,在社会不断进步的过程带动下,计算机技术自动化将会成为电力系统发展的又一前景。
数字化变电站自动化技术探讨
摘要:随着计算机网络技术的不断发展,自动化技术已经深入至多种行业领域并发挥了重要的作用。在现代化的变电站系统建设发展中,数字化建设已经成为重要的系统发展方向,而自动化技术的应用则是促进数字化系统发展的重要基础。本文简要地对数字化变电站中的自动化技术应用进行分析,并就自动化技术的应用功能进行探讨,以期为促进变电站的数字化发展和自动化技术的应用效益提升提供参考。
关键词:数字化变电站;自动化技术;技术应用;功能
在社会经济与科学技术的发展带领下,自动化技术在变电站建设中的应用水平逐渐提升,其不仅有力的促进了电力系统的现代化发展,用时还有利于电网调度可靠性的有效提高,同时为该系统实现安全稳定运行提供了重要的技术支持,最终实现了变电站的数字化发展。所以,当前的设计研究人员应当对自动化技术的应用发展进行深入研究,不断实现数字化功能完善,使其服务于电力资源的合理配置并推动我国的电力行业实现不断发展。
1数字化变电站中的自动化技术应用
1.1光电量测技术
对于数字化变电站来说,传感器工程应用所具备的稳定性能是十分重要的。其主要分为光电式与电子式两种类型的电流/电压互感器。其中数字化变电站中所应用的光电测量技术主要由互感器、交换器、信息处理设备以及连接光缆共同组成。其中根据原理进行变换器分类主要分为半常规与电—光两种类型。其中,前者的电压变换原理主要是依靠电阻与电压分压实现,其中电阻的计算方式为I1=j•(L/N)•I2•(1/R+r+j•L),R=U/I1.电流变换原理主要是依靠带铁芯微型CT来实现的。而后者的电压变换原理主要是依靠逆电压效应来实现的,电流变换主要依靠法拉第效应来实现。其主要的系统构成结构有分别针对电流采样与电压采样工作的电流变换器,以及电压变换器与光电接口装置几部分,并且利用光缆装置进行连接。图1即为光电测量技术的基本光路原理。
变电站自动系统发展论文
「摘要」在变电站自动化领域中,智能化电气的发展,特别是智能化开关、光电式互感器等机电一体化设备的出现,变电站自动化技术即将进入数字化新阶段。本文论述了数字化变电站自动化系统的特征、结构及功能划分等。
「关键词」变电站自动化数字化智能化
变电站自动化技术经过十多年的发展已经达到一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。
1、数字化变电站自动化系统的特点
1.1智能化的一次设备
一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换言之,变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。
变电站自动化系统发展论文
「摘要」在变电站自动化领域中,智能化电气的发展,特别是智能化开关、光电式互感器等机电一体化设备的出现,变电站自动化技术即将进入数字化新阶段。本文论述了数字化变电站自动化系统的特征、结构及功能划分等。
「关键词」变电站自动化数字化智能化
变电站自动化技术经过十多年的发展已经达到一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。
1、数字化变电站自动化系统的特点
1.1智能化的一次设备
一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换言之,变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。
变电所新理念发展论文
当前在变电所自动化领域中,智能化电气设备的发展,特别是智能开关、光电式互感器等机电一体化设备的出现,变电所自动化技术即将进入数字化新阶段。科学技术的发展是没有止境的,随着智能开关、光电式电流电压互感器、一次运行设备在线状态检测、变电所运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电所自动化技术产生深刻的影响,全数字化的变电所自动化系统在不远的将来将成为现实。
一、变电所自动化系统的特点
(一)一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换句话说,变电所二次回路中常规的继电器及其逻辑回路被可编程序所代替,常规的强电模拟信号和控制电缆被光电数字和光纤替代。
(二)变电所内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、远动装置、故障录波装置、电压无功控制、同期操作装置以及正在发展中的在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现常规功能装置重复的I/O现场接口,通过网络真正实现数据共享、资源其享,常规的功能装置在这里变成了逻辑的功能模块。
(三)变电所运行管理自动化系统应包括电力生产运行数据、状态记录统计无纸化;数据信息分层化、分流交换自动化;变电所运行发生故障时能即时提供故障分析报告,指出故障原因,提出故障处理意见;系统能自动发出变电所设备检修报告,即常规的变电所设备“定期检修”改变为“状态检修”。
二、变电所自动化系统的结构