高速数据范文10篇

时间:2024-01-28 03:48:45

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇高速数据范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

高速数据

小议USB总线高速数据采集体制

1现代工业生产介绍

现代工业生产和科学研究对数据采集的要求日益提高。目前比较通用的是在PC或工控机内安装数据采集卡(如A/D卡及422、485卡)。但这些数据采集设备存在以下缺陷:安装麻烦、价格昂贵、受计算机插槽数量、地址、中断资源的限制,可扩展性差,同时在一些电磁干扰性强的测试现场,可能无法专门对其作电磁屏蔽,从而导致采集的数据失真。

传统的外设与主机的通讯接口一般是基于PCI总线、ISA总线或者是RS-232C串行总线。PCI总线虽然具有较高的传输速度(132Mbps),并支持“即插即用”功能,但其缺点是插拔麻烦,且扩展槽有限(一般为5~6个),ISA总线显然存在同样的问题。RS-232C串行总线虽然连结简单,但其传输速度慢(56kbps),且主机的串口数目也有限。

通用串行总线(UniversalSerialBus,简称USB)是1995年康柏、微软、IBM、DEC等公司为了解决传统总线的不足,而推出的一种新型串行通信标准。该总线接口具有安装方便、高带宽、易扩展等优点,已经逐渐成为现代数据传输的发展趋势。基于USB的数据采集系统充分利用USB总线的上述优点,有效地解决了传统数据采集系统的缺陷。USB的规范能针对不同的性能价格比要求提供不同的选择,以满足不同的系统和部件及相应不同的功能,从而给使用带来极大方便。

2系统介绍

2.1数据采集系统的结构与功能

查看全文

高速公路大数据运营体系研究

摘要:本文基于高速公路运营体系六大子系统及高速公路的大数据来源,分析了大数据在高速公路运营管理体系中的应用,该研究能够更好的为高速公路运营发展提供安全保障,对当前高速公里养护及管理提供有力的技术支持。

关键词:高速公路;大数据;运营管理

1前言

在高速公路的运营过程中,主要包括经营、养护成本、赔付以及运营安全及企业绩效这六大子系统。在高速公路的运行过程中,这六大子系统有规律的进行着,这种规律可以产生一定的数据,日积月累构成了一个庞大的数据库,被称为高速公路运营的大数据[1]。

2高速公路中大数据的来源

高速公路中的大数据主要有以下几个来源:①高速公路收费系统(ETC):高速公路上都对应着自己的收费站,使用收费站的收费系统可以查询到所有经过车辆的过路费用及车辆信息,日积月累构成了一个庞大的数据库,这个数据可以精确地定位到车辆在高速公路的位置及费用信息;②应用系统数据:监控及结算中心的清账管理系统、12306人工服务系统、收费站的资金查询软件、过桥过路费用管理计算软件等大量数据可以很好的构成高速公路数据库;③传感器数据[2]:高速公路上的路感线圈、标识站以及收费站出入口的RFID传感器,能够感知过往车辆,为数据库提供有效的数据;④视频监控系统的数据:道路中分带及两侧、收费站出入口的视频监控以及隧道路口可以很好的为数据库提供视频支持。以上的数据根据结构性能不同可以分为两大类,结构化数据及非结构化数据[3],结构化数据主要是高速公路收费系统及其相关应用系统产生的数据,这些数据主要是在关系数据库中生成及保存,如SQLServer和Or-acle。而像监控视频、图片等非结构化的数据并没有存放在关系数据可中。目前,非结构化的数据在高速路网中占比高达80%,传统的数据处理应用软件很难完成相应的任务。

查看全文

UBS高速数据采集系统论文

摘要:介绍一个基于USB2.0接口和DSP的高速数据采集处理系统的工作原理、设计及实现。该高速数据采集处理系统采用TI公司的TMS320C6000数字信号处理器和Cypress公司的USB2.0接口芯片,可以实现高速采集和实时处理,有着广泛的应用前景。

关键词:USB2.0CY7C68013DSP高速数据采集

随着数字信号处理理论和计算机的不断发展,现代工业生产和科学技术研究都需要借助于数字处理方法。进行数字处理的先决条件是将所研究的对象进行数字化,因此数据采集与处理技术日益得到重视。在图像处理、瞬态信号检测、软件无线电等一些领域,更是要求高速度、高精度、高实时性的数据采集与处理技术。现在的高速数据采集处理卡一般采用高性能数字信号处理器(DSP)和高速总线技术的框架结构。DSP用于完成计算量巨大的实时处理算法,高速总线技术则完成处理结果或者采样数据的快速传输。DSP主要采用TI或者ADI公司的产品,高速总线可以采用ISA、PCI、USB等总线技术。目前,使用比较广泛的是PCI总线,虽然其有很多优点,但是存在如下严重缺陷;易受机箱内环境的影响,受计算机插槽数量的地址、中断资源的限制而不可能挂接很多设备等。USB总线由于具有安装方便、高带这、易扩展等优点,其中USB2.0标准有着高达4800bps的传输速率,已经逐渐成为计算机接口的主流。本文介绍一个采用USB2.0接口和高性能DSP的高速数据采集处理系统,主要是为光纤通信中密集波分复用系统的波长检测与调整所设计的,也可以应用于像图像处理、雷达信号处理等相关领域。

1高速数据采集处理系统原理及器件选用

整个高速数据采集处理系统的硬件构成为:高速ADC、高速大容量数据缓冲、高性能DSP和USB2.0接口。系统的原理框图如图1所示。

高性能DSP采用TI公司的TMS320C6000系列定点DSP中的TMS320C6203B;高速ADC采用TI公司的ADS5422,14位采样,最高采样频率为62MHz;PC机接口采用USB2.0,理论最大数据传输速率为480Mbps,器件选用Cypress公司EZ-USBFX2系列中的CY7C68013;数据缓冲采用IDT公司的高速大容量FIFO器件IDT72V2113;程序存储在Flash存储器中,器件选用SST291E010。下面逐一介绍各个器件的主要特性。

查看全文

高速DAC在数据广播的作用

摘要:数据广播分发系统能够将卫星有效数据广播分发给地面接收设备,实现卫星覆盖范围内所有用户终端数据传输。目前常用数据广播分发设备采用传统应答机设计思路,信息处理流程为先低中频调制再进行上变频滤波及放大后输出,产品功耗和体积较大,不能满足卫星小型化和轻量化需求。采用基于高速DAC平台的数据广播设备利用软件无线电的思想,可实现S波段直接扩频调制和输出,取消传统设备的上变频处理,从而更加方便实现产品的小型化和轻量化。

关键词:高速DAC;数据广播分发;电路设计

数据广播分发系统能够将卫星提取精确目标信息和定位信息广播传输给覆盖范围内的地面设备,具有覆盖范围广,不受天气影响等优势,在防灾减灾、应急救援等方面发挥重要的作用。传统广播分发设备采用应答机设计思路,采用低中频调制再进行上变频的方案,单机信息处理流程详见图1所示。整个单机信息流程处理较复杂,不利于单机的小型化和轻量化[1]。

1设计方案

为了优化产品的信息流程,图2给出了一种基于高速(Dig-ital-to-AnalogConverter,DAC)的数据广播分发设备的架构,采用软件无线电数字射频化方案,直接实现S频段信号输出。通过FPGA对接收到的完成空帧填充、经RS编码交织、加扰、扩频调制、滤波、QPSK调制、经高速DAC产生S频段射频信号f0,射频信号经滤波、放大隔离后输出。采用该种方案,利用数字调制及高速数模转换技术,直接实现S频段广播分发射频信号,去掉不必要的射频变频处理等流程,从而减轻单机的体积和重量,满足卫星小型化、轻量化的需求编码调制模块是广播分发设备的核心,包括SRAM型FPGA、高速数模转换芯片(DAC)、BALUN、滤波器、温补放大电路、隔离电路,具体如图3所示。编码调制模块FPGA主要完成指令接收处理、时钟生成与监控、数据自发与接收、帧头判断、RS信道编码与星座映射、多速率成型滤波,数字扩频调制、数据输出,高速数模转换芯片将数字调制信号转换为射频调制信号后输出。

2高速DAC选型

查看全文

高速同步数据采集管理论文

摘要:介绍基于USB2.0协议、最多可四路同步采样的高速同步数据采集系统。其单通道采样速度620ksps,四通道同时采样速度可达180ksps。USB接口控制及通信芯片采用Cypress公司FX2系列中的CY7C68013,通过对其可编程接口控制逻辑的合理设计和芯片内部FIFO的有效运用,实现了数据的高速连续采样。

关键词:USB2.0协议同步数据采集CY7C68013可编程控制接口FIFO

USB(UniversalSerialBus)总线是INTEL、NEC、MICROSOFT、IBM等公司联合提出的一种新的串行总线接口规范。为了适应高速传输的需要,2000年4月,这些公司在原1.1协议的基础上制订了USB2.0传输协议,已超过了目前IEEE1394接口400Mbps的传输速度,达到了480Mbps。USB总线使用简单,支持即插即用PnP(PlugAndPlay),一台主机可串连127个USB设备。设备与主机之间通过轻便、柔性好的USB线缆连接,最长可达5m,使设备具有移动性,可自由挂接在具有USB接口的运行在Windows98/NT平台的PC机上。USB总线已被越来越多的标准外设和用户自定义外设所使用,如鼠标、键盘、扫描仪、音箱等。

笔者结合设备检测中数据采集的实际需要,设计了该高速同步数据采集系统。该系统最多可四路同步采样,单通道采样速度可达620ksps,四通道同时采样速度可达180ksps。USB接口控制芯片采用Cypress公司FX2系列中的CY7C68013,通过对其可编程接口控制逻辑的合理设计和芯片内部FIFO的有效运用,实现了数据的高速连续采样和传输。

1基本原理

该采集系统总体框架分三部分:主机(能支持USB2.0协议的PC机)、内部包含CPU及高速缓存的USB接口控制芯片(CY7C68013)和高速同步采样芯片(MAX115),如图1所示。其数据传输分两部分:控制信号传输和采集数据传输。控制信号方向为由主机到外设,由外设CPU控制,数据量较小;采集到的数据由外设到主机,数据量较大。为了保证较高的传输速度,不经过CPU。系统基本操作过程为:主机给外设一个采样控制信号,FX2根据该信号向A/D转换器送出相应控制信号,即采样模式控制字;之后由A/D转换器自主控制转换,并将各通道采样数据存入其片内缓存。一旦转换完成,由A/D的完成位向FX2的可编程控制接口发读采样结果信号;然后由可编程接口的控制逻辑依次将各通道采样结果从A/D的缓存读入FX2的内部FIFO。当FIFO容量达到指定程度后,自动将数据打包传送给USB总线。期间所有操作不需要CPU的干预。采样过程中接口控制逻辑依次取走批量数据,在打包传送时A/D仍持续转换,内部FIFO也持续写入转换结果。只要内部FIFO写指针和读指针位置相差达到指定的值就立即取走数据。从而保证了同步连续高速采集的可靠性。

查看全文

高速数据采集设计管理论文

【摘要】本文主要阐述了USB2.0接口和DSP构成的高速数据采集系统的工作原理、结构组成及其设计与实现。为达到设计的要求,详细地对其系统组成器件的选择及其特性和硬件的连接作了说明。重点介绍了USB技术及其软件设计。在这部分中,介绍了讲述了相关的主机接口,这类接口简化了主机内部客户软件与设备应用之间的通信。本章所涉及的具体实例部分只是作为例子,以阐述主机系统响应USB设备请求的行为。USB主机可以提供不同的软件系统实现方法,完成相应的主机操作。系统软件设计过程中常见故障的分析。

【关键词】USB2.0接口DSP高速数据采集系统

TheAnalysisandDesignThatUSB2.0ConnectstheHigh-speedDataThatandDSPDonstitutetoCollecttheSystem

AbstractThistextmainlyelaboratedthattheUSB2.0connectsthehigh-speeddatathatandDSPconstitutetocollecttheworkprinciple,structureofthesystemtoconstituteanditdesignswiththerealization.Inordertoattaintherequestofdesign,detailedastoit''''sthesystemconstitutedthechoiceofthemachinepieceandtheconjunctionofthehardwarestomaketheelucidation.ThepointintroducedtechniqueofUSBanditssoftwaredesigns.InthissectiondescribesthehostinterfacesnecessarytofacilitateUSBcommunicationbetweenasoftwareclient,residentonthehost,andafunctionimplementedonadevice.Theimplementationdescribedinthischapterisnotrequired.ThisimplementationisprovidedasanexampletoillustratethehostsystembehaviorexpectedbyaUSBdevice.AhostsystemmayprovideadifferenthostsoftwareimplementationaslongasaUSBdeviceexperiencesthesamehostbehavior.Inthesystemsoftwaredesignprocesstheanalysisofthefamiliarbreakdown.

KeywordsUSB2.0interfacesDSPThehigh-speeddatacollectsthesystem

一绪言

查看全文

高速数据采集设计管理论文

摘要:本文主要介绍支持USB2.0高速传输的EZ-USBFX2单片机CY7C68013,并详细说明用此芯片实现高速数据采集系统和相应的Windows驱动程序及底层固件程序的开发过程。

关键词:CY7C68013USB2.0数据采集固件

1引言

现代工业生产和科学研究对数据采集的要求日益提高,在瞬态信号测量、图像处理等一些高速、高精度的测量中,需要进行高速数据采集。现在通用的高速数据采集卡一般多是PCI卡或ISA卡,存在以下缺点:安装麻烦、价格昂贵;受计算机插槽数量、地址、中断资源限制,可扩展性差;在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。

通用串行总线USB是1995年康柏、微软、IBM、DEC等公司为解决传统总线不足而推广的一种新型的通信标准。该总线接口具有安装方便、高带宽、易于扩展等优点,已逐渐成为现代数据传输的发展趋势。基于USB的高速数据采集卡充分利用USB总线的上述优点,有效解决了传统高速数据采集卡的缺陷。

2硬件设计

查看全文

高速数据采集设计方案研究论文

随着计算机技术的迅速发展,对外部总线速度的要求越来越高。通用串行总线(UniversalSerialBus,即USB总线)凭借其即插即用、热插拔以及较高的传输速率等优点,成为PC机与外设连接的普遍标准。在许多便携式电脑上,已经找不到RS-232接口。迄今为止,常用的USB总线标准有1998年的USBl.1版本和2000年的USB2.0版本。其中1.1版本支持两种传输速率:1.5Mbps和12Mbps,主要应用在低速传输要求的场合;而2.0版本面向高数据率传输的场合,支持480Mbps的传输速度,并向下完全兼容USBl.1协议。在实际应用中,通常会遇到一些突发信号,需要对其进行高速采集,对数据进行高速传输,所以USB2.0标准自然成为首选。以Cypress公司的EZ-USBFX2系列中的CY7C68013芯片作为核心控制器,设计开发了一套符合USB2.0标准的高速同步数据采集器。

1CY7C68013芯片

Cypress公司的EZ-USBFX2系列中的CY7C68013,是目前市面上比较少的符合USB2.0标准的USB控制器之一。与其它同类芯片相比,它提供了4KB的FIFO和一个功能十分强大的GPIF(GeneralProgrammableInterface)模块。后者相当于一个可编程状态机,正是由于它的存在,使得CY7C68013比其它同类芯片具有强大的互联能力。CY7C68013芯片的结构,其主要特点如下:

·CY7C68013内部集成了一个增强型的51内核,其指令集与标准的8051兼容,并且在多方面有所改进。例如:最高工作频率可达48MHz,一个指令周期为4个时钟周期,两个UART接口,三个定时计数器,一个I2C接口引擎等。

·CY7C68013提供了一个串行接口引擎(SIE),负责完成大部分USB2.0协议的处理工作,从而大大减轻了USB协议处理的工作量,并且提供了4KB的FIFO保证数据高速传输的需要。

·为了满足与各种不同类型外设的互联需要,芯片中集成了一个GPIF模块,让用户可以按照外设的时序进行波形编辑,而不需要复杂的程序描述,就可以保证GPIF与内部.FIFO的协调工作,实现芯片与高速外围设备之间的逻辑连接和高速数据传输。这对于开发者来说是相当友好的。笔者就是利用这一特性,实现数据的高速同步采集及传输。

查看全文

EPP接口高速数据通信管理论文

摘要:如何实现PC与单片机系统间的高速数据通信,是测量控制系统中经常遇到的难题。本文系统地介绍利用EPP接口协议实现高速数据通信的原理,并从硬件、软件两方面给出一个应用EPP接口协议的设计实例。

关键词:单片机系统高速数据通信EPP

前言

单片机系统中常常需要具备与PC机通信的功能,便于将单片机中的数据传送到PC机中用于统计分析处理;有时又需要将PC机中的数据装入单片机系统中,对单片机程序进行验证和调试。目前常用的通信方式是串行通信,但传输速率太低,以9600bps计算,传输1MB至少需要10min(分钟)以上。并行通信克服了串行通信传输速率低的缺点。标准并行口SPP(StandardParallelPort)方式实现了由PC机向外设的单向传输,但实现PC机接收外设发送的数据则非常麻烦;而增强型并行口EPP(EnhancedParallelPort)协议却很好地解决了这一问题,能够实现稳定的高速数据通信。

一、EPP接口协议介绍

EPP协议最初是由Intel、Xircom、Zenith三家公司联合提出的,于1994年在IEEE1284标准中。EPP协议有两个标准:EPP1.7和EPP1.9。与传统并行口Centronics标准利用软件实现握手不同,EPP接口协议通过硬件自动握手,能达到500KB/s~2MB/s的通信速率。

查看全文

高速数据采集器设计管理论文

摘要:介绍了一种基于USB2.0接口的同步高速数据采集的设计方案及其软硬件的设计方法,对Cypress的USB2.0控制芯片CY7C68013和同步数据采集芯片AD7862的特性作了简要说明,同时重点介绍CPIP及其驱动软件的设计。

关键词:USB2.0EZ—USBFX2同步数据采集

随着计算机技术的迅速发展,对外部总线速度的要求越来越高。通用串行总线(UniversalSerialBus,即USB总线)凭借其即插即用、热插拔以及较高的传输速率等优点,成为PC机与外设连接的普遍标准。在许多便携式电脑上,已经找不到RS-232接口。迄今为止,常用的USB总线标准有1998年的USBl.1版本和2000年的USB2.0版本。其中1.1版本支持两种传输速率:1.5Mbps和12Mbps,主要应用在低速传输要求的场合;而2.0版本面向高数据率传输的场合,支持480Mbps的传输速度,并向下完全兼容USBl.1协议。在实际应用中,通常会遇到一些突发信号,需要对其进行高速采集,对数据进行高速传输,所以USB2.0标准自然成为首选。以Cypress公司的EZ-USBFX2系列中的CY7C68013芯片作为核心控制器,设计开发了一套符合USB2.0标准的高速同步数据采集器。

1CY7C68013芯片

Cypress公司的EZ-USBFX2系列中的CY7C68013,是目前市面上比较少的符合USB2.0标准的USB控制器之一。与其它同类芯片相比,它提供了4KB的FIFO和一个功能十分强大的GPIF(GeneralProgrammableInterface)模块。后者相当于一个可编程状态机,正是由于它的存在,使得CY7C68013比其它同类芯片具有强大的互联能力。图1是CY7C68013芯片的结构示意图,其主要特点如下:

·CY7C68013内部集成了一个增强型的51内核,其指令集与标准的8051兼容,并且在多方面有所改进。例如:最高工作频率可达48MHz,一个指令周期为4个时钟周期,两个UART接口,三个定时计数器,一个I2C接口引擎等。

查看全文