概率知识范文10篇
时间:2024-01-27 00:49:30
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇概率知识范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
概率知识应用论文
摘要:随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论是指导人们从事物表象看到其本质的一门科学。本文由现实生活中的部分现象探讨了概率知识的广泛应用。
关键词:随机现象;概率;应用分析
在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性的现象,指在一定条件下,必定会导致某种确定的结果。如,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象在一定条件下的结果是不确定的。例如,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同有强弱和早晚之别等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。这类现象,我们无法用必然性的因果关系,对现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。
走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率如下:
由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。
概率知识应用论文
摘要:随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论是指导人们从事物表象看到其本质的一门科学。本文由现实生活中的部分现象探讨了概率知识的广泛应用。
关键词:随机现象;概率;应用分析
在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性的现象,指在一定条件下,必定会导致某种确定的结果。如,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象在一定条件下的结果是不确定的。例如,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同有强弱和早晚之别等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。这类现象,我们无法用必然性的因果关系,对现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。
走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率如下:
由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。
谈论概率知识在现实中的应用
摘要:随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论是指导人们从事物表象看到其本质的一门科学。本文由现实生活中的部分现象探讨了概率知识的广泛应用。
关键词:随机现象;概率;应用分析
在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性的现象,指在一定条件下,必定会导致某种确定的结果。如,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象在一定条件下的结果是不确定的。例如,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同有强弱和早晚之别等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。这类现象,我们无法用必然性的因果关系,对现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。
走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率如下:
由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。
概率知识在实际中运用论文
在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性的现象,指在一定条件下,必定会导致某种确定的结果。如,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象在一定条件下的结果是不确定的。例如,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同有强弱和早晚之别等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。这类现象,我们无法用必然性的因果关系,对现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。
走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率如下:
由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。
体育比赛中,一局定胜负,虽然比赛双方获胜的机会均为二分之一,但是由于比赛次数太少,商业价值不大,因此比赛组织者普遍采用“三局两胜”或“五局三胜”制决定胜负的方法,既令参赛选手满意,又被观众接受,组织者又有利可图。那么它对于双方选手来说真的公平吗?以下我们用概率的观点和知识加以阐述:日常生活中我们总希望自己的运气能好一些,碰运气的也大有人在,就像考生面临考试一样,这其中固然有真才实学者,但也不乏抱着侥幸心理的滥竽充数者。那么,对于一场正规的考试仅凭运气能通过吗?我们以大学英语四级考试为例来说明这个问题。
大学英语四级考试是全面检验大学生英语水平的一种考试,具有一定难度,包括听力、语法结构、阅读理解、填空、写作等。除写作15分外,其余85道题是单项选择题,每道题有A、B、C、D四个选项,这种情况使个别学生产生碰运气和侥幸心理,那么靠运气能通过四级英语考试吗?答案是否定的。假设不考虑写作15分,及格按60分算,则85道题必须答对51题以上,可以看成85重贝努利试验。
概率知识应用研究论文
在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性的现象,指在一定条件下,必定会导致某种确定的结果。如,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象在一定条件下的结果是不确定的。例如,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同有强弱和早晚之别等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。这类现象,我们无法用必然性的因果关系,对现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。
走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率如下:
由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。
体育比赛中,一局定胜负,虽然比赛双方获胜的机会均为二分之一,但是由于比赛次数太少,商业价值不大,因此比赛组织者普遍采用“三局两胜”或“五局三胜”制决定胜负的方法,既令参赛选手满意,又被观众接受,组织者又有利可图。那么它对于双方选手来说真的公平吗?以下我们用概率的观点和知识加以阐述:日常生活中我们总希望自己的运气能好一些,碰运气的也大有人在,就像考生面临考试一样,这其中固然有真才实学者,但也不乏抱着侥幸心理的滥竽充数者。那么,对于一场正规的考试仅凭运气能通过吗?我们以大学英语四级考试为例来说明这个问题。
大学英语四级考试是全面检验大学生英语水平的一种考试,具有一定难度,包括听力、语法结构、阅读理解、填空、写作等。除写作15分外,其余85道题是单项选择题,每道题有A、B、C、D四个选项,这种情况使个别学生产生碰运气和侥幸心理,那么靠运气能通过四级英语考试吗?答案是否定的。假设不考虑写作15分,及格按60分算,则85道题必须答对51题以上,可以看成85重贝努利试验。
数学老师概率统计知识情况
1前言
“统计与概率”知识作为随机数学的一部分,早已受到各国数学课程设置者的重视.我国也在原来的教学大纲基础上,在高中数学新课程标准中对概率统计教学内容和目标作了进一步的调整和完善.由于概率统计进入高中数学课程的时间不长,教师能否很好地实施概率统计教学,取决于对概率统计知识的理解与掌握情况.概率统计属于不确定性数学范畴,并且在其中有大量与我们的直觉、经验、信念相悖的命题,使得概率统计教学成为难点.这需要教师具有充足的概率统计学科知识与教学知识,了解学生学习概率统计知识的思维特点.课程改革能否成功实施,将完全取决于教师[1].因此,高中课程改革实施之际,调查高中数学教师掌握和了解概率统计知识水平具有一定的意义,研究结果可为以后更好地开展概率统计教学和研究提供一定的参考.
2研究方法
2.1被试选择研究对象是从大连市所属高中抽样选取的.考虑到学校类型可能对研究的影响,所以对调查学校进行分层抽样,使选取的教师尽量来自各种不同类型的学校.选取大连市省重点高中、市重点高中、市区普通高中为学校样本,对样本学校的高中数学教师进行整群抽样.研究对象共计68人,其中教龄在4年以下的有15人,教龄在4~10年的有22人,教龄在10~20年的有19人,教龄在20年以上的有12人,学历都是本科.总共发放教师问卷68份,实际回收68份,回收率达100%,无剔除无效问卷,得到有效问卷68份.
2.2研究工具本研究通过问卷调查法和访谈法来收集数据.(1)问卷设计借鉴已有研究[2,3],在深入分析和钻研教材中关于概率统计教学目标和教学要求的基础上,以高中数学课程中有关概率统计的核心概念为考点,进行问卷设计.教师的概率知识主要从以下4个维度进行考察:①对概率的几种定义(古典定义、统计定义、几何定义及公理化定义)的理解及其错误认知的考察;②对概率、频率和机会的理解;③对概率值的解释以及利用其决策的能力;④对小概率事件、条件概率、互斥事件和相互独立事件的理解.教师的统计知识主要从2个方面进行调查:①对常用统计量(平均数、中位数、众数、方差、标准差)的理解;②教师的统计观念.该调查问卷共由19道题目组成,题目类型为解答题.(2)访谈问卷调查之后,在仔细分析答卷的基础上,从中挑选个别教师进行访谈.访谈对象主要是回答错误、未作回答和回答独特的教师.访谈的主要目的是核查书面回答内容的真实含义,了解使用错误概念的教师的真实想法.访谈时在取得该访谈对象的同意之后,同时进行了录音和现场记录,以便准确地收集和整理数据.
3研究结果分析
实际生活概率统计分析
摘要:概率统计在人们日常生活中随处可见,在教学中概率统计也是重要教学内容,通过对概率统计的学习提高学生理性思维,对生活、学习和工作有重要影响。但是在实际教学中并没有将其与生活实际相联系,这也是阻碍概率统计教学质量的关键,针对这一现象,建议教师在实际教学中明确概率统计在实际生活中的作用,发现日常生活中存在的概率统计现象,从而使学生正确认识概率统计学科,促进概率统计教学质量的提升。
关键词:概率统计;实际生活;应用
概率统计学科就是对实际生活中的随机现象实现科学分析的一门学科,所以概率统计与日常生活有着密切联系,在概率教学工作中,要想提高教学质量,必须保证概率统计教学的全面性和科学性,利用生活中常见统计概率事件开展教学活动,让学生对概率统计有更加深刻的印象,在实际生活中学习概率统计,并应用到实际生活中,发挥概率统计学的最大作用。
一、概率统计在实际生活中应用意义
其实在日常生活中随处存在概率统计现象,比如购物、保险、游戏、抽奖等都涉及概率统计常识。如果人们在实际生活中不能熟练应用概率统计相关知识,就会影响人们做出正确的判断和选择,从而造成一定浪费,损害个人利益。生活中存在的商家活动,都会利用概率统计知识进行计算,以此保证企业利益达到最大化。所以,在日常生活中对概率统计的学习具有重要意义,通过对概率统计在实际生活中应用分析,可以提高人们的认识,增强对概率统计的学习和应用,从而避免在面对相关事件时做出错误决定,给自身利益带来损害。
二、概率统计在实际生活中的应用
高职院校数学专业概率统计教学探讨
【摘要】必然性和偶然性之间既相互独立,又相互依赖,并且在某特定条件下可以相互转化.概率统计的主要目的在于从一系列的偶然性事件中,挖掘出其中所隐藏的必然性,也就是事物发展的客观规律,从而使人们更加深刻地了解和认识世界.本文主要针对高职院校数学教育专业的概率统计教学进行分析,简述了概率统计教学模式的现状,探讨了传统教学模式存在的一些问题,并提出了具体的教学方法,希望能够为相关教育工作者提供一定的参考.
【关键词】高职院校;数学教育专业;概率统计教学
高职院校数学教育专业致力于培养具有扎实的文化知识和专业基础知识,并能够遵循数学教育教学规律,以先进的教育思想和教学技能充分对学生进行培养的优秀数学教育工作者.该专业的毕业生主要可以担任中小学数学教师、行政管理人员或其他与数学有关的数据处理工作者.该专业要求学生在学习相关基础知识的同时,掌握数学应用能力以及其他相关能力,而概率统计课程是该专业的一门重要专业必修课.在工农业生产管理过程中存在着一些随机现象,概率统计课程是数学教育专业当中可以对随机现象进行处理的一门必修课程,可以培养学生处理随机现象和解决问题的能力.目前教育体制正在大力实行改革,而概率统计的相关知识已经成为小学数学的重要教学内容.通过对这一学科的学习,学生可以掌握相关的基本理论和方法,对随机现象进行处理,并获得具体的解决问题的能力,为以后的学习和发展奠定坚实的基础[1].
一、概率统计教学模式的现状
概率统计课程和其他数学课程的思想方法并不完全相同,但却互相渗透,存在着一定的联系.该课程具有较强的应用性,它和人们的现实生活较为贴近,而且拥有丰富的背景和巧妙的思维.该课程主要的特点之一便是它可以通过建立模型来解决一些生活当中的实际问题.学生系统、完整地对概率统计课程进行学习,可以提高自身的认识,掌握概率统计的思想和理念,形成正确的世界观,准确地对偶然性和必然性的事件进行分析.而近些年来高职院校的概率统计课程并没有发生较大的变化,基本框架和知识体系等没有过多改变,更没有突破传统的教学模式.传统教学模式的弊端也正在逐渐暴露出来,以教师为教学主体,以传授知识为主要目标的教学方式,忽视了师生互动,也没有激发学生的学习热情,进而使学生对该学科的学习没有足够的兴趣,无法发挥出自身的主观能动性,也没有办法主动投入学习活动当中,因此学生掌握知识的情况也相对较差.高职院校的教育工作者应该不断地创新教学方式,打破传统教学模式的限制,从而有效提升学生的个人能力和概率统计的相关应用能力,促进学生的全面发展[2].
二、概率统计教学中面临的困难
概率统计教学及数学建模思想的融入
摘要:概率统计是一门具有很强应用性以及理论性的学科,其在科学与工程中占据着极为重要的地位。在科学技术以及知识更新日新月异的今天,为了更好满足时代需求,传统的概率统计教学思路应尽快进行改革,从增强学生竞争意识,培养学生应用以及创新能力出发,将数学建模思想以及先进科学技术融入到课堂教学中,提高学生数学素养。本文主要研究了教学内容实例的侧重、在教学方法中融入数学建模思想以及具体案例分析三个方面,本文的研究成果为优化概率统计教学,提高教学效率提供良好借鉴。
关键词:概率统计;数学建模;教学
数学建模主要是借助调查、数据收集、假设提出,简化抽象等一系列流程构建的反映实际问题数量关系的学科,将数学建模思想融入到概率统计教学中,不仅能够帮助学生更好地理解与掌握理论知识,同时对于提高学生运用数学思想解决实际问题的能力大有裨益。可以说,概率统计教学与数学建模思想的融入具有重要的理论以及现实意义。
1.教学内容实例的侧重
在大学数学教育体系中最为重要的一个目标就是培养学生建模、解模的能力,但是在传统概率统计教学中,教师大多注重学生的计算能力训练以及数学公式推导,而常常忽视利用已学知识进行实际问题的解决,使得大多数学生的应用能力无法得到提高。所以,为了能够在教学中提高学生应用概率与统计的实际能力,教师应在教学内容设计中吸收与融入与实际问题息息相关的题目,使学生在课堂中不仅能够轻松学习概率知识,增加学习主动性,同时能够尝试到数学建模的乐趣,提高自身数学素养。例如,在古典型概率问题的教学中,为了加深学生对于该部分知识的理解,教师可以引入彩票概率的实际问题,通过引导学生分析各等奖的中奖概率,使学生获得极高的建模、解模能力。
2.在教学方法中融入数学建模思想
剖析统计与概率的进步和矛盾
摘要:随着“统计与概率”在《标准》中规定为义务教育阶段数学课程的4个学习领域之一,统计与概率的研究逐渐成为热点。目前统计与概率的研究主要集中在教学问题上,包括对于教师的教、学生的学及教学内容等方面采取多种方法研究,这些研究提高了统计与概率教学活动的有效性,但统计与概率研究存在着一些方面的不足和空白,如研究角度相对狭窄,重点侧重于教师的教,教学评价策略、学生对概率统计的学习策略等很少研究,这些还有待于进一步的研究。
关键词:统计与概率;教学研究;进展与问题
在自然界与人类的社会活动中会出现各种各样的现象,既有确定性现象,又有随机现象。随机现象在日常生活中到处可见,而概率与统计是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法。因此,要培养学生对概率与统计的应用意识和动手能力,在数学课程中,加强统计概率的份量成为必需。2001年,在《全日制义务教育数学课程标准(实验稿)》(以下简称《标准》)中把“统计与概率”规定为义务教育阶段数学课程的4个学习领域之一,统计与概率在中小学数学教学中的研究也逐渐成为热点。本文主要是在近几年硕士论文研究成果的基础上进行综述性的研究工作,以此更好地促进中小学统计与概率的教与学。
1关于教师教的研究
由于概率进入我国中小学课程的时间较晚,因此关于概率的教学研究相对稀少。李俊认为:“教育研究滞后于课程改革步伐除了开展研究时间短之外,还有几个原因:首先是因为与概率相关的有些错误概念比较隐蔽,不易觉察;二是有些错误观念貌似合理,符合逻辑;三是因为要弄清学生在解决概率问题过程中的真实思维很困难;四是从事概率思维研究的人员很少,很多国家中小学的概率教育都刚刚起步。”[1]我国统计与概率的实际教学经验缺乏,如何使中学生的思维方式从确定性数学向随机性数学转变,充分发挥统计与概率的教育价值,如何将概率的知识向一种随机性意识进行转化,指导中学生今后的学习、工作和生活,是需要认真思考的问题。因此,对中学概率中的教师如何教进行研究就具有十分重要的意义。
1.1教师的知识