反函数范文10篇

时间:2024-01-23 20:15:41

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇反函数范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

反函数

反函数象间关系数学教案

教学目标

1.理解并掌握互为反函数的函数图像间的关系定理,运用定理解决有关反函数的问题,深化对互为反函数本质的认识.

2.运用定理画互为反函数的图像,研究互为反函数的有关性质,提高解函数综合问题的能力.

3.提高学生的形象思维与抽象思维相结合的逻辑思维能力,培养学生数形结合的数学思想和转化的数学思想.

二、教学重点

互为反函数的函数图象间的关系和数形结合的数学思想

查看全文

反函数关系数学教案

教学目标

1.使学生了解反函数的概念;

2.使学生会求一些简单函数的反函数;

3.培养学生用辩证的观点观察、分析解决问题的能力。

教学重点

1.反函数的概念;

查看全文

函数和函数图象间关系

教学目标

1.理解并掌握互为反函数的函数图像间的关系定理,运用定理解决有关反函数的问题,深化对互为反函数本质的认识.

2.运用定理画互为反函数的图像,研究互为反函数的有关性质,提高解函数综合问题的能力.

3.提高学生的形象思维与抽象思维相结合的逻辑思维能力,培养学生数形结合的数学思想和转化的数学思想.

二、教学重点

互为反函数的函数图象间的关系和数形结合的数学思想

查看全文

高一数学教案对数函数

教学目标

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.公务员之家,全国公务员共同天地

查看全文

知三角函数值求角教案

教学目标:了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角

教学重点:掌握用反三角函数值表示给定区间上的角

教学难点:反三角函数的定义

教学过程:

一.问题的提出:

在我们的学习中常遇到知三角函数值求角的情况,如果是特殊值,我们可以立即求出所有的角,如果不是特殊值(),我们如何表示呢?相当于中如何用来表示,这是一个反解的过程,由此想到求反函数。但三角函数由于有周期性,它们不存在反函数,这就要求我们把它们的定义域缩小,并且这个区间满足:

查看全文

对数函数教案

教学目标:

(一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质.

(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质.

(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化.

教学重点:

对数函数的图象和性质

查看全文

函数归纳数学教案

1.映射定义:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射

2.若集合A中有m个元素,集合B中有n个元素,则从A到B可建立nm个映射

3.函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)|x∈A}为值域。定义域,对应法则,值域构成了函数的三要素

4.相同函数的判断方法:①定义域、值域;②对应法则(两点必须同时具备)

5.求函数的定义域常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义⑥注意同一表达式中的两变量的取值范围是否相互影响

6.函数解析式的求法:

查看全文

映射与函数教案

目标:

1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系,会求对数函数的定义域。

2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;

3.培养坚忍不拔的意志,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。

重点:对数函数的定义、图象、性质

难点:对数函数与指数函数间的关系

查看全文

函数知识归纳教案

1.映射定义:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射

2.若集合A中有m个元素,集合B中有n个元素,则从A到B可建立nm个映射

3.函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)|x∈A}为值域。定义域,对应法则,值域构成了函数的三要素

4.相同函数的判断方法:①定义域、值域;②对应法则(两点必须同时具备)

5.求函数的定义域常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义⑥注意同一表达式中的两变量的取值范围是否相互影响

6.函数解析式的求法:

查看全文

函数知识归纳教案

1.映射定义:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射

2.若集合A中有m个元素,集合B中有n个元素,则从A到B可建立nm个映射

3.函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)|x∈A}为值域。定义域,对应法则,值域构成了函数的三要素

4.相同函数的判断方法:①定义域、值域;②对应法则(两点必须同时具备)

5.求函数的定义域常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义⑥注意同一表达式中的两变量的取值范围是否相互影响

6.函数解析式的求法:

查看全文