短路范文10篇

时间:2024-01-21 12:08:48

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇短路范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

短路电流速算分析论文

摘要:介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。原作是多年前发表在《建筑电气》上的。具体时间和作者已不记得。本人只是稍作整理供有需要的同行参考。

关键词:短路电流计算方法口诀

一.概述

供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件.

二.计算条件

1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多.

查看全文

110千伏变压器短路探索

由于110千伏级变压器短路损伤事故率的非正常攀升,如何提高110千伏变压器的抗短路能力,减少运行中短路损伤概率已越来越引起供用电单位和设备制造企业的重视。国家电网公司生产运行部统计的1991年~2002年变压器短路损坏事故的统计见表1。

从表1可以清楚地看到,自1992年以后,短路损坏的变压器占事故总台次比率有明显的上升。在1994年至1999年度,短路损坏台次占总事故台次比率在35%~io1995年至1996年度甚至达到了50%左右。大型变压器短路损伤事故居高不下的问题,已到了非解决不可的程度。

一、110千伏级变压器事故损伤率大幅上升的原因

从大量公布的技术文献分析,110千伏变压器短路损伤率大幅攀升的原因,主要是因为制造厂在80年代未至90年代初进行的低损耗“8型”产品的设计时对产品的抗短路强度未引起足够的重视,以至在此期间生产的大量产品存在强度不足的先天性缺陷。同时,和国家经济发展同步的电力网系统容量的上升,导致系统短路阻抗的大幅下降。一旦线路发生短路事故,短路电流可能会比原来的运行情况下大10%~20%左右,由此导致的变压器短路率要大20%~40%之间。因此,可能同样的一台变压器,在原来的系统容量较小的电网中运行时,因短路电流较小,可以承受短路冲击而不发生事故;而当电网容量大幅提升后,有可能承受不了这时的短路冲击而发生损伤。在这两个原因中,产品结构强度不足是主因,电力网系统容量的上升是诱因。

结合90年代中后期发生的大量110千伏短路损伤事故图片,原“8型”低损耗产品结构设计中主要不足如下:

1、上部压板强度不足

查看全文

短路保护电路设计管理论文

摘要:提出了一种直接检测IGBT发生短路故障的方法,在详细分析IGBT短路检测原理的基础上给出了相应的IGBT短路保护电路。仿真及实验结果均证明该电路工作稳定可靠,能很好地对IGBT实施有效的保护。

关键词:IGBT短路保护电路设计

固态电源的基本任务是安全、可靠地为负载提供所需的电能。对电子设备而言,电源是其核心部件。负载除要求电源能供应高质量的输出电压外,还对供电系统的可靠性等提出更高的要求。

IGBT是一种目前被广泛使用的具有自关断能力的器件开关频率高广泛应用于各类固态电源中。但如果控制不当,它很容易损坏。一般认为IGBT损坏的主要原因有两种:一是IGBT退出饱和区而进入了放大区使得开关损耗增大;二是IGBT发生短路,产生很大的瞬态电流,从而使IGBT损坏。IGBT的保护通常采用快速自保护的办法即当故障发生时,关断IGBT驱动电路,在驱动电路中实现退饱和保护;或者当发生短路时,快速地关断IGBT。根据监测对象的不同IGBT的短路保护可分为Uge监测法或Uce监测法二者原理基本相似都是利用集电极电流IC升高时Uge或Uce也会升高这一现象。当Uge或Uce超过Ugesat或Ucesat时,就自动关断IGBT的驱动电路。由于Uge在发生故障时基本不变,而Uce的变化较大并且当退饱和发生时Uge变化也小难以掌握因而在实践中一般采用Uce监测技术来对IGBT进行保护。本文研究的IGBT保护电路,是通过对IGBT导通时的管压降Uce进行监测来实现对IGBT的保护。

采用本文介绍的IGBT短路保护电路可以实现快速保护,同时又可以节省检测短路电流所需的霍尔电流传感器,降低整个系统的成本。实践证明,该电路有比较大的实用价值,尤其是在低直流母线电压的应用场合,该电路有广阔的应用前景。该电路已经成功地应用在某型高频逆变器中。

1短路保护的工作原理

查看全文

物理短路现象心理分析论文

短路(实验)是初中物理电学中常见故障,即在电路中用电器两端直接由导线连接叫局部短路;另一种情况电源未经任何用电器而直接用导线相连通叫电源短路。由欧姆定律:I=U/R可知,当电源电压v一定,R很小时,电路中电流将瞬间增幅很大,由焦耳定律Q=I2Rt,时间T一定,导线将发热升温,乃至发生火灾。

由于短路现象的危险性,爆炸性(产生电弧),教师怕做,甚至回避不做,学生对短路没有全面深刻了解,对短路事故严重性无明确直观认识,更易在生活、实验、工作中导致短路事故的发生机率增加,危害极大。短路现象在生活中的危险性危害性的事实,迫切要求我们对短路现象要有一个明晰,正确地认识。

首先,短路实验是否该做,什么场合做,应怎样做,应该根据物理教学的实际需要和师生的心理状态进行主客观心理分析得出结论。

(一)短路实验教育性。

短路实验教育性主要从两方面考虑,一是提供短路知识的感性材料,二是提供安全教育的感性材料。

初中物理课本第二册电学中有关短路原理知识仅作简单介绍。教师为了帮助学生正确内化短路认知目标而设计短路实验,提供典型的感性实验材料,这对理解短路现象物理本质及规律十分有利。在物理实验中电学安全教育是一个不可忽视的问题,其包括实验安全、生产安全、生活用电安全,设计短路实验,为学生提供模拟性生活环境,典型性感性材料,进行安全教育具有现实性,很有说服力。

查看全文

变压器抗短路能力分析论文

[论文关键词]电力变压器短路策略

[论文摘要]电力变压器是传输、分配电能的枢纽,是电力网的核心元件,其可靠运行不仅关系到广大用户的电能质量,也关系到整个系统的安全程度。电力变压器的可靠性由其健康状况决定,不仅取决于设计制造、结构材料,也与检修维护密切相关。就电力系统中变压器抗短路能力的提高的问题进行探讨。

一、电力变压器概述

电子电力变压器主要是采用电力电子技术实现的,其基本原理为在原方将工频信号通过电力电子电路转化为高频信号,即升频,然后通过中间高频隔离变压器耦合到副方,再还原成工频信号,即降频。通过采用适当的控制方案来控制电力电子装置的工作,从而将一种频率、电压、波形的电能变换为另一种频率、电压、波形的电能。由于中间隔离变压器的体积取决于铁芯材质的饱和磁通密度以及铁芯和绕组的最大允许温升,而饱和磁通密度与工作频率成反比,这样提高其工作频率就可提高铁芯的利用率,从而减小变压器的体积并提高其整体效率。

二、提高电力变压器抗短路能力的措施

变压器的安全、经济、可靠运行与出力,取决于本身的制造质量和运行环境以及检修质量。本章试图回答在变压器运行维护过程中,有效预防变压器突发性故障的措施。

查看全文

物理短路实验管理论文

短路(实验)是初中物理电学中常见故障,即在电路中用电器两端直接由导线连接叫局部短路;另一种情况电源未经任何用电器而直接用导线相连通叫电源短路。由欧姆定律:I=U/R可知,当电源电压v一定,R很小时,电路中电流将瞬间增幅很大,由焦耳定律Q=I2Rt,时间T一定,导线将发热升温,乃至发生火灾。

由于短路现象的危险性,爆炸性(产生电弧),教师怕做,甚至回避不做,学生对短路没有全面深刻了解,对短路事故严重性无明确直观认识,更易在生活、实验、工作中导致短路事故的发生机率增加,危害极大。短路现象在生活中的危险性危害性的事实,迫切要求我们对短路现象要有一个明晰,正确地认识。

首先,短路实验是否该做,什么场合做,应怎样做,应该根据物理教学的实际需要和师生的心理状态进行主客观心理分析得出结论。

(一)短路实验教育性。

短路实验教育性主要从两方面考虑,一是提供短路知识的感性材料,二是提供安全教育的感性材料。

初中物理课本第二册电学中有关短路原理知识仅作简单介绍。教师为了帮助学生正确内化短路认知目标而设计短路实验,提供典型的感性实验材料,这对理解短路现象物理本质及规律十分有利。在物理实验中电学安全教育是一个不可忽视的问题,其包括实验安全、生产安全、生活用电安全,设计短路实验,为学生提供模拟性生活环境,典型性感性材料,进行安全教育具有现实性,很有说服力。

查看全文

物理短路实验现象心理分析论文

短路(实验)是初中物理电学中常见故障,即在电路中用电器两端直接由导线连接叫局部短路;另一种情况电源未经任何用电器而直接用导线相连通叫电源短路。由欧姆定律:I=U/R可知,当电源电压v一定,R很小时,电路中电流将瞬间增幅很大,由焦耳定律Q=I2Rt,时间T一定,导线将发热升温,乃至发生火灾。

由于短路现象的危险性,爆炸性(产生电弧),教师怕做,甚至回避不做,学生对短路没有全面深刻了解,对短路事故严重性无明确直观认识,更易在生活、实验、工作中导致短路事故的发生机率增加,危害极大。短路现象在生活中的危险性危害性的事实,迫切要求我们对短路现象要有一个明晰,正确地认识。

首先,短路实验是否该做,什么场合做,应怎样做,应该根据物理教学的实际需要和师生的心理状态进行主客观心理分析得出结论。

(一)短路实验教育性。

短路实验教育性主要从两方面考虑,一是提供短路知识的感性材料,二是提供安全教育的感性材料。

初中物理课本第二册电学中有关短路原理知识仅作简单介绍。教师为了帮助学生正确内化短路认知目标而设计短路实验,提供典型的感性实验材料,这对理解短路现象物理本质及规律十分有利。在物理实验中电学安全教育是一个不可忽视的问题,其包括实验安全、生产安全、生活用电安全,设计短路实验,为学生提供模拟性生活环境,典型性感性材料,进行安全教育具有现实性,很有说服力。

查看全文

变压器短路故障处理策略探究论文

摘要:在变压器事故中,发生概率较高、对设备威胁较大的就是变压器短路事故,特别是变压器低压侧发生短路。就变压器低压侧短路后进行的事故检查和处理予以阐述。

关键词:变压器短路事故思考

处理变压器短路事故,首先要通过检查、试验找出问题实质所在;其次处理过程还应注意相关问题。具体思考如下:

首先,变压器短路事故后的检查、试验。

变压器在遭受突发短路时,高低压侧都将受很大的短路电流,在断路器来不及断开的很短时间内,短路电流产生与电流平方成正比的电动力将作用于变压器的绕组,此电动力可分为辐向力和轴向力。在短路时,作用在绕组上的辐向力将使高压绕组受到张力,低压绕组受到压力。由于绕组为圆形,圆形物体受压力比受张力更容易变形,因此,低压绕组更易变形。在突发短路时产生的轴向力使绕组压缩和使高低压绕组发生轴向位移,轴向力也作用于铁芯和夹件。

因此,变压器在遭受突发短路时,最容易发生变形的是低压绕组和平衡绕组,然后是高中压绕组、铁芯和夹件。因此,变压器短路事故后的检查主要是检查绕组、铁芯、夹件以及其它部位。

查看全文

高短路阻抗变压器分析论文

摘要:提出了配电网中性点新型接地方式为:当发生瞬时性单相接地故障时,利用自动跟踪的消弧线圈实现快速补偿;当发生非瞬时性单相接地故障时,能正确选出故障线路并跳闸。提出了高短路阻抗变压器式可控电抗器的基本结构和原理,用该原理研制成功的高短路阻抗变压器式自动快速消弧系统,具有伏安特性线性度优良、响应速度快、电流由零到最大都能无级连续调节、补偿效果好、对系统适应性强等优点,是实现新型接地方式比较理想的设备。

关键词:配电网消弧线圈可控电抗器晶闸管短路阻抗

1新型接地方式

配电网中性点接地方式的选择与电力系统安全可靠运行密切相关,是城网和农网建设中必须关注的重要问题。但长期以来并未得到满意的解决。随着电网的不断发展,电容电流小于一定值而允许中性点不接地的电网已越来越少,绝大多数配电网的中性点都采用低阻接地或消弧线圈接地方式。

低阻接地虽然避免了系统的过电压问题,但跳闸率过高,不能适应对供电可靠性越来越高的要求,尤其是在架空线路与电缆混合的配电网中此问题更为突出。同时,单相接地时巨大的接地电流将使地电位升高,严重时会超过安全值,可能对通信线路、低压电器和人身安全造成不利影响,这是该方式的先天缺陷。随着电力配电系统与电信网共处系统的日益增加,用户使用的敏感元件(电脑、电子控制、电力电子等)日益增多,以及国际标准对低压设备耐压要求的降低,低阻接地方式这一不可克服的缺陷越来越不能被社会容忍。尤其在电缆使用量逐渐增多、电网迅速扩大,使电容电流大增的情况下,用电阻将单相接地故障电流限制到远小于两相短路电流而同时又要满足过电压要求的做法已非常困难,即采用低阻接地方式已非常不经济。因此,低阻接地方式不仅不适合于以架空线路为主的农网,也将越来越不适合于以电缆为主、容量不断扩大的城网。

自动跟踪消弧线圈接地方式避免了巨大的接地故障电流带来的一系列问题,又能使瞬时性接地故障自动消除而不影响供电[1,2]。但是由于《规程》中规定线路单相接地时允许带故障运行2h,对系统的绝缘水平要求较高,因而使某些进口设备(尤其是电缆)受到威胁。同时故障电流持续时间长不仅对人身安全很不利,而且易使非瞬时性接地故障扩大成相间短路(尤其是电缆)。随着电缆逐渐代替架空线路,单相接地时不分瞬时性和非瞬时性故障都不跳闸的传统消弧线圈接地方式已不再适合。

查看全文

电气火灾自动保护研究管理论文

摘要

电气火灾事故是人类面对的严重的灾害事故。其发生不可预测,可以说是对人类造成损失最大的灾害之一。

对于众多的普通民用建筑,如工厂、学校、医院、商场和各种大众娱乐场所,通过采取有效的措施,尽可能防止火灾的发生。即使万一发生火灾,也能尽量减少火灾造成的损失。同时,在发生火灾的现场最常用的手段,应能立即切断电源,以防对灭火人员发生电击后二次伤害事故。这是人们一直在努力寻找的途径。如能采用既经济、实用,又便于普及推广的简便方法,对火灾灾害进行预防、监测和进行自动保护,它将能对防火工作提供有力的帮助。与之相应的国标在消防和住宅建筑方面也有新的防火标准,业已修订完成,近期也将相继颁布。这对火灾防范工作从设计、安装到运行管理都制订了全面的系统规范。电气火灾自动保护型断路器和电气火灾监控系统将为我国电气火灾预防、减少电气火灾的频发程度、为安全用电以及保护国家和人民生命财产发挥更积极的作用。

关键词:电气火灾自动保护型断路器

目录

摘要i

查看全文