调控技术范文10篇
时间:2024-01-20 01:25:53
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇调控技术范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
小议棉花全程调控技术
摘要:棉花是无限制生长型植物,具有很强的可朔性,在生长过程中从外源激素、水、肥、温、光等都会影响棉花的长势长相及产量构成因素。合理促控,塑造合理株型均衡田间群体结构和提高光能利用率,是棉花栽培的核心内容。抓好棉花全生育的调控技术,搭好丰产架子,提高结铃率,达到丰产栽培的目的。
关键词:棉花调控技术
0引言
新疆农四师六十三团地处塔克尔穆库尔沙漠腹地,年日照2700小时,有效积温3500℃以上,年降雨量148mm,无霜期150天左右,灾害性天气主要有大风、干旱、冰雹、霜冻等,晴天多雨天少。即有有力的天气条件,又有不利棉花生长的条件,通过多年生产实践,试验研究,在贯彻“矮、密、早、膜”栽培技术的基础上,改进播种方式,选择适合本地区栽培的品种,团场棉花产量不断提高,全团皮棉单产从2001年的112kg/667m2提高到2006年的136kg/667m2。现将棉花全生育期调控技术简介如下:棉花是无限制生长型植物,具有很强的可朔性,在生长过程中从外源激素、水、肥、温、光等都会影响棉花的长势长相及产量构成因素。合理促控,塑造合理株型均衡田间群体结构和提高光能利用率,是棉花栽培的核心内容。抓好棉花全生育的调控技术,搭好丰产架子,提高结铃率,达到丰产栽培的目的。
1种子调控
1.1晒种:由于棉种休眠期长,需要较长的后熟时间。通过晒种可以起到打破休眠,杀死种子表面病菌的目的。
棉花调控技术分析论文
1种子调控
1.1晒种:由于棉种休眠期长,需要较长的后熟时间。通过晒种可以起到打破休眠,杀死种子表面病菌的目的。
1.2浸种:用缩节胺200mg/L浸种12小时,幼苗侧根数量增加30%以上,地上部分生长放慢,节间适中(3.4-4.5)cm,出叶速度并不降低,初始果枝平均下降一个节间。苗期一般不需要化控。如雨水多则可视情况轻控。
2蕾期调控
2.1中耕:可以有效提高地温,促进棉苗根系发育。中耕深度先浅后深,做到碎土良好,达到增温保墒的目的。
2.2叶面施肥:补充棉花苗期生长所需的微量元素,硼、锌及少量的氮、磷肥。
棉花调控技术分析论文
1种子调控
1.1晒种:由于棉种休眠期长,需要较长的后熟时间。通过晒种可以起到打破休眠,杀死种子表面病菌的目的。
1.2浸种:用缩节胺200mg/L浸种12小时,幼苗侧根数量增加30%以上,地上部分生长放慢,节间适中(3.4-4.5)cm,出叶速度并不降低,初始果枝平均下降一个节间。苗期一般不需要化控。如雨水多则可视情况轻控。
2蕾期调控
2.1中耕:可以有效提高地温,促进棉苗根系发育。中耕深度先浅后深,做到碎土良好,达到增温保墒的目的。
2.2叶面施肥:补充棉花苗期生长所需的微量元素,硼、锌及少量的氮、磷肥。
调控技术论文:工业机器人的调控技术刍议
本文作者:工作单位:安徽埃夫特智能装备有限公司
从控制系统设计角度来说,可以采用辩证法内外因基本原理来分析影响重载机器人控制品质的因素,首先,如果系统存在动力学耦合、柔性等非线性因素,仅仅采用传统的线性控制很难获得良好的控制品质,底层伺服回路的控制缺陷是影响机器人控制品质的内因。第二,如果运动规划环节处理不当,传输给底层运动控制回路的运动指令不合理,即存在位置不连续,速度不连续,加速度跃变等情况,对系统会产生严重的冲击,即便底层伺服控制设计再优秀,同样也会严重影响系统控制品质,这就是所谓的外因。下面就从内外因角度对目前在机器人运动规划和底层伺服控制方面的相关进展进行综述。机器人运动规划方法运动规划与轨迹规划是指根据一定规则和边界条件产生一些离散的运动指令作为机器人伺服回路的输入指令。运动规划的输入是工作空间中若干预设点或其他运动学和动力学的约束条件;运动规划的输出为一组离散的位置、速度和加速度序列。运动规划算法设计过程中主要需要考虑以下三个问题:(1)规划空间的选取:通常情况下,机器人轨迹规划是在全局操作空间内进行的,因为在全局操作空间内,对运动过程的轨迹规划、避障及几何约束描述更为直观。然而在一些情况下,通过运动学逆解,运动规划会转换到关节空间内完成。在关节空间内进行运动规划优点如下:a.关节空间内规划可以避免机构运动奇异点及自由度冗余所带来种种问题[1-4];b.机器人系统控制量是各轴电机驱动力矩,用于调节各轴驱动力矩的轴伺服算法设计通常情况也是在关节空间内的,因此更容易将两者结合起来进行统一考虑[5,6];c.关节空间运动规划可以避免全局操作空间运动规划带来的每一个指令更新周期内进行运动规划和运动学正逆计算带来的计算量,因为如果指令更新周期较短,将会对CPU产生较大的计算负荷。(2)基础函数光滑性保证:至少需要位置指令C2和速度指令C1连续,从而保证加速度信号连续。不充分光滑的运动指令会由于机械系统柔性激起谐振,这点对高速重载工业机器人更为明显。在产生谐振的同时,轨迹跟踪误差会大幅度增加,谐振和冲击也会加速机器人驱动部件的磨损甚至损坏[7]。针对这一问题,相关学者引入高次多项式或以高次多项式为基础的样条函数进行轨迹规划,其中Boryga利用多项式多根的特性,分别采用5次、7次和9次多项式对加速度进行规划,表达式中仅含有一个独立参数,通过运动约束条件,最终确定参数值,并比较了各自性能[8]。Gasparetto采用五次B样条作为规划基础函数,并将整个运动过程中加速度平方的积分作为目标函数进行优化,以确保运动指令足够光滑[9]。刘松国基于B样条曲线,在关节空间内提出了一种考虑运动约束的运动规划算法,将运动学约束转化为样条曲线控制顶点约束,可保证角度、角速度和角加速度连续,起始点和终止点角速度和角加速度可以任意配置[10]。陈伟华则在Cartesian空间内分别采用三次均匀B样条,三次非均匀B样条,三次非均匀有理B样条进行运动规划[11]。(3)运动规划中最优化问题:目前常用的目标函数主要为运行时间、运行能耗和加速度。其中关于运行时间最优的问题,较为经典是Kang和Mckay提出的考虑系统动力学模型以及电机驱动力矩上限的时间最优运动规划算法,然而该算法加速度不连续,因此对于机器人来说力矩指令也是不连续的,即加速度为无穷大,对于真实的电驱伺服系统来说,这是无法实现的,会对系统产生较大冲击,大幅度降低系统的跟踪精度,对机械本体使用寿命也会产生影响[12]。针对上述问题Constantinescu提出了解决方法,在考虑动力学特性的基础上,增加对力矩和加速度的约束,并采用可变容差法对优化问题进行求解[13]。除了以时间为优化目标外,其他指标同样被引入最优运动规划模型中。Martin采用B函数,以能耗最少为优化目标,并将该问题转化为离散参数的优化问题,针对数值病态问题,提出了具有递推格式的计算表达式[14]。Saramago则在考虑能耗最优的同时,将执行时间作为优化目标之一,构成多目标优化函数,最终的优化结果取决于两个目标的权重系数,且优化结果对于权重系数选择较为敏感[15]。Korayem则在考虑机器人负载能力,关节驱动力矩上限和弹性变形基础上,同时以在整个运行过程中的位置波动,速度波动和能耗为目标,给出了一种最优运动规划方法[6],然而该方法在求解时,收敛域较小,收敛性较差,计算量较大。
考虑部件柔性的机器人控制算法机器人系统刚度是影响动态性能指标重要因素。一般情况下,电气部分的系统刚度要远远大于机械部分。虽然重载工业机器人相对于轻型臂来说,其部件刚度已显著增大,但对整体质量的要求不会像轻型臂那么高,而柔性环节仍然不可忽略,原因有以下两点:(1)在重载情况下,如果要确保机器人具有足够的刚度,必然会增加机器人部件质量。同时要达到高速高加速度要求,对驱动元件功率就会有很高的要求,实际中往往是不可实现(受电机的功率和成本限制)。(2)即使驱动元件功率能够达到要求,机械本体质量加大会导致等效负载与电机惯量比很大,这样就对关节刚度有较高的要求,而机器人关节刚度是有上限的(主要由减速器刚度决定)。因此这种情况下不管是开链串联机构还是闭链机构都会体现出明显的关节柔性[16,17],在重载搬运机器人中十分明显。针对柔性部件带来的系统控制复杂性问题,传统的线性控制将难以满足控制要求[17-19],目前主要采用非线性控制方法,可以分成以下几大类:(1)基于奇异摄动理论的模型降阶与复合控制首先针对于柔性关节控制问题,美国伊利诺伊大学香槟分校著名控制论学者MarkW.Spong教授于1987年正式提出和建立柔性关节的模型和奇异摄动降阶方法。对于柔性关节的控制策略绝大多数都是在Spong模型基础上发展起来的。由于模型的阶数高,无法直接用于控制系统设计,针对这个问题,相关学者对系统模型进行了降阶。Spong首先将奇异摄动理论引入了柔性关节控制,将系统分成了慢速系统和边界层系统[20],该方法为后续的研究奠定了基础。Wilson等人对柔性关节降阶后所得的慢速系统采用了PD控制律,将快速边界层系统近似为二阶系统,对其阻尼进行控制,使其快速稳定[21]。针对慢速系统中的未建模非线性误差,Amjadi采用模糊控制完成了对非线性环节的学习[22]。彭济华在对边界层系统提供足够阻尼的同时,将神经网络引入慢速系统控制,有效的克服了参数未知和不确定性问题。连杆柔性会导致系统动力学方程阶数较高,Siciliano和Book将奇异摄动方法引入柔性连杆动力学方程的降阶,其基本思想与将奇异摄动引入柔性关节系统动力学方程一致,都将柔性变形产生的振动视为暂态的快速系统,将名义刚体运动视为准静态的慢速系统,然后分别对两个系统进行复合控制,并应用于单柔性连杆的控制中[23]。英国Sheffield大学A.S.Morris教授领导的课题组在柔性关节奇异摄动和复合控制方面开展了持续的研究。在2002年利用Lagrange方程和假设模态以及Spong关节模型建立柔性关节和柔性连杆的耦合模型,并对奇异摄动理论降阶后的慢速和快速子系统分别采用计算力矩控制和二次型最优控制[24]。2003年在解决柔性关节机器人轨迹跟踪控制时,针对慢速系统参数不确定问题引入RBF神经网络代替原有的计算力矩控制[25].随后2006年在文献[24]所得算法和子系统模型的基础上,针对整个系统稳定性和鲁棒性要求,在边界层采用Hinf控制,在慢速系统采用神经网络算法,并给出了系统的稳定性分析[26]。随着相关研究的开展,有些学者开始在奇异摄动理论与复合控制的基础上作出相应改进。由于奇异摄动的数学复杂性和计算量问题,Spong和Ghorbel提出用积分流形代替奇异摄动[27]。针对奇异摄动模型需要关节高刚度假设,在关节柔度较大的情况下,刘业超等人提出一种刚度补偿算法,拓展了奇异摄动理论的适用范围[28]。(2)状态反馈和自适应控制在采用奇异摄动理论进行分析时,常常要同时引入自适应控制律来完成对未知或不精确参数的处理,而采用积分流形的方式最大的缺点也在于参数的不确定性,同样需要结合自适应控制律[29,30]。因此在考虑柔性环节的机器人高动态性能控制要求下,自适应控制律的引入具有一定的必要性。目前对于柔性关节机器人自适应控制主要思路如下:首先根据Spong模型,机器人系统阶数为4,然后通过相应的降阶方法获得一个二阶的刚体模型子系统,而目前的大多数柔性关节自适应控制律主要针对的便是二阶的刚体子系统中参数不确定性。Spong等人提出了将自适应控制律引入柔性关节控制,其基于柔性关节动力学奇异摄动方程,对降阶刚体模型采用了自适应控制律,主要采用的是经典的Slotine-Li自适应控制律[31],并通过与Cambridge大学Daniel之间互相纠正和修改,确立一套较为完善的基于奇异摄动模型的柔性关节自适应控制方法[32-34]。(3)输入整形控制输入整形最原始的思想来自于利用PosicastControl提出的时滞滤波器,其基本思想可以概括为在原有控制系统中引入一个前馈单元,包含一系列不同幅值和时滞的脉冲序列。将期望的系统输入和脉冲序列进行卷积,产生一个整形的输入来驱动系统。最原始的输入整形方法要求系统是线性的,并且方法鲁棒性较差,因此其使用受到限制。直到二十世纪九十年初由MIT的Signer博士大幅度提高该方法鲁棒性,并正式将该方法命名为输入整形法后[35],才逐渐为人们重视,并在柔性机器人和柔性结构控制方面取得了一系列不错的控制效果[36-39]。输入整形技术在处理柔性机器人控制时,可以统一考虑关节柔性和连杆柔性。对于柔性机器人的点对点控制问题,要求快速消除残余振荡,使机器人快速精确定位。
这类问题对于输入整形控制来说是较容易实现的,但由于机器人柔性环节较多,呈现出多个系统模态,因此必须解决多模态输入整形问题。相关学者对多模态系统的输入整形进行了深入研究。多模态系统的输入整形设计方法一般有:a)级联法:为每个模态设计相应的滤波器,然后将所有模态的时滞滤波器进行级联,组合成一个完整的滤波器,以抑制所有模态的振荡;b)联立方程法:直接根据系统的灵敏度曲线建立一系列的约束方程,通过求解方程组来得到滤波器。这两种方法对系统的两种模态误差均有很好的鲁棒性。级联法设计简单,且对高模态的不敏感性比联立方程法要好;联立方程法比较直接,滤波器包含的脉冲个数少,减少了运行时间。对于多模态输入整形控制Singer博士提出了一种高效的输入整形方法,其基本思想为:首先在灵敏度曲线上选择一些满足残留振荡最大幅值的频段,在这些特定的频带中分别选择一些采样频率,计算其残留振荡;然后将各频率段的残留振荡与期望振荡值的差平方后累加求和,构成目标函数,求取保证目标函数最小的输入整形序列。将频率选择转化为优化问题,对于多模态系统,则在每个模态处分别选择频率采样点和不同的阻尼系数,再按上述方法求解[40]。SungsooRhim和WayneBook在2004年针对多模态振动问题提出了一种新的时延整形滤波器,并以控制对象柔性模态为变量的函数形式给出了要消除残余振动所需最基本条件。同时指出当滤波器项数满足基本条件时,滤波器的时延可以任意设定,消除任何给定范围内的任意多个柔性振动模态产生的残余振动,为输入整形控制器实现自适应提供了理论基础[41],同时针对原有输入整形所通常处理的点对点控制问题进行了有益补充,M.C.Reynolds和P.H.Meckl等人将输入整形应用于关节空间的轨迹控制,提出了一种时间和输入能量最优的轨迹控制方法[42]。(4)不基于模型的软计算智能控制针对含有柔性关节机器人动力学系统的复杂性和无法精确建模,神经网络等智能计算方法更多地被引入用于对机器人动力学模型进行近似。Ge等人利用高斯径向函数神经网络完成柔性关节机器人系统的反馈线性化,仿真结果表明相比于传统的基于模型的反馈线性化控制,采用该方法系统动态跟踪性能较好,对于参数不确定性和动力学模型的变化鲁棒性较强,但是整个算法所用的神经网络由于所需节点较多,计算量较大,并且需要全状态反馈,状态反馈量获取存在一定困难[43]。孙富春等人对于只具有关节传感器的机器人系统在输出反馈控制的基础上引入神经网络,用于逼近机器人模型,克服无法精确建模的非线性环节带来的影响,从而提高机器人系统的动态跟踪性能[44]。A.S.Morris针对整个柔性机器人动力学模型提出了相应的模糊控制器,并用GA算法对控制器参数进行了优化,之后在模糊控制器的基础上,综合了神经网络的逼近功能对刚柔耦合运动进行了补偿[45]。除采用神经网络外,模糊控制也在柔性机器人控制中得以应用。具有代表性的研究成果有V.G.Moudgal设计了一种具有参数自学习能力的柔性连杆模糊控制器,对系统进行了稳定性分析,并与常规的模糊控制策略进行了实验比较[46]。Lin和F.L.Lewis等人在利用奇异摄动方法基础上引入模糊控制器,对所得的快速子系统和慢速子系统分别进行模糊控制[4748]。快速子系统的模糊控制器采用最优控制方法使柔性系统的振动快速消退,慢速子系统的模糊控制器完成名义轨迹的追踪,并对单柔性梁进行了实验研究。Trabia和Shi提出将关节转角和末端振动变形分别设计模糊控制器进行控制,由于对每个子系统只有一个控制目标,所以模糊规则相对简单,最后将两个控制器的输出进行合成,完成复合控制,其思想与奇异摄动方法下进行复合控制类似[49]。随后又对该算法进行改进,同样采用分布式结构,通过对输出变量重要性进行评估,得出关节和末端点的速度量要比位置量更为重要,因此将模糊控制器分成两部分,分别对速度和位置进行控制,并利用NelderandMeadSimplex搜索方法对隶属度函数进行更新[50]。采用基于软计算的智能控制方法相对于基于模型的控制方法具有很多优势,特别是可以与传统控制方法相结合,完成对传统方法无法精确建模的非线性环节进行逼近,但是目前这些方法的研究绝大部分还处于仿真阶段,或在较简单的机器人(如单自由度或两自由度机器人)进行相关实验研究。其应用和工程实现受限的主要原因在于计算量大,但随着处理器计算能力的提高,这些方法还有广泛的应用前景。
水产养殖水质调控技术研究
一、水产养殖中影响水质的各种因素
水质是养殖行业发展与进步的前提,保持良好的水质不仅杜绝了过多排泄物的出现,而且有利于养殖生物的存活,促进养殖生物的更好成长。在水产养殖的整个过程中,核心和关键就是水质的调控,有效且实时性的水质调控不仅利于优良水质的保持,而且对于水生物的健康也有一定的作用。一般来说,水质调控通常涉及物理要素、化学要素以及生物要素。
(一)物理要素通常而言,在水产养殖过程中,水体的透明度、水体温度以及水体的颜色等这些因素都是影响水体健康的重要物理要素,如果哪一个因素出现问题都会对水产养殖产生一定的影响,这是因为在水产养殖过程中,优良的水质是不可或缺的重要保障,它关系到水产的存活和成长。具体到养殖水生物过程中,应当密切关注整个水质环境的变化,并实时的针对水质情况进行全面的调控,保证良好的水质要求。水生物的存活时限、生长能力以及其他要素本质上都是由物理要素决定的,因此,物理要素在影响水质的各种要素中占据非常重要的地位。应当重点进行关注。对于养殖水产的养殖户而言,应当密切关注物理要素对水质的影响,并密切结合水生物的状态来调控物理因子,保证良好的水质,进而为水生物提供所需的良好环境,使其更好地生长。
(二)化学要素在水产养殖过程中,根据实际情况,养殖涉及到的对象也比较多,相应的也存在着各不相同的生物类型。面对这样的情况,在水质调控过程中,应该区别对待,因为不同类型的水生物很可能表现为各异的水质需要。在一般情况下,6至9的酸碱度是正常的水体可以达到的。各种生物在这其中对酸碱度的需求不同,7.5至8.5是鱼类最适应的水体酸碱度,7.6至8.5是虾类最适应的水体酸碱度,而对于螃蟹而言,它对适应的水体酸碱度是7.5至8。通过这些数据我们可以看出,当水体本身的酸碱度存在偏差的时候,整个的水产养殖就会受到一定的干扰和影响,如果这种情况得不到有效控制继续发展下去的话,严重时可能会引发水生物的大面积死亡,造成严重的经济损失,因此要特别注意。在各种类型的化学因素中,要特别关注盐类与氧气的溶解量,因为它们构成了核心性的指标,对水质会产生比较大的影响。
(三)生物要素在水产养殖过程中,生物要素是比较多涉及的内容,同时各种类型的生物因子包含于生物要素中,对水产养殖产生着比较大的影响,这主要是因为,比较大规模的生物系统在水产养殖过程中得以形成,像鱼卵以及饵料等都包含在这个生物系统中。在一定的水体环境中,为了生存,野生鱼类很可能会争夺其他生物所需的养料,在争夺过程中,其他生物的成长就会受到威胁,在这样的情况下,大范围的水生物病害或者死亡就会发生,从而给水产养殖带来较大的影响。因此,全面调控水产养殖业涉及到的生物因子是非常重要的。在这个过程中,要对整个水质进行净化处理,减少生物因子对水产养殖的影响,进而保证水质的优良。
二、水产养殖水质调控技术
电力调控自动化技术的发展
1电力调控自动化技术简介
电力自动化技术是电力系统中新兴的一种电力技术,包括调节与控制、自动检测和网络信息的自动传输等技术,是现阶段新发展的技术中最具有代表性的一种。电力调控自动化技术的作用主要是提高供电的质量并且确保电力系统能够稳定的运行,从而提高企业的管理效能以及经济效益,并且减少企业因电量过大而导致的巨大负担。电力系统最主要的构成环节是发电、输电、变电与配电等,因此要想确保电力系统的安全与稳定运行,加强一次设备的在线监控、调度控制与保护并且将计算机监控设备、测控设备以及保护设备作为二次设备是必要的。总的来说,电力调控自动化技术就是通过了解电网的实时信息来确保电力系统能够正常与安全稳定运行。
2电力调控自动化技术的发展现状
电力系统在我国的国民经济中占有十分重要的地位,由于其系统复杂,所以电力调控自动化技术是其必然的发展趋势。目前,我国电力调控自动化技术的水平得到了一定提升,在经过了长期的发展,克服了技术的限制,在各方面都取得了明显的进步。我国电力调控自动化技术不仅在事业上达到了自主研发的阶段,而且在技术上也达到了世界先进水平。在现代科技的浪潮下,我国电力调控自动化技术正在朝着含有高科技的高技术方面发展。这样的电力调控自动化技术不仅确保电力系统的工作人员及时而准确的掌握最新的电力情况,还能够进行准确的电力系统分析,对故障问题进行有效的判断及排除。我国现阶段对电力调控自动化技术提出了更为具体的要求:一是虽然实现自动化,但是要以人为本,以实际为前提,适应不同的形式和具体要求;二是以自动化技术为前提,减少事故的发生,在为企业节约投资的前提下,降低故障费用,真正实现资金节约。
3电力调控自动化技术的发展趋势
3.1实现电力调控自动化技术的智能界面化
智能调控采油工艺技术试验分析
摘要:针对油田超稠油蒸汽驱开发过程中,生产井受蒸汽驱替作用效果强弱不同,井下油层供液能力不同,使抽油泵供排关系不平衡,导致排液不及时,影响蒸汽驱替效率或者造成抽油泵无功抽空,泵体损耗及电能浪费等问题,运用智能调控采油技术手段,大大提高抽油机系统的工作效率,达到稳定泵效、提高产量、降低损耗、节能增效的目的。在超稠油开发领域全面推广智能调控采油技术,对提高产量、节能耗降、安全生产、优化管理具有重要的意义。
关键词:杜229区块;蒸汽驱;智能调控;动液面
辽河油田杜229区块构造位于辽河盆地西部凹陷西斜坡中段,属互层状边底水中厚层超稠油油藏,共规划有蒸汽驱井组20个,动用层位为兴Ⅲ3、兴Ⅳ和兴Ⅴ组,含油面积为0.76km2,油藏埋深900~1020m,有效厚度23m,地质储量为342×104t。该区块蒸汽驱开发始于2007年,先后经历了先导试验、扩大试验和规模实施阶段,目前总井数为141口,其中注汽井有20口,生产井有121口,年采油量保持在10×104t以上。油井在转入蒸汽驱开发前的蒸汽吞吐开发期间,各单井吞吐投产时间参差不齐,吞吐轮次高低不同、周期长短不一,加热半径远近有别,采出程度差异较大,同时受储层非均质性等因素影响,致使井组内注汽井与各生产井之间的热连通性不同,生产井受蒸汽驱替作用效果程度不同,造成各生产井供液能力不同。按照蒸汽驱开发要求,为了维持采注比在1.2以上,使蒸汽驱开发顺利进行,必须平衡抽油泵供排关系,保证合理的采液量。但是,实施智能调控采油技术前采用的人工操作方式,是根据手动测试的油井动液面参数调控抽油机频率转速,提降抽油杆上下往复冲次,维持抽油泵的供排平衡。人工操作方式及时性较差,甚至因为油套环空内的介质组成复杂,造成动液面参数测试误差大,进而误导调控[1-4];造成排液过快,抽油泵无功抽取,干摩损耗泵体,浪费电能;或者造成排液过慢,液量积压,影响蒸汽正常驱替推进。另外,因蒸汽驱规模扩大,井数多且位置分散,技术人员不足,人工采集动液面数据工作量大、周期较长,难以满足及时调控的需要。为了满足蒸汽驱规模不断扩大的需要,减少人员工作量,提高调控及时性,辽河油田在杜229区块蒸汽驱开发领域开展了智能调控采油技术研究,使油井供液能力与抽油泵排液速度保持合理的供排平衡关系,达到增产降耗的目的,在汽驱开发中具有很高的应用价值。
1智能调控采油系统基本工作原理
抽油机智能调控采油技术是自动化技术、通信技术和计算机信号处理技术相结合[5-8],主要通过在线自动实时监测幵录取油井油管与套管之间的环形空间内的动液面参数作为调控依据。预先设置固定合理的动液面参数后,通过实时监测动液面高度动态变化,对抽油机变频电动机进行自动变频控制调频,近而调节抽油杆带动抽油泵内活塞的上下往复冲次数。当监测到动液面超过设定值时,表示油层供液能力强,系统自动提频,上调冲次,加速排液;当监测到动液面低于设定值时,表示油层供液能力弱,系统自动降频,下调冲次,放缓排液,使抽油泵始终在理想的供液能力范围内高效排液工作。
2智能调控采油系统主要构成与功能智能监测系统
透析葡萄设施栽培环境调控技术的应用推广
摘要:在葡萄设施栽培中,环境调控对葡萄设施栽培起着举足轻重的作用。从温度、湿度、光照、气体等方面阐述了葡萄设施栽培环境调控技术,以期为葡萄设施栽培提供参考。
关键词:葡萄;设施栽培;环境调控
葡萄设施栽培,是利用设施创造适宜生长发育的环境条件,在不适季节或不利条件下的一种现代果树保护地栽培。葡萄是主要果树之一,以露地栽培为多。生产中存在易受气候影响、病害多、品质不高、采收期集中等突出问题,严重限制了葡萄生产的发展。葡萄设施栽培可缓解上述问题,且可拓宽栽培葡萄品种的选择范围、提高葡萄品质、调节果实生育期,从而增加经济收益。因此,近年来葡萄设施栽培出现了良好的发展势头,栽培面积不断扩大。在设施中,与葡萄生长相关的温度、湿度、光照、气体要进行人为控制。因此,控制的适宜与否,是设施栽培中的关键。
1温度调控
一是休眠期温度的调控。设施葡萄7.2℃以下需要经过1000~1200h才能通过自然休眠,翌年结果才有保障。因此,设施栽培葡萄必须先满足其低温需求后再进行生产。实际生产中常在11月中旬,白天加膜盖草帘,关闭通风口;夜间将草帘揭开,并打开通风口,使温室内温度在7.2℃以下、-10℃以上。这样既增加了低温量,又使葡萄植株不致遭受冻害。12月中旬用20%的石灰氮涂抹结果母枝的冬芽,迫使其解除休眠。二是开花后至浆果采收期温度的调控。萌芽至开花前,最低温度在5~6℃,最高温度在28℃。正常情况下白天应保持在20℃左右,夜间10~15℃。如果此期内温度过高,升温过快,花器官分化发育太快而发生畸形变态,花器官发育受阻,坐果能力降低。开花期前后,白天保持28℃左右,夜间16~18℃,最低不低于15℃。幼果期白天保持25~28℃,夜间18~20℃,最低不低于15℃,但也不要超过20℃。当外界最低气温稳定通过10℃时,即可除去薄膜覆盖,使之变为露地。着色成熟期,白天28~30℃,夜间16~18℃,或更低些,这样有利于浆果着色和提高可溶性固形物的含量。
2湿度调控
电力调控自动化技术的实践
由于经济的发展和社会的进步,对于电力的需求不断扩大,需求量的增加推动了电力行业的发展,再加上自动化技术的快速发展,电力工程在社会发展中的作用越来越明显,随着科学技术的发展,逐渐形成了一整套非常完整的电力自动化系统,从而大大提高了电力系统的工作效率,并且有助于社会用电质量的提高,还有助于促进我国的电力系统的完善和发展。
1电力工程自动化技术的特点
随着科学技术的发展,我国的电力水平已经得到了很大的提升,同时随着国家配电网设备的不断完善,也促进了电力自动化技术的飞速发展。并且,电力工程自动化技术是一项综合性的科学技术,组成这一技术体系主要有电子技术、计算机信息技术等复杂的科学技术,通过各项科学技术相互合作,从而实现对电力系统的运行设备和操作系统进行全程的监督和管理,从而可以大大地减少不必要的资金、人力和物力的投入,并且通过各项信息技术的联合使用,还可以对电力设备中出现的故障进行全程地监督和检查,一旦发现问题就会及时地发出预警,从而最大程度的减小损失。电力自动化的特点,主要可以体现在下面3个方面:①,为了确保电力工程自动化技术能够与实际需求相适应,并且确保电力设备正常有序地运行,所以供电企业应该从电力设备的实际运行需求入手,要求工作人员对电力设备的使用规则和注意事项做到全部掌握,从而避免因为对操作设备的不了解对设备造成损坏。②在电力工程的建设过程中,积极引进自动化技术,从而最大程度地提高电力系统的安全性,避免安全事故的发生,降低电力工程建设的成本,从而为电力企业赢得更大的利润。③供电企业需要对电力设备的工作数据进行及时地、严密地分析,通过对数据进行分析找出异常的参数,一旦发现有异样的数据,就需要立即对设备进行检查,从而最大程度地避免事故发生的几率。
2自动化技术在电力工程中的应用
电力工程自动化技术主要是由电子技术和网络通信技术相互结合使用的,通过技术的联合使用从而真正地实现对于电力系统设备的全程管理和控制,不仅可以保障电力系统的正常有序地运行,而且还为我国电力行业的发展开辟了新的道路,在我国电力工程的发展中起到了至关重要的位置。以下是对自动化技术在电力工程中的应用进行的阐述,主要体现在以下方面:(1)电力工程中现场总线技术的应用。现场总线技术是电力调控自动化技术的核心部分,现场总线水平的高低决定了电力工程施工质量的好坏。现场总线技术主要是通过对终端控制设备和自动化装置进行连接,对所有设备的用电量进行数据采集和数据处理,然后通过信号通信把数据传输到控制的计算机上,然后再由控制的计算机设备对返回的数据进行分析和总结,然后做出相应的判断,最后发出口令,口令数据通过通信传输工具传输到接受设备当中并作出相应的指令,通过这个过程来对电力自动化技术进行完善和检验。一般情况下,现场总线技术是电力调控自动化技术中一个分散的技术手段,其对电力设备的控制和计算机系统的控制是独有的,通过对计算机反馈的数据进行处理,就省去了对电力工程的监督和管理,只需要对于反馈的数据进行分析,然后根据信息作出相应的调节即可,这样既方便又简单。(2)电力工程中主动对象数据库技术的应用。电力工程中主动对象数据库技术的应用主要是用于对电力系统进行监视的方面,所以,数据库技术对于电力系统的开发和继承等方面都有非常大的促进作用,有助于电力工程技术软件的更新和技术的变革。主动对象数据库技术在电力系统中得到了广泛的认可,并且可以用来支持对象设备的标准化,所以主动对象数据库与一般的数据库相比有很大的优点,其主要是对技术以及技术的主动化进行技术方面的支持。主动对象数据库技术通过对电力系统进行监视,然后利用对象函数的基本原理,从而实现对电力工程进行自动化控制的目的,并且由于触发机制的研发和使用,对于数据库的监视方面可以进行很好地调控和监管,从而大大地节省了数据被写入和输出的时间,充分地利用了数据库的管理功能,取得了技术的保证。目前,我国电力工程系统对于数据库技术的应用非常广泛,并且在监视系统的发展方面也取得了很大的进步。(3)电力工程中光互联技术的应用。电力工程中光互联技术的应用主要体现在继电系统和自动控制系统当中,可以从以下的方面体现:根据探测器的功率对扇出数进行限制,并且不会受到实际的电容性负载的影响,有利于对电力系统进行有效地监控和提升电力系统的集成度。并且根据有关的数据显示得知,通过对电力传输技术的应用和电子交换技术的应用,可以对互联网络进行相应的拓展,并且还可以实现对编程结构的重组,从而提升光互联技术对于电力系统的灵活性和有效性。光互联技术抵抗电磁干扰的能力非常强,所以通过光互联技术可以提高处理器的干涉能力,从而便于操作系统的数据通讯,使得电力工程具有安全性和可靠性。
3结语
水产饲料调控要求与粒度控制技术
摘要:本文分析了原料粒度对消化率、营养平衡、颗粒质量等的影响,提出水产饲料的粒度要求;建议通过粉碎设备的正确选用、粉碎作业的合理安排及规范粒度检测制度等措施来保证水产饲料的粒度质量。
关键词:水产饲料粒度加工质量
1.粒度对消化率的影响
1.1粒度与消化率
饲料被水产动物食入后,在齿嚼、肠胃蠕动等机械力作用下破碎并和消化液搅拌混合。消化液浸润并水解饲料,使其中的蛋白质、淀粉、脂肪等大分子营养物质成为可吸收利用的小分子。
饲料被消化,首先得和消化液接触。增加饲料粒子的表面积,就增加了饲料和消化液的直接接触面积,同时也加快了消化液渗透到饲料粒子内部的速度。饲料粒子表面积不容易直接测得,但可由以下公式计算饲料粒子总表面积: