电子设备范文10篇

时间:2024-01-19 20:47:41

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇电子设备范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

电子设备

电子设备安全试验

1电子产品安规试验的一般原则要求

试验之前应理解如下一些原则要求。

1)产品安全测试前,应首先确认设备的移动性、设备对电击的保护类型、与电源连接的方式、以及污染的等级等;

2)列出所有经过认证或未经认证的安规元器件的清单,确定是否应作为设备的一个组成部分,承受规范规定的有关试验;

3)除另有说明外均为型式试验,应在一个样品上进行,该样品应承受全部有关试验;

4)如果设备的设计和结构已清楚地表明某一试验对设备不适用,则该试验就不应进行;

查看全文

电力电子设备对配电系统的影响

1电力电子设备对配电系统的电流保护

1.1电流速断保护。一般情况下通过电流在对短路电流的幅度增加起到一个一瞬间的保卫响应,这种情况通常被称为电流速断保护,目前在电流速断保护技巧当中,通常只能够保护配电网继电护卫中的部分,由于须要确保继电保护决定性的操作,电流速断保护技术拥有如响应行动迅速,使用起来却简便牢靠等特点,所以正因为如此,所以电流速断保护技术才能够被普遍应用,但是在电流速断保护技巧本身也会拥有瑕疵,例如电流速断保护技巧的保卫拥有一定的局限性不能够使全部线路都能得安全保护等缺点。1.2限时电流速断保护。因为目前电流速断保护技巧不能够使全部线路都能得到安全保护并且电流速断保护技巧拥有挑选性等特点,所以限时速断电流技巧这些根本原因上增加了有限的时间上的一种行动保护,限时电流速断保护不论产生任何状况,都能满足整体线路的要求,而且要快速的利用电流速断保护技巧来确保整体线路的安全运营。1.3定时限过流保护。定时限过流保护就是线路在过载的情况下,在本条线路的主要保护拒动中断路器拒动和下级线路主要保护通用拒绝,选择使用的一种继电保护方案。

2电力电子设备对配电系统继电保护

2.1电力电子设备对配电系统所带来的影响。通常电力系统运行中使用电力电子设备的时候,会引发电流波形以及电压出现异常现象,而这种异常状况出现大多数都是由于电力系统在电力运行的状况下就会产生出谐波,谐波主要来自于电力电子设备的频繁使用,这种谐波的产生将对相应的继电保护措施和运行产生极其重要的影响,鉴于高次谐波的传输会让公共电网的元件出现谐波损耗等一系列问题,铜损与铁损的不断增加致使设备在运行的过程中,会展现出噪音过大和发热过量等一些问题,这样会对设备的使用效果产生影响作用。同时也有可能会导致旋转设备产生高次谐波的作用导致扭矩方向相反,并且可能会造成的机械的一些损伤,并且相应的增加热量,此外,还会因并联与串联谐振的产生而使得谐波随之扩大,最终很可能引发继电保护系统失灵的问题,给电网的安全可靠运行埋下了极大的隐患。2.2电力电子设备对继电保护系统所带来的影响。(1)基于配电系统下电流保护方法。主要是指第一是目前电流速断保护技巧。通常是指在短路电流幅度增加情况下实现在现实使用经过当中的发出瞬时保护动作,只能够保护线路的一部分,并在运用的过程中表现出简单可靠且反应敏捷迅速的优势特点;而不足之处在于无法实现对全线路的保护,同时,根据各不相同的运转手段的不同使其维护的局限性也能随之产生变化,第二,限时电流速断保护技巧就是由于目前限时电流速断保护技巧,根据上述方法不能够满足其对整条线路的保护,因此能够可以通过加入一段带时限动作保护来弥补其在这方面的缺陷,限时电流速断保护技巧必须能够确保实现整条线路全场的保护并且要求必须要反应要有快速灵活性,同时要拥有最短的动作时间限制,要能够达成一旦下级线路出现短路问题情况下,能够快速拆卸解除隐患,满足实际的需要。第三,定时限过流保护是基于远程备份保护模式的下属线路,也是主要保护措施拒绝后备保护,同时在出现电流过载中也可以达到有效率的保护措施,一般情况下都是通过对电流的保护才能够达成的,如果当电流幅度超过最大电流负载率的情况下将通过启动电流完成整条线路的保护。(2)对继电保护的影响。在配电系统中,由于采取的继电保护类型不同,加上所安装的位置存在差异性,所以电力电子设备所带来的影响也就存在着一定的区别,一般在实际的操作过程中导致继电保护故障或是甚至拒动的主要问题是:首先根据电气距离,它离最大谐波的距离太近;第二,在这一继电保护装置的安装上,其位置与谐波放大的点较为接近,或是与谐波谐振条件较为接近;第三,通常在电流的保卫装备里面所对应的动作设定值较小,严重小于相电流与相电压;第四,在继电保卫装置里面,所对应的动作原理选取和其部件的选择使用等,对谐波十分敏感;第五,在这一系统中,存在着不平衡的基波负序电流等,同时还存在谐波电流,进而致使继电保护出现误动甚至是拒动的问题。

3提高配电系统继电保护运行可靠性的措施

3.1完善相关的规章制度。在对制度进行完善前,一定要对不同类型继电保护系统进行详细的分析,从而使电力系统的制度能够满足不同类型继电保护措施的要求。通常制度的改进其中必须要包含维修设备的运行,由于设备是运行电力系统继电保护措施的根本,所以在规章制度里面一定要首要确保严苛要求电力系统操作人员使他们能够按时频繁的检查设备,从而确保电力系统操作人员能够有准备快速对设备进行维护维修,使电力系统西电保护系统运行稳定。3.2强化协调。电力系统继电保护对操作人员技能的要求较高,操作人员必须对电力系统继电保护程序较为熟悉。所以在电力系统运转过程当中设备可以相应的进行安排使用,而且在设备一旦反生故障的状况下,电力系统操作人员也能够充分使用自己的专业机能来对设备进行修理和维护,这样一来就能充分防止在设备发生故障时候对正常运转的电力系统造成重大影响,操作人员在工作过程中一定要着重注意人员之间的协调搭配,确保能够不影响自己的工作质量的情况下,与此同时要做好各个岗位工作之间的协调,从而能够促进操作人员能够实现有高速有效的起到保护继电的目的。3.3提升技术。电力企业管理人员应该做到以电力系统相关准则为依托完全合理的利用和使用电力企业自身上的资金和技术方面长处,要不断在外引进最新的设备和工艺,同时也要结合自身开发新技术。须要努力达到配电网络自动化系统以及继电保护,有机整合调度自动化系统,MIS系统,状态检修系统,在能充分保证继电保护设备的质量为目的前提之下,给继电保护装置能够稳固并且安宁的运行提供了强大的支持。3.4科学选择保护装置。通常在制作建造或者选择购买各种保护设备的过程中,要进行严格控制管理设备的质量,确保保护装置在各种部件的质量上都很好。通常在选择使用各种配件的时候,首先要综合比较考虑各种组件在设备上的使用寿命和产生故障的概率进行综合考虑,尽可能不要选择使用一些质量不好容易出现故障的元件,在晶体管保护装置的设计方案中,应该在高压室隔壁进行安装使用,这样做既能防止因为高压大电流与切合闻操作电弧和短路故障这些原因所造成的继电保护装置发生故障。

查看全文

航空电子设备静电危害及防护措施

摘要:在对航空电子设备进行维修和养护的过程中,需要重点关注到静电防护,并结合航空电子产品维修中的静电来源作为主要依据,创建更为完善的防护管理体系。基于此,本文先分析了航空电子设备维修中产生静电的类型及其危害,随后探究了设备维修中静电的防护措施。

关键词:航空电子设备;设备维修;静电;静电防护

在航空航天领域中,集成电路以及高分子材料在航空设备中得到了最为广泛的运用。这些技术和材料的运用,在一定程度上提高了航空电子设备的科学技术含量,但是同时,设备的运行和维修养护工作中,也不可避免地会受到静电的影响。因此,本文对航空电子设备中静电的危害以及防护措施进行的研究具有鲜明的现实意义。

一、航空电子设备维修中产生静电及其危害

(一)静电的类型。在航空电子设备的维修和养护工作中,静电过程可以分为两种不同的类型,即静电起电和静电放电。静电起电是静电的集聚和开始阶段,这个过程不会产生较大的危害;静电放电过程是自身电荷向外释放和传导的过程,此时会对航空电子设备产生极大的危害。据调查,静电放电的10%电量就能造成电子设备瞬间失效,而其余的90%电量会潜伏在产品内部,在受到内部或者外部环境刺激的情况下,便会大规模爆发。一旦这种问题产生,静电对航空电子设备造成的危害便无法估量[1]。(二)静电的危害。对于航空电子设备来说,静电所产生的威胁较大,静电防护工作的难度也因此极大提升。对于航空电子设备来说,静电放电所产生的威胁,在静电产生初期并不容易被发现,其威胁和影响直至设备出现故障之后才会被发现,这种状况会使飞机的飞行安全产生安全隐患。静电所造成的危害主要表现在以下几个方面:(1)静电具有吸附功能,会使航空电子设备本身覆盖一层灰尘,这种情况下,设备部件的绝缘电阻会降低,设备的使用寿命也会因此缩短。(2)静电产生之后的放电过程,会产生一定的热量,这种热能在某种程度上会损伤设备和设备内部的元件。(3)静电放电过程的幅度过大,并且会形成强力磁场,进而航空电子设备造成损伤。(4)静电放电过程会让元件原本功能受到影响,如果不能在短时间内进行处理,则会对飞机整体稳定性和安全性造成严重威胁。

二、航空电子设备维系中静电产生的防护措施

查看全文

电源电子设备分析论文

摘要:本文全面地论述了电子设备的电磁兼容性问题。比较详细地分析了干扰源、干扰的传递途径,并介绍了有效抑制和防止干扰的各种措施及其原理。

关键词:电子设备电磁兼容性干扰源有效抑制

1引言

随着电子技术的迅速发展,现代的电子设备已广泛地应用于人类生活的各个领域。当前,电子设备已处于飞速发展的时期,并且这个发展过程仍以日益增长的速度持续着。电子设备的广泛应用和发展,必然导致它们在其周围空间产生的电磁场电平的不断增加。也就是说,电子设备不可避免地在电磁环境(EME)中工作。因此,必须解决电子设备在电磁环境中的适应能力。电磁兼容性(EMC)是一门关于抗电磁干扰(EMI)影响的科学。目前,就世界范围来说,电磁兼容性问题已经形成一门新的学科。电磁兼容的中心课题是研究控制和消除电磁干扰,使电子设备或系统与其它设备联系在一起工作时,不引起设备或系统的任何部分的工作性能的恶化或降低。一个设计理想的电子设备或系统应该既不辐射任何不希望的能量,又应该不受任何不希望有的能量的影响。

2电磁干扰源的分类

各种形式的电磁干扰是影响电子设备电磁兼容性的主要因素,因此,它是电磁兼容性设计中需要研究的重要内容。

查看全文

电力电子设备研究

摘要:在科技不断发展中,电力电子技术也在持续的深入,并成为建设智能电网的重要基础。通过对电力电子的发展探究,在静止中的无功补偿装置以及有缘电力滤波、高压直流中的输电技术这些在电力电子中的不断使用,来对电力电子设备在电力系统中的使用进行研究。希望通过探究可以使得电力电子设备在整个电力系统的应用中得到广泛的使用。

关键词:电力电子;电力系统;应用

电力电子设备在电力系统中的应有十分广泛,通过相关调查报告可以看到,有70%的电能是要在电力电子的变流装置的基础上来处理的。假如没有电力电子的使用整个电力系统便是和实际的脱离,由此所造成的后果也是十分严重的。直流输电的技术体现在远距离和大容量上,在受电端的逆流阀和跟整流阀都在使用晶闸管的变流设备。

1电力电子技术的发展

我们可以把器件制造技术跟电子中的电路使用技术统称为电力电子技术。同时电力电子器的发展经历也可以分为几个阶段,首先是半控型其次是复合型然后还有全控型这几个阶段,他们可以把保护电路、驱动控制以及功率器件全部集合在一起,共同构成集成电路,但是现在他们的功率较小,但是我们可以看出它代表了发展的重要方向。在现在这个阶段使用最为广泛的是整流电路,在20世纪的80年代也是逆变电路使用发展的高峰,其中自行关闭器件也在这个时候大量的出现,这个时期的总体发展趋势是高频化,同时还出现了谐振型和矩阵型逆变电路等这些。PWM控制器也推动着电力电子的发展,同时还有自适应控制、瞬时无功控制或者模糊控制。

2静止无功补偿装置

查看全文

电子设备的电磁兼容分析论文

1电磁干扰源的分类

各种形式的电磁干扰是影响电子设备电磁兼容性的主要因素,因此,它是电磁兼容性设计中需要研究的重要内容。

2-1内部干扰

内部干扰是指电子设备内部各元部件之间的相互干扰,包括以下几种。

(1)工作电源通过线路的分布电容和绝缘电阻产生漏电造成的干扰;(与工作频率有关)

(2)信号通过地线、电源和传输导线的阻抗互相耦合,或导线之间的互感造成的干扰;

查看全文

运动视觉跟踪电子设备设计研究

1传统设备跟踪运动目标效果存在的问题

通过本文对运动视觉跟踪电子设备优化能够有效进行目标跟踪,从根本上避免了跟踪运动目标效果差的问题。优化后的运动视觉跟踪电子设备还能在一定程度上减缓由于目标运动的不确定性造成的视觉模糊现象,并且通过有效仿真实验验证了优化后的有效性[8]。

2运动视觉跟踪电子设备的改进设计

虽然在20世纪就已经提出蒙特卡罗算法,但是由于20世纪并没有运动视觉跟踪电子设备,因此蒙特卡罗算法并没有在计算机视觉跟踪领域进行应用,由于近些年的计算机视觉设备的兴起,蒙特卡罗算法才被应用到了运动视觉跟踪电子设备中去。因此本文也引用了蒙特卡罗算法进行运动视觉跟踪电子设备的优化。运动视觉跟踪电子设备结构图如图1所示。图1运动视觉跟踪电子设备结构图蒙特卡罗算法流程图如图2所示。图2蒙特卡罗算法流程图蒙特卡罗计算方法其实是对图像核密度进行非参数特征的空间转换方法,通过对图像帧频迭代寻优得到概率密度分布核函数表达式为:f(x)=1n∑i=1nki(X-X)1(1)式中,f(x)为核函数,一般是一个查询值。如果i为偶数,那么所得到的矩阵是对称矩阵,对应的像素增大概率为:m(x)=∑i=1nxgéëêùûúx-x1h2∑i=1ngæèçöø÷x-x1h2-x(2)式中,m(x)是像素增大概率,通过式(2)可以计算出像素被使用上升的极值。蒙特卡罗算法选择的空间像素授权图形为图像形式的像素颜色所含有的全部索引。因此,目标像素直方系数式为:q=C∑i=1nk(x)2δ[b(x)]-u(3)式中:u表示从1,2,…,m全部颜色的像素索引方程;δ为蒙特卡罗函数的常备系数;C是整合原点系数值;q表示核函数。为了方便进行像素的定位,候选目标的模型为:p(y)=C∑i=1hkæèçöø÷y-xh2δ[b(x)]-u(4)式中,h表示使用的像素宽度,它决定相关图像的实际尺度,通过计算相似度来有效地把非位置像素隔开,如下:ρ(y)≡ρ[p(y),q]=∑n=1mp(y)q(5)系数最大值便是当前帧值的所在位置。通过对系数最大值的选定可以有效改变和设定跟踪的目标,假设候选目标中的p(y)所对应的目标像素直方系数q没有发生突变,可以把上述公式展开得到:ρ[p(y)],q≈12∑n=1mp(y)q+12∑n=1mp(y)qp(y)(6)将式(5)转化为式(6),这样可以方便进行代入化简,得到化简式有利于进蒙特卡罗计算优化,公式如下:y=∑i=1hxwgæèçöø÷y-xh2∑i=1hwgæèçöø÷y-xh2(7)式中,xwg实际上是对帧频的定位,根据预定的逻辑进行定位,直到找到最大迭代次数。接收函数通式合并为:δ=minéëêêùûúú1,p(Y|x)Q(x);x1p(Y|x)1Q(x);x(8)再依据区域定位通式:ELBF(ϕ,f1,f2)=μ∫12(|∇ϕ-1-f)12dx+f2+Length(C)(9)式中:ϕ表示区域内单位帧运动位移向量;f1,f2分别表示图像帧频起始定位焦点和终止定位焦点;μ表示蒙特卡罗整合系数;Length(C)为帧频系数常量,把式(7)和式(8)与通式(9)进行合并,如下:ELBF(ϕ,f)1,f2=μ∫12(|∇ϕ|-1-f)12dx+δ⋅(f)2+Length(C)(10)得到的结果是一个区域,这个区域具有一定的帧,引入蒙特卡罗算法与接收函数结合,必须对上述公式进行系数合并,如下:min0≤αi≤cW=12∑i,j=1lyiyjαiαjK(xi,xj)-∑i=1lαi+bæèçöø∑÷i=1lyjαj(11)进行区域拟定还需要进行跟踪误差辨别,对跟踪的相对系数以及相对值域进行多次测量求出平均数,平均跟踪误差为:M(ω)=12π∫01N(ω)dω(12)式中:N为重叠率;dω为单元重叠差量,若表示重叠部分时值为0,如果表示非重叠值时值为1;M为像素误差值,结果是一个范围值,通过人为调整可进行函数的设定。计算平均跟踪误差,选定跟踪表现值为:G=∑r=1t∑q=1k2WiTxir-WiTxirq2Birq=tr(WiTHWi)(13)式中:xir与xirq为跟踪目标中心轴位置坐标,经计算与实际位置的中心轴进行坐标对比,可满足对误差的分析;W,B,H为目标区域实际高度、宽度以及对角线。以像素作计量单位计算重叠率为:Sc=[S0,S1,S2,⋯,SQ-1]binary=éëêùû∑úiQ-1Si×2iDec(14)式中:SQ-1为第Q-1帧真实目标区域中所包含的实际像素个数;i和c表示相交区域所含有的像素个数,推导出蒙特卡罗算法的测量公式为:sPPM(t)=∑i=-∞∞∑j=0Np-1p(t-iTs-jTp-cjTc-aiε)(15)

3试验验证

为了验证本文设计的运动视觉跟踪电子设备优化方案的有效性,采用对比仿真实验,对传统的运动视觉跟踪电子设备以及本文优化后的运动视觉跟踪电子设备进行对比。为了获得更加准确的运动视觉跟踪结果,同时对以运动的物体进行视觉跟踪。设置核密度系数为7.531;目标像素直方系数q的取值范围为1~5,帧频系数常量C为800;为了保证结果的有效程度,G的误差调整为1。实验结果如图3所示。通过图3可以看出,优化后的运动视觉跟踪电子设备的实验结果明显比传统运动视觉跟踪电子设备实验结果清晰,并且辨识度很高。上述图3为两种方法的辨识度的对比结果,图3(a)为优化后的运动视觉跟踪电子设备实验结果,图3(b)为传统的实验结果。可以看出优化后的实验结果明显比传统的运动视觉跟踪电子设备实验结果好。为了进一步验证优化后的运动视觉跟踪电子设备的辨识度效果,通过仿真实验描点记录的方式,对运动视觉跟踪电子设备的辨识度进行测试,得到测试结果如图4所示。分析图4可得,传统电子设备的辨识度平均值约为1.3,优化后的运动视觉跟踪电子设备的辨识度平均值约为2.8。由对比实验结果可以看出,优化后的实验结果明显比传统的运动视觉跟踪电子设备的辨识度更好。图3不同运动视觉跟踪电子设备实验结果图4实验辨识度对比综上所述,本文设计的运动视觉跟踪电子设备优化方法能够很好地解决跟踪运动目标效果差的问题。

查看全文

电子设备结构及工艺设计研究

摘要:结合某系统研制过程中所从事的具体工作,着眼于结构及工艺,对电子设备设计技术、结构设计方法、产品具体的结构形式和处理工艺作了简单介绍和说明。根据设备功能、性能及所处工作环境等研制方案明确或隐含的设计要求,电路设计应与结构设计密切协调、互相配合,共同采取相应措施以达到最佳的设计效果。经工程实际应用,某系统电子设备运行持久正常、性能稳定可靠。

关键词:电子设备;结构设计;工艺设计

结构设计是为了满足电子产品的各项功能和电性能,使设备在各种既定环境下都能正常工作所进行的设计。它可以把产品的外观直接展现出来,在一定程度上决定了产品的可靠性、寿命及性价比。好的设计应合理满足整机的性能要求,在市场上具有竞争力。产品的工艺性能直接影响到产品性能和战术技术指标的实现。工艺设计的最高原则是以最少的社会劳动消耗创造出最大的物质财富,这个原则也是企业赖以生存和发展的基础。无论哪类电子设备的设计都离不开结构,整机结构设计水平的高低和工艺技术的好坏对于产品质量至关重要。电子设备的故障或失效大都可归结为设计上没有想到或没意识到某些细节或约束,一些通用设计的技术、准则、理念和方法必须被予以重视并深入贯彻到产品研发中去。

1某系统电子设备结构设计

1.1概述

某系统主要由多路耦合器、终端机和信号分配器组成,采用19英寸标准机柜上架安装方式。各设备遵循标准化、系列化、通用化设计原则,颜色、标识、铭牌、把手和接口连接器选择均符合系统设计规范要求。根据研制方案确定电气功能、性能及使用环境要求,经研究分析整机结构形式和尺寸约束后,初步进行元器件布局、布线和组装设计,合理选用材料、涂镀、加工手段,采用通用件和标准件,简化制造工艺,积极运用成熟技术。后通过软件进行三维实体建模、装配仿真、应力应变分析、热流分析,进一步优化零部件结构。

查看全文

电子设备防雷击论文

摘要:本文阐述了雷击模拟电子设备的机理,SPD和类型和选择时应注意的问题。

关键词:雷击雷电波形SPD

近年来,电子信息设备和计算机系统已深入各行各业,由于这类设备的工作电压和耐冲击电压水平低,极易受到雷电电磁脉冲的危害,从而使雷电灾害由电力和建筑物这两个传统领域扩展到几乎所有行业,特别是通讯、信息技术数据中心,计算机中心以及微电子生产行业等由于雷电造成的危害尤为重要。另一方面,因为雷击是机率事件,这种影响尚未引起人们的注意,很多人认为只要按照国家的建筑物防雷设计规范做好避雷针(带)、引下线和接地装置等建筑物内外的防雷工作就“万事大吉”了。但实际上,当雷击现象发生时,建筑物的外部防雷装置确实有效地抵御了雷击对建筑物的破坏,同时均匀的避雷引下线与建筑物接地的均压环也起到法拉第网笼的作用,保证建筑物内的人员不致因跨步电压升高而导致触电事故。

但这时当雷电击中建筑物防雷装置或击中附近其他建筑物的避雷针(带)并由引下线导人大地时,瞬间内在引下线自上而下的产生一个很强的变化磁场。处在这个电磁场作用下的导体,便会感应产生电压,其数值也可达数十千伏,处在这个磁场作用范围的电气、信号、电源及它们的传输线路都因相对地切割了这个变化的磁场磁力线而产生出感应高压,从而将用电设备击坏。如图1所示,如果导体的形状是开口环形感应电压,便会把几厘米长的空气间隙a、b击穿发生火花放电。如果导体是一个闭合回路,感应电压会造成一个电流通过,假如回路上有接触不良的接点,这些地方就会局部发热。再有,由于雷电冲击波的能量集中在工频附近几十赫兹到几百赫兹的低端,雷电冲击波能量就容易与工频回路发生耦合、谐振,于是雷电冲击波从电源线路进入电子设备的机率要比从信号线中进入的机率要高很多,据统计,约有8%的雷击损坏电子设备的事故是由电源引入的,因此应特别加强系统中设备电源的防雷措施。

l雷击电子设备的途径及损坏机理

雷击过电压损坏设备可分为两种情况,一种是受雷电直击,另一种受感应雷影响所致。据统计电子设备受雷电直击而损坏的机率很小,而绝大多数损坏为感应雷造成,雷电行波通过传输信息的电路线传至电子设备使其某些电子元件受损。

查看全文

电子设备防雷击分析论文

l雷击电子设备的途径及损坏机理

雷击过电压损坏设备可分为两种情况,一种是受雷电直击,另一种受感应雷影响所致。据统计电子设备受雷电直击而损坏的机率很小,而绝大多数损坏为感应雷造成,雷电行波通过传输信息的电路线传至电子设备使其某些电子元件受损。

还有一种情况值得重视的是电子设备附近的大地或其他设备的接地体,因受直击雷引起的电位升高,会使电子设备造成反击,使之对地绝缘击穿。根据传统经验电子设备的地线与电源设备的地线分开设置是减少这种雷电侵入途径的有效措施之一。所以凡联结有输人或输出线路的电子设备应考虑以上三条侵入途径。不论那种途径侵入的雷击过电压加在电子设备上冲击引起两种过电压,一种是:使平衡电路某点出现超过允许的对地过电压,称为纵向过电压,地电位上升引起的反击也属于从地系统侵入的纵向过电压;另一种是平衡电路线间或不平衡电路线对地出现的过电压称为横向过电压。使用对称传输线的设备,横向过电压是因线路两线间存在不同的纵向过电压;或因纵向防护元件放电性能的分散性(如动作时间有快慢的差别)是造成横向过电压的原因,如果在平衡线路上的两个纵向防护元件,其中一路故障或失效这就造成了横向过电压的极限情况。对不平衡电路如对连接同轴电缆的电子设备其纵向过电压即横向过电压。雷电冲击过电压可导致绝缘击穿,也可产生过电流。进行纵向雷击试验的目的,在于检验设备在纵向过电压下元器件对地的绝缘。横向雷击试验则是检验两线间出现冲击过电压时设备耐受冲击的能力。

在电子设备中,易受雷击过电压损坏的元部件,大多数是靠近设备的入口端,如纵向过电压会击穿线路和设备间起匹配作用的变压器匝间、层间、或线对地绝缘等。横向过电压可随信息同时传至设备内部,损坏设备内的阻容元件及固体元件。设备中元器件受损的程度,取决于元器件绝缘水平,即耐受冲击的强度,对具有白复能力的绝缘,击穿只是暂时的,一旦过压消失,即可恢复。有些非自复性的绝缘介质,冲击时只有小电流流过,一次冲击不会立即中断设备,但经过多次冲击,随着多次冲击的累积可能会使元件逐渐受损最终导致毁坏,这就是为什么在试验时要试验冲击次数,极性和间隔的原因所在。

电子元件受雷击损坏的情况,概括起来不外下列三种:(1)受过电压损坏的,如电容器、变压器及电子元件的反向耐压。(2)受过电压冲击能量损坏的,如二极管PN结正向损坏,冲击危险程度在于流过元器件的过电流大小和持续时间,即能量大小。(3)易受冲击功率损坏的,对元件的危害决定于冲击电压峰值和由此而产生的过电流。

2雷电波形

查看全文