电子电路范文10篇
时间:2024-01-19 17:27:58
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇电子电路范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
电力电子电路优化设计研究
摘要:科学技术水平的提高,使诸多电力电子设备被应用于各个领域当中,极大推动了各个领域的发展。由于电力电子电路的设计非常复杂,设计周期往往较长,对电力电子电路的参数修改较为麻烦等缺陷,致使电力电子电路的设计产品在精度与可靠性方面受到很大影响。对电力电子电路的I波形与V波形进行波形分析,能够为电力电子电路的优化设计提供科学的指导,但由于其I波形与V波形较为复杂,这使波形分析面临着很大的困难。因此必须采取相应的措施来予以改进,而Multisim技术的出现为电力电子电路的优化设计提供了全新的方向。为此,本文便基于Multisim技术对电力电子电路的相关优化设计方法进行深入的研究与探讨。
关键词:Multisim技术;电力电子电路;优化设计
在电力电子电路设计中,波形分析法是一种非常重要的分析方法,利用波形分析法能够使人们对电路的工作原理及设计方法进行深入理解,并能够为电力电子电路的设计提供科学的依据。波形分析法需要对电力电子电路中的相关部件在电压与电流经过时所产生的波形进行准确画出,设计人员能够根据波形图来对电力电子电路中的相关部件的电压、电流承受上限及各项参数进行计算,以此明确这些元器件的电压定额与电流定额。因此,波形分析法的关键在于是否能够对电压电流波形进行准确画出。不过,在某种特殊情况下,特别是电路处于临界状态时,波形分析法难以对波形进行准确画出,而这就需要利用试验的方式来对电压波形进行确定,但在试验过程中,实验环境与成本的影响会给波形的测定带来很大困难,这不利于电力电子电路的优化设计。而计算机信息技术的发展使众多功能强大的应用软件有了用武之地,特别是Multisim软件的应用,对电力电子电路的优化设计有着极为明显的优势。
1Multisim技术概述
Multisim技术是以计算机为载体而研发的一种虚拟软件技术,它能够弥补传统的电力电子电路设计过程中存在的缺陷,极大程度的提高了电力电子电路设计的科学性与可靠性。采用Multisim软件能够对电力电子电路的功能进行仿真模拟,并为电力电子电路的设计提供了良好的集成化设计环境,使电力电子电路的设计、仿真分析、功能测试等相关工作得以顺利开展。在Multisim软件中包含多达数千个器件模型与虚拟元器件,并且包含了大量的虚拟电子设备,对这些电子设备的操作与设计就仿佛是在真实环境中进行设计一样,进而为设计人员提供了非常全面的分析工具,除此之外,它还能够对设计好的电力电子电路电路进行仿真设计分析,从而有效突破了实验室的客观局限性。
2基于Multisim技术的电力电子电路的优化设计思路
物理知识在电子电路的运用
摘要:针对教育改革的不断进步,结合目前在高中学习的物理基础理论知识和实验操作,探讨高中物理知识在电子电路中的简单应用。旨在促进高中同学对物理知识的学习兴趣,为以后电子、机电、测控类专业的深入学习奠定坚实的基础。
关键词:物理知识;电子电路;应用
1引言
电路知识是高中物理考核的一个重要知识单元。通过学习高中物理知识,可以理解和解释生活中的实际问题[1,2],高中物理知识也是后续大学电子、机电、测控类等相关专业的学习基础。在加强基础理论的学习的同时,也要去关注一些自己感兴趣的学科在大学里面的后续应用情况,时间条件成熟的时候去进行一些实践技能的训练和学习,有利于选择学校和专业。高中的物理理论学习占据大量时间,可以利用暑期去体验一些科技特训营项目,结合学校实验室提供的实验操作训练,提升动手能力,为基础知识学习寻得一盏明灯。
2青少年科技特训项目
青少年科技特训营以“了解工程、体会动手、高端引领、激发求知”为工程训练核心的训练理念,依托主办大学机械、电气、能源、材料等学科优势,借助现代化的教学手段,积极探索和构建“创造性思维基于实践始于问题”的实践能力提升的方法体系。探索准大学生们与名师、优秀学子面对面交流,研讨如何做好学业与职业发展规划、如何培养自身的综合能力、如何掌握发现问题、解决问题的方式方法等各种主题。在训练期间,在实验室亲自动手,实施了一些实操项目。
电子电路设计分析论文
1EHW的机理及相关技术
计算机系统所要求解决的问题日趋复杂,与此同时,计算机系统本身的结构也越来越复杂。而复杂性的提高就意味着可靠性的降低,实践经验表明,要想使如此复杂的实时系统实现零出错率几乎是不可能的,因此人们寄希望于系统的容错性能:即系统在出现错误的情况下的适应能力。对于如何同时实现系统的复杂性和可靠性,大自然给了我们近乎完美的蓝本。人体是迄今为止我们所知道的最复杂的生物系统,通过千万年基因进化,使得人体可以在某些细胞发生病变的情况下,不断地进行自我诊断,并最终自愈。因此借用这一机理,科学家们研究出可进化硬件(EHW,EvolvableHardWare),理想的可进化硬件不但同样具有自我诊断能力,能够通过自我重构消除错误,而且可以在设计要求或系统工作环境发生变化的情况下,通过自我重构来使电路适应这种变化而继续正常工作。严格地说,EHW具有两个方面的目的,一方面是把进化算法应用于电子电路的设计中;另一方面是硬件具有通过动态地、自主地重构自己实现在线适应变化的能力。前者强调的是进化算法在电子设计中可替代传统基于规范的设计方法;后者强调的是硬件的可适应机理。当然二者的区别也是很模糊的。本文主要讨论的是EHW在第一个方面的问题。
对EHW的研究主要采用了进化理论中的进化计算(EvolutionaryComputing)算法,特别是遗传算法(GA)为设计算法,在数字电路中以现场可编程门阵列(FPGA)为媒介,在模拟电路设计中以现场可编程模拟阵列(FPAA)为媒介来进行的。此外还有建立在晶体管级的现场可编程晶体管阵列(FPTA),它为同时设计数字电路和和模拟电路提供了一个可靠的平台。下面主要介绍一下遗传算法和现场可编程门阵列的相关知识,并以数字电路为例介绍可进化硬件设计方法。
1.1遗传算法
遗传算法是模拟生物在自然环境中的遗传和进化过程的一种自适应全局优化算法,它借鉴了物种进化的思想,将欲求解问题编码,把可行解表示成字符串形式,称为染色体或个体。先通过初始化随机产生一群个体,称为种群,它们都是假设解。然后把这些假设解置于问题的“环境”中,根据适应值或某种竞争机制选择个体(适应值就是解的满意程度),使用各种遗传操作算子(包括选择,变异,交叉等等)产生下一代(下一代可以完全替代原种群,即非重叠种群;也可以部分替代原种群中一些较差的个体,即重叠种群),如此进化下去,直到满足期望的终止条件,得到问题的最优解为止。
1.2现场可编程逻辑阵列(FPGA)
物理知识电子电路探讨
【摘要】电子电路的稳定性对人们的正常生活会产生重要的影响,掌握大量的高中物理知识,可以帮助学生更好的检查日常电子电路中的故障,还能未来学生学习专业的电子电路知识奠定坚实的基础。理知识物质知识。
【关键词】物理知识;电子电路;高中物理
高中物理课本中电路知识是其知识网络结构的重要组成部分,通过学习高中物理知识,可以帮助学生更好的解释与解决实际生活中遇到的一些简单电子电路问题,也能为之后在大学阶段学习更加专业的电子电路知识做好积累工作。
一、高中物理知识在简单的电子电路设计中的应用
在高中阶段学习的相关电学物理知识占高考考核中占据了重要的比例。在现实生活中电子电路设计参考与相关的应用分析都应用到了大量的高中物理知识,主要体现在以下几个方面。1、绘制电子电路图时应用高中物理知识。在实际的电子电路运行过程中逐渐形成一个完整的贿赂,这也就要求在绘制电子电路图的时候能够结合已经掌握的各项电路性能进行绘制。根据电子电力设计时的需求对绘制电路图的相关因素进行合理的筛选,从而保证电子电路设计的整体性与合理性。要求电路绘制者能够牢牢掌握高中物理的相关电学知识,学会在电子电路绘制中的各项电子元件的图形绘制标准,从而绘制相应的电路图。2、在选择电子电路连接方式应用高中物理知识。在电子电路设计中应用高中物理知识,就是根据设计的需要选择电路中是应用串联电路还是并联电路,这是电子电路的连接方式。通过大量的观察实践证明,电路中由于连接方式的改变电器的工作效率也会产生响应的变化。这就要求在设计电子电路时能够充分考虑到电路中不同连接方式对电器的工作效率的影响,根据电子电路中的所涉及到的各项电器裕兴中实际产生的电流与电影,从而选择不同的连接方式。要求在电子电路设计的过程中,学生能够掌握大量的高中物理知识,并明确各个电路连接方式带来的变化、应用特点,从而做出准确的选择与判断,保证设计的电子电路的合理性。3、在电子点电路参数中应用高中物理知识。测定并收集电子电路中线相应的物理参数是电子电路设计中的重要组成部分。其中需要对电子电路的各项电子元件的电压、电流与电阻参数进行测定与收集。一般来看,在测定与收集相关的参数时比较常用的方式就是闭合电路中的欧姆定律。因为在一般的电子电路设计中所用到的电流与电源所产生的电阻是比较小的。在设计电子电路时,可以通过改变电路中变阻器大小来测试电流中的来测试电路中的电源与电阻大小,从而能够准确的获得该电子电路中的内阻大小,这一般应用于串联电路中。因为在并联电路中的电流变化相对较大,为了保证各项参数的转准确性,就需要进行多次测验。
二、在电子电路检测中应用高中物理知识
电子电路设计抗干扰措施
摘要:在我国电子电路专业的发展过程中,现阶段的科学技术水平已经有效促进了电力电子行业的发展,但是就电子电路设计的过程来说,还存在着一定的抗干扰问题。对于电子电路的设计过程而言,电荷之间的相互排斥和吸引都会对其实际的电路工作带来一定的影响。下面对电子电路设计中抗干扰措施进行分析。
关键词:电力电子行业;电子电路设计;抗干扰措施;电磁干扰;可持续性发展
1概述
在现阶段的航空电子产品运行过程中,针对这些具有危害性的干扰因素已经进行了相应的研究,总结出了相关的干扰影响因素,常见的有电磁辐射干扰、电荷互相吸引干扰、外界生态环境干扰等,一点点干扰因素的出现都会使得电子设备的正常工作出现障碍,并且严重影响整个航空电子产品固定正常运行,甚至会使得所有的航空电子产品配置都失去一定的工作能力,引起人们日常生活和工作的故障,还会对安定的社会秩序造成影响。因此,本文从电子电路设计过程中可能会出现的干扰因素进行分析,结合实际的工程情况来提出相应抗干扰措施的制定,旨在通过有效抗干扰方法促进我国电力电子行业中电子电路设计过程的顺利性,也是对实际工作效率的一种有效保障。
2研究电子电路设计中抗干扰措施的重要意义
由于大多数的电子电路都是在弱电流下传输信息而进行具体工作落实的,这样的传递方式使得信息在传递的过程中不会受到外界严重的干扰和影响,而且还不能够向其他的电子设备传播不必要的电磁信号[1]。但是在实际的航空电子产品运行过程中,一定会存在着自然界或者相应人为因素产生的电磁干扰信号、电子设备内部产生的干扰信号、还有大量的电荷吸引干扰和电磁符合干扰问题,这些干扰信号如果没有被进行及时地处理,就会通过一定的途径进入到航空电子产品中,作用于电子设备,对于航空电子产品实际的正常工作带来严重的影响。一般来说这些干扰因素会造成电路短路等现象的出现,严重的会导致整个航空电子产品不能够进行正常工作[2]。为了进一步提高我国电力电子技术的基础水平,在航空电子产品设计过程中针对存在的具体问题进行深入研究分析,找出产生干扰的主要因素,只有明白和理解了影响航空电子产品设计过程中会遇到的干扰因素以及干扰作用的方式,通过设计手法来消除干扰电路正常运行的因素,使其在实际的应用过程中能够保持一个最佳的状态,这样对于我国电力电子行业的推进也具有关键性的作用。
应用电子电路仿真软件研究
摘要:本文结合应用电子电路仿真软件改革电路实验的实践情况进行详细分析,并结合实验教学改革的实践活动进行探究,希望能够给以后的实验活动提供必要的保证。
关键词:电子电路仿真软件;改革电路实验
1EWB软件
电子工程虚拟实验室的基本概念是指通过软件的方法来进行虚拟电路和元器件的组织。虚拟电子与电工仪器表都能够通过软件来实现元器件的虚拟化,这是当前计算机技术发展的必然走向。因此在电子电路实验的发展过程中必须依靠有效的电路元器件控制来实现设计性实验。电路实验要按照循序渐进的方式进行完成,依次是基础实验、综合实验以及设计性实验。在进行实验的过程中需要通过电子电路数据的交互来完成相应的调试控制。并且在数字分析下,采用复杂的逻辑分析仪来完成相应的实验。在虚拟实验室的仿真对象模拟电路中包含了数字电路以及模拟电路的相关内容,为实现数字内容的转换,可以结合电路分析数字化的内容来完成相应的实验。对于模拟电路元器件的控制而言,虚拟电子元器件和虚拟的仪表设备之间要形成相对独立的逻辑交互单元,为满足函数逻辑电路的交互,可以采用声音图像信号的交换设备并且在该软件的数字信号模拟单元中利用线性的分析电路来完成某些具体逻辑交互内容。在小规模的电路模拟仿真软件分析中可以利用较为常见的分析工具来实现元器件模型的交互,并且在实际电路的模拟仿真分析中完成虚拟电路应用的某些内容。
2虚拟电子工作台的相关描述
所谓EWB软件就是利用电子电路仿真技术和相应的设计工作来完成的虚拟电子工作平台。电子设计产品的工作人员可利用该软件来完成虚拟电路工作的仿真和调试工作,验证所设计的电路是否符合元器件控制参数,让电路运行的性能指标达到最佳。而电子工作平台的设计工作则需要通过合理的实验技术来完成相应的工作设计,其本身在电路元器件的设计中属于非常详细的设计过程,能够让这个过程形成一个统一的整体,而电子工作平台的元器件库可以通过模拟和数字器件来完成相应的设计实验工作。在虚拟电子平台的利用中,用户所承担的模拟工作和数字器件都可以通过设计和实验来完成相应的调用关系。EWB技术能够将虚拟实验和实际实验相互结合,形成具有仿真实验技术的控制方案。电子工作人员可以通过软件实验平台来完成直观性的电子实验,并按照设计实验的需求来完成相应的虚拟电子实验工作。对于虚拟电路工作台的控制,就要通过减少噪音来实现电路的实验。合理的电路实验操作,要在电路虚拟控制元器件的操作下来进行完成,并且自学电路的相关内容,则要按照仿真电路设计的需求来提供相应的元器件设备。通过仿真虚拟测试来完成电路控制设计的相关技术指标,并且在元器件参数的控制中电路的元器件性能达到最好。按照电路设计工作的需求来改变电路元器件的参数,控制电路元器件的性能让其使用效果达到最好。在虚拟电子电路的试验区域,通过电路的仿真实验就可以完成数字器件的模拟。
电子电路调试举措以及故障修理
在电子工业中,电子电路的安装与调试在电子工程技术中占有重要地位,它是把理论付诸于实践的进程,是把人们的主观设想转变为电路和电子设备的过程,是把设计转变为产品的过程。正是这一过程为电子技术在社会生活和生产实践应用中发挥巨大作用提供了现实性和可能性。当然,这一过程也是对理论设计做出检验、修改,使之更加完善的过程。所谓电子电路的调试,就是以达到电路设计指标为目的而进行的一系列的“测量→判断→调整→再测量”反复进行的过程。电路测试和调整是电子设备的一个重要环节。通过调试发现和纠正设计方案的不足和安装的不合理,然后采取措施加以改进,使电子电路或电子装置达到预定的技术指标。
一、电子电路的调试
一般的测试的步骤和方法如下:
1.不通电检查。检查连线电路安装完毕后,不要急于通电,先认真检查接线是否正确,包括错线、少线、多线。多线一般是因接线时看错引脚,或者改接线时忘记去掉原来的旧线造成的,在实验中经常发生,而查线时又不易发现,调试时往往会给人造成错觉,以为问题是由元气件造成的。例如TTL两个门电路的输出端无意中接在一起,引起电平不高不低,人们很容易认为是元器件坏了。为了避免做出错误判断,通常采用2种查线方法:一种方法是按照设计的电路图检查安装的线路,把电路图上的连线按一定顺序在安装好的线路中逐一对应检查,这种方法比较容易找出错线和少线;另一种方法是按实际线路来对照电路原理图,按照2个元件引脚连线的去向查清,查找每个去处在电路图上是否存在,这种方法不但能查出错线和少线,还能检查出是否多线。
2.通电观察把经过准确测量的电源电压加入电路,但信号源暂不接入,电源接通之后不要急于测量数据和观察结果,首先要观察有无异常现象,包括有无冒烟,是否闻到异常气味,手模元件是否发烫,电源是否有短路现象等。如果出现异常现象,应立即关断电源,待排除故障后方可重新通电。然后再测量各元件引脚的电源电压,而不是只测量各路总电源电压,以保证元器件正常工作。
3.分块调试调试包括测试和调整两个方面。测试是在安装后对电路的参数及工作状态进行测量,调整是指在测试的基础上对电路的参数进行修正,使之满足设计要求。为了使测试顺利进行,设计的电路图上应标出各点的电位值、相应的波形以及其它数据。测试方法有2种:第一种是采用边安装边调试的方法,也就是把复杂的电路按原理图上的功能分成块进行安装调试,在分块调试的基础上逐步扩大安装调试的范围,最后完成整机调试,这种方法称为分块调试。采用这种方法能及时发现问题,因此是常用的方法,对于新设计的电路更是如此。另一种方法是整个集成电路安装完毕,实行一次性调试。这种方法适用于简单电路或定型产品。本文仅介绍分块调试。分块调试是把电路按功能分成不同的部分,把每个部分看成一个模块。比较理想的调试程序是按信号的流向进行,这样可以把前面调试过的输出信号作为后一级的输入信号,为最后的联调创造条件。分块调试包括静态调试和动态调试。
电子电路课程设计教学研究
摘要:结合水声工程专业人才培养的特点和要求,以声呐系统涉及的电子电路设计为重点,以引导学生建立本专业宏观思维体系为目的,对电子电路课程设计的教学模式进行了研究,包括搭建模块化声呐系统设计平台、改变课程设计指导方式、优化课程设计考核方式等方面。改革后的课程提高了学生的设计能力和分析解决实际问题的能力,对于训练学生综合运用所学知识、培养学生的综合素质具有重要的意义。教学实践表明,该课程的改革取得了较好的效果。
关键词:水声工程专业;电子电路;课程设计;教学模式
水声工程是以海洋探测、海洋开发和国防建设为主要应用背景,涉及声呐系统设计、水声学、信号处理技术、电工电子技术、软件开发与应用等多个技术领域的工程技术学科。该专业具有4个相对稳定、特色突出、优势明显的研究方向,即声呐总体技术、水声信号处理、传感器及声系统、计量与测试技术,而无论哪个研究方向,都离不开电子电路以实现信息采集、检测、处理以及系统控制等核心功能。电子电路课程设计是水声工程专业中最为重要的一门专业基础课,重在培养学生的创新意识和科研能力。学生通过该课程的学习,可以进一步加深对模拟电子线路、数字电子技术、单片机等前续电类课程理论知识的理解,结合所学声学类课程知识增进对声呐系统设计与实现的宏观认识,建立理论联系实际的思想体系,同时还能提高系统设计能力和发现、分析、解决实际工程问题的能力[1]。如何科学地设置教学内容,合理地选择适合水声工程专业的特色教学模式,从而达到良好的教学效果,是该课程亟须解决和有待研究的重要课题。
1影响水声工程专业电子电路课程设计教学效果的因素
水声工程学科专业性强,为了突出专业特色、培养符合水声工程领域迫切需求的复合型专业人才,所有的课程设置及教学内容安排均在不断探索和创新,前期开设的电子电路课程设计虽然已经取得了阶段性成果,但是与国外开设同类课程的著名大学相比,还存在一些差距。具体体现在以下几方面。1.1课程缺少体系化系统设计 仅开展分散的模块化设计训练无法使学生建立宏观专业思维能力。声呐是利用声波进行水中探测、定位和通信的电子设备。声呐装置一般由声学换能器、电子系统、辅助设备三部分组成[2],其结构非常复杂,不能单独作为课程设计的题目,所以多年来,课程设计大多选题都仅局限于常规的电子电路设计类题目,忽略了与声呐系统的联系,脱离了专业背景[3],设计选题如烟雾报警器、简易直流稳压电源、交直流放大器、函数信号发生器、定时器、交通灯等,这些题目与水声工程专业联系较少,无法体现专业特色,即便个别选题是声呐系统中的一部分,学生也不能将其很好地与声呐系统相结合,致使学生难以建立声呐系统设计的宏观思维。1.2教学过程中学生大多处于被动状态 主观。能动性难以充分发挥以往,课程设计采用在规定的时间、地点,以班级为单位由教师指导完成规定的实验内容,这种教学模式限制了学生主观能动性的发挥,束缚了学生的思维,导致学生缺乏独立进行实验研究和学习的能力,难以激发学生的实验兴趣,更无法培养学生的创新意识、提高学生的创新能力。1.3课程考核方式和考核标准单一 不易激发学生的学习热情。学生作品验收是对学生理论知识运用能力以及课程设计成果水平的评判环节,合理的评价机制对调动学生学习积极性、激发学生学习热情具有重要的意义。目前,学生课程设计的成绩高低大多由作品的最终优劣决定,这一考核、评价标准有待完善。首先,不同电子元器件间存在一定差异,会导致最终成果性能间存在差异;其次,同一成果的设计、实现方案也存在不同;再次,在设计实现过程中学生分析、解决问题的过程也不尽相同。因此,单独凭借最终设计成果的优劣来确定学生的最后成绩,在全面考核学生方面存在一定的误判概率,缺少完备性,这样的考核机制没有将学生分析问题、解决问题的能力纳入考核范围,从而会影响部分学生的积极性。
2电子电路课程设计的建设目标及举措
电子电路实践教学方法探讨
摘要:CDIO是一种有效提高学生实践能力的教学模式,将其运用在电子电路实践教学中再适合不过。论文从CDIO模式的概念意义着手,以荧光灯电子镇流器为研究对象,具体阐述了在CDIO指导下开展的实践教学具体过程中,大大提高了教学效果,具有一定的实践应用价值。
关键词:CDIO;电子电路;实践教学
在新课改背景下,对于实践教学的重视程度日渐提高,尤其是对于动手实践操作能力要求较高的工程产品,如电子产品,更是要加强实践教学,才能培养更多的应用型创新人才。基于此,引入CDIO模式进行电子电路实践教学成为必然趋势。
一关于CDIO的思考
所谓的CDIO是流行于工程教育界的一种新型教学模式,旨在培养学生的主动实践动手能力,将整个工程实践项目融入教学过程中,加强工程实践课程之间的有机联系,进一步提高教学效果。CDIO主要包含了4个方面的内容,即conceive(构思)、design(设计)、implement(实现)、operate(运作),这也明确体现了CDIO教学模式的重点就是实践,通过不断的动手实践操作加深对相关理论知识的理解巩固,以理论联系实际的观念来培养更多创新型实践能力强的高素质工程技术人员[1]。电子电路是工科专业中的一门必须课程,其本身的动手实践性较强,从对电子产品原理、结构的了解,元器件的选择,以及原理图的绘制、分析、改进等各个环节,都离不开学生的动手实践操作。
二基于CDIO的电子电路实例分析
电子电路设计仿真软件的应用
二十一世纪的今天,社会科技进步较快,proteus仿真软件在电路设计中的应用也越来越广泛。该仿真软件是计算机技术发展的重要成果之一,可以对模拟电路,数字电路和外围电路进行仿真操作,软件自身具备先进的虚拟器,包括示波器,逻辑分析仪,信号发生器等,为了更全面的了解和更深刻的分析proteus在电子电路设计中的应用,就要在软件开启的仿真条件下,对整体电路和包含的各个零部件进行逐一研究,为之后的电路设计打下坚实的基础思路。
1Proteus仿真软件简述
Proteus软件是英国LabCenterElectronics公司出版的EDA工具软件(该软件中国总为广州风标电子技术有限公司)。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前比较好的仿真单片机及外围器件的工具。虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。该软件包含ISIS和ARES两个软件部分,这两个部分在大环境下扮演着两个不同的重要角色,都有着举足轻重的作用。在日常工作中,ARES部分是用来当PCB设计工作的助手,进行有效辅佐,而ISIS则是主要负责在仿真开启的环境下对电路原理和模拟电路的设计工作。
2Proteus仿真软件进行仿真电路设计的过程分析
在电子电路实训过程中,proteus仿真软件在进行仿真电路设计时,要在软件编辑界面,按照需要模拟的实际电路思路,设计出一套最符合实际情况的电子电路图,再通过许多相关数据计算,尽可能在最短的时间内完成对电路的初步设计和对数据的测量与计算整理,最后完成整体的模拟电路设计,然后利用软件的电路生成功能,输出最后的电路设计图。为了确保电路设计的顺利进行,仿真电路设计过程可以这样:先确定核实设计项目,然后运行proteus软件,绘制初步的电路原理图,然后根据原理确定需要的元件种类和数量,启动仿真系统,用虚拟仪器检测然后读出数据,分析结果,如不符合要求,对元件或者电路作适当修改然后再次检测,当符合要求时,要对电路进行完善,确定无误后敲定最终设计方案,然后系统自动生成电路图。
3Proteus仿真软件的仿真电路设计与调试