电磁场范文10篇

时间:2024-01-18 11:41:05

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇电磁场范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

电磁场与电磁波教学模式改革分析

1课程现状

电磁场与电磁波课程是安徽三联学院通信工程和电子信息工程2个专业的一门公共专业核心课,还是多个学科的交叉融合点.前修课程有高等数学、大学物理等(见图1),这些课程对本课程的学习起着基础铺垫作用[3].后续课程有射频通信技术、移动通信技术、光纤通信技术和无线通信技术等,这些课程内都有本课程基础知识的具体应用,为后续课程提供了理论和实践的支撑.1.1课程内容.该课程的理论学时为32学时,主要的教学内容包括:(1)掌握静电场和恒磁场的基本性质和基本方程;(2)要求学生正确理解和掌握麦克斯韦方程在时变场和电磁波基本性质及规律分析中的应用;(3)掌握电磁波在空间中辐射的基本规律;(4)学生能够运用所学的知识对电磁场与电磁波的一般应用问题进行综合分析和简单计算[4].1.2学情分析.(1)已掌握的基础知识:已经掌握高等数学的基本方法,具备矢量微分运算能力;已经学习了大学物理中电磁学部分,知道电生磁和磁生电的基本知识.(2)学生的特点:对移动教学的学习充满兴趣,易于接受视频、图像信息;自学为主、点串为辅的大学学习模式还没有深入人心.(3)认知结构:对如何解释宏观的电磁现象,也就是产生电场和磁场的源到底有哪些,学生的认识还很模糊,同时对理论的应用还存有疑问.

2混合式教学模式改革思路

2.1结合物理模型的教学.关于梯度和方向导数的关系问题可以引导学生结合自身爬山的经历进行理解,所谓梯度的方向是在给定点处令方向导数的值增加最快的方向[5];或者说在给定点处朝梯度方向运动,方向导数的值将变化的最剧烈.最大的变化率,也就是斜率等于梯度的模长.如果把方向导数看作爬山,方向导数上的给定点是你站立的位置,那么梯度方向就是向上爬山时最陡峭的地方,梯度垂直方向就是站立点的等高线.在等高线上,梯度总是指向值最大的方向.课上结合攀岩运动的视频进一步讲解梯度和方向导数的概念.课后针对这一问题可以组织讨论和知识拓展:请学生们搜集资料自学关于爬山算法的基本思路和步骤,并用计算机进行仿真.爬山的目的就是要逐步登上山顶,想要到达山顶,每一步应该是向着山顶迈进的,经过一步一个脚印终于到达了山顶,就能真正体会到什么是“会当凌绝顶,一览众山小”的豪迈姿态.当然了也别忘了“山外有山”,也许所登山峰在当地是最高峰,但再高也没有珠穆朗玛峰高.说明了爬山算法的优缺点,爬山算法可以很好地求解局域(当地)极大或极小值,但并不能求解全局(全世界)最大或最小值[6].2.2课程思政.隔空点灯背后的实验装置:特斯拉线圈,以美籍塞尔维亚裔发明家尼古拉•特斯拉的名字命名的.课堂上请学生以讲座的形式介绍他的生平事迹,主要体现在11次让贤诺贝尔物理学奖的提名,可以看出比科学成就和社会贡献更重要的是应该具备优良的思想品德,“德才兼备、以德为先”.同时特斯拉短短几十年就有700多项发明专利问世,鼓励学生特斯拉为榜样,积极开展大学生创新创业活动,以自身行动响应和投身到新时代中国特色社会主义的伟大实践中来.GPS系统也是一个很好的课程思政案例:通过26年前的银河号事件,我国航天人发现,当时主动权在美国人手中,他们可以决定谁在何时可以使用GPS.为了改变这个局面,我国航天人奋发图强,目前已完成北斗二代卫星导航基本系统.结合这个案例和正在开展的“不忘初心、牢记使命”主题教育活动,激发学生的使命感和爱国热情.2.3案例式教学与科研成果进课堂.雷达系统的实例引入本课内容:二战前夕,飞机成为战场进攻的主角,各国竞相研制一种地面防空预警系统,所以雷达成为整个二战期间电磁场理论应用最活跃的部分.以参与完成的科研项目成果(通信频率监测与指配系统,见图2)分析出发[7],大规模小范围的通信电台使用需要预先指配信道,否则会造成无线电信号的拥塞,使学生深入理解频率指配的意义,并从系统应用的功能需求,到系统的总体方案设计,再到分系统设计强调工程设计的基本思路,灌输工程理念.其中结合雷达波段的划分方法及命名规则(L,S,X,C,K,Ku,Ka等)课前可布置学生进行线上讨论[8],课上选取几位学生的回答进行解释(见图3).2.4学科间的交叉融合.在讲解麦克斯韦方程组的物理意义[9]时,教师课前可安排预习任务分析其特点:并用口诀“三三、六六”进行归纳总结.其中“三三”是指电生磁和磁生电,“六六”是指磁场是无源场和电荷激发电场.随后引导学生从2个不同的角度理解麦克斯韦方程组中背后的哲学思想(横看成岭侧成峰、远近高低各不同),能够透过现象看本质:(1)时变电磁场的电和磁构成一个整体即电磁场,同时又可以相互激发在空间中传播即电磁波,它们之间是对立统一的关系.(2)电(或磁)场的时间变化会转化成磁(或电)场地点的变化,从通信的角度来看,就是用时间换空间,反之亦然.另外一个案例是隔空点灯.由2个问题引入:隔空点灯是真的吗?隔空点坏灯还是真的吗?教学中引入了中国大学MOOC:华中科技大学黄佳庆副教授主讲的通信电子线路片段——隔空点灯实验[10],并引出隔空点灯背后的实验装置——特斯拉线圈(见图4).由这一案例布置课后作业(分组任务见图5)——隔空点灯的工作原理和运用高频电子技术课程中的方法分析特斯拉线圈的等效电路(体现了课程之间的交叉融合).2.5PBL教学.根据课程的知识点和相关应用中的问题,提前公布讲座选题[11],部分选题见表1.安排分组任务,2人一组进行资料准备,课上合作进行讲座实施翻转课堂.2.6移动智慧教学.依托超星泛雅网络教学平台推广应用多项教学方法,以培养创新思维、提高能力素质、扩大信息量、拓宽知识面为教学目的,综合运用启发式、互动式、探究式、讨论式等多种教学方法.根据课程内容体系重点讲授基本概念、基本原理和方法(技术),采用多种教学形式,提出“自主、互动、探究式”移动智慧教学新模式.该模式紧密结合一平三端资源[12],打破原有的教学模式,合理运用信息技术、数字资源、教学平台和信息化教学环境.通过充分使用网络教学平台调用资源,教学符号、多媒体、文字、批注等制作教学课件并对课件进行网络存储.学生可通过网络随时调用课件,课件资源也可在一定范围内共建共享,教学效果突出,极大地激发学生的学习兴趣,提高学生的学习效率.其主要特点是:多种现代化教学方法综合,学生素质得到全面提高;实现了被动学习方式向主动学习方式的转变;培养了学生的创新思维能力;突出教学过程中学生的主体意识.

3课程效果综合评价

3.1成绩分析.采用的混合式教学模式改革从2016级相关专业开始试点,以近3期学生(分别为2015级、2016级和2017级电子信息工程专业1班、2班和通信工程专业学生,其中2015级为对照)的卷面成绩和综合成绩进行对比,结果见表2.堂笔记和作业(30%,学生通过拍照的方式上传至线上作业中)和学生讲座(20%).从结果对比来看,近3年各教学班的成绩稳中有升.3.2学生评价分数.以近3期学生(分别为2015级、2016级和2017级电子信息工程专业1班、2班和通信工程专业学生,其中2015级为对照)的评教得分再次进行对比,结果见表3.评教得分为各年级2个专业的参评学生的总平均分.从结果对比来看,混合式教学的新模式越来越深得人心.3.3阶段性成果.目前混合式教学改革已取得阶段性成果,任课教师依托线上工具开展线上线下混合式教学,取得了一些成绩.本课程的线上资源包括任务点152个、PPT480份、教学短视频871段、文档1200个、试题237道、试卷4套,也已成功申报超星示范教学包,目前引用量为60人次.2019年6月以团队形式参加了校第一届“超星杯”移动教学大赛暨智慧课堂教学创新大赛获一等奖,12月代表学校参加了安徽省应用型高校联盟第三届“超星杯”智慧教学创新大赛获得二等奖.综上所述,经过2年的教学模式改革,虽然已取得初步成效,但还存在线上教学资源和学生实际学习需求如何智能匹配,资源的推送如何智能化,线上线下时间比例如何分配对于提升教学质量更有效等相关问题.

查看全文

高速磁悬浮列车电磁场研究论文

摘要:采用有限元法研究了高速磁悬浮列车的悬浮和推进电磁场,重点研究了车辆在不同运行条件下悬浮力和推力的变化规律,并得出了经验公式。分析和计算结果表明,悬浮力和推力的大小与功角有关,并且由于定子齿槽和材料不连续的影响,悬浮力和推力都存在六倍频的波动。

关键词:磁悬浮列车;直线同步电机;电磁场分析;有限元法;模拟计算

常导高速吸浮型磁悬浮列车是一个典型的直线同步电机对象,而且又有别于一般的直线同步电机。其长定子轨道上的初级线圈采用三相交流激磁,悬浮电磁铁上的次级线圈采用直流激磁,而且次级磁极上也有齿槽,用于设置发电绕组,因此其磁场分布极为复杂。其悬浮力和推力不仅受到转子电流、定子电流和气隙宽度的影响,而且受到定子齿槽、发电齿槽、功角等因素的影响,因此深入分析悬浮力和推力与这些因素的关系对于保证悬浮和推进的可靠性有着十分重要的意义。尽管国内外学者图1常导高速磁悬浮列车中直线同步电机的结构示意图对于直线同步电机的磁场分布已作了许多Fig.1Thestructurediagramoflinearsynchronousmotorin研究[5],但是对于高速磁悬浮列车电磁场normalconductedhighspeedmagneticlevitationvehicle分布的系统研究尚未见到详细的报道。为此我们应用大型有限元分析软件ANSYS,从分析气隙磁场的分布入手,采用空间离散手段,对常导高速磁悬浮列车的电磁场进行了比较全面的分析和计算,获得了一些与文献报道和以往试验数据相符的结果[1]。

1常导吸浮型高速磁悬浮列车中直线同步电机的结构

常导磁悬浮列车所用的直线同步电机的结构如图1,它属于单边长定子直线同步凸极电动机。长定子由地面上的轨道构成,转子由车载电磁铁构成。转子绕组中加有直流电流,形成悬浮磁场,与定子作用产生悬浮力。而长定子绕组中通有三相交流电,形成行波磁场与车载电磁铁的磁极相互作用,从而产生推力[1]。

2有限元模型的建立

查看全文

电磁场理论教学论文

麦克斯韦用场的观点分析了电磁现象,认为变化的电场能够在周围空间产生磁场.这是电磁场理论的第二个要点.一个静止的电荷,它产生的是静电场,即空间各点的电场强度不随时间而改变.这个电荷一旦运动起来,电场就发生变化.另一方面,运动电荷要产生磁场,用场的观点来分析这个问题,就可以说:这个磁场是由变化的电场产生的.”笔者认为,这里用运动电荷产生磁场为例来说明电磁场理论的第二个要点是欠妥的.比甲种本早一年出版的乙种本(1984年第1版)以及主要由它修订而成的现行课本(必修)中没有这个例子,但是这个例子在现在的高中物理教学中仍然存在着不良的影响.最近,笔者带学生在中学教育实习时发现了甲种本的这个例子,接着对广州市的中学物理教学做了调查,发现目前仍有一些中学在教学中喜欢使用甲种本的这个例子.所以,有必要对这个例子做进一步的分析.

变化的电场能够在周围的空间产生磁场是麦克斯韦电磁场理论的第二个要点,也是麦克斯韦对电磁场理论的最主要的贡献.这样,不但传导电流(由电荷运动引起)能够在周围空间产生磁场,而且变化的电场(或“位移电流”)也能够在周围空间产生磁场.也就是说,产生磁场的途径有两种:电流(传导电流)或者变化的电场(或叫做“位移电流”).甲种本的这个例子所讲的“运动电荷要产生磁潮,可以从两个层次来理解.

一、把“运动电荷要产生磁潮理解为电荷运动形成电流(传导电流),这个电流要产生磁场,这是中学生所能理解的层次.按照这种理解,这个电场是由传导电流产生的,而不是由“位移电流”产生的,即不是由变化的电场产生的.甲种本的论断是错误的.

二、从较高的层次来理解“运动电荷要产生磁潮这句话.电荷的运动是任意的,由于既有速度v,又有加速度a,这个电荷产生的电场和磁场是非常复杂的,要用电动力学的方法才能处理,一般中学生不可能理解到这一层次,而且这时在运动电荷产生的磁场中,既有由变化的电场产生的,也有由传导电流产生的,到底哪一部分主要,要视电荷的运动情况及观测点的位置而定.在电荷附近(近场区)磁场主要由传导电流产生,所以不能简单地认为“这个磁场是由变化的电场产生的”.

综上分析,甲种本用一个运动电荷产生磁场为例来说明电磁场理论的第二个要点是欠妥的,其结论“这个磁场是由变化的电场产生的”是不对的.

值得指出的是,麦克斯韦电磁场理论的第二个要点包含着深刻而新颖的思想,在相当长的一段时间内难以为物理学家们所接受,直到25年之后,赫兹用实验证实了电磁波的存在,从而证明麦克斯韦电磁场理论的正确性,这个理论才得到人们的普遍承认.可见,“变化的电场能够在周围空间产生磁场”这一假说并非能用一个例子来加以形象说明的.在高中阶段讲麦克斯韦电磁场理论的第二个要点时,可以像必修本或乙种本那样,简要地给出麦克斯韦的假说,而不要企图找什么形象的例子来说明.倒是有必要向学生强调:电流和变化的电场是产生磁场的两种途径.最近笔者带学生到中学教育实习时,就有一些中学生问实习老师(笔者带的实习生):“当稳恒电流通过直导线时,周围空间的磁场是稳定的,而电场却不随时间做均匀变化,这不是与老师讲的电磁场理论的第二个要点相矛盾吗?”这说明学生误以为要产生磁场就必须有变化的电场,并不明白电流和变化的电场均可以产生磁场.或者说,学生学习了变化的电场能够在周围空间产生磁场,却忘记了电流是产生磁场的基本途径.

查看全文

电磁场与微波技术多媒体动画教学研究

一软件设计工具与相关技术

本套教学演示软件采用面向对象语言Python进行编写与开发,调用了Python自带的软件库及Numpy、WxPython、Matplotlib等对其进行设计,并使用wxFormBuilder、FlashCS6、pyinstaller、enigmavirtualbox等应用软件对程序进行辅助设计[8]。系统实现功能的重点包括:GUI布局、仿真程序的代码编写、素材的制作以及程序的易用性[9]。针对以上的功能实现,使用辅助工具wxFormBuilder和手动编写WxPython代码对整体GUI进行结构上的布局,使用Numpy和Matplotlib对仿真过程中的无耗传输线方程进行计算求解,以及传输线上电压和电流波形的动态演示,使用FlashCS6对素材进行整合和裁剪,利用pyinstaller和enigmavirtualbox对源代码文件和素材进行打包,并封装成单独可执行文件,以达到易用性的目的[10]。

二软件需求分析与设计流程

在电子信息类课程的教学中,电磁场与微波技术的教学是其中一个重点也是难点。目前的微波技术教学主要采用文字、静态图像资料或PPT来进行教学,从而导致教学过程中存在以下难点:(1)教学资源稀少,目前书本中提供的电磁场与微波图例较少且抽象;(2)图案不够形象,传统书本教材所提供的图例都为静态图片,如果没有对电磁学有一定深入的理解,很难从静态图片中体会到电磁学中物理量的动态变化,而这一缺点是采用书本教学无法避免的。(3)电磁学的理论较为抽象,并且复杂,单纯的使用图像和文本板书的形式不仅加大了学生对这些理论的认知难度,同时也难以提高学生的兴趣。采用多媒体技术辅助教学是有效提高教学效果的重要途径,通过播放电磁场与微波技术课程中的演示动画,理论与实践相结合,使学生自发地理解和掌握课本知识。同时,有利于提升学生的学习效率,深入理解课程内容。基于以上考虑,对电磁场与微波技术多媒体动画演示软件的开发需求就显得十分重要,通过整理微波技术的教学资源,并利用动态图像,动画,视频等多媒体资源来对枯燥的电磁学公式进行解释,把课本上一些复杂的理论知识,通过多媒体的形式表现出来,从而有利于加深学生对相关理论的直观感受,从而帮助学生对微波技术专业知识的理解,取得更好的教学效果。因此,基于多媒体技术的电磁场与微波技术教学软件的开发,具有十分重要的现实意义。(一)演示界面切换需求。在电磁场与微波技术多媒体教学演示软件系统中,主界面为微波技术理论中的传输线仿真界面。界面的按键主要分成三种:一种是转换传输线类型的按键,一种是显示和隐藏电压、电流波形的按键,另一种则是控制仿真程序启动和暂停的按键。软件具备的按键控制功能为:根据用户点击的转换按键分别展示不同的传输线电路图和不同的参数输入框;根据用户点击的显示和隐藏按键,分别展示所要求展示的波形;根据用户点击的启动和暂停按键,决定动态波形的演示和暂停。(二)参数输入输出控制需求。参数输入控制是结合按键控制功能中“传输线类型转换按键”来设计的。根据设定不同的传输线类型更换不同的参数输入控制,默认只允许用户自定义输入输出阻抗,并且选择性地根据传输线类型开放和锁定输出阻抗的不同输入框。默认锁定禁止用户定义传输线的特征参数的输出结果,并且初值为空。当输入参数完毕后,按下开始按键,软件会根据给定的输入参数计算得到输出结果,并将计算结果反馈到输出框上。(三)菜单控制需求。在该软件系统中,菜单的主要作用是控制Flash动画的窗口弹出,为下一步播放作准备。菜单内容主要分为五个部分:波导、波投射、极化波、其他应用及版权信息等。波导菜单用来演示不同波导形式内部电磁场分布的动态效果;波投射用来演示均匀平面波在不同介质中的反射、透射情况,以及平面电磁波在介质中的传播和衰减情况;极化波用来演示不同极化波的合成过程,及其在空间的动态传播过程动画;其他菜单用来演示电磁场与微波技术在现实生活当中的应用领域,以及展示软件的作者和版权信息。(四)图形图像需求及Flash动画需求。图形和图像抽象化程度相比于文字较低,它能通过丰富的图案和层次感表达出有用信息,具有能够反应客观世界的属性,并且能够承载更多的信息量。本文的目标是通过所设计软件的主界面电路示意图,能够清晰地确定正在仿真的传输线类型。Flash动画能够模拟客观事件的变化及运动过程,从而突出变化的事物在运动过程中的本质规律,更加生动形象地展示和传递信息。同时,使用Flash动画能够提高学生的兴趣,获得较好的教学效果。本设计中,Flash动画素材占据大多数的多媒体演示,包括波导的场分布,均匀平面波的投射,极化波的动态展示,以及微波技术在实际生活当中的应用等。基于以上需求分析,本文所采用的软件设计流程及思路如图2所示。

三软件设计的功能实现与效果展示

电磁场与微波技术多媒体教学软件的开发目的是为了在教学过程中,充分发挥多媒体素材的直观性与交互性,动态画面的展示效果并且易于使用。因此,软件系统的设计内容主要包括系统的界面设计、交互设计以及设计等三个方面[11]。(一)界面设计。本文所设计的电磁场与微波技术多媒体教学演示软件的主界面如图3所示,主要由窗口、菜单、按钮、文本框等元素组成。界面的布局就是对系统组件的布置、摆放以及对不同的控件素材进行整合与设计,从而使得多媒体教学软件能够以合适、科学的运行状态被用户打开,并且展示整个软件的友好的交互界面[12]。界面的设计遵循简单、实用、风格统一的原则,程序的最顶部为功能菜单栏,用于完成主界面与副界面的交换。主界面为微波传输线的状态分析仿真界面,副界面为Flash动画的展示。在主界面中,将内容展示放在界面的正中心,以达到用户的视觉中心及主体突出的效果。内容展示分为两部分,上半部分为波形的动态仿真区域,用于显示传输线上电压和电流的波形仿真结果,即动态展示行波、驻波、行驻波的效果。下半部分为传输线电路示意图,可以通过该部分确定传输线的仿真类型以及波形与传输线位置的对应关系。在内容展示下方设置主要交互界面,用于对展示的内容进行操作,包括切换传输线的负载类型,输入负载参数,打开或关闭电压电流显示选项,启动和暂停波形仿真,满足用户的操作习惯[13]。(二)交互设计。电磁场与微波技术多媒体教学软件的交互设计主要体现在用户与仿真界面的交互,用户与参数输入输出框的交互,及用户与Flash动画的交互三个方面。用户可通过仿真界面上的按钮切换不同的传输线模型,从而进行不同类型的传输线仿真。仿真界面拥有四个控制按钮,分别用于仿真波形的启动、暂停,电压电流的显示开关,用户可通过这四个按钮进行与仿真界面的交互。在用户选择传输线类型之后,参数的输入输出框会随之改变以适应模型,用户可通过输入框输入合法参数,在点击启动按钮后程序会自动计算得出模型参数的计算结果并显示在输出框,从而达到用户与参数输入输出框的交互。另外,通过菜单栏可启用Flash动画演示功能,在弹出窗口中的Flash有内嵌必要的交互按钮,根据不同的Flash类型,交互按钮有所不同。其主要功能有开始和暂停动画演示,必要的参数输入输出,及控制动画的播放速度等,用户可通过这些按钮实现与Flash演示动画的交互。(三)设计。为了方便使用,本软件采用了打包单文件形式。将编写的程序源代码利用pyinstaller进行打包,生成单文件可执行程序。再将该可执行程序利用文件虚拟化技术,同所使用的资源文件一起再进行打包,最终形成一个可直接解压,无须依赖其他文件运行的可执行文件。Pyinstaller是一个用python编写的打包文件工具,它具有将python工程封装成单个文件的功能。由于python程序的运行依赖于python的环境,在其他的操作系统上可能未拥有相应的环境,再者本程序所使用的第三方工具包可能在不同环境下也有所不同,加之python系统版本差异等原因,所以要使python程序能在其他机器上运行,将其打包是必要的。(四)flash播放功能实现。在菜单栏中点击相应的菜单项目,软件能够从本地中获取同名flash资源对其进行播放。flash播放功能的实现,其过程为,按下按键后弹出一个wxpython新弹窗,加载系统的ActiveX控件播放相应的flash视频。窗口大小等依照传入参数即文件名进行读取并启用ActiveX进行播放。图4所示为椭圆极化波的flash动画演示,图5所示为平面电磁波投射到两层介质分界面上的flash动画演示。五结论本文设计和开发了一款电磁场与微波技术多媒体动画教学演示软件。首先,介绍了多媒体动画教学的发展历史与现状,同时根据所要实现的功能,分析软件的需求及重点与难点。其次,通过设计和实现该教学演示软件,比较直观地展现了如何将多媒体教学素材和相关专业知识点相结合,为其它的基于PC端的多媒体教学演示软件的设计和实现提供参考。再次,将源程序文件与多媒体素材二次打包封装,将原本依赖于编译环境和素材资源的程序工程文件夹转换成一个单文件的可执行程序,为今后将桌面多文件程序封装成单文件应用程序提供借鉴。最后,通过本次设计和实现,展现了采用Python语言开发的简便性;通过把电磁场与微波技术的抽象知识转化为具体动画演示的过程也显示了多媒体动画教学的优越性。

查看全文

电磁场理论课课程设计论文

1课程设计中使用商业软件

目前工程类的专业基础教学主要有两大模式:1)以课堂教育为主,结合多媒体教学模式,以音频和视频(动画模式或记录短片的模式等)进行理论教学[4];2)理论和实验教学相结合的方式,将部分学时分配到课堂实验教学以及学生动手实验教学两个环节进行理论和实践相结合的教学[5-9]。模式1)使得课堂教学的理论内容更加丰富多彩,涵盖的内容更加广泛,但是由于课时数有限,在顾及了教学广度的同时,教学深度不能得到有效的保证。在某些极端的情况下,学生上课时看各种物理现象觉得好玩,下课后却对课堂上学习的具体知识茫然无解,当对具体的问题进行讨论分析时更是一头雾水,不知道从何下手。在这种情况下,如果学生能够发挥主观能动性,在课后深入地学习课本上的知识,并阅读其他补充教材进行印证补充,那么就可以完全解决深度问题。为了让学生在课后对课本上的知识进行进一步消化巩固,通常采用加大课后作业的手段来督促学生进行自主学习。这种以课后习题敦促自学的方法对部分愿意自主学习的学生具有非常好的效果,能够在经历了课堂上相对比较宽泛的知识点以后对每一个知识点进行巩固学习;但是,对于缺乏学习主动性的学生来说,课堂上种类繁多的知识点和课后枯燥机械的习题形成的反差使得他们不知从何下手去完成课后作业,学生通常在不同的知识点和不同的公式之间疲于奔命,难以进行清晰有效地理解和探讨。模式2)将实验教学加入到理论教学中,部分解决了理论和实践问题之间的差距,使得学生可以更加直观地理解课堂上某些知识点相关的物理现象,但是这种教学方法有以下3个不可避免的问题:1)不论是课堂教学实验还是实验室学生自己动手的实验,都需要相对比较多的时间进行铺垫准备,在有限的教学学时内无法针对每一个重要的电磁学现象都安排相应的实验内容;2)由于实验室相对较少,设备以及维护费用相对昂贵,通常无法满足每个学生的教学需求;3)实验教学通常只针对可以用简单的实验手段实现的知识点,而且实验设计的前提是这些知识点相关的实验必须是可以直观地进行现象观察的。这些限制条件决定了符合实验教学的知识点缺乏全面性。可以说,投入的时间和财力都不少,但是涉及的知识点却不够全面。课程设计这个教学形式早已存在,但是一般情况下仅仅作为课堂教学的一个实践性补充,并未提到特别重视的位置。目前,计算机和网络的普及情况为课程设计提供了另外一种思路,即数字化的课程设计方法。随着计算机和网络技术的飞速发展,高校大学生需要在具备一定专业知识的前提下学会使用与本专业相关的商业软件,如电子信息专业的学生需要了解并学会使用的商业软件有编程软件Matlab和VC++等,仿真软件HFSS和ADS等。而这些相关软件的学习和使用,通常不会专门开课来进行学习,因为这本来就是学生为了提高自身就业优势和提升专业技能而需要学会的自学课程。因此,在课堂上引入一部分和本课程本专业密切相关的商业软件的使用技能,不但不会成为学生学习过程中的负担,反而是他们乐意学习并且去掌握的技能。综上所述,为解决前文中提到的在教学过程中的问题,同时结合目前的教学环境和学生的自身专业素养,本文提出了应用商业软件进行课程设计的思路,即针对教学中需要掌握并深入剖析的知识点设计课程设计的内容,让学生在商业软件平台上建立并仿真电磁学的模型,利用学到的知识对相应的物理现象进行观察和规律分析。

2课程设计实例

课程设计是教学设计中的一个环节,针对一个目的或者一个内容进行有计划、有结构的系列活动。对电磁场理论相关的课程教学而言,课程设计的内容需要针对教学中比较难理解的、比较抽象的,或是需要对知识点进行综合讨论的内容来进行设计。因此,课程设计环节在“电子工程数学方法”“电磁场与波”以及“微波技术基础”课程的课堂教学中,对理论教学和实践教学相结合的重点环节进行了设计和讨论。由于商业软件平台可以模拟相对理想的实验环境,并且在观察物理现象时也不必拘泥于实验装置和物理实现方法困难的问题,在课程设计题目的设计上,可以选择尽量涵盖本课程大部分知识点的题目进行仿真设计,或者根据学生在学习过程中需要进行直观化理解的物理现象进行设定。如在本科第3学期,在学生对电磁波/场的概念还处于力线的范畴,对电磁波在导波系统中的传播规律还没有进行具体学习的前提下[10]开设“电子工程数学方法”课程,学生对为何要求解泛定方程,为何要加入边界条件等原因并没有一个具象化的认识。尽管在课堂教学中提出求解定解问题就是泛定方程和边界条件以及初始条件的结合,学生也只是机械地记住了这个说法而已。在这个前提下再提出如何求解波动方程和泊松方程等方法,学生也只是迷茫地在几个特殊形式的方程中机械地求解而已。课后常有学生反映:“为什么就学这几个方程”“这些方程求解方法到底学了有什么用”等等问题。这些问题给一个答案并不难,难的是学生就算听懂了答案,还是不知道其真正应用在何处。因此,在这门课的课程设计题目是用软件HFSS实现对矩形波导管的仿真,在求解矩形波导管主要模式的基础上设定波导管的尺寸,并观察其主模的电场、磁场以及壁电流分布。整个课程设计内容里并没有提到用什么方程来求解,也没有说用什么方法求解。学生拿到题目以后需要自己去思索:这是一个有关波导管的工程问题,这个工程问题相关的物理现象是什么,描述这个物理现象的数学公式是哪一个,为了能表达出波导管内部的场分布,必须要求解定解问题,那么与之相关的边界条件又是什么。这个课程设计的内容立足于定解问题的求解,而且是直角坐标系下波动方程的定解问题的求解,计算上并不复杂,难的是理论上的理解。学生普遍反映虽然课本上早已做过了类似的题目,但是他们还是去查了一些相关的教科书,还在网上寻找资料,最后发现其实求解的就是他们学过的东西。这就是理论和工程应用相对照的一个过程。同时,通过这次课程设计,学生普遍反映他们对HFSS这个商业软件的建模方法和仿真手段有了相对深入的了解,对波动方程和亥姆霍兹方程的推导和求解认识深刻。“电磁场与波”是针对本科第4学期的学生开设的课程,其主要内容涉及静态电磁场和时变电磁场的基础理论知识[11]。学生在前修课程大学物理中学习了很多关于静态场的知识,空间中电磁波的传播行为和状态是一个全新的内容,需要学生花更多的时间来学习波在空间中的传播情况。而课堂教学中,描述波的情况时一般用正弦波来描述(动态多媒体描述的时候也一样),这种描述方法和机械波完全一样,学生在学习电磁波时通常以机械波为原型来进行理解,这种理解方法使得他们在学习驻波、行驻波时出现困难。因此对这门课的课程设计题目做了如下设计:利用编程软件Matlab实现对下述物理现象的建模,并实现电磁波在全空间中的变化情况。一均匀平面波从半无限大自由空间(z<0的区域)入射到一介质分界面(介质存在于z>0的半空间),介质的电参数为εr=4,μr=1,σ=1,分别对以下情况进行建模:1)线极化波垂直入射到介质分界面;2)平行极化波以入射角θ(θ<θc,其中θc为临界角)入射到分界面;3)圆极化波以入射角θb(θb为布儒斯特角)入射到分界面;针对上述3种情况,分别描述入射波、反射波和投射波在空间中的变化情况,并标明各波的能量变化。学生经过这次课程设计后,首先会对使用Matlab进行编程设计有一定的了解,能够用Matlab进行电磁波的动态显示。其次会学会利用其他工具主动学习在课堂上难以理解的物理现象,这有助于学生在以后的学习中能够主动利用现有的编程软件或者商业软件平台进行知识探索。最后,学生在进行编程建模仿真的过程中强化了知识点的学习。课程设计包含了电磁场与波这门课程中关于平面波的传播、平面波在介质分界面上的变化、不同的极化方式在通过介质分界面时和入射角之间的关系等等问题,知识点囊括了电磁波在无界/半无界空间中的传播问题,而这也是本课程中有关电磁波问题的重点学习内容。“微波技术基础”是一门具体涉及微波器件的课程,不同的器件有不同的电性能和参数设计方法,不同的传输模式在同一器件中也表现出不同的特性[12],因此要设计一个相对全面的课程设计比较困难。针对不同的知识点进行了不同的课程设计题目的设计,例如:1)针对波导腔体中的模式问题,进行了模式分析编程设计;2)针对谐振腔和微扰理论,进行了谐振模式和微扰后的谐振情况建模仿真讨论;3)针对左手结构材料的概念,进行了左手/右手结构的功分器设计,以此讨论两种不同结构下电磁波的传播和器件表现在外的性能;4)针对磁材料的特性,进行了极化扭转波导仿真设计。通过这些课程设计,使得学生在学习不同的微波器件性能的同时,对微波器件的设计方法、性能和其中的电磁场分布有了更加深刻直观的了解和认识。

3结束语

综上所述,在计算机完全普及开来的大学课程学习中,在电磁波理论相关课程的课堂教学中利用课程设计敦促学生利用编程软件和商业仿真软件对相关知识点进行模型化仿真和现象分析,有助于进一步加深学生对知识点的纵向和横向理解掌握,丰富课堂教学的形式,使得学生对理论的理解更加清晰,对理论对应的工程应用了解更加明确。这对于目前的大学本科学习来说,是一个非常有利的学习手段和方法。

查看全文

电磁场理论教学论文

高中物理课本甲种本(1985年第1版)第三册第153页在介绍麦克斯韦电磁场理论时叙述道:“麦克斯韦用场的观点分析了电磁现象,认为变化的电场能够在周围空间产生磁场.这是电磁场理论的第二个要点.一个静止的电荷,它产生的是静电场,即空间各点的电场强度不随时间而改变.这个电荷一旦运动起来,电场就发生变化.另一方面,运动电荷要产生磁场,用场的观点来分析这个问题,就可以说:这个磁场是由变化的电场产生的.”笔者认为,这里用运动电荷产生磁场为例来说明电磁场理论的第二个要点是欠妥的.比甲种本早一年出版的乙种本(1984年第1版)以及主要由它修订而成的现行课本(必修)中没有这个例子,但是这个例子在现在的高中物理教学中仍然存在着不良的影响.最近,笔者带学生在中学教育实习时发现了甲种本的这个例子,接着对广州市的中学物理教学做了调查,发现目前仍有一些中学在教学中喜欢使用甲种本的这个例子.所以,有必要对这个例子做进一步的分析.

变化的电场能够在周围的空间产生磁场是麦克斯韦电磁场理论的第二个要点,也是麦克斯韦对电磁场理论的最主要的贡献.这样,不但传导电流(由电荷运动引起)能够在周围空间产生磁场,而且变化的电场(或“位移电流”)也能够在周围空间产生磁场.也就是说,产生磁场的途径有两种:电流(传导电流)或者变化的电场(或叫做“位移电流”).甲种本的这个例子所讲的“运动电荷要产生磁潮,可以从两个层次来理解.

一、把“运动电荷要产生磁潮理解为电荷运动形成电流(传导电流),这个电流要产生磁场,这是中学生所能理解的层次.按照这种理解,这个电场是由传导电流产生的,而不是由“位移电流”产生的,即不是由变化的电场产生的.甲种本的论断是错误的.

二、从较高的层次来理解“运动电荷要产生磁潮这句话.电荷的运动是任意的,由于既有速度v,又有加速度a,这个电荷产生的电场和磁场是非常复杂的,要用电动力学的方法才能处理,一般中学生不可能理解到这一层次,而且这时在运动电荷产生的磁场中,既有由变化的电场产生的,也有由传导电流产生的,到底哪一部分主要,要视电荷的运动情况及观测点的位置而定.在电荷附近(近场区)磁场主要由传导电流产生,所以不能简单地认为“这个磁场是由变化的电场产生的”.

综上分析,甲种本用一个运动电荷产生磁场为例来说明电磁场理论的第二个要点是欠妥的,其结论“这个磁场是由变化的电场产生的”是不对的.

值得指出的是,麦克斯韦电磁场理论的第二个要点包含着深刻而新颖的思想,在相当长的一段时间内难以为物理学家们所接受,直到25年之后,赫兹用实验证实了电磁波的存在,从而证明麦克斯韦电磁场理论的正确性,这个理论才得到人们的普遍承认.可见,“变化的电场能够在周围空间产生磁场”这一假说并非能用一个例子来加以形象说明的.在高中阶段讲麦克斯韦电磁场理论的第二个要点时,可以像必修本或乙种本那样,简要地给出麦克斯韦的假说,而不要企图找什么形象的例子来说明.倒是有必要向学生强调:电流和变化的电场是产生磁场的两种途径.最近笔者带学生到中学教育实习时,就有一些中学生问实习老师(笔者带的实习生):“当稳恒电流通过直导线时,周围空间的磁场是稳定的,而电场却不随时间做均匀变化,这不是与老师讲的电磁场理论的第二个要点相矛盾吗?”这说明学生误以为要产生磁场就必须有变化的电场,并不明白电流和变化的电场均可以产生磁场.或者说,学生学习了变化的电场能够在周围空间产生磁场,却忘记了电流是产生磁场的基本途径.

查看全文

电场和电磁场的环境问题探索

一、电场、磁场和电磁场会产生哪些生物影响

WHO将这种磁场、电磁场和电场所产生的生物影响定义为“生物影响”,并给出“有害影响”和“生物影响”是两个完全不同的概念。当暴露在外而引起的生物系统内部可检测到的生理变化或可注意到的生理变化,那“生物影响”就发生了。而当“生物影响”超过了身体补偿的正常范围时,“有害影响”就开始发生,这是导致生物发生某种有害健康的特征。输变电设施对生物的影响主要表现为,其能激发生物体内产生微量的感应电流和感应电压,这些感应电流和电压比生物体自身所产生的电流和电压要小得多,这对生物体内是没有任何影响的。据研究即使把一个生物体放到高压30千伏每米下,它的生理特征还是正常的。对于磁场的影响,WTO给出:目前没有哪一家实验室能准确的证明,在环境中或在家里所碰到的磁场强度下,其极低的频率会对人的行为和生理产生影响;有志愿者将自己暴露在磁场强度为5毫特斯拉的超低频磁场达几小时后,再对自己做临床和生理测试,其中包括血液变化、心率、心电图、体温和血压,而其一切都正常。而最对人类恐慌的传言便是致癌,WTO对此也给出了明确的回答:没有任何证据能证明身体暴露到极低频的电磁场会引起DNA的突变,因此极低频电磁场是不会诱发致癌的;根据最近的把动物放进最低频电磁场会诱导其致癌的研究,其结果是否定的。由于个别低频暴露电磁场和儿童患白血病关联的的研究表明,其缺乏科学研究依据。

二、电场、磁场和电磁场不会危及人体

输变电设施中的电场、磁场、工频磁场、噪音、高频信号、低频信号,其中能引起生物体微反应的是磁场和电场。其实在我们生活中,微电场和磁场随处可见,当在家中接通家用电器,其导线周围就产生微电场和磁场,并和地表形成微电场。在电力频率定义中通常称50赫兹频率为“工业频率”,这属于极低频率电场。电力博士陆家榆介绍,带电导体所产生的极低频磁场会随着距离的增加而消弱,因此在变电站设施周围随着其和外界生物体的距离增加,强度也随着减弱。在电力设施周围中,磁场和电场是互为独立存在的,它们并不形成高频波那样向外界空间转播和辐射能量并以波的形式伤害生物体。所以在世界各权威组织中所对极低频对环境的影响研究中,他们都只提及电场和磁场对环境的影响,而从未提及电磁场对环境的影响。实际上,对输变电工程设施的环境标准限定比国际标环境标准还要严格。WTO所推荐的国际权威组织所颁布的旨在保护公众健康工频电磁场强度在6千伏/米范围内,其工频强度暴露值为0.1毫特斯拉,其实在实际施工中还低于这个标准。事实上,在我们生活领域中,电磁场随处可见。据测算,当我们在家中打开电脑或电视机时,当我们欣赏美丽的月光时,其实身边的电磁场强度远远高于输变电设施的电磁场强度。其实我们生活的周围随处都能看到产生磁场的物体,比如我们生活的地球,其产生的磁场比我们普通输变电设施产生的磁场还要高,例如在北京测得的地球磁场为54微特斯拉,当在磁场转动来测时,其磁场强度为100微特斯拉,其强度相当于输变电设施产生的60~100倍。这就说明了,人类生活在几十位特斯拉是没有任何感觉的,即使在变电站值班24小时的工人也一样,其健康也不会受影响。其实真正的电磁波杀手往往就潜伏在我们的身边,其不那么引起人们的注意。据美国环境卫生院的研究表明,其实伤害人体的最尅祸首并非是输变电设施,而是来这哪些冶炼设备、各种电器化交通、各种机动电器等。当这些电器工作是所产生的不同相位高频波时,其不同相位高频波穿过人体时,会造成人体的伤害。我们经常用的手机,接电话时,会产生1.8吉赫兹,就相当15厘米的的波,这对经常接听电话的人来说伤害极大。其次还有微波炉等。

三、总结

经过上面的分析,极低频电场、磁场和电磁场不会危及人体,因此电场、磁场和电磁场对环境的是良性的。

查看全文

在电磁场课程教学中引入科研前沿

【摘要】《电磁场》课程与当前的科研热点密切相关,却为广大教师所忽视;重视《电磁场》课程与科研的关系研究,对于促进《电磁场》这样一门教学与学习难度很大的电子信息专业基础课的教学作用很大。本文从当前电磁场领域的天线的四分之一波长反射板应用、人工磁导体(ArtificialMagneticConductor,AMC)和“隐身衣”等研究热点浅谈科研对电磁场课程教学的促进作用。

【关键词】电磁场;课程教学;科研

0引言

探讨《电磁场》课程教学方法的论文已经不少[1-4],但是科研对《电磁场》课程的促进作用的论文却很少见。实际上,有些教师对于科研对电磁场教学(其他课程亦然)具有重大促进作用并不太认同;或者一些老师虽口头上认同科研对电磁场教学有促进作用,但却体会不深,思想上也不重视。笔者认为科研对电磁场课程的促进作用主要体现在以下几点:1)科研可以使教师透彻理解知识点,授课更加准确、自信;2)教学中增加科研前沿可以促进学生对知识理解的融会贯通;3)科研前沿在课堂的渗透可以激励学生学习的兴趣,在愉快地学习;4)科研前沿在课堂的渗透可以培养学生的研究兴趣,潜移默化中鼓励学生进入科学研究的殿堂。

1科研与电磁场教学

从教学来说,将课本枯燥的理论知识与实际应用和国际前沿科学研究联系起来,以激起学生的学习热情。电磁场课程不但学习困难,而且很多学生反映不知道学习这门课有何用处,这些问题严重打击了学生的学习兴趣。因此,我们在授课时要注意穿插电磁场知识在我们实际中的应用,让学生明白学习并不单单是枯燥的理论知识,这些知识都是指导实际的基础,解决学生为什么要学的问题。除可适当介绍电磁场在通信(手机、基站、卫星等)、探测(探地雷达,石油探测等)、定位(各种雷达)和微波医疗等的应用外,还可介绍具体知识的应用。如当讲授电磁波对理想导体平面的垂直入射这一章节时,将会讲到电磁波全部被理想导体(PEC)反射回来且反相(反射系数为Γ=-1),此时可以引申这一特性在天线上的应用。如图1所示,在很多定向天线应用中,经常使用一块金属板作为反射板/地板,以将一半的能量反射回另一面,使波1和波2同相叠加,达到提高天线增益3dB及屏蔽背面物体的目的。因为理想导体(PEC)的反相特性,需要把天线安放到距离地板1/4波长,以得到波1和波2同相叠加。通过对授课内容的拓展,可以使得学生明白所学知识并非无用处,而是在实际中大有用处的,从而激发学生的学习热情。图1理想导体在天线上的应用同时可适当介绍本课程理论知识与国际前沿科学研究的关系,激发学生探索知识的热情。介绍当前国际前沿科学研究时,可将其嵌入到具体的关联章节知识讲授中,使学生明白课堂所学知识与当前研究热点的联系。如在图1讲到的理想导体(PEC)作为天线的反射板/地板时,其需距离天线为1/4波长,因此,其一个缺点就是体积太大。但现代微波系统不断小型化的背景下,PEC作为反射板越来越不适用。当前国际前沿研究的一个热点人工磁导体(ArtificialMagneticConductor,AMC)可以解决这个问题[5]。如图2所示,与PEC不同,AMC可以同相反射电磁波,因而天线与反射板之间的距离可以远远小于波长,整个天线系统的尺寸大大减小了。从而让学生了解科学研究的前沿,提高学习的兴趣。图2人工磁导体在天线上的应用如当讲授电磁波对介质分界面的斜入射知识时,可列举2013年浙江大学陈红胜团队的最新研究成果:“隐身衣”[6]。如图3所示,该前沿研究成果是一精致的六角形结构,当电磁波入射到结构上时发生全透射现象(折射),经过数次折射当电磁波出射该结构时,波的传播路径不变,就好像从来没存在该结构一样,而放置于结构中心的物体就被隐身了。这种学科前沿知识的介绍,让学生明白了所学课本知识与科学研究的关系,提高学生学习的兴趣。图3应用电磁波对介质分界面的斜入射知识的“隐身衣”俗话说兴趣是学习的最好老师,适当介绍电磁场理论知识在实际工程中的应用和在国际科学研究前沿的应用,可以活泼课堂教学,让学生明白电磁场知识是怎样在实际工程中应用的,让学生了解当前科学研究前沿,可以激发学生学习的热情,大大提高课堂教学的效果。

查看全文

电磁波在电子通信技术的应用

摘要:本文加强了对电磁场技术体积电磁波技术的深入研究,并对其具体应用情况展开了分析讨论。

关键词:电磁场;电磁波;电子通信技术

在当前信息时代,伴随信息技术的飞速发展,社会生活也发生了很大的改变。在通信领域电磁场与电磁波的应用越来越发挥重要作用,从而体现出信息传递的高效性。虽然电磁场与电磁波表面看似无形,但是却通过信息传递的载体作用,不断渗透应用到人们的社会生活中。由于电磁场与电磁波在社会中具有广泛的需求,所以导航、雷达、广播等多种电子设备产品在通信中的应用都需要应用到电磁波与电磁场[1]。

1电磁场与电磁波的概念

1.1电磁场

早期阶段,电磁场这一说法是英国科学家首先提出来的,由于当时具有的实验设备不是很发达,因此也就没有办法对这一结论做进一步的说明。从18世纪以后,英国和法国科学家才通过多种不同的仪器设备对之前英国科学家提出的电磁现象做深入的研究,后来研究人员对电磁场有了更深的了解。英国物理学家提出,电和磁间有很大的关联性,在通过多次科学实验之后,人们发现将磁棒导入到导体圈,那么就会有较强的电流产生,这也就说明电与磁间两者所具有的关联性。由带电物体所产生的一种物理场被称为电磁场,它本身是属于电磁学范畴。电磁场中所有带电物体都可以感受到电磁场的强大力量,其应用特点可用洛伦兹力定律来表述,从更具体角度来说,电磁场是相互联系、相互依存的电场、磁场的有机统一。伴随时间的推移,电场在一定条件下会产生磁场,同样,磁场一定条件下也会产生电场,两者之间互为因果关系。

查看全文

电磁部分教学研究论文

[摘要]物理教学既要发展学生的智力,又要培养学生的能力。只要运用科学的方法将知识传授给学生,加强学生的实验能力和自学能力的培养,调动学生的学习积极性,就能提高教学质量。

[关键词]物理教学电磁学电磁场电路

物理教材中所阐述的内容主要是经典物理学的基础知识,这些理论是建立在牛顿时空观的基础上,以力学、电磁学为重点。本文就电磁学部分的教学谈谈自己的观点。

一、电磁学的知识体系

电磁运动是物质的一种基本运动形式。电磁学的研究范围是电磁现象的规律及其应用,其具体内容包括静电现象、电流现象、磁现象、电磁辐射和电磁场等。为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的。透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学。对此,应从以下三个方面来认真分析教材。

1.电磁学的两种研究方式

查看全文