带式输送机范文10篇

时间:2024-01-15 21:16:08

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇带式输送机范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

带式输送机胶带分析论文

摘要:本文根据多年现场实践,对电厂输煤系统主要设备带式输送机最常见故障胶带跑偏原因利用力学原理加以分析,以及提出相应的处理方法。

关键词:带式输送机胶带跑偏力学分析

带式输送机是输煤系统的主要设备,它的安全稳定运行直接影响到发电机组的燃煤供应。而胶带的跑偏是带式输送机的最常见故障,对其及时准确的处理是其安全稳定运行的保障。跑偏的现象和原因很多,要根据不同的跑偏现象和原因采取不同的调整方法,才能有效地解决问题。本文是根据多年现场实践,从使用者角度出发,利用力学原理分析与说明此类故障的原因及处理方法。

一、承载托辊组安装位置与输送机中心线的垂直度误差较大,导致胶带在承载段向一则跑偏。如下图所示,胶带向前运行时给托辊一个向前的牵引力Fq,这个牵引力分解为使托辊转动的分力Fz和一个横向分力Fc,这个横向分力使托辊轴向窜动,由于托辊支架的固定托辊是无法轴向窜动的,它必然就会对胶带产生一个反作用力Fy,它使胶带向另一侧移动,从而导致了跑偏。

搞清楚了承载托辊组安装偏斜时的受力情况,就不难理解胶带跑偏的原因了,调整的方法也就明了了,第一种方法就是在制造时托辊组的两侧安装孔都加工成长孔,以便进行调整。具体调整方法见图二,具体方法是皮带偏向哪一侧,托辊组的哪一侧朝皮带前进方向前移,或另外一侧后移。如图二所示皮带向上方向跑偏则托辊组的下位处应当向左移动,托辊组的上位处向右移动。

第二种方法是安装调心托辊组,调心托辊组有多种类型如中间转轴式、四连杆式、立辊式等,其原理是采用阻挡或托辊在水平面内方向转动阻挡或产生横向推力使皮带自动向心达到调整皮带跑偏的目的,其受力情况和承载托辊组偏斜受力情况相同。一般在带式输送机总长度较短时或带式输送机双向运行时采用此方法比较合理,原因是较短带式输送机更容易跑偏并且不容易调整。而长带式输送机最好不采用此方法,因为调心托辊组的使用会对胶带的使用寿命产生一定的影响。

查看全文

下运带式输送机制动装置论文

摘要:随着工业生产的快速发展,采用带式输送机的愈来愈多。制动装置是下运带式输送机的关键设备之一。近年来,随着我国下运带式输送机的不断发展,制动技术也在不断提高。本文对下运带式输送机的运行机理进行了简单的分析,并对常用的几种制动装置的原理和特点进行了比较。

关键词:下运带式输送机制动装置

下运带式输送机是煤矿生产中的一种重要的运输设备,其可靠平稳运行对保证矿井正常、安全、高效生产有着重要的意义。目前常用的制动系统有机械闸块制动,电气动力制动,液力制动和液压制动等。电气制动性能较稳定,但在突然断电时制动系统就无法工作;液力制动不仅系统复杂,并且在转速较低的情况下制动力矩迅速减小,仍需机械闸块进行干摩擦制动;而对于机械闸块制动,由于其会产生火花及烧灼现象,对矿井生产安全产生危害,因而液压制动的采用就显得越来越迫切。

一、制动控制系统的原理及基本构成

1.1制动控制系统的原理

随着长距离、大运量、大功率的下运带式输送机的广泛应用,其制动装置功能的完善、性能的好坏,直接影响着下运带式输送机的安全与可靠运行。主要体现在以下几个方面:

查看全文

带式输送机输送带跑偏原因及优化设计

摘要:引起输送带跑偏的根本原因是其运行时拉应力分布不均匀或受到横向外力的作用,实际生产时应具体问题具体分析,采取合理措施进行纠偏,尤其是当现实条件受到限制可预见输送带运行时会发生跑偏现象,则更应做好事前控制。本文结合我公司多年项目建设和生产实践经验从减小输送带张力、减小横向冲击力和设置侧挡辊等三个方面对输送机进行优化设计以控制输送带跑偏程度。

关键词:带式输送机;输送带;受力分析;跑偏;优化设计

带式输送机具有输送物料范围广、线路组合灵活、运输能力大、安装维护便易、使用寿命较长以及造价低廉等优点,在纯碱生产行业得到广泛应用,用于输送原盐、石灰石、焦炭和重碱等物料。然而使用过程中输送带跑偏现象时有发生,输送带跑偏不仅会造成沿线撒料浪费物料影响生产环境,还会导致设备出现非正常磨损和损坏降低生产效率,严重时会影响整套设备的正常运行发生事故。

1输送带跑偏的原因分析

造成输送带跑偏的根本原因是输送带在制造、安装、使用和维护过程中所受的外力在宽度方向上的矢量和不为零,或垂直于宽度方向上的拉应力不均匀,从而导致托辊或滚筒等部件对输送带产生一个偏向一侧的反作用力,致使输送带向一侧发生偏移。输送带跑偏具体表现在以下三个方面:一是由于输送带老化或接头不正使输送带张力不均衡造成跑偏;二是以驱动滚筒中心线为基准,改向滚筒中心线和托辊中心线的平行度以及机架中心线的垂直度不符合安装要求,致使滚筒和托辊等部件对输送带产生沿宽度方向的反作用力造成跑偏;三是因滚筒、托辊对输送带两侧摩擦力不均衡造成跑偏,这主要是由滚筒外圆圆柱度过大、机架因安装或腐蚀发生倾斜、滚筒和托辊发生磨损以及倾斜落料等原因引起的[2]。

2输送带防跑偏的调整措施

查看全文

煤矿带式输送机系统分析

摘要:在科学技术日益进步的影响下,加快了带式输送机的发展速度,使其在性能方面有了很大提升,并凭借着诸多优势,获得了广泛地推广和运用。在煤矿产业,合理应用带式输送机、科学的设计系统方案,能够使带式输送机系统充分发挥出良好的功效和作用。通过说明带式输送机的相关特征,提出了煤矿带式输送机系统的分析和设计方案,以便充分发挥出带式输送机系统的良好功效和作用,推动煤矿行业可持续发展的进程。

关键词:煤矿;带式输送机系统;设计

从当前的情况来看,基于发挥出带式输送机作用的目的,与综采工作面变大的情况相匹配,当开展设计驱动电机设备时,呈现出一定的设计余量。但是结合现阶段生产工作的情况而言,通常情况下,因为采煤机截割功率的失衡发生率很高,导致相应的运输量无法满足恒定方面的规定,生产环节将呈现出额定运输量大于带式输送机自身运输量的现象,让驱动电机设备的功率也随之下降,增加了电能的消耗量,无法达到增加经济收益的目的。鉴于此,相关企业需要通过运用科学的方法,达到减少带式输送机运行消耗量的目的。因此,注重对煤矿带式输送机系统的科学设计非常必要,应该制定出合理的设计方案。

1带式输送机相关特征的说明

带式输送机的特征包含很多,其输送带不仅属于承载构件,同时也属于相应的牵引构件。具体进行运行的过程当中,依靠电动机减速装置发挥出一定的驱动作用,使滚筒进行传动,通过利用输送带与输送滚筒间形成的摩擦力作用,达到让输送带进行运动的效果,可以按时把货物运输至对应的卸料位置。处于不同的场合当中,带式输送机对比其他相关运输设备来说,拥有明显的优势,比如,在运输距离、运输量等方面均强于汽车与火车等运输形式。同时还能够获得更多的经济收益,令其得到有效推广和运用,在众多不同的行业领域当中发挥出良好的功效和作用,表现出以下多种优势。

1.1较为简单的结构

查看全文

圆管带式输送机技术创新论文

1.转弯半径

圆管带式输送机的转弯曲率半径通常由输送带管径、输送带类型、转弯角度等因素决定,曲率半径的大小,影响整机的使用性能,特别是当平面弯曲和竖直弯曲同时存在时。本机带宽1300mm,带速3.5m/s,运量2000t/h,管径350mm,平面转弯转角87°且立面有转弯。CEMA规定了这种情况下的最小曲率半径800d,即理论曲率半径R≥280m,由于受地形条件限制,该曲率半径不能满足理论值。本项目设计组在设计中突破了传统的设计理念,进行大胆创新,首次在圆管带式输送机上做到平面曲率半径为141m,填补了圆管带式输送机这一领域的空白。经过仔细分析、反复论证,实施本方案的具体措施:

1)胶带选用带体弹性及纵向柔性好、强力高、抗冲击、耐曲挠、成管性好的尼龙帆布胶带。它与普通输送带在结构和橡胶配方上均不同,本机胶带的芯层成阶梯状,边缘处芯层薄,从而具有较好的柔性,保证边缘搭接部分有较好的密封性,而中间胶的作用是使输送带具有良好的弹性和柔性,使输送带具有良好的成管性能。

2)在平面弯曲和竖直弯曲同时存在的位置托辊组间距小于0.6a0,为本机的安全运行提供了更可靠的保障。

2.导料槽

导料槽可使从漏斗落下的物料在达到带速之前集中到输送带的中部。为避免传统结构导料槽在这条输送机上可能出现的问题,项目设计在三方面对导料槽做优化设计:

查看全文

带式输送机胶带跑偏分析论文

1.承载托辊组安装位置与输送机中心线的垂直度误差较大,导致胶带在承载段向一则跑偏。如图1所示,胶带向前运行时给托辊一个向前的牵引力Fq,这个牵引力分解为使托辊转动的分力Fz和一个横向分力Fc,这个横向分力使托辊轴向窜动,由于托辊支架的固定托辊是无法轴向窜动的,它必然就会对胶带产生一个反作用力Fy,它使胶带向另一侧移动,从而导致了跑偏。

搞清楚了承载托辊组安装偏斜时的受力情况,就不难理解胶带跑偏的原因了,调整的方法也就明了了。第一种方法就是在制造时托辊组的两侧安装孔都加工成长孔,以便进行调整。具体调整方法见图二,具体方法是皮带偏向哪一侧,托辊组的哪一侧朝皮带前进方向前移,或另外一侧后移。如图二所示皮带向上方向跑偏则托辊组的下位处应当向左移动,托辊组的上位处向右移动。

第二种方法是安装调心托辊组,调心托辊组有多种类型如中间转轴式、四连杆式、立辊式等,其原理是采用阻挡或托辊在水平面内方向转动阻挡或产生横向推力使皮带自动向心达到调整皮带跑偏的目的,其受力情况和承载托辊组偏斜受力情况相同。一般在带式输送机总长度较短时或带式输送机双向运行时采用此方法比较合理,原因是较短带式输送机更容易跑偏并且不容易调整。而长带式输送机最好不采用此方法,因为调心托辊组的使用会对胶带的使用寿命产生一定的影响。

2.头部驱动滚筒或尾部改向滚筒的轴线与输送机中心线不垂直,造成胶带在头部滚筒或尾部改向滚筒处跑偏。如图3所示,滚筒偏斜时,胶带在滚筒两侧的松紧度不一致,沿宽度方向上所受的牵引力Fq也就不一致,成递增或递减趋势,这样就会使胶带附加一个向递减方向的移动力Fy,导致胶带向松侧跑偏,即所谓的“跑松不跑紧”。

其调整方法为:对于头部滚筒如胶带向滚筒的右侧跑偏,则右侧的轴承座应当向前移动,胶带向滚筒的左侧跑偏,则左侧的轴承座应当向前移动,相对应的也可将左侧轴承座后移或右侧轴承座后移。尾部滚筒的调整方法与头部滚筒刚好相反。经过反复调整直到胶带调到较理想的位置。在调整驱动或改向滚筒前最好准确安装其位置。

3.滚筒外表面加工误差、粘煤或磨损不均造成直径大小不一,胶带会向直径较大的一侧跑偏。即所谓的“跑大不跑小”。其受力情况如图四所示:胶带的牵引力Fq产生一个向直径大侧的移动分力Fy,在分力Fy的作用下,胶带产生偏移。对于这种情况,解决的方法就是清理干净滚筒表面粘煤,加工误差和磨损不均的就要更换下来重新加工包胶处理。

查看全文

矿井带式输送机故障及智能控制策略

摘要:针对带式输送机存在的跑偏,撒料等问题,基于带式输送机的主要结构及具体工作原理,介绍了带式输送机的主要故障类型,分析了故障原因,提出了智能控制策略,即通过应用智能控制系统,实现实时监控带式输送机,并可进行应急预警。

关键词:输送机;问题;原因;智能控制;预警

某煤矿第15号煤层处在太原组最底部,同时也在K2灰岩下面,煤层厚度在1.64~7.20m之间,平均厚度大约在3.86m。作为全煤巷道,运输大巷是以15号煤层为基础而掘进创建的,因为使用周期长、煤层裂纹大,所以很容易引起巷道底板发生变形。同时煤层巷道所使用的带式运输机也是以巷道底板为基础进行布置的。伴随煤矿开采量的不断扩大,煤矿运输系统的工作强度也在不断加大。带式运输机在粉尘浓度、空气湿度以及巷道变形等多种因素共同影响下,很容易出现撒料、跑偏以及停机维修等故障,使得煤矿开采效率大幅降低。因此,要对带式运输机的故障原因以及类型进行深入分析,同时还要通过智能化手段提出有效解决方案,从而保证煤矿掘采效率的提高。

1主要故障类型分析

1.1带式输送机结构及原理

如图1所示,作为15号煤层大巷主要运输设备带式运输机由驱动运行装置、尾架拉紧装置、改向滚筒组、缓冲托辊组、传送运输带、煤矿清扫器、操作保护装置七部分共同组成[1]。驱动运行装置为带式运输机提供动力,滚筒传递动力,皮带在摩擦力驱动下围绕托辊、滚轮旋转,经过拉紧装置作用皮带张紧,因为缓冲托辊的支撑使得皮带保持在U形状态。在皮带作用下煤炭随其向前运动到达运输终点。带式运输机承载力主要来源于机架,而带式运输机机架优势沿着大巷底板进行铺设,但是运输机的平行运转却不受大巷底板变形影响。

查看全文

诠释下运带式输送机的制动控制系统研究

摘要:随着工业生产的快速发展,采用带式输送机的愈来愈多。制动装置是下运带式输送机的关键设备之一。近年来,随着我国下运带式输送机的不断发展,制动技术也在不断提高。本文对下运带式输送机的运行机理进行了简单的分析,并对常用的几种制动装置的原理和特点进行了比较。

关键词:下运带式输送机制动装置

下运带式输送机是煤矿生产中的一种重要的运输设备,其可靠平稳运行对保证矿井正常、安全、高效生产有着重要的意义。目前常用的制动系统有机械闸块制动,电气动力制动,液力制动和液压制动等。电气制动性能较稳定,但在突然断电时制动系统就无法工作;液力制动不仅系统复杂,并且在转速较低的情况下制动力矩迅速减小,仍需机械闸块进行干摩擦制动;而对于机械闸块制动,由于其会产生火花及烧灼现象,对矿井生产安全产生危害,因而液压制动的采用就显得越来越迫切。

1制动控制系统的原理及基本构成

1.1制动控制系统的原理

随着长距离、大运量、大功率的下运带式输送机的广泛应用,其制动装置功能的完善、性能的好坏,直接影响着下运带式输送机的安全与可靠运行。主要体现在以下几个方面:

查看全文

带式输送机胶带跑偏分析论文

1.承载托辊组安装位置与输送机中心线的垂直度误差较大,导致胶带在承载段向一则跑偏。如图1所示,胶带向前运行时给托辊一个向前的牵引力Fq,这个牵引力分解为使托辊转动的分力Fz和一个横向分力Fc,这个横向分力使托辊轴向窜动,由于托辊支架的固定托辊是无法轴向窜动的,它必然就会对胶带产生一个反作用力Fy,它使胶带向另一侧移动,从而导致了跑偏。

搞清楚了承载托辊组安装偏斜时的受力情况,就不难理解胶带跑偏的原因了,调整的方法也就明了了。第一种方法就是在制造时托辊组的两侧安装孔都加工成长孔,以便进行调整。具体调整方法见图二,具体方法是皮带偏向哪一侧,托辊组的哪一侧朝皮带前进方向前移,或另外一侧后移。如图二所示皮带向上方向跑偏则托辊组的下位处应当向左移动,托辊组的上位处向右移动。

第二种方法是安装调心托辊组,调心托辊组有多种类型如中间转轴式、四连杆式、立辊式等,其原理是采用阻挡或托辊在水平面内方向转动阻挡或产生横向推力使皮带自动向心达到调整皮带跑偏的目的,其受力情况和承载托辊组偏斜受力情况相同。一般在带式输送机总长度较短时或带式输送机双向运行时采用此方法比较合理,原因是较短带式输送机更容易跑偏并且不容易调整。而长带式输送机最好不采用此方法,因为调心托辊组的使用会对胶带的使用寿命产生一定的影响。

2.头部驱动滚筒或尾部改向滚筒的轴线与输送机中心线不垂直,造成胶带在头部滚筒或尾部改向滚筒处跑偏。如图3所示,滚筒偏斜时,胶带在滚筒两侧的松紧度不一致,沿宽度方向上所受的牵引力Fq也就不一致,成递增或递减趋势,这样就会使胶带附加一个向递减方向的移动力Fy,导致胶带向松侧跑偏,即所谓的“跑松不跑紧”。

其调整方法为:对于头部滚筒如胶带向滚筒的右侧跑偏,则右侧的轴承座应当向前移动,胶带向滚筒的左侧跑偏,则左侧的轴承座应当向前移动,相对应的也可将左侧轴承座后移或右侧轴承座后移。尾部滚筒的调整方法与头部滚筒刚好相反。经过反复调整直到胶带调到较理想的位置。在调整驱动或改向滚筒前最好准确安装其位置。

3.滚筒外表面加工误差、粘煤或磨损不均造成直径大小不一,胶带会向直径较大的一侧跑偏。即所谓的“跑大不跑小”。其受力情况如图四所示:胶带的牵引力Fq产生一个向直径大侧的移动分力Fy,在分力Fy的作用下,胶带产生偏移。对于这种情况,解决的方法就是清理干净滚筒表面粘煤,加工误差和磨损不均的就要更换下来重新加工包胶处理。

查看全文

带式输送机胶带跑偏分析论文

1.承载托辊组安装位置与输送机中心线的垂直度误差较大,导致胶带在承载段向一则跑偏。如图1所示,胶带向前运行时给托辊一个向前的牵引力Fq,这个牵引力分解为使托辊转动的分力Fz和一个横向分力Fc,这个横向分力使托辊轴向窜动,由于托辊支架的固定托辊是无法轴向窜动的,它必然就会对胶带产生一个反作用力Fy,它使胶带向另一侧移动,从而导致了跑偏。

搞清楚了承载托辊组安装偏斜时的受力情况,就不难理解胶带跑偏的原因了,调整的方法也就明了了。第一种方法就是在制造时托辊组的两侧安装孔都加工成长孔,以便进行调整。具体调整方法见图二,具体方法是皮带偏向哪一侧,托辊组的哪一侧朝皮带前进方向前移,或另外一侧后移。如图二所示皮带向上方向跑偏则托辊组的下位处应当向左移动,托辊组的上位处向右移动。

第二种方法是安装调心托辊组,调心托辊组有多种类型如中间转轴式、四连杆式、立辊式等,其原理是采用阻挡或托辊在水平面内方向转动阻挡或产生横向推力使皮带自动向心达到调整皮带跑偏的目的,其受力情况和承载托辊组偏斜受力情况相同。一般在带式输送机总长度较短时或带式输送机双向运行时采用此方法比较合理,原因是较短带式输送机更容易跑偏并且不容易调整。而长带式输送机最好不采用此方法,因为调心托辊组的使用会对胶带的使用寿命产生一定的影响。

2.头部驱动滚筒或尾部改向滚筒的轴线与输送机中心线不垂直,造成胶带在头部滚筒或尾部改向滚筒处跑偏。如图3所示,滚筒偏斜时,胶带在滚筒两侧的松紧度不一致,沿宽度方向上所受的牵引力Fq也就不一致,成递增或递减趋势,这样就会使胶带附加一个向递减方向的移动力Fy,导致胶带向松侧跑偏,即所谓的“跑松不跑紧”。

其调整方法为:对于头部滚筒如胶带向滚筒的右侧跑偏,则右侧的轴承座应当向前移动,胶带向滚筒的左侧跑偏,则左侧的轴承座应当向前移动,相对应的也可将左侧轴承座后移或右侧轴承座后移。尾部滚筒的调整方法与头部滚筒刚好相反。经过反复调整直到胶带调到较理想的位置。在调整驱动或改向滚筒前最好准确安装其位置。

3.滚筒外表面加工误差、粘煤或磨损不均造成直径大小不一,胶带会向直径较大的一侧跑偏。即所谓的“跑大不跑小”。其受力情况如图四所示:胶带的牵引力Fq产生一个向直径大侧的移动分力Fy,在分力Fy的作用下,胶带产生偏移。对于这种情况,解决的方法就是清理干净滚筒表面粘煤,加工误差和磨损不均的就要更换下来重新加工包胶处理。

查看全文