差动范文10篇
时间:2024-01-11 08:39:54
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇差动范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
差动回路通电试验分析论文
摘要:差动保护是电力系统各种继电保护中最主要的保护,差动保护回路的错误将直接导致保护误动或拒动,对电力系统的稳定运行和设备的安全造成很大的影响。在差动回路的调试中,继电保护调试人员一直在寻找一种既简单又可靠的通电试验方法,经过我们在河曲电厂的试验,现向大家介绍一种新的差动回路通电试验方法。
关键词:差动通电保护
差动保护是发电机、变压器和大功率电动机的最主要保护。差动保护能够保证发电机、变压器和电动机在故障时以最快的速度退出运行,从而保护设备安全,所以差动保护回路的正确将保证设备遭受最小的损失。差动回路的正确性主要体现在被保护设备两侧电流的相别、极性、CT励磁特性等等方面,所以回路检查通常要从这几方面着手。
通常的回路检查是先用示灯检查CT根部到保护装置的电流线,再用干电池和毫安电流表检查保护所用电流的极性是否与装置一致,最后是整个回路的通电试验。
由于查线的方法基本不变,所以下面主要介绍一种新的回路通电试验方法。先简单介绍一下传统的两种通电试验方法。
第一种如图1示。
变压器差动保护研究论文
摘要:针对变压器差动保护在设计、安装、整定过程中可能出现的各种问题,结合变压器差动保护原理,提出了带负荷测试的内容及分析、判断方法.
关键词:带负荷测试测试内容测试数据分析
1引言
差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护,其运行情况直接关系到变压器的安危.怎样才知道差动保护的运行情况呢?怎样才知道差动保护的整定、接线正确呢?唯有用负荷电流检验.但检验时要测哪些量?测得的数据又怎样分析、判断呢?下面就针对这些问题做些讨论.
2变压器差动保护的简要原理
差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作.当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作.
变压器微机差动应用论文
摘要:介绍了变压器微机差动保护的功能以及安装调试中应注意的问题。
关键词:变压器微机差动保护应用
微机综合保护与常规保护相比较,具有很大的优越性,值得推广应用。现只对变压器WCD-8A微机差动保护加以介绍。
1变压器WCD-8A差动保护装置功能
1.1比率制动式差动保护
比率制动式差动保护作为变压器的主保护,能反映变压器内部相间短路故障,高压侧单相接地短路及匝间层间短路故障。当突变量大于0~25倍差动定值时投入,动作判据为:
变压器差动保护探究论文
[论文关键词]变压器微机保护保护配置主保护后备保护
[论文摘要]论述变压器的差动保护、标积制动差动保护、零序差动保护等主保护在使用中应注意的技术问题,指出差动保护灵敏度和快速性的提高必须建立在安全可靠的基础之上。
一、引言
变压器差动保护是变压器的主保护,一般采用的是带制动特性的比率差动保护,因其所具有的区内故障可靠动作,区外故障可靠闭锁的特点使其在系统内得到了广泛的运用。其中有许多文献[1][2]都对上叙二种故障情况做出了详尽的分析,但是从现场工程实际来看,当变压器发生区外短路故障时,由于变压器本身流过巨大的短路电流而对其本体的绝缘和性能造成了破坏,同时伴随着变压器内部发生匝间短路故障的情况也时常发生,这就要求差动保护在这种情况下也能够可靠动作而不被误闭锁,这就对差动保护提出了更高的要求。本文就从上叙工程现场出现的问题出发,对这种情况进行重点分析。
二、加强主保护,应使差动保护更完善和简化整定计算
加强主保护的目的,是为了简化后备保护,使变压器发生故障能够瞬时切除故障。目前220kV及以上电压等级的变压器纵联差动保护双重化,这是加强主保护的必要措施。差动保护应在安全可靠的基础上使之完善。
变压器差动保护观点论文
[论文关键词]变压器微机保护保护配置主保护后备保护
[论文摘要]论述变压器的差动保护、标积制动差动保护、零序差动保护等主保护在使用中应注意的技术问题,指出差动保护灵敏度和快速性的提高必须建立在安全可靠的基础之上。
一、引言
变压器差动保护是变压器的主保护,一般采用的是带制动特性的比率差动保护,因其所具有的区内故障可靠动作,区外故障可靠闭锁的特点使其在系统内得到了广泛的运用。其中有许多文献[1][2]都对上叙二种故障情况做出了详尽的分析,但是从现场工程实际来看,当变压器发生区外短路故障时,由于变压器本身流过巨大的短路电流而对其本体的绝缘和性能造成了破坏,同时伴随着变压器内部发生匝间短路故障的情况也时常发生,这就要求差动保护在这种情况下也能够可靠动作而不被误闭锁,这就对差动保护提出了更高的要求。本文就从上叙工程现场出现的问题出发,对这种情况进行重点分析。
二、加强主保护,应使差动保护更完善和简化整定计算
加强主保护的目的,是为了简化后备保护,使变压器发生故障能够瞬时切除故障。目前220kV及以上电压等级的变压器纵联差动保护双重化,这是加强主保护的必要措施。差动保护应在安全可靠的基础上使之完善。
变压器差动保护分析论文
[论文关键词]变压器微机保护保护配置主保护后备保护
[论文摘要]论述变压器的差动保护、标积制动差动保护、零序差动保护等主保护在使用中应注意的技术问题,指出差动保护灵敏度和快速性的提高必须建立在安全可靠的基础之上。
一、引言
变压器差动保护是变压器的主保护,一般采用的是带制动特性的比率差动保护,因其所具有的区内故障可靠动作,区外故障可靠闭锁的特点使其在系统内得到了广泛的运用。其中有许多文献[1][2]都对上叙二种故障情况做出了详尽的分析,但是从现场工程实际来看,当变压器发生区外短路故障时,由于变压器本身流过巨大的短路电流而对其本体的绝缘和性能造成了破坏,同时伴随着变压器内部发生匝间短路故障的情况也时常发生,这就要求差动保护在这种情况下也能够可靠动作而不被误闭锁,这就对差动保护提出了更高的要求。本文就从上叙工程现场出现的问题出发,对这种情况进行重点分析。
二、加强主保护,应使差动保护更完善和简化整定计算
加强主保护的目的,是为了简化后备保护,使变压器发生故障能够瞬时切除故障。目前220kV及以上电压等级的变压器纵联差动保护双重化,这是加强主保护的必要措施。差动保护应在安全可靠的基础上使之完善。
微波分相差动保护分析论文
摘要LFCB-102型微波分相差动保护为单相完全比率差动,继电器有2种比率制动特性,投运于220kV新南甲乙线上。但新田站侧和南海站侧的电流互感器变比不同,需加装二次变流器。在暂不考虑配置二次变流器的情况下,进行了参数调整,计算结果表明能基本满足运行要求。另外,采取并入三相差动继电器开接点的串接回路的方法解决了保护拒动的问题。投运后的运行情况说明保护装置能正常工作。
220kV新田升压站的4条220kV线路中,线路主保护之一选用了阿尔斯通生产的LFCB-102型微波分相差动保护。该保护装置具有选相功能,继电器为全数字的,设计中采用微处理器,并同现代化通信系统相兼容。因为数字信息能方便地调制和载带数据,所以,所有的三相电流信号可通过同一信道传输。其电流是按分相进行比较的,对应不同的故障方式具有选相能力,从而避免了电流互感器(以下称TA)综合量比较方案的不对称问题。同时,不论线路的一端有故障电流,还是所有端都有故障电流,线路各端的继电器能同时动作,快速切除故障。
1保护原理
该保护为单相完全比率差动,继电器有2种比率制动特性,如图1。初始斜率确保低水平故障的灵敏度随着故障水平上升;TA饱和导致附加的误差,则用增加斜率来进行补偿。
|Idiff|=|IA-L1+IB-L1|,
|Ibias|=(|IA-L1|+|IB-L1|)/2.
母线差动保护故障分析论文
摘要对广州蓄能水电厂500kV母线差动保护故障进行分析。通过对各相电流互感器进行伏安特性试验并相互对比,得出了故障产生的原因:由于一法兰连接螺栓的绝缘套损坏,导致螺栓与母线套形成电流回路,使电流互感器出现寄生电流,造成母线差动保护故障。
广州蓄能水电厂500kV主接线采用四角形接线,线路接入点形成的两个母线T区,在线路保护安装点以内,由其本身的线路保护进行保护。主变压器并联点处形成的两个T区,采用母线差动保护(以下简称母差保护)。
1母差保护的原理及特性
广州蓄能水电厂一期500kV母差保护采用DIFE3110型高阻差动保护,500kV断路器以QF1及QF2为一侧,QF3及QF4为另一侧,分别装设两套完全相同的高阻抗差动保护87-1,87-2及87-3,87-4。分相由两套DIFE3110型高阻抗继电器构成,采用被保护区域进出的电流矢量比较原理,取出差流在电阻器R上产生的电压值,作为测量值进入继电器内部与阀值比较。当外部有故障或无故障时,负荷电流I和I′在通过电阻器R时相位相反,幅值相等,电阻器R上的电压降为零,继电器不动作。当保护区域内部故障时,电流I和I′同相位使得对应的故障电流在电阻器R上产生一定大小的电压值,当该值大于阀值时启动继电器动作出口,见图2。保护整定值为:闭锁电压UB=20V,动作电压UD=25V。
保护动作结果:出口跳QF1,QF2或QF3,QF4,1号、2号机组或3号、4号机组跳闸,并启动故障录波器。
287-3和87-4故障
5G无线通信配电网保护技术探讨
摘要:针对大量分布式电源接入配电网以及用户对供电可靠性要求不断提高的问题,提出了一种基于5G无线通信的配电网拓扑自适应差动保护技术。该技术运用5G无线通信低延时、高带宽的特点,采用采样点插值同步法,实现故障的精确定位与隔离,有效地减少了终端运维的工作量,为配电网自动处理故障提供了新方向。为验证所提出的配电网自适应差动保护技术,在5G示范工程进行了通信性能测试、差动保护业务测试。除目前外场环境下不具备测试条件的测试项以外,其他所有测试项的结果均符合预期。
关键词:5G无线通信;差动保护技术;不确定性传输;差分B码;故障精确定位
随着分布式电源接入到配电网中,配电网故障电流等级、潮流方向发生了较大变化,传统的三段式过流保护已经难以满足配电网保护“四性”的要求[1-4]。光纤差动保护用于配电网的故障处理,为差动保护提供了新方向[5-9]。但是在城区内敷设光纤成本较高,且难以解决配电网点无光纤覆盖的保护配置问题。基于4G无线通信的配电网自适应差动保护技术解决了差动保护受光纤约束的问题[10-12],但是4G通信传输带宽有限,需研究如何保证通信在通道质量、通道带宽、时间同步方面满足要求。配电线路为减少一次设备投资,通常在变电站出口处或分支线路出口处安装断路器,线路中间采用负荷开关,现阶段很少有厂家支持基于两者混合模式实现最小停电范围的故障隔离。5G无线通信技术与纳米技术相结合,使得信号覆盖范围更广,利用其高带宽、低延时的特点[13-15],首次将5G通信作为差动保护信息传输通道,满足了差动保护对通信的要求。本文提出基于差分B码的全局对时技术,采用采样点插值同步法,解决了多端线路差动保护数据同步问题,目前国内外暂时没有这方面的研究报告、成果和试点。同时提出的基于断路器和负荷开关混合使用的故障搜索策略,降低了对主站处理信息的依赖,填补了目前市场上的空缺。以5G无线网络作为信息传输通道,研究配电网自适应差动保护实现方法,并进行外场5G基站环境测试。本文将差动保护技术应用于智能保护终端,提升了配电网保护的选择性、快速性、可靠性和灵敏性,增强故障定位精准度,缩短故障后供电恢复时间。
1基于5G的无线通信技术
目前基于4G无线通信的差动保护技术能保证终端间时间同步精度小于10μs,终端间测量信息的端到端时延小于100ms。4G通信带宽小,压缩传输采样值数据带宽后,数据发送频率会降低为原来的1/2。若增大数据缓冲区,保护延时动作将增大到100ms。5G作为即将普及的新一代无线通信技术,具有高带宽、高可靠、低时延等优点,将其应用于配电网的差动保护,为配电网的故障精确定位、隔离与恢复供电提供了新的发展前景。本文在实验室理想条件下,进行了5G通信性能测试,测试结果见表1。由测试结果可知,基于5G通信的配电网差动保护可以满足差动保护对通信的3个要求,保证差动保护采用和传统光差保护相同的采样频率,即每周波24点,并且按照1200Hz的频率向对侧/网络传输采样值。基于5G的差动保护系统架构见图1。
2基于不确定传输的差动保护技术
应用电子式电流互感器研究
摘要:自改革开放以来,我国的经济与科技便进入了飞速发展的时期,而近些年来,我国所去的成就毫无意外的令世人震惊,而随着时代的进步,时间的推移,毫无疑问当今社会属于电力以及网络信息化的时代,也是微电子的时代,目前,为了保障电流、电压等电子信号的输送,必须深化的研究继电保护装置。主要通过简单的阐述电子式电流互感器的变压器的概念以及工作原理,进而探讨应用电子是电流互感器的变压器差动保护的必要性,并探讨了变压器差动保护的现状,重点强调了应用电子式电流互感器的变压器的差动保护的情况。
关键词:应用电子式;电流互感器;变压器差动保护研究
我国一直致力于民生事业的建设,随着科技的发展,电力已经成为了人们日常生活中不可或缺的必需物,而在电力输送过程中电流互感器以及变压器等继电器的存在是保障电流等电信号满足人们日常所需的关键,这也是由于目前所采用的继电器多为电磁式互感器,而而这种互感器极易受到外界影响,进而影响电力的正常输送,而无论城乡电网还是低级电网随着时间的推移都逐渐出现饱和的趋势,而电子式电流互感器的出现对于饱和的电信号有着重要作用。
1电子式电流互感器综述
虽然电子式电流互感器在解决电流等电信号饱和上有着得天独厚的优势,但是不可否认由于电子式电流互感器出现的时间较晚,使得绝大多数人员依旧采用传统的电磁式互感器,所以为了推动电子式电流互感器的使用,就必须对其有一定的了解。1.1电子式电流互感器的概念。随着信息化脚步的加快,目前社会上的绝大多数的仪器都在朝智能化的方向迈进,以期望能在解放劳动力的同时提高工作效率,毫无疑问,变电站的危险性相对较高,因此当前一部分智能变电站的出现使得电力中转更为便捷,但是传统的电磁式互感器极易受到影响,损耗了大亮的电信号,因此电子式电流互感器的出现使得智能变电站更为符合时代的发展,这主要是由于相对于传统的互感器,电子式电流互感器具有体积小,重量轻,绝缘材料简单,动态范围较宽,无磁饱和现象,数字量、模拟量输出均可,且二次输出可开路,但是温度对其影响较大。目前社会上广泛使用的电子式电流互感器包括应用电子式电流互感器以及光学互感器。1.2电子式电流互感器工作原理。电子式电流互感器之所以能快速的代替传统的电磁式互感器的原因正是由于其所具有的特点,同样也离不开电子式电流互感器的工作原理。电子式电流互感器的工作原理包括:罗氏线圈原理、低功率小铁心线圈原理、电阻分压原理、阻容分压原理以及串联感应分压原理,其中罗氏线圈原理是通过电磁感应定律算出导体的电动势,从而调节线圈,进而使得互感器更为合理、科学;而低功率小铁心线圈原理则是算出电路中的电功率,从而调节小铁心线圈,进而提高互感器的电流调节作用;电阻分压原理利用电阻并联的方法对工作中的电子式电流互感器进行差动保护;而阻容分压则是通过为了降低过高电压通过的可能性,进而避免短路的情况出现,从而起到保护变压器的作用;串联感应分压器原理就是将多种不同级的电抗器串联在电路中,从而根据反馈的电信号合理的尽心线圈设置,从而保障电子式电流互感器的工作。
2应用电子式电流互感器的变压器差动保护的必要性