变送器范文10篇
时间:2024-01-08 18:00:41
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇变送器范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
传感器变送器分析论文
摘要:传感器和变送器在仪器、仪表和工业自动化领域中起着举足轻重的作用。与传感器不同,变送器除了能将非电量转换成可测量的电量外,一般还具有一定的放大作用。本文简单地介绍了各类变送器的特点,以供使用者选用。
关键词:传感器变送器选用
一、一体化温度变送器
一体化温度变送器一般由测温探头(热电偶或热电阻传感器)和两线制固体电子单元组成。采用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化的变送器。一体化温度变送器一般分为热电阻和热电偶型两种类型。
热电阻温度变送器是由基准单元、R/V转换单元、线性电路、反接保护、限流保护、V/I转换单元等组成。测温热电阻信号转换放大后,再由线性电路对温度与电阻的非线性关系进行补偿,经V/I转换电路后输出一个与被测温度成线性关系的4~20mA的恒流信号。
热电偶温度变送器一般由基准源、冷端补偿、放大单元、线性化处理、V/I转换、断偶处理、反接保护、限流保护等电路单元组成。它是将热电偶产生的热电势经冷端补偿放大后,再帽由线性电路消除热电势与温度的非线性误差,最后放大转换为4~20mA电流输出信号。为防止热电偶测量中由于电偶断丝而使控温失效造成事故,变送器中还设有断电保护电路。当热电偶断丝或接解不良时,变送器会输出最大值(28mA)以使仪表切断电源。一体化温度变送器具有结构简单、节省引线、输出信号大、抗干扰能力强、线性好、显示仪表简单、固体模块抗震防潮、有反接保护和限流保护、工作可靠等优点。一体化温度变送器的输出为统一的4~20mA信号;可与微机系统或其它常规仪表匹配使用。也可用户要求做成防爆型或防火型测量仪表。
智能变送器设计管理论文
摘要:从HART协议智能变磅器的功能和协议要求出发,在详细讨论、分析HART协议智能变送器的设计重点、难点和技术关键的基础上,设计完整的HART协议智能压力/差压变送器的实用电路。它可以实现HART协议智能变送器的基本功能。
关键词:HART协议智能变送器现场总线数字数据通信
概述
现场总线技术是当前自动检测技术的热点之一。从现场总线技术形成来看,它是控制、计算机、通信、网络等技术发展的必然结果;而智能仪表则为现场总线的出现和应用奠定了基础。自1983年Honeywell推出智能仪表--Smar变送器之后,世界各厂家都相继推出各有特色的智能仪表。为解决开放性资源的共享问题,从用户到厂商都强烈要求形成统一标准,促进现场总线技术的形成。目前,几种有影响的现场总线技术有:基金会现场总线、LonWorks、PROFIBUS、CAN、HART,除HART外,均为全数字化现场总线协议。
全数字化意味着将取消传统的模拟信号的传送方式,而要求每一个现场设备都具有智能及数字通信能力,使得操作人员或其他设备(传感器、执行器等)向现场发送指令(如设定值、量程、报警值等),同时也能实时地得到现场设备各方面的情况(如测量值、环境参数、设备运行情况及设备校准、自诊断情况、报警信息、故障数据等)。此外,原来由主控制器完成的控制运算也分散到了各个现场设备上,大大提高了系统的可靠性和灵活性。现场总线技术关键之处在于系统的开放性,强调对标准的共识与遵从,打破了传统生产厂家各自独立标准的局面,保证了来自不同厂家的产品可以集成到同一个现场总线系统中,并且可以通过网关与其他系统共享资源。
目前,一方面现场总线标准正处在完善和发展阶段,另一方面传统的基于4~20mA的模拟设备还在广泛应用于工业控制信各个领域。因此,马上全数字化是不现实的。为满足从模拟到全数字的过渡,HART协议应运而生。HART采用频移键控(FSK)技术。它基于Bell202通信标准,在4~20mA模拟信号上叠加不同的频率信号(2200Hz表示"0",1200Hz表示"1")来传送数字信号(见图3)。HART协议的数据传输速率为1200bps(位/秒)。HART现场总线(简称HF)系统采用主从工作方式:主机为1台IBM-PC机;从机为1台或多台遵守HART协议的HF智能变送器。当从机只有1台HF智能变送器,即智能变送器工作在点-点方式下时,可继续使用传统的4~20mA信号进行模拟传输,而测量、调整和测试数据用数字方式传输;当从机为多台HF智能变送器时,即智能变送器工作在多站方式下时,4~20mA信号作废,每台变送器工作电流为4mA左右。所有测量,调整和测试数据均用数字方式传输。由于每台HF变送器有惟一的编号,所以主机能对每一台变送器进行操作。HART提供设备描述语言(DDL),以确保互操作性。应该指出,HART被认为是事实上的工业标准,但它本身并不算现场总线(模拟和数字的混合),只能说是现场总线的雏形,是一种过渡协议。由于4~20mA模拟信号标准将在今后相当长的时间内存在,所以研究HART协议仍具有重要意义。
电流变送器原理应用管理论文
摘要:首先介绍了XTR系列集成电流变送器的产品分类及主要特点,然后阐述了XTR115的工作原理,最后介绍了XTR115及XTR101的典型应用。
关键词:电流变送器;电流环;应变桥;保护电路
引言
集成电流变送器亦称电流环电路,根据转换原理的不同可划分成以下两种类型:一种是电压/电流转换器,亦称电流环发生器,它能将输入电压转换成4~20mA的电流信号(典型产品有1B21,1B22,AD693,AD694,XTR101,XTR106和XTR115);另一种属于电流/电压转换器,也叫电流环接收器(典型产品为RCV420)。上述产品可满足不同用户的需要。
XTR系列是美国BB(BURR-BROWN)公司生产的精密电流变送器,该公司现已并入TI公司。该系列产品包括XTR101,XTR105,XTR106,XTR110,XTR115和XTR116共6种型号。其特点是能完成电压/电流(或电流/电流)转换,适配各种传感器构成测试系统、工业过程控制系统、电子秤重仪等。
1XTR系列产品的分类及性能特点
隔离器件工业应用论文
生产过程监视和控制要用到多种自动化仪表、计算机及相应执行机构。过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,甚至还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备仪表间的互相干扰就成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备仪表的“地”,即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备仪表的信号有一个共同的参考点,即共有一个“地”。进一步讲,所有设备仪表信号的参考点之间电位差为“零”。但是在实际环境中,这一点几乎是不可能的,这里面除了各个设备仪表“地”之间的连线电阻产生的电压降之外,尚有各种设备仪表在不同环境受到的干扰不同,以及导线接点经受风吹雨淋导致接点质量下降等诸多因素,致使各个“地”之间有差别。
图中标明有两个现场设备1#、2#仪表向PLC传送信号以及PLC向两台现场设备3#、4#仪表发出信号。假定传送信号均为0-10VDC。理想情况下PLC及两个现场设备1#、2#仪表“地”电位完全相等,传送过程中又没有干扰。这样从PLC输入来看,接收正确。但如前所述,两个现场设备通常有“地”电位差。举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高0.1V,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为0.1V-10.1V,误差就产生了.同时1#、2#设备的“地”线在PLC汇合联接,将0.1V电压施加在PLC地线条上,可能损坏PLC局部“地”线。同时显示错误的数据。由此引起的问题在现场调试中屡有出现。例如某大型建材公司生产线监控系统使用美国AB-PLC外接国内某厂家手操器。AB-PLC的每个数据采集板由八个通道组成,八个通道共用一个12位A/D,模拟量经过变换后由12个光耦隔离器实现与主机隔离。它的八个通道输入之间没有隔离,致使在输入信号时,每个通道单独输入到采集板均正常。但是同时输入两个或多于两个外部信号时,显示数字乱跳故障无法排除。又如航天某部门使用K型热偶作为传感器测试发动机各点温度。同上述相似,仅测试一个点时正常。但是向主机接入两点或两点以上温度信号时,显示的温度值明显错误。这两种情况在使用隔离器后,都正常了。
隔离器之所以能起到这个作用,就是它具有使输入/输出在电气上完全隔离的特点。换句话讲,输入/输出之间没有共同“地”,外来信号不管是0-10V,或带着共模干扰电压的0-10V经隔离后均为0-10V。即隔离后新建立的“地”与外部设备仪表“地”没关系。正是由于这个原因,也实现了输入到PLC主机的多个外接设备仪表信号之间隔离,即它们之间没有“地”的关系。
上面谈了输入信号和PLC信号的隔离,同样PLC向外部设备输出信号也有类似现象问题。显然采用隔离器就能解决问题。
这类电压/电压隔离器及电压/电流隔离转换器的产品型号是WS1521、WS1522。
1.不管PLC向外部设备仪表发送信号,还是外部设备仪表向其他设备发送信号,有一种情况经常遇到:要求一个信号即能向显示仪表输送信号,又能传送给诸如变频器之类的设备。这就有可能在两个设备之间产生干扰,若要彻底解决干扰问题,推荐使用隔离式信号分配器,它的二个输出之间也是隔离的。它能实现输入信号与外部设备隔离,同时实现接收信号设备之间隔离。
配网自动化信息工程研究
1概述
目前,配网自动化的发展已较为成熟,各类配网自动化产品也种类繁多,但针对通信规约及通信信息的员工配网自动化培训系统缺少。本文设计了一个配网自动化信息工程实验系统,系统能模拟配网主站SCADA及数据库的功能;能完全实现FTU的三遥功能,能在FTU及配网主站展示通信报文信息;FTU的独特设计之处有大屏幕显示菜单并操作。
2实验系统简介
本文设计的配网自动化信息工程实验系统用单相220V交流电模拟10kV配电网,设计的配网自动化信息工程实验系统主要包括配网主站与FTU(FeederTerminalUnit)两个部分,配网主站与FTU可以按104规约进行通信,其结构如图1所示。配网自动化模拟主站在PC机上采用C++Builder软件仿真设计,充分利用其C++语法结构的特点与友好的图形界面,设计出了配网仿真线路与良好的人机交互界面,实现了遥测、遥信、遥控、对时、SOE时间顺序记录等功能。配网终端FTU装置是本次设计的重点,主要采用STM32F407开发板设计,具有信息采集、继电保护、人机交互、命令执行等功能。
3实验系统设计介绍
3.1配网主站功能仿真。配网主站设计遵循“一体化”的设计原则,设计的配网SCADA系统主要包括:人机交互模块、通信服务模块、数据处理模块、数据库管理模块,其系统模块如图2所示。人机交互模块负责为操作员提供可视化的操作界面,主要包括:配网节点运行信息显示、104报文内容显示、功能按钮实现。通信服务模块负责建立网络连接、提供外部数据源,主要包括:网络管理、接收与发送数据缓冲区创建。通信功能是通过SOCKET控件实现的,配网自动化主站作为数据请求方,在TCP连接中为客户端,在C++Builder中调用ClientSocket控件即可实现。数据处理模块负责管理数据,主要包括:信号判别、标度变换、命令生成等等,信号判别是对开关分合状态的判断,方法为:判断相应标志位,其中:“0”表示开关断开、“1”表示开关闭合;标度变换的内容是将接收到的电压电流值还原为工程一次值。数据库管理模块主要负责数据库创建、数据存储、数据查询。数据库采用SQLServer软件设计,C++Builder软件通过ADO相关控件对数据库进行访问与操作。3.2FTU软硬件设计。FTU的设计基于STM32F4开发板,其硬件模块如图3所示,开发板搭载了电源模块电路、JTAG接口电路、复位电路、A/D转换电路、通信接口电路、LCD液晶显示电路,此外通过开发板外部的扩展IO口设计了开关量输入/出电路。FTU的软件系统是基于UCOS-III操作系统设计的,该操作系统的多任务管理有利于软件系统的模块化设计,故FTU软件系统也按模块进行设计。其任务模块如图4所示,包括人机交互模块、通信任务模块、遥控量输出、遥信量采集、遥测量采集、实时时钟区,其中人机交互模块由Emwin图形显示与触摸屏任务两部分组成。配网终端FTU的主要任务是监测控制、通信等基本任务,故对系统任务进行划分时,首先要考虑在出现故障的情况下,系统能够运行基础的任务,并对出现的故障向主站实时反馈。根据对各个任务重要程度的判断,FTU软件系统把任务划分为7个优先级,内核任务占前五个优先级,故用户任务优先级从6开始设计,设计的任务优先级如表1所示。从表1中可以看出,遥信量采集与遥控量采集任务优先级较高,故障出现时,FTU根据采集到的故障数据判断故障跳开继电器。TCP服务器任务优先级为8,在FTU采集到的遥测量遥信量后,FTU立即上传数据,若收到主站下发遥控命令,FTU立即执行要命令。EMWINDEMO任务与TOUCH任务分别实现了图形显示与触摸的功能,任务优先级最低。3.3数据采集与开关控制电路。在STM32F407开发板外专门设置了数据采集与开关控制电路,其中数据采集电路主要功能是采集电压、电流值,有通过交流采样采集电压电流值与变送器采集电压电流值两种方法,本次设计采用变送器采集电压电流值,采用由迅鹏公司生产的变送器,其中电流变送器型号为YPD-I-A1-P5-O1,电压变送器型号为YPD-U-A1-P5-O1,电压变送器与电流变送器工作电源都为220V交流电。电流变送器的输入电流范围为:0-1A,输出电压范围:0-5V。电压变送器输入电流范围为:0-1A,输出电压范围:0-5V。输出的信号均为模拟信号,该信号输入STM32F407的A/D转换通道后变位数字信号。本次设计的继电器跳合闸模块采用SONGLE公司生产的1路带光耦隔离的继电器模块,芯片接线原理如图5所示。该模块采用贴片式光耦隔离,驱动性能好,触发电流不大(5mA)。本次设计的小型交流电路系统正常运行状态下电流为90mA左右,完全满足触发要求。触发方式有两种可供选择:高电平触发和低电平触发,另外,继电器模块的强大的容错设计可有效避免继电器误动作。
隔离器件工业现场管理论文
生产过程监视和控制要用到多种自动化仪表、计算机及相应执行机构。过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,甚至还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备仪表间的互相干扰就成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备仪表的“地”,即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备仪表的信号有一个共同的参考点,即共有一个“地”。进一步讲,所有设备仪表信号的参考点之间电位差为“零”。但是在实际环境中,这一点几乎是不可能的,这里面除了各个设备仪表“地”之间的连线电阻产生的电压降之外,尚有各种设备仪表在不同环境受到的干扰不同,以及导线接点经受风吹雨淋导致接点质量下降等诸多因素,致使各个“地”之间有差别。
图中标明有两个现场设备1#、2#仪表向PLC传送信号以及PLC向两台现场设备3#、4#仪表发出信号。假定传送信号均为0-10VDC。理想情况下PLC及两个现场设备1#、2#仪表“地”电位完全相等,传送过程中又没有干扰。这样从PLC输入来看,接收正确。但如前所述,两个现场设备通常有“地”电位差。举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高0.1V,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为0.1V-10.1V,误差就产生了.同时1#、2#设备的“地”线在PLC汇合联接,将0.1V电压施加在PLC地线条上,可能损坏PLC局部“地”线。同时显示错误的数据。由此引起的问题在现场调试中屡有出现。例如某大型建材公司生产线监控系统使用美国AB-PLC外接国内某厂家手操器。AB-PLC的每个数据采集板由八个通道组成,八个通道共用一个12位A/D,模拟量经过变换后由12个光耦隔离器实现与主机隔离。它的八个通道输入之间没有隔离,致使在输入信号时,每个通道单独输入到采集板均正常。但是同时输入两个或多于两个外部信号时,显示数字乱跳故障无法排除。又如航天某部门使用K型热偶作为传感器测试发动机各点温度。同上述相似,仅测试一个点时正常。但是向主机接入两点或两点以上温度信号时,显示的温度值明显错误。这两种情况在使用隔离器后,都正常了。
隔离器之所以能起到这个作用,就是它具有使输入/输出在电气上完全隔离的特点。换句话讲,输入/输出之间没有共同“地”,外来信号不管是0-10V,或带着共模干扰电压的0-10V经隔离后均为0-10V。即隔离后新建立的“地”与外部设备仪表“地”没关系。正是由于这个原因,也实现了输入到PLC主机的多个外接设备仪表信号之间隔离,即它们之间没有“地”的关系。
上面谈了输入信号和PLC信号的隔离,同样PLC向外部设备输出信号也有类似现象问题。显然采用隔离器就能解决问题。
这类电压/电压隔离器及电压/电流隔离转换器的产品型号是WS1521、WS1522。
1.不管PLC向外部设备仪表发送信号,还是外部设备仪表向其他设备发送信号,有一种情况经常遇到:要求一个信号即能向显示仪表输送信号,又能传送给诸如变频器之类的设备。这就有可能在两个设备之间产生干扰,若要彻底解决干扰问题,推荐使用隔离式信号分配器,它的二个输出之间也是隔离的。它能实现输入信号与外部设备隔离,同时实现接收信号设备之间隔离。
工业现场中隔离器件的应用论文
生产过程监视和控制要用到多种自动化仪表、计算机及相应执行机构。过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,甚至还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备仪表间的互相干扰就成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备仪表的“地”,即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备仪表的信号有一个共同的参考点,即共有一个“地”。进一步讲,所有设备仪表信号的参考点之间电位差为“零”。但是在实际环境中,这一点几乎是不可能的,这里面除了各个设备仪表“地”之间的连线电阻产生的电压降之外,尚有各种设备仪表在不同环境受到的干扰不同,以及导线接点经受风吹雨淋导致接点质量下降等诸多因素,致使各个“地”之间有差别。以示意图一为例。
图中标明有两个现场设备1#、2#仪表向PLC传送信号以及PLC向两台现场设备3#、4#仪表发出信号。假定传送信号均为0-10VDC。理想情况下PLC及两个现场设备1#、2#仪表“地”电位完全相等,传送过程中又没有干扰。这样从PLC输入来看,接收正确。但如前所述,两个现场设备通常有“地”电位差。举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高0.1V,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为0.1V-10.1V,误差就产生了.同时1#、2#设备的“地”线在PLC汇合联接,将0.1V电压施加在PLC地线条上,可能损坏PLC局部“地”线。同时显示错误的数据。由此引起的问题在现场调试中屡有出现。例如某大型建材公司生产线监控系统使用美国AB-PLC外接国内某厂家手操器。AB-PLC的每个数据采集板由八个通道组成,八个通道共用一个12位A/D,模拟量经过变换后由12个光耦隔离器实现与主机隔离。它的八个通道输入之间没有隔离,致使在输入信号时,每个通道单独输入到采集板均正常。但是同时输入两个或多于两个外部信号时,显示数字乱跳故障无法排除。又如航天某部门使用K型热偶作为传感器测试发动机各点温度。同上述相似,仅测试一个点时正常。但是向主机接入两点或两点以上温度信号时,显示的温度值明显错误。这两种情况在使用隔离器后,都正常了。
隔离器之所以能起到这个作用,就是它具有使输入/输出在电气上完全隔离的特点。换句话讲,输入/输出之间没有共同“地”,外来信号不管是0-10V,或带着共模干扰电压的0-10V经隔离后均为0-10V。即隔离后新建立的“地”与外部设备仪表“地”没关系。正是由于这个原因,也实现了输入到PLC主机的多个外接设备仪表信号之间隔离,即它们之间没有“地”的关系。
上面谈了输入信号和PLC信号的隔离,同样PLC向外部设备输出信号也有类似现象问题。显然采用隔离器就能解决问题。
这类电压/电压隔离器及电压/电流隔离转换器的产品型号是WS1521、WS1522。
1.不管PLC向外部设备仪表发送信号,还是外部设备仪表向其他设备发送信号,有一种情况经常遇到:要求一个信号即能向显示仪表输送信号,又能传送给诸如变频器之类的设备。这就有可能在两个设备之间产生干扰,若要彻底解决干扰问题,推荐使用隔离式信号分配器,它的二个输出之间也是隔离的。它能实现输入信号与外部设备隔离,同时实现接收信号设备之间隔离。如图二。
蒸汽流量计量准确性论文
摘要:蒸汽流量的计量是流量计量的难点。阐述了蒸汽流量计量的特点,指出了影响蒸汽流量计量的主要问题,并提出了提高蒸汽流量计量准确性的对策建议。
关键词:流量计量;蒸汽;准确性
1蒸汽流量计量的特点
1.1饱和蒸汽流量计量中的“两相流”
当前,用户基本上都使用饱和蒸汽,通常用干度(指饱和蒸汽中的含水量多少)来衡量饱和蒸汽的质量好坏。最好的是干饱和蒸汽,一般称为过热饱和蒸汽,其含水量可忽略不计;干度差的称湿饱和蒸汽,含水量最多可达30%,这就存在着饱和蒸汽的“两相流”问题。因为任何蒸汽计量仪表在计算饱和蒸汽流量时所用的设计压力下的蒸汽密度值都采用其干度X=1时的数值,也就是干蒸汽的数值;同时,湿蒸汽因含有密度比干蒸汽大数百倍的液体水粒,在管道中流动时其速度要比干蒸汽小,这样所测得的差压值就低了,反映在仪表读数、记录上就存在着密度和流速受干度影响所带来的叠加性的双重负误差,并造成湿饱和蒸汽计量难度。
1.2蒸汽流量计量中的蒸汽密度补偿
蒸汽流量计量分析论文
1蒸汽流量计量的特点
1.1饱和蒸汽流量计量中的“两相流”
当前,用户基本上都使用饱和蒸汽,通常用干度(指饱和蒸汽中的含水量多少)来衡量饱和蒸汽的质量好坏。最好的是干饱和蒸汽,一般称为过热饱和蒸汽,其含水量可忽略不计;干度差的称湿饱和蒸汽,含水量最多可达30%,这就存在着饱和蒸汽的“两相流”问题。因为任何蒸汽计量仪表在计算饱和蒸汽流量时所用的设计压力下的蒸汽密度值都采用其干度X=1时的数值,也就是干蒸汽的数值;同时,湿蒸汽因含有密度比干蒸汽大数百倍的液体水粒,在管道中流动时其速度要比干蒸汽小,这样所测得的差压值就低了,反映在仪表读数、记录上就存在着密度和流速受干度影响所带来的叠加性的双重负误差,并造成湿饱和蒸汽计量难度。
1.2蒸汽流量计量中的蒸汽密度补偿
计量饱和蒸汽或过热蒸汽常用质量流量,单位为kg/h或t/h。质量流量大小与蒸汽的密度有关,而蒸汽的密度又直接受蒸汽的压力及温度影响。在蒸汽计量过程中,随着蒸汽压力及温度不断变化,密度也随着变化,使质量流量也随着变化。如果计量仪表不能跟踪这种变化,势必造成计量误差。在蒸汽计量过程中,一般都是通过压力及温度传感器跟踪蒸汽压力及温度变化来达到密度补偿目的。饱和蒸汽的密度变化与其压力或温度成正比关系,因而单独通过测压力或测温度都可以对饱和蒸汽进行密度补偿。过热蒸汽的密度与其压力、温度成函数关系,而不是正比关系。过热蒸汽的密度补偿必须同时测其压力和温度。现代蒸汽流量计都具有白动密度补偿。
1.3蒸汽流量计量中的高温高压问题
电热锅炉实验装置设计研究
摘要:设计了一套简易电热锅炉实验装置。详细阐述了实验装置的组成,包括控制器、测温传感器、变送器等硬件的选型,设计了电气控制电路。设计的电热锅炉操作简单,安全可靠,是非常理想的学生实训平台。
关键词:电热锅炉;实验装置;实训平
电热锅炉是将电能转化为热能的热力装置,与传统的燃煤锅炉相比,电热锅炉更加环保、可控、节能[1-5]。在学校中,设计一套电热锅炉实验装置可以为学生提供学习平台,学生可以设计算法在该装置上进行验证,还可以测试多种控制器的控制效果。
1电热锅炉的设计
如图1所示为电热锅炉实物图。该电热锅炉由220V交流电供电,通过控制器给锅炉中的水加热。设计一套电热锅炉实验装置,首先要设计控制开关接线图,并与实物连接,控制开关接线图如图2所示。按下启动按钮,该装置进入工作状态。其中断路装置起过载和短路保护作用,接触器起到电起动器的作用。全隔离单相交流调压模块将控制电路与高压电路隔离,把输入的电压信号控制在0~5V。按下停止按钮,电路会断开,锅炉停止工作。电气控制图如图3所示。
2硬件选型