变流技术范文10篇

时间:2024-01-08 15:59:25

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇变流技术范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

变流技术

电力变流技术电力电子论文

一、电力电子变流技术概述

随着社会用电的需求,电力电子技术逐渐得到了相应的研究与发展。20世纪60年代以后,电力电子技术开始被应用到相关的领域,如电力电子领域和控制技术领域。其中,电力电子技术在控制技术方面的研究和应用使相应的电能能够得到科学有效的转换和控制,从而推动了电能的合理应用和可持续发展。电力电子技术是用计算机系统将电子技术、电路技术和电力控制技术等方面进行相应的整合应用的现代化的电力技术,晶闸管的出现标志着这项技术发展到相应的成熟阶段。电力电子技术主要包括两个方面的技术,一是电子电子器件制造技术和电力电子变流技术。电力电子器件制造技术在发展过程中得到了不断的提高和发展。相应的电力电子器件已经由第一代的低耗能和小体积发展到具有自动关断功能和结合相应的功率器件、驱动器件、控制器件等更完善的第三代电力电子器件。其发展前景更加可观。电力电子变流技术也在不断的发展中得到了广泛的应用。20世纪70年代,整流电路得到了广泛的应用,逆变电路也在此过程中得到了一定程度的发展。随着自动断电器件的应用,逆变电路开始有了更为迅速的发展。与此同时,随着控制技术的不断发展,使电力电子系统的现代化控制技术得到了不断的发展,出现了模糊控制、自适应控制等控制方式。控制技术在很多领域都得到了相应的应用,也为电力电子技术的发展提供了更多的技术支持。

二、电力电子变流技术的应用形式

作为电力电子技术中的一部分,电力电子变流技术从上个世纪七、八十年代开始被广泛应用到电力系统中。一经应用便受到社会各界的极大关注。随着不断的发展,电力电子变流技术以整流电路、交流调压电路、逆变电路、斩波电路等形式在电力系统中都得到了广泛的应用,并取得了相应的良好效果。

(一)整流电路

整流电路是用可以调节大小的直流电代替了交流电供给直流用电设备的一种电力电子变流电路。整流电路通过整流二极管将输出的电压较低的交流电转化成直流电,实现对交流电的整流。交流电压在通过整流电路之后,就会变成混合电压,既有交流电压也有直流电压。整流电路被应用到一些相应的用电控制和相关输电环节,实现了快速高效控制并推动了电网的稳定运行。与此同时,整流电路还用多相整流的方式减少和控制了输出电压的脉动情况,并减少了电能的损失。整流电路一般是由变压器、滤波器和整流主电路组成的,在调节直流电动机的速度和调节发电机的励磁、电镀、电解等方面得到了相应的普遍运用。整流电路的变压器的设置是为了使输入的相应的交流电压与输出的直流电压之间保持相匹配协调,并实现对交流电网与整流电路之间的隔离。变压器在整流电路中的设置情况需要依据相应的具体情况来确定。整流电路中的滤波器是为了能够将直流电压中的交流电压过滤掉而在主电路与负载之间进行的相应连接。2。世纪70年代,整流电路的主电路主要是由晶闸管和整流二极管。随着不断发展,发光二极管等新形材料逐渐被应用到主电路中。电力系统中的整流电路主要包括半波整流电路、全波整流电路和桥式整流电路。其中,半波整流电路是整流电路系统中最为简单的一种,它能够通过电源变压器将220伏电压转变成所需要的电压大小,整流二极管能将相应的交流电转换成直流电。经过反复的转换过程,一半的交流电被演变成了直流电,这也是半波整流的由来。半坡整流电路的电流利用率比较低,多用于电压高、电流小的领域。全波整流电路可以认为是由两个半波整流电路组成的,其通过对整流电路的相应调整,达到了对电能的高效运用,但其二级管所承受的电压相对较大。桥式整流电路是使用最为广泛的整流电路,它通过接入两个二极管使电路形成了桥的形状。桥式整流电路既能够高效利用电能,还能够使承受的反向电压相应减少,对其稳定运行有一定的作用。

查看全文

关于电力电子器件分类与应用思考

电力电子技术是以电力电子器件为基础对电能进行控制、转换和传输的一门技术,是现代电子学的一个重要分支,包括电力电子器件、变流电路和控制电路三大部分,其中以电力电子器件的制造、应用技术为最基本的技术。因此,了解电力电子器件的基本工作原理、结构和电气参数,正确安全使用电力电子器件是完成一部电力电子装置最关键的一步。电力电子器件种类繁多,各种器件具有自身的特点并对驱动、保护和缓冲电路有一定的要求。一个完善的驱动、保护和缓冲电路是器件安全、成功使用的关键,也是本讲座重点讲述的部分。电力电子变换电路常用的半导体电力器件有快速功率二极管、大功率双极型晶体管(GTR)、晶闸管(Thyristor或SCR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET)、绝缘栅双极晶体管(IGBT)以及功率集成电路PIC等。在这些器件中,二极管属于不控型器件,晶闸管属于半控型器件,其他均属于全控型器件。SCR、GTO及GTR属电流驱动型器件,功率MOSFET、IGBT及PIC为电压驱动型器件。在直接用于处理电能的主电路中,实现电能变换和控制的电子器件称为电力电子器件。电力电子器件之所以和“电力”二字相连,是因为它主要应用于电气工程和电力系统,其作用是根据负载的特殊要求,对市电、强电进行各种形式的变换,使电气设备得到最佳的电能供给,从而使电气设备和电力系统实现高效、安全、经济的运行。目前的电力电子器件主要指的是电力半导体器件,与普通半导体器件一样,电力半导体器件所采用的主要材料仍然是硅。

1电力电子器件的一般特征

(1)处理电功率的能力大

(2)工作在开关状态

(3)需要由信息电子电路来控制

(4)需要安装散热器

查看全文

炼钢转炉氧枪事故研究管理论文

1工艺要求

炼钢转炉氧枪电机目前多采用交流电动机,交流电源正常时由变频器供电,实现氧枪的下降、吹氧、提升的调速运行;交流电源事故停电时必须由另一套应急电源供电,紧急提升氧枪,防止发生设备事故。

根据某钢厂炼钢转炉的工艺要求,在交流事故停电时应急电源需要供电的负载为:

(1)氧枪电机1台,电压380V,容量55kW;

(2)氧枪抱闸电机1台,电压380V,容量0.33kW;

(3)转炉抱闸电机4台,电压380V,

查看全文

变压器的保护分析论文

1保护配置技术方面

1.1装设避雷器保护,防止雷击过电压:配变的防雷保护,采用装设无间隙金属氧化物避雷器作为过电压保护,以防止由高低压线路侵入的高压雷电波所引起的变压器内部绝缘击穿,造成短路,杜绝发生雷击破坏事故。采用避雷器保护配变时,一是要通过正常渠道采购合格产品,安装投运前经过严格的试验达到运行要求再投运;二是对运行中的设备定期进行预防性试验,对于泄漏电流值超过标准值的不合格产品及时加以更换;三是定期进行变压器接地电阻检测,对100KVA及以上的配电变压器要求接地电阻必须在4Ω以内,对100KVA以下的配电变压器,要求接地电阻必须在10Ω以内。如果测试值不在规定范围内,应采取延伸接地线,增加接地体及物理、化学等措施使其达到规定值,每年的4月份和7月份进行两次接地电阻的复测,防止焊接点脱焊、环境及其它因素导致接地电阻超标。如果变压器接地电阻超标,雷击时雷电流不能流入大地,反而通过接地线将雷电压加在配电变压器低压侧再反向升压为高电压,将配变烧毁;四是安装位置选择应适当,高压避雷器安装在靠配变高压套管最近的引线处,尽量减小雷电直接侵入配变的机会,低压避雷器装在靠配变最近的低压套管处,以保证雷电波侵入配变前的正确动作,按电气设备安装规范标准要求安装,防止盲目安装而失去保护的意义。

1.2装设速断、过电流保护,保证有选择性地切除故障线路:配变的短路保护和过载保护由装设于配变高压侧的熔断器和低压侧的漏电总保护器(该装置有漏电保护和配变低压过电流保护)来实现。为了有效地保护配变,必须正确选择熔断器的熔体(熔丝、熔片等)及低压过电流保护定值。高压侧熔丝的选择,应能保证在变压器内部或外部套管处发生短路时被熔断。熔丝选择原则:①容量在100kVA及以下的配变,高压熔丝按2~2.5倍额定电流选择;②容量在100kVA以上的配变,高压熔丝按1.5~2倍额定电流选择。低压侧漏电总保护器过流动作值取配变低压侧额定值的1.3倍,配变低压各分支线路过流保护定值不应大于总保护的过流动作值,其值应小于配变低压侧额定电流,一般按导线最大载流量选择过流值,保证在各出线回路发生短路或输出负载过大,引起配变过负荷时能及时动作,切除负载和故障线路,实现保护配变的目的。同时满足各级保护的选择性要求。低压分支回路短路故障时,分支回路动作,漏电总保护器过流保护不动作,低压侧总回路故障或短路时,低压侧漏电总保护器过流保护动作,高压侧熔体不应熔断;变压器内部故障短路时,高压侧熔体熔断,上一级变电站高压线路保护装置不应动作跳闸,保证配电网保护装置正确分级动作。配变高压侧熔体保护材料一定要按标准配备,坚决杜绝用铜、铝等金属导体替代熔断器熔体。

2日常运行管理方面

2.1加强日常巡视、维护和定期测试:①进行日常维护保养,及时清扫和擦除配变油污和高低压套管上的尘埃,以防气候潮湿或阴雨时污闪放电,造成套管相间短路,高压熔断器熔断,配变不能正常运行;②及时观察配变的油位和油色,定期检测油温,特别是负荷变化大、温差大、气候恶劣的天气应增加巡视次数,对油浸式的配电变压器运行中的顶层油温不得高于95℃,温升不得超过55℃,为防止绕组和油的劣化过速,顶层油的温升不宜经常超过45℃;③摇测配变的绝缘电阻,检查各引线是否牢固,特别要注意的是低压出线连接处接触是否良好、温度是否异常;④加强用电负荷的测量,在用电高峰期,加强对每台配变的负荷测量,必要时增加测量次数,对三相电流不平衡的配电变压器及时进行调整,防止中性线电流过大烧断引线,造成用户设备损坏,配变受损。联接组别为Yyn0的配变,三相负荷应尽量平衡,不得仅用一相或两相供电,中性线电流不应超过低压侧额定电流的25%,力求使配变不超载、不偏载运行;

2.2防止外力破坏:①合理选择配变的安装地点,配变安装既要满足用户电压的要求,又要尽量避免将其安装在荒山野岭,易被雷击,也不能安装在远离居民区的地方,以防不法分子偷盗。安装位置太偏僻也不利于运行人员的定期维护,不便于工作人员的管理;②避免在配电变压器上安装低压计量箱,因长时间运行,计量箱玻璃损坏或配变低压桩头损坏不能及时进行更换,致使因雨水等原因烧坏电能表引起配变受损;③不允许私自调节分接开关,以防分接开关调节不到位发生相间短路致使烧坏配电变压器;④在配变高低压端加装绝缘罩,防止自然灾害和外物破坏,在道路狭窄的小区和动物出入频繁的森林区加装高低压绝缘罩,防止配电变压器接线桩上掉东西使低压短路而烧毁配变;⑤定期巡视线路,砍伐线路通道,防止树枝碰在导线上引起低压短路烧坏配电变压器的事故。

查看全文

城网改造管理经验交流

基础建设是我国的薄弱环节,国家推出两网改造,一方面是为了加大基础建设的力度,增强经济发展的后劲,另一方面是为了扩大内需,拉动经济增长,是国家积极财政政策的一个体现,同时也为电网的发展提供了难得的机遇。

创一流是电力企业改革与发展,建立现代企业制度的需要;是与国际先进管理水平接轨以及提高经济效益,促进企业自身发展的需要;是企业安全、生产、经营、管理按照一流标准的创建活动。在城网改造中,如何坚持和达到创一流标准,实现安全生产,供电可靠性、线损率等指标,我们坚持以下做法取得了一些成果和经验:

1明确城网改造的工作目标

城网改造的目的就是为了达到创一流标准。创一流工作涉及到我们企业运营的诸多方面,城网改造就是这整体工作的一部分,城网改造的目标要服从于创一流的工作目标。创一流企业不是一个空洞的口号,要实实在在地做一些像城网改造一样的工作来实现创一流的指标,没有许多类似于城网改造这样的工作,创一流工作就难得以实现;没有创一流的工作目标,城网改造也是就失去了努力方向。城网改造是达到创一流指标的手段,创一流是城网改造的目的。

2掌握城网状况,对标找差,制定城网改造计划

几年前,我公司电网相对薄弱。淮北电网是伴随着矿区的发展而发展起来的,电网结构依据矿区的布局而建立起来,呈发散状。城区仅靠一座110kv相山变供电,压力很大,10kv/380kv中低压配网更是难以满足市区的发展及居民用电负荷的增长。系统中220kv,110kv油开关频繁渗漏和泻压;运行超过15年以上的电磁感应及晶体管c、d型保护还在使用;es--400主站已连续运行5万小时以上,多次出现老化失效、死机的故障,操作修改也不方便,系统功能难以扩充;地调通讯手段单一落后,大都采用唯一的载波或音频通讯;无法满足无人值班改造及变电站综合监控等信息传输需要,七十年代初投运的高耗能、薄绝缘无载主变还在运行。所有这些问题严重地危及电网的安全运行,制约了我公司电压合格率、线损率等经济技术指标的提高,离一流标准也有较大差距。为了达到创一流的标准,我们在城网改造方面实施了一个以一流标准为目标值,新建一座110kv城郊变电所,改造和升压二个变电所,更换7台主变和30台开关,更新自动化主站,保护及备自投;新建一点多址、光纤通讯、新建无人值班变电所及无人值班中心站,改造和新建配网线路等工程的城网改造计划。

查看全文

水力发电系统并网研究论文

一、水力发电系统简介

水力发电系统由发电机、AC/DC转换、PWM逆变器、LCL滤波器组成。发电机使用异步电机,异步电机并网发电是利用电网提供以同步转速转动的旋转磁场,在转差率为负值的工况下,其磁力矩与转速方向相反,机械力矩方向与转速方向相同,磁力矩作负功,机械力矩作正功(转化为电能),向电网输出电能。常用作发电的一般为三相鼠笼式异步电机,三相绕线式异步电机和单相电容式异步电机也可作为发电使用,但技术性指标差。电能经PWM逆变器后变为正弦调制波,这时的电能含有大量的高次谐波,为了减少谐波污染,加入LCL滤波器。

二、电力系统谐波危害

并网系统的电能质量主要取决于输出电流的质量,为了能够给电网提供高质量的电能,并网逆变器的电流控制发挥了重要的作用,因此,对并网发电用三相逆变器研究就显的尤为重要。

由于三相PWM逆变器具有功率因数高,效率高等诸多优点,因此在可再生能源的并网发电中得到广泛应用。但是三相PWM逆变器在其开关频率及开关频率的整数倍附近,产生的高次谐波注入到电网中,会产生谐波污染,这将对电网上的其他电磁敏感的设备产生干扰。

谐波对电力系统和其它用的设备可能带来非常严重的影响,主要危害可归纳为:

查看全文

不平衡负载下逆变器结构研究

摘要:针对越来越多不平衡负载严重影响电网电能质量的问题,从逆变器结构本身出发,提出了五种不同的拓扑结构,分别是带分裂电容的三相逆变器、带NFT的三相逆变器、带D/yn变压器的三相逆变器、组合式三相逆变器、三相四桥臂逆变器,并且对这五种逆变器的结构特点、优缺点进行了详细的阐述。根据不平衡负载出现的情况,可以合理的进行选择。这些逆变器在三相平衡负载、三相不平衡负载等多种情况下都能够保持良好的动态特性和电压输出特性。

关键词:电能质量;不平衡负载;三相逆变器;动态特性

电力系统主要由两部分组成:一部分是对称电路,另外一部分是不对称电路。普通的对称三相交流电指的是系统会产生三相幅值相等,相位互差120°的三相正弦交流波形。但是电力系统在实际运行过程中,因为各种原因,例如电线杆倒塌、线路断路等,都会造成系统输出的三相交流电不再对称,整个系统的所有过程,例如电力发电、输送电能、分配电能等,都会受到严重的影响,形成严重的后果[1]。普通的三相电路会产生不对称三相交流电的原因主要包括两个方面:第一种情况,系统所给定的三相电源本身就是不对称的。这种情况指的是电力系统中的A,B,C各相电动势处于不对称状态,此时,无论系统承接的三相负载阻抗值相等或者不相等,此时产生的电压波形都是不对称的三相正弦波。第二种情况,电力系统所连接的三相负载处于不对称状态。这种情况主要是由以下原因造成的[2-4]:第一,三相负载的阻抗值不相等。第二,电力系统处于比较恶劣的环境(整个线路产生短路或者断路等故障)下,造成三相负载不再相等。三相负载处于不平衡状态时,电力系统就会形成负序以及零序分量。此时,如果三相电源的阻抗值恒等于零,电力系统的功能就不会受到影响。然而,电力系统中的电源内部都会存在实际的电抗,必定会引起输出电压不再对称。三相电压处于不平衡状态体现在:1)A,B,C三相电压的幅值不相等;2)三者的相位不再对称,产生了一定的偏移;3)上述两种情况都存在。电力网络在实际运行中,经常会出现三相负载处于不平衡的情况,有时甚至会产生非线性负载。普通的三相电压型逆变器产生的三相电压耦合十分紧密,所以,没有办法产生对称的三相交流波形,如果需要解决非线性负载的问题,必须将高次谐波产生的严重影响考虑其中。为了解决这些问题,查阅大量资料,解决方案是改变普通逆变器的拓扑结构,主要包括以下几种。

1带分裂电容的三相逆变器拓扑结构

带分裂电容的三相逆变器拓扑结构见图1.这个逆变器的结构特点是:中间包含两个串联在一起的电容,电源Udc与两个电容行成的电路进行并联,在两个串联的电容之间有一条连接线,这样的结构使得带分裂电容的三相逆变器能够进行三相四线输出。由于带分裂电容的三相逆变器在结构上相当于将3个相同的半桥电路相互串联,因此,当它连接三相不对称负载时仍然能够产生对称的三相电压波形[5]。这个逆变器的优点主要是:第一,这个逆变器的拓扑结构相对比较简单;第二,这个逆变器中包含比较少的电子元器件。由于在两个相互串联的电容之间引出了一根连接线,相当于第四条连接线,系统中产生的中性电流就会从第四条连接线中通过,这就要求电力系统中电容的数值必须准确,才能确保系统产生更高的电能质量,电容器的存在相应地会增加整个逆变器的体积。这个逆变器也存在一定的缺点,通过计算可以得到,它对直流母线电压的使用率是比较低的,基本上只能达到50%的利用率,因此,这个拓扑结构基本上被应用在中型或者小型功率的设备中。

2带NFT的三相逆变器拓扑结构带

查看全文

充电设备维护运行论文

摘要:免维护蓄电池及先进的充电设备为变电所的安全运行及维护提供了可靠的保障。本文针对牡丹江电业局所属各个变电所的免维护蓄电池及充电设备在实际运行中出现的问题进行了分析探讨,总结出一些运行及维护经验。

关键词:免维护蓄电池运行维护

1引言

变电所的直流系统是继电保护、自动装置和断路器正确动作的基本保证,其稳定运行对防止系统破坏性事故扩大和设备严重损坏至为重要。

随着远动技术和通信技术的发展,牡丹江电业局110KV及以下变电所逐渐改造成无人值班变电所,成立了集控站,对所辖各所进行集中监控及运行维护,各所现场不再保留运行值班人员,这就对蓄电池及充电设备的安全稳定运行提出了更高的要求。

以前,应用较为普遍的有镉镍蓄电池和铅酸蓄电池两种,充电设备采用可控硅整流装置,但这两种蓄电池存在维护工作量大,且复杂等现象,不利于集控站的安全运行。而采用可控硅相控技术的充电设备,在纹波、体积、效率等方面不尽入意,监控系统也不完善,采用主从备份行方式,集控站使用起来不方便,达不到电力系统新的技术标准。另外,由于充电设备与蓄电池并联运行,纹波系数较大,会出现蓄电池脉动充电放电现象,影响蓄电池使用寿命。

查看全文

现代电力电子及电源技术发展论文

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

查看全文

置柜内流变检修操作分析论文

摘要:分析了10kV大电流中置柜内的流变检修操作时,防误回路中存在的危险点情况,对完善防误回路进行探讨。

关键词:中置柜流变检修防误回路探讨

随着电网的不断发展,10kV设备已大量采用中置柜形式,例如KYN28A型铠装中置式交流金属封闭开关设备。此类设备防爆等级高,操作方便,有较完善的防误闭锁功能。其大电流柜指10kV母分、主变10kV间隔,一般由开关柜与隔离柜组成,流变装于开关与闸刀间。在大电流柜内的流变检修时,厂家提供了验电接地小车,分别推入开关柜与隔离柜,在验明确无电压后合上接地闸刀,但验电接地小车的防误闭锁逻辑各变电所间不统一,有的欠完善。为控制和消除此类操作中的产生误操作的危险因素,选择一种完善的防误闭锁逻辑是十分有必要的。

一、大电流柜流变检修操作中防误回路危险点分析及对策

目前萧山局新上变电所的10kV设备均采用中置柜形式,其10kV母分、主变10kV间隔为开关柜与隔离柜配置。以10kV母分间隔为例,流变装于开关与隔离闸刀间,具体流变装设在10kV母分开关柜后下柜内,如图1中的U。在大电流柜内的流变检修操作时,将开关小车、隔离小车分别拉至柜外,用验电接地小车分别推入开关柜与隔离柜,在验明确无电压后合上接地闸刀,满足检修要求,如图2中的红色接地线。

1:低压二次电缆走线槽

查看全文