伴热范文10篇
时间:2024-01-07 06:38:33
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇伴热范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
火电厂蒸汽伴热分析论文
摘要:在技术性能上介绍了电伴热的技术优势及蒸汽伴热方案的缺陷,并就某火力发电厂1000m长锅炉仪表管道保温采用电伴热和蒸汽伴热方式,进行了技术,进而得出结论:在发电厂的保温中电伴热方案在技术上性能优越,在经济上投资合理,效益显著。
关键词:伴热火电厂自控温电伴热
0概述
伴热作为一种有效的管道保温及防冻方案在火电厂中一直被广泛应用。其工作原理是通过伴热媒体散发一定的热量,通过直接或间接的热交换补充被伴热管道的热损失,以达到升温、保温或防冻的正常工作要求。过去很长一段时间内,在绝大多数火电厂中,蒸汽伴热始终是一种主要的保温方式。其工作原理是通过蒸汽伴热管道散热以补充被保温管道的热损失。由于蒸汽的散热量不易控制,其保温效率始终处于一个较低的水平。而且,由于电厂中需要伴热的管道一般以仪表管线、工艺管线及化学管线为主,这些管线比较复杂,铺设蒸汽伴热管道十分不便。另外,在冬季运行时,蒸汽伴热管道经常会出现"跑、冒、滴、漏"现象,每年冬季电厂维修部门都不得不在管线保温上花费大量的人力、物力来确保电厂的冬季运行安全。
20世纪70年代,美国能源行业就提出用电伴热方案来替代蒸汽伴热的设想。70年代末80年代初,包括能源业在内的很多部门已广泛推广了电伴热技术,以电伴热全面代替蒸汽伴热。电伴热技术至今,已由传统的恒功率伴热发展到以导电塑料为核心的自控温电伴热。
1自控温电伴热原理及应用
火电厂蒸汽伴热分析论文
摘要:在技术性能上介绍了电伴热的技术优势及蒸汽伴热方案的缺陷,并就某火力发电厂1000m长锅炉仪表管道保温采用电伴热和蒸汽伴热方式,进行了技术经济分析,进而得出结论:在发电厂的保温应用中电伴热方案在技术上性能优越,在经济上投资合理,效益显著。
关键词:伴热火电厂自控温电伴热
0概述
伴热作为一种有效的管道保温及防冻方案在火电厂中一直被广泛应用。其工作原理是通过伴热媒体散发一定的热量,通过直接或间接的热交换补充被伴热管道的热损失,以达到升温、保温或防冻的正常工作要求。过去很长一段时间内,在绝大多数火电厂中,蒸汽伴热始终是一种主要的保温方式。其工作原理是通过蒸汽伴热管道散热以补充被保温管道的热损失。由于蒸汽的散热量不易控制,其保温效率始终处于一个较低的水平。而且,由于电厂中需要伴热的管道一般以仪表管线、工艺管线及化学管线为主,这些管线比较复杂,铺设蒸汽伴热管道十分不便。另外,在冬季运行时,蒸汽伴热管道经常会出现"跑、冒、滴、漏"现象,每年冬季电厂维修部门都不得不在管线保温上花费大量的人力、物力来确保电厂的冬季运行安全。
20世纪70年代,美国能源行业就提出用电伴热方案来替代蒸汽伴热的设想。70年代末80年代初,包括能源业在内的很多工业部门已广泛推广了电伴热技术,以电伴热全面代替蒸汽伴热。电伴热技术发展至今,已由传统的恒功率伴热发展到以导电塑料为核心的自控温电伴热。
1自控温电伴热原理及应用
石油化工工艺管道伴热管设计研究
摘要:石油化工是支撑资源生产和输送的重要基础,在维护中国能源安全中所发挥的作用是尤为突出的,也涉及到社会生产和生活的方方面面。文章以石油化工工程的建设为切入点,立足于工艺管道的施工,从散热设计的角度出发,分析伴热介质和伴热温度的选择方法,并探讨伴热方式的类型,阐述工艺管道的选用原则,并列举出管道伴热设计常见的注意事项。
关键词:石油化工;工艺管道;伴热管;设计原则;基本注意事项
在工业化和城市化快速发展的大环境下,现在很多的产业积极地发展建设,人们的生产生活在各个方面都用到能源开发,而且开发要求出现了一定的改变和优化,除了更加强调数量和规模的拓展之外,也注重安全性和稳固性的提升,这种变化也给企业的创新提供了更加鲜明的思路。石油化工作为支撑社会现代化建设的关键基础,在这个形式下应该对其给予充分关注,尤其是工艺管道的一些施工情况。工艺设备和使用的管道出现的一些伴热问题,一直以来都是石油化工比较重视的方面,而伴热技术的不断发展,满足了热量的供给问题,还解决了保温和防冻的相关要求。
1石油化工工艺管道伴热技术主要内容
管道伴热技术是随着石油化工工业发展应运而生的先进产物,是具有科学性的保温防冻技术,现在逐渐应用在社会的各个方面。而实际的伴热方式和伴热技术有很多不同的类型,主要有传统伴热和自动调控电伴热这两个不同的方面,以前的伴热只包含伴管伴热和夹套伴热。根据电伴热的一些工作原理可以看出,伴热管道在工作的时候,四周环境所受的温度呈现明显地下降趋势,因此分子会出现收缩情况,如果碳颗粒中存在电路流动时,随之伴热管出现发热情况,温度不断上升,电塑料中存在的分子就在一定时间内快速地膨胀,分开很多的碳颗粒,导致电路出现中断问题,在一定程度上使电阻不断升高,降低输出的部分伴热线,然后形成一套比较完整的、有效的闭合电路,这样可以快速提高伴热线的一定发热功率。就传统伴热管的设计来看,工作人员需要考虑到伴管或者是夹套伴热这两类工艺。这两类工艺的应用标准也分为不同的层次,具体来讲,如果工艺的应用能够满足内部介质的一些损失热量,确保温度能够满足使用管道的一些标准和需求,那么工作人员就应当考虑传统的伴热设计方法。除此之外,管道在传输的过程中,必然会因为热气损耗而出现不良的凝液情况,直接影响相应的气体输送。相关的工作人员在进行操作的过程中,介质压力会明显降低,管道出现堵塞的现象。如果管道在不运输的情况下,其中的介质也容易受到热损耗因素的不断影响,温度快速降低,使得里面的介质无法被清理干净,最终导致管道的凝固。以上这些,都应当成为传统伴热管道设计的参考标准。
2伴热方式的主要内容和选择标准
焦化装置节能降耗措施
摘要:延迟焦化装置在炼化厂中一直是加工重质油的重要设备。随着原油的重质化和劣质化,为满足产品的轻质化和清洁化需求,减少装置能量的消耗、合理利用资源,文章从实际出发,介绍了几种有效的节能降耗方法。
关键词:焦化;节能;降耗;消泡剂
1焦炭塔消泡剂灵活注入操作分析
背景:在延迟焦化装置实际生产中,由于原料性质、操作条件等多因素影响,渣油在焦炭塔内进行裂解反应产生的泡沫层高度会有很大的差别。为了充分利用焦炭塔有限容积,降低三剂费用,可以降低泡沫层的高度确保装置安全平稳生产,取消原来焦炭塔24h均注入消泡剂,改为根据生产的实际情况灵活注入的方法。原因分析:为了测量焦炭塔内泡沫层和焦层的高度,大多数延迟焦化装置都在焦炭塔的外侧安装几点中子料位计。某延迟焦化装置的中子料位计安装位置是从底往上分别是15m、20m和25m,如图1所示。该装置设计的焦炭塔生焦安全高度不大于24m。正常生产时,焦炭塔内的安全空高大约是5~6m,过高的泡沫层或生焦高度都很容易引起焦炭塔冲塔。中子料位计显示数值的变化对应焦炭塔内泡沫层、焦层高度的变化。中子料位计显示出来的数值与表示的意义见表1。延迟焦化发生的化学反应主要是热裂解反应,生产的汽油柴油含烯烃较多,安定性很差,必须经过后续加氢工艺处理方能合格。但焦化装置所使用的消泡剂中的硅元素会造成加氢装置的催化剂发生中毒失去活性,影响催化剂的使用寿命。同时焦炭塔内热裂解产生的油气温度都在430℃以上,注入焦炭塔内的消泡剂需要一定量的硅元素才能起到消泡效果。在实际中,低硅甚至无硅的消泡剂就没有起一定的消泡效果,只有硅含量较高消泡效果才会好。这样就形成了加氢装置不能有硅而焦化装置必须使用硅的矛盾。实施措施:当焦炭塔的泡沫层上升到一定高度后再注入消泡剂。因为在焦炭塔的生焦初期,塔内泡沫层高度较低,对安全生产影响不大,这时可以不用注入消泡剂;当第三点中子料位计显示为10%时,说明此时焦炭塔内的泡沫层高度已经上升到了25m处,这时就必须往焦炭塔内注入消泡剂,以降低塔内泡沫层的高度,避免油气携带焦粉到分馏塔影响装置的安全平稳生产。某延迟焦化装置的实际操作经验是:当第三点中子料位计显示为10%时开始注入消泡剂,直至老塔进行大吹汽时结束,消泡剂注入时间只有约5h。实施效果:改为当焦炭塔内泡沫层高度上升到了25m处才注入消泡剂的操作方法,能有效地减少消泡剂的用量,降低生产成本。因为若按20h生焦周期4h后换塔,在换塔时中子料位计显示的数值为30%~60%,模拟焦高显示的泡沫层高度为29m左右,但测量的实际焦层高度大约是21~24m。操作人员结合实际情况,采取新措施,当第三点中子料位计显示10%时才注入消泡剂,确定在4~6h后换塔是能确保生焦高度在安全范围的。那么焦炭塔的实际注消泡剂时间只有5h。以装置20h生焦周期计算,灵活注入消泡剂操作比以往的24h注消泡剂减少了3/4的消泡剂用量,同时避免了加氢装置因原料含硅而发生催化剂中毒现象。
2停用稳定塔进料泵节约电能
背景:机泵是延迟焦化装置的耗电大户,约占延迟焦化装置能耗的28%左右。装置正常运行后,通过对工艺技术和机泵运转分析,在不影响操作的前提下,可以采取停运机泵这项措施达到节能的目的。停运机泵措施之一,若是机泵进口压力高于所要输送到的设备内的操作压力,可适当提高机泵进口设备压力或降低机泵出口设备压力,便达到停用机泵节电的目的。原因分析:某延迟焦化装置正常生产时的吸收稳定系统,脱吸塔底脱乙烷汽油脱去乙烷后由稳定塔进料泵升压送至稳定塔。脱吸塔操作压力为1.15MPa,稳定塔操作压力为1.0MPa。提出“提高脱吸塔与稳定塔压差,停用稳定塔进料泵”的方法。优化措施:装置通过适当提高脱吸塔操作压力(由1.15MPa提至1.2MPa),再保证液化气质量合格的前提下,适当降低稳定塔操作压力(由1.0MPa降至0.9MPa),即增加了脱吸塔和稳定塔之间的压差(由0.15MPa增加至0.3MPa)。利用两塔压差停运稳定塔进料泵。使脱乙烷汽油通过稳定塔进料泵副线自压至稳定塔,而不再通过稳定塔进料泵增压。实践证明,将稳定塔和脱吸塔之间的压差控制在0.2MPa以上,即可停用稳定塔进料泵,对生产没有影响。节能效果:通过提高两塔压差,停运机泵,节约电能。稳定塔进料泵功率为37kW。按装置运行8400h/a,全年节电37×8400=310800kW,按电价格1元/kW每年创效益:37×8400×1=31.01万元。
碱管线泄漏成因及措施研讨
某储运中心成品车间液碱管线于2010年10月投入使用,2011年1~3月,陆续有8处焊口发生泄漏,泄漏焊口经补焊处理后继续使用。2011年4月,又有一处补焊后的焊口发生泄漏,泄漏焊口位于弯头下方。该管线的材质为20#钢,管内部介质为30%NaOH溶液,为防止由于温度过低使碱液在管线内凝固,碱线全部采用伴热线进行加热,伴热线共有热水伴热和蒸汽伴热2种介质,泄漏的8处焊口全部位于蒸汽伴热部位。伴热蒸汽压力为1.0MPa,伴热温度为180℃。为查明该碱线多次发生泄漏的原因,对该碱线进行综合分析。
1取样和宏观检验
在整条管线上取2道焊口进行分析[1],1道焊口为发生泄漏的焊口,见图1;另1道焊口为未发生泄漏的焊口,见图2。在泄漏的焊口处仔细观察,发现在焊缝中部有1条穿透性裂纹,裂纹长度为50mm,见图3。将带裂纹的焊口切开后观察,断口表面有一层黑色物质覆盖,断口平齐,无明显塑性变形,呈脆性断口特征[2],见图4。
2扫描电镜断口分析
将切开的焊口进行扫描电镜观察。经高倍观察,断口表面被一层产物所覆盖,无法观察到原始形貌见图5。图5扫描电镜结果为去除断口表面覆盖的产物,取2块断口试样,在稀盐酸中反复清洗,直至断口表面显露出金属光泽,再经超声波清洗后装入扫描电镜内进行观察,发现经过稀盐酸清洗后的断口表面均显露出沿晶界断裂的特征[3],见图6。
3微观检验
略论排水器防泄漏作用
摘要:讲述了煤气排水器的工作原理,分析了喷塑防泄漏排水器的优点。
关键词:排水器;防泄漏;耐腐蚀
1前言
冶金企业煤气管道由于温度的逐渐下降部分饱和水蒸汽凝结成水,煤气排水器的主要作用就是将沉积在煤气管道的底部的水排出,以保证煤气的正常输送。
目前冶金企业使用的煤气排水器有两个缺点:一是结构比较简单,用钢板焊接而成,内部不进行任何防腐处理,使用寿命一般在2~3年,筒体就会因为腐蚀严重而失效;二是当煤气管网压力波动较大时,排水器水封容易被击穿,造成排水器煤气泄漏,易造成煤气中毒事故。
煤气排水器经常设在交通要道的路口、村庄附近。排水器泄漏容易引起煤气中毒,影响煤气用户的正常生产。
过敏性紫癜腹型分析论文
【关键词】过敏性紫癜
过敏性紫癜(HSP)是一种全身性毛细血管变态反应性疾病。常累及皮肤、关节、胃肠和肾脏。典型病例诊断不难,但腹痛、便血等症状出现在紫癜之前往往易造成误诊。现将我院1997~2006年住院期间初诊的误诊的9例作一分析,报道如下。
1临床资料
1.1一般资料文本误诊的9例,男6例,女3例;年龄3~6岁1例,6~12岁6例,12~14岁2例。
1.2初诊的误诊的病种及临床表现误诊为急性胃炎3例,均表现为突然剧烈阵发性痉挛性腹痛,以脐周为主,伴不同程度恶心、呕吐,呕吐物为胃内容物,未见咖啡样物,低热1例,血WBC:7.5~13.0×109/L,血小板均正常。入院后仔细查体确诊2例,1例在12小时后出现紫癜确诊;误诊为急性胰腺炎一例,患儿此前有腮腺炎病史,入院后查血尿淀粉酶正常,后经仔细查体确诊,误诊为肠系膜淋巴结炎2例,患儿有上感史,伴发热,体温37.5℃~38.6℃,血WBC大于11.0×109/L。入院后8~12小时双下肢出现紫癜而确诊,误诊为急性阑尾炎2例,患儿均存在下腹压痛,无肌紧张、反跳痛,不伴发热,血常规正常,均先收入外科,后请儿科会诊而确诊。误诊急性细菌性痢疾1例,大便常规不支持,大便培养阴性,入院后1天双下肢出现紫癜而确诊。9例患儿血小板均正常,BT、CT正常,经抗过敏、对症治疗,均痊愈出院。
2讨论
工艺管线施工设计及质量管理研究
1工程概括
某化工企业每年合成氨20万t、尿素43万t、乙二醇25万t,需要对其工艺管线进行施工设计。本工程的工艺管线施工工作量相对较大,主要为氢气、一氧化碳、甲醇、循环水、氨蒸气、中压蒸汽、低压蒸汽等介质管线。净化装置工艺系统操作压力较大,温度高,整个工艺管线系统中采用的管道材质种类多。在工艺管线施工过程中,整个施工现场占地面积较小,预制与吊装难度偏高,需要对整个施工过程进行合理的安排。
2施工技术要点
2.1施工技术准备及现场技术准备。2.1.1施工技术准备。首先根据工程合同、设计方案以及相应的施工规范编制工艺管线施工方案,施工过程应按照编制好的施工设计方案进行施工,施工设计图纸中的管线图在这个管道施工中有着举足轻重的作用,因此在施工技术准备阶段要仔细核对管道单线图,主要包括管道特性参数、管段下料尺寸、管道施工规范、探伤比例、管道焊缝位置、焊缝编号等内容[1];从设计图纸的管道单线图中可将各个管道的焊接方式和使用数量整合统计,根据相应的施工技术标准来确定管道的检测形式,汇总整个工艺管线系统中焊接的主要材质、焊接形式、检测方法,作为管道焊缝探伤委托依据,经压力管道质保工程师确认后与无损检测人员进行交接并交底;在管道施工开始前,技术人员与施工人员应进行技术交底工作,主要包括工程概况及特点,工程内容及工作量,施工工艺及关键技术,施工安全措施,工程施工记录及要求等。2.1.2现场技术准备。现场技术准备过程中,现场条件要达到三通一平,这是工程项目施工的前提条件,即水通、电通、路通和场地平整,其中水通指给水,电通指施工用电接到施工现场具备的施工条件,路通指场外道路已扑倒施工现场周围入口处,场地平整指现场场地基本平整,无需机械平整[2];施工工艺管道所需要的原材运输至场内,根据施工设计平面布置图将其运输至各个阶段的指定施工位置。2.2施工阶段主要的技术方法。2.2.1管道预制。本项目中的预制管段需要考虑管廊内穿管、吊装安装就位要求,固定口部位的管段不能过短要留一部分管;利用机械设备对管道的坡口进行加工处理,利用氧乙炔焰对碳钢管道进行加工,可利用加热设备将坡口表面的氧化皮熔渣去除,并将不平处打磨,不锈钢管道坡度内侧应覆盖石棉板,防止一些碎屑进入管道内对管道进行腐蚀,按照施工设计方案严格控制坡口形式和尺寸,壁厚≥4mm的管道对接前,管道要进行坡口,坡口角度控制在55°~65°,坡口及其内外表现清理范围≥20mm[3];合金钢管宜采用机械方法切割,切口表面要保持平整、无裂纹、重皮、毛刺、熔渣、铁屑等,在切口断面部位产生的具有一定倾斜角度的偏差应小于等于管道直径的1%,且在3mm范围以内;不锈钢管道焊缝在探伤检查合格后进行酸洗。2.2.2预制管道验收。管道预制完成后要对其进行预制管道验收,预制管道的尺寸要以设计图纸中规定的尺寸一致,其中的管线号、管段号、焊口编号等内容应与设计图纸和设计方案中规定的内容保持一致;预制管段的尺寸要符合场地运输和吊装的要求;预制管段外管检查符合规范要求,焊口按设计图纸中的规定委托无损检测,检测结果合格;预制管段管道的内壁要保持清洁,不得含有碎屑等物质,油脂含量符合规范要求,管道内壁保持干燥状态;预制管段验收主要是通过眼睛观察、随机抽样检查、程序资料记录检查进行验收[4]。2.2.3管道安装。管道的安装按照《工艺管道安装图》和《工艺管道》中规定的要求进行安装。在安装过程中要遵循一定的原则和一些注意事项如下:(1)管道安装顺序应先大管后小管,小管与大管相碰时应小管让大管,可以多层分组安装,应严格遵循设计图纸要求,避免产生错位。(2)热电阻温度计应顺流动方向安装,取压头应安装在流动平稳或压力稳定的位置;流量计安装应符合流向、直管段、水平或垂直安装位置的要求,并且保证流量计安装牢固无晃动。(3)管子对口时应在距接口中心200mm处测量平直度,当管子小于100mm时,允许偏差为1mm;当管子直径超过100mm,允许偏差2mm,但全长允许偏差均为10mm,管道安装的允许偏差标准如表1所示。(4)伴热管安装伴热管与工艺管道主线管处于同一条水平线上,并自行排液,一般状况下一根管道主线管周围有多根伴热管,同时要求伴热管之间保持一定的间隔。水平伴热管和铅锤伴热管安装部位不同,水平伴热管宜安装在主管下方,而铅锤伴热管分布呈圆形布设与管道主线管的四周,其中规定伴热管不可直接点焊在管道主线管上[5]。采用绑扎带或镀锌铁丝等固定在主管上,弯头部位的伴热管绑扎带不得少于三道,直伴热管绑扎点间距应符合绑扎规定的间距,如表2所示。2.2.4管道焊接。管道焊接接头组对前,首先对管道内外表面进行清理,在管道坡口处200mm范围内不得有油漆、毛刺、锈斑出现,不锈钢管采用电弧焊,焊接接头组对前应在坡口两侧各100mm范围内涂抹防黏污剂;承插焊组对时,在承插端头与承插管件之间应留有1~1.5mm的间隙,主管上须开坡口,避免出现未焊透、未熔等现象。每道焊口应一次性焊接完成,若遇特殊原因不能连续焊接,须对未完成的焊口采用塑料布等进行封闭保护。2.2.5管道试压。根据编制的试压方案进行试压,利用工业用水试压,规定水中的氯离子不得超过25mg/L,试验温度要高于5℃。在工艺管线试压过程中,要确保每一条管线中不发生内漏或串压现象要保证试压各系统间不受到内漏或串压,在进行管道试压试验前,首先要检查核对管道的施工图、焊接状况、管道处理情况、探伤报告等于管道试压相关的内容。试压完成对试压试验的结果进行记录,检验管道合格后出具检验报告合格证明,在该试验期间要严格遵循施工质量安全管理和控制措施,该工程的工艺管道经管道试压后合格,可投入后期的使用。
3管道质量保证措施
(1)建立质保体系,落实责任制建立完善的施工项目质量保证体系,实行质量责任制。建立项目质量管理和控制办公部门,在质量监督管理过程中要委托给监理部门,要求派遣持有质检工程师证书的项目监理,项目经理作为整个工艺管线施工的第一施工质量负责人,要严格把控好各个环节的施工质量。要求质量保证工程师和各个专业责任工程师是质量负责人,将施工过程进行分工,责任到人。(2)加强施工技术方面的培训加强职工对施工质量体系文件和质量管理要求的培训和教育,提高工人的施工质量意识,明确个人在施工环节中的责任[6]。在管道材料进场之前要对其进行检验,若发现不合格的材料将不允许进场不能通过验收,项目监理要根据其工程的特点制定严格的监督和检验制度;在施工过程中除了施工工人之外,还需要调集技术能力强的技术人员参与施工,在施工开始之前,设计人员需要跟施工人员进行交底,对技术方案和设计施工中的注意事项进行详细的交接。(3)加大施工质量管理和控制力度严格落实执行“三检制”:自检、互检、交接检,建立管理部门、施工部门、工班三级自检,有效加强工序质量的内部检查,发现施工中的问题及时进行纠正,制定相应的技术复核制度,明确复核内容和复核方法。针对整个施工团队进行分级,实施分级质量管理和控制,将各个阶段的工作分配到人,每个人都需对各自的工作负责,同时需对技术难度大、质量要求高的工序加强检查和指导。
油田原油集输系统节能技术分析
原油脱水、污水输送的各种动力机泵对原油集输以及处理系统而言是重要的电力耗费设施。原油、渗水、燃气加热炉成为了原油集输和处理系统的天然气重要耗费设备。所以必须使用良好的节能措施,以免产生能源耗费。
1原油集输系统的耗能
1.1机泵
在原油集输处理当中,最主要的用电负荷则为输水及输油泵,所以,想要节电,则需对其进行控制。当前,联合站生产选取的泵,大部分是离心泵,其耗电量和输送量、输送压降构成正比,与泵效构成反比。对离心泵效率构成影响的重要因素为:首先,由于扬程、吸程管道在配置方面不够合理,且管道的阻力较大,令离心泵在运转过程中,耗费较大的能量。其次,选取泵需偏离正常工况,构成较大的富余量,令水泵效率过低[1]。
1.2生产工艺
对于油田的低、中含水阶段的开发过程而言,大部分联合站通过两段脱水的方式进行。这一流程虽然对提升油气分离、脱水速度与效率十分有利,可是需耗费较多热能。在油田处于特高含水开发期之后,因为原油液量较大、含水量较大,如果依旧使用井场高含水原油进站后进行直接加热升温、沉降等方式,不只会令加热炉加大热负荷,还会有较大一部分热能耗费于污水加热升温之中,形成庞大不必要的能源耗费。所以,这一技术工艺已经无法良好的顺应当前油田高效生产模式的所需。
油品储运节能减排应用管理
摘要:随着时代的发展,科技的进步,环境污染问题逐渐浮出水面,危害着我们的健康生活。因此节能减排工作对目前来说十分重要,开展节能减排需要一定的工作基础,通过适当的管理工作来实现。而油品储运中的节能减排问题,则一直是节能减排工作中的重点课题之一。罐区储量实现最小化、安装存储时间最短化、调节适当的存储温度等都能够影响到油罐的存储,都有利于节能减排工作的发展。而对于整体工作中大范围的热量降低工作,还有一定的发展空间。
关键词:节能减排;单项功能;节能减排;原油储罐
在油品储运中,节能工作受到油罐空间、储藏温度、时间的影响,很难得到解决。但在大范围的油品储量联合工作中,油罐的储存还具有一定的优化空间,节能减排工作还能够进一步发挥作用。
1油品节能减排完成情况
目前,我国整体计划水量消耗略低于实际水量消耗。实际节能范围和计划范围有一些差距,但是同比去年还是有明显的进步。在全年计划工程的节水量的解决中,实际节水范围要比计划节水多出20个百分点,同比与去年有很大程度的改观。而节能减排工作没有达到目标的根本原因是整体油品出库工程的需求量太低,没有达成对应的要求,导致节能减排工作一直发展缓慢。
2对于油品储运的节能减排措施