CSAMT法范文10篇

时间:2024-01-15 05:06:00

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇CSAMT法范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

隧道勘探CSAMT法运用

1理论基础

可控源音频大地电磁法(简称CSAMT)是在大地电磁法(MT)和音频大地电磁法(AMT)的基础上发展起来的一种人工源频率域测深方法。其理论基础源于以Mawxe11方程组为核心的电磁场理论。电磁场在空间的分布和传播遵循麦克斯韦方程组。式中V•E表示E的散度;V×E表示E的旋度;p为自由电荷密度;为电流密度;E为电场强度;B为磁感应强度;c为常数,即光速。CSAMT常用的视电阻率公式(也称为卡尼亚电阻率公式):

2工程概况

高岭隧道区位于晋中盆地和临汾盆地之间台隆形成的中低山区,地势总体北侧低,南西侧高。隧道中部断裂构造发育,遭受剥蚀较严重,堆积了大量第三、第四系沉积物。隧道总长7.55km,最大埋深约420m,最小埋深约28.7m。隧道区地层表覆第四系上更新统洪积层(Qp1),中更新统洪积层(Q:p1),上第三系上新统(N)粉质黏土、砾岩,下伏及出露奥陶系中统马家沟组(O:一m)以碳酸岩为主的地层。该隧道经过霍山复背斜构造单元的背斜西翼(太岳山板隆构造区北西一侧),阶梯型断裂发育。隧道区内脆性断裂十分发育,这些断裂形成了中生代不同构造阶段,互相交织切割,控制了该带的构造轮廓。受断裂构造影响,该区产生了小型地堑及地垒。隧道区的断层有:F27桃凹沟正断层,张扭性断层,F28西许正断层,扭性断层;F32师家沟正断层,张扭性断层。隧道区的岩溶、节理裂隙发育。

3应用与分析

该隧道勘察采用的仪器为加拿大凤凰公司的V一8,测点点距为25m,收发距范围为7.2km,工作最小频率为16Hz,最高频率8192Hz。勘察横断面垂直于铁路初测线位布置。如图1,在D1K429+500一D1K429+950,视电阻率为75~250~1m,该段电阻率整体较低,洞身经过位置电阻率变化较大,高低阻相间,等值线陡变,WT1、WT2物探异常,为岩性接触部位,推测为断层,该断层位于洞身DIK429+900附近。可能存在含水构造。结合钻探资料,确定为断层及其影响带,隧道洞身以灰岩构造角砾岩为主,节理裂隙极发育,岩体极破碎,围岩级别级V级。上覆基岩埋藏较浅,应加强初期支护。如图2,在DIK431+050~DIK431+400,该段整体表现为低阻,低阻几乎纵向贯穿剖面,推测岩石破碎,存在富水断层,WT4与WT5两个物探异常位置电阻率等值线陡直变化,推测为断层,该断层位于洞身DIK431+220处。隧道洞身为奥陶系…组:段(0S)r{云岩,质一云,I)lK43l+051)~DIK43l+300俐分级V级。DIK431+300~DlK431+400m分级lv绒如用3,在DIK432+250~DIK432+650,视电阻率5O~200~m,该段洞身经过位置为杂乱的低阻特征,等值线扭曲变肜,为F32正断层带及其影响带。陔断层位于洞身DIK432+240处,走向NE45。,倾向135。,倾角70。,断层破碎带宽30m,岩石破碎,岩性较差,哪、WT8及WT9三处物探异常附近存在低阻闭圈,推测含水。DIK431+400~DIK432+200f_f;『岩分级Ⅳ级,DIK432+200~D1K432+500’绒V级,DIK432+500~D1K432+900分级JV级。

查看全文

地热资源勘探CSAMT法运用

地热资源是大家公认的一种新型、清洁、无污染的绿色能源,地热资源不但能够解决人们日益增长的对能源的需求,同时地下热水还具有洗浴、疗养、养殖、采暖、农业温室种植等方面的效用,具有较显著的经济效益和商业价值。为进行详细勘察,对目标区采用了CSAMT法(ControlledSourceAudioFrequencyMagneto—teluric可控源音频大地电磁法)勘探。

1理论依据

测区地层自太古界、古生界、中生界至新生界均有分布,第四系多分布于山间沟谷及河谷平原地带,古生界、中生界均隐伏或埋藏于第四系地层之下。地层由老至新有泰山岩群、奥陶系(主要岩性为灰岩夹泥灰岩)、石炭系一二叠系(主要岩性为砂岩、页岩和粘土岩)、古近系(主要岩性为紫红色粘土岩、砂岩及砺岩)及第四系地层(主要岩性为粉质粘土)。一般地层从泥岩、粉砂岩、细砂岩、中砂岩、粗砂岩、砾岩到灰岩其电阻率值逐渐升高,测区内地层比较平缓且地层沉积序列清晰、地层相对稳定。正常地层组合条件下,在横向与纵向上物性都有规律可循。

2方法简介

CSAMT法是可控源音频大地电磁法的简称。该方法是上世纪八十年代末才兴起的一种地球物理勘探新技术,它基于电磁波传播理论和麦克斯韦方程组导出了水平电偶极源在地面上的电场及磁场公式。沿方向的电场()与沿Y方向的磁场(毋)相比,并经过一些简单运算,就可获得地下的视电阻率()公式:式中,代表频率。由(1)式可见,只要在地面上能观测到两个正交的水平电磁场(Ex,毋),就可获得地下的视电阻率P,称卡尼亚电阻率。又根据电磁波的趋肤效应理论,导出了趋肤深度公式:从(2)式可见,当地表电阻率固定时,电磁波的传播深度(或探测深度)与频率成反比,高频时,探测深度浅,低频时,探测深度深。人们可以通过改变发射频率来改变探测深度,达到频率测深的目的。野外资料采集时发射电偶源偶极距AB采用1.5km,收发距为10kin,能够满足全区测点全部都位于在以供电偶极AB为边所张的60。的梯形面积内,保证探测深度和信号强度。野外施工如图1所示。

3资料处理

查看全文

防渗墙质量无损检测试验研究论文

摘要针对长江堤防防渗墙质量无损检测工作的迫切需要,在新的地球物理探测技术一时难以面世的情况下,开展了各种现有地球物理方法在堤防防渗墙质量检测中的有效性试验研究,在此基础上提出了以CSAMT法为主、多波地震映像法或垂直声波反射法为辅的检测方案。钻孔验证结果表明,该方案用于堤防防渗墙质量无损检测具有成果直观、精度高、适用性强和可靠性高等优点,并能反映出较小异常体的变化。在堤防防渗墙质量无损检测中具有广阔的应用前景。

关键词堤防防渗墙无损检测试验研究

一、引言

堤防防渗墙质量与长江沿线人民生命财产安全息息相关,因此,对已修建的堤防防渗墙进行全面的质量检测验收工作迫在眉睫[1]。

然而,防渗墙质量检测验收工作遇到了难题。目前的防渗墙质量检测工作量大、面广,施工工艺和人为等因素造成的质量问题复杂多样,规律性差。传统方法满足不了需要。由于大范围的在堤身造墙防渗的工作是中国堤防工作近年来所独有的一大特色,因而对我国地球物理工作者来说,堤防防渗墙质量无损检测工作没有现成的国外先进经验可以借鉴,加之其理论证演工作难度较大,计算机模拟计算的工作一时难以完成。因此,堤防防渗墙质量检测工作目前仍处于探索阶段。从目前情况看,较成功的办法是在墙体上打孔作弹性波CT,但此方法对打孔的施工工艺要求较高,因为墙体较薄,通常在15~30cm之间。要在这样的墙体上打孔而不偏离墙体,其技术难度较大,此外,由于该方法需要造孔,因而难以用作大范围的质量检测。

鉴于我国堤防防渗墙质量无损检测技术的现状,我们于1999年3月提出并开始研制新型的相控阵地质雷达系统。目前,该项研究已列为国家自然科学基金重大项目中的专题,最近又在国家863计划中作为一个课题立项,并得到了水利部长江水利委员会的大力支持和资助。但由于该系统在国内外尚无可供借鉴的先例,其研究开发工作从仪器设备、方法原理到软件开发和资料解释方法均需进行深入广泛的研究,研究周期长达4年。因此该方法目前一时还不能满足当前的堤防隐蔽工程质量检测之急需。

查看全文

堤防防渗墙质量无损管理论文

摘要针对长江堤防防渗墙质量无损检测工作的迫切需要,在新的地球物理探测技术一时难以面世的情况下,开展了各种现有地球物理方法在堤防防渗墙质量检测中的有效性试验研究,在此基础上提出了以CSAMT法为主、多波地震映像法或垂直声波反射法为辅的检测方案。钻孔验证结果表明,该方案用于堤防防渗墙质量无损检测具有成果直观、精度高、适用性强和可靠性高等优点,并能反映出较小异常体的变化。在堤防防渗墙质量无损检测中具有广阔的应用前景。

关键词堤防防渗墙无损检测试验研究

一、引言

堤防防渗墙质量与长江沿线人民生命财产安全息息相关,因此,对已修建的堤防防渗墙进行全面的质量检测验收工作迫在眉睫[1]。

然而,防渗墙质量检测验收工作遇到了难题。目前的防渗墙质量检测工作量大、面广,施工工艺和人为等因素造成的质量问题复杂多样,规律性差。传统方法满足不了需要。由于大范围的在堤身造墙防渗的工作是中国堤防工作近年来所独有的一大特色,因而对我国地球物理工作者来说,堤防防渗墙质量无损检测工作没有现成的国外先进经验可以借鉴,加之其理论证演工作难度较大,计算机模拟计算的工作一时难以完成。因此,堤防防渗墙质量检测工作目前仍处于探索阶段。从目前情况看,较成功的办法是在墙体上打孔作弹性波CT,但此方法对打孔的施工工艺要求较高,因为墙体较薄,通常在15~30cm之间。要在这样的墙体上打孔而不偏离墙体,其技术难度较大,此外,由于该方法需要造孔,因而难以用作大范围的质量检测。

鉴于我国堤防防渗墙质量无损检测技术的现状,我们于1999年3月提出并开始研制新型的相控阵地质雷达系统。目前,该项研究已列为国家自然科学基金重大项目中的专题,最近又在国家863计划中作为一个课题立项,并得到了水利部长江水利委员会的大力支持和资助。但由于该系统在国内外尚无可供借鉴的先例,其研究开发工作从仪器设备、方法原理到软件开发和资料解释方法均需进行深入广泛的研究,研究周期长达4年。因此该方法目前一时还不能满足当前的堤防隐蔽工程质量检测之急需。

查看全文

防渗墙质量检测分析论文

一、引言

堤防防渗墙质量与长江沿线人民生命财产安全息息相关,因此,对已修建的堤防防渗墙进行全面的质量检测验收工作迫在眉睫[1]。

然而,防渗墙质量检测验收工作遇到了难题。目前的防渗墙质量检测工作量大、面广,施工工艺和人为等因素造成的质量问题复杂多样,规律性差。传统方法满足不了需要。由于大范围的在堤身造墙防渗的工作是中国堤防工作近年来所独有的一大特色,因而对我国地球物理工作者来说,堤防防渗墙质量无损检测工作没有现成的国外先进经验可以借鉴,加之其理论证演工作难度较大,计算机模拟计算的工作一时难以完成。因此,堤防防渗墙质量检测工作目前仍处于探索阶段。从目前情况看,较成功的办法是在墙体上打孔作弹性波CT,但此方法对打孔的施工工艺要求较高,因为墙体较薄,通常在15~30cm之间。要在这样的墙体上打孔而不偏离墙体,其技术难度较大,此外,由于该方法需要造孔,因而难以用作大范围的质量检测。

鉴于我国堤防防渗墙质量无损检测技术的现状,我们于1999年3月提出并开始研制新型的相控阵地质雷达系统。目前,该项研究已列为国家自然科学基金重大项目中的专题,最近又在国家863计划中作为一个课题立项,并得到了水利部长江水利委员会的大力支持和资助。但由于该系统在国内外尚无可供借鉴的先例,其研究开发工作从仪器设备、方法原理到软件开发和资料解释方法均需进行深入广泛的研究,研究周期长达4年。因此该方法目前一时还不能满足当前的堤防隐蔽工程质量检测之急需。

因此,工程设计、施工监理和地球物理工作者开始重新审视传统的地球物理方法:现有的各种地球物理方法中,还有哪些方法没有用到堤防防渗墙质量检测工作?已用的各种方法中,那些被认为无效或效果不好的方法是不是已被彻底否定?现有各种方法之间有没有一个最佳配合的问题?各种方法的野外工作布置有没有新的潜力可挖?能不能开展一个广泛的试验研究工作,将现有的在原理上可用于堤防探测的各种地球物理方法(包括那些已用过的方法)尽可能地运用于某一典型的待检堤段,进行全面的、详细的试验研究,然后用钻探和开挖办法检测其综合结果,以确定各种方法的有效性,从而淘汰一些无效的方法,深化完善那些效果较好或稍有效果的方法,以缓解当前堤防防渗墙质量检测工作之急需?本文所开展的工作正是在这一思路指导下进行的。

二、试验区概况

查看全文

地质勘查中物探方法特点比较

摘要:本文通过对各种物探技术的基本原理、应用范围、适用条件进行分析,总结出各种物探方法的特点,并对物探技术在地质勘查工作中的应用提出建议。

关键词:地质勘查;物探;特点比较

在地质勘查工作实践中,相对于钻探法的成本高、风险大、周期慢、连续性较差等弊端,地球物理勘查方法(简称物探法)以其成本低、效率高、方便快捷、整体性/连续性较好而备受关注,应用范围也日益拓展。随着科技的发展,物探技术、设备、手段也日益完善和多样化。但各种物探技术也不是万能的,都有其自身的特点和一定的适用范围。

1电法勘探

1.1传导类电法勘探

(1)电测深法:最常用的对称四极电测深法可以探测水平或倾角<20°岩层电性层的电阻率和埋深。(2)电剖面法:联合剖面法可探测产状较陡的层状、脉状低阻体或断裂破碎带;中间梯度法可探测产状较陡的高阻薄脉如石英岩脉、伟晶岩脉。(3)高密度电法:可用于地基勘查、坝基选址、水库或堤坝查漏和探测裂缝、岩溶塌陷、煤矿采空区。(4)自然电场法:勘查埋藏较浅的金属硫化物矿床和部分金属氧化物矿床,寻找石墨和无烟煤,确定断层位置,寻找含水破碎带,确定地下水流向。(5)充电法:判定充电导体的形状和范围、顶部和边界,主要用来勘探良导性多金属矿床、无烟煤、石墨以及水文地质、工程地质问题的解决。(6)激发极化法:判断脉状体的产状。

查看全文

地质勘查与钻探找矿技术分析

据相关数据表明,21世纪以来,已被探明的矿产资源仅占总矿产储备量的1/3,且大都为浅地表矿产或露天矿产。地质勘查专家认为,在未探明的矿床资源中,深部矿产资源是其中的重点矿产勘查对象。因此,深部地质找矿技术和理论研究具有重大战略性意义,但国内对这一方面的研究尚不成熟,地质勘查方法的理论研究和深部找矿技术成为了深部矿产勘查开发的热点及难点。

1地质勘查与深部地质钻探找矿技术的现状

地质勘察与深部地质钻探技术是一项在地质形式的基础上,在深部开采前进行的地质环境分析和勘查工作。地质勘查主要是指对含丰富矿物质地区进行矿化检测,现阶段在深部找矿方面的应用仍处于起步阶段。深部找矿技术所能勘查到的深度目前仅为300~500m,与其他深部找矿起步较早,勘查深度可达1000m的西方国家之间,仍具有较大差距。

2物探技术在深部找矿的应用

目前深部找矿基本均属于预测性找矿,其基本流程见图1。在深部矿产的地质勘查工作中,其核心任务之一是对深部矿的赋矿位置进行准确界定,而前期深部地质信息的来源基本都依赖于物探技术。传统物探技术在深部找矿中的应用主要体现为以下几个方法上:瞬变电磁法(TEM)、可控源音频大地电磁法(CSAMT)、金属矿地震勘探法、井中物探方法和大比例尺航空物探方法。2.1瞬变电磁法。(TEM)瞬变电磁法(TEM)是目前普及度较高的找矿技术。相对于传统的直流电、继电法,其探测深度大,垂直分辨率高。经实践证明,瞬变电磁法(TEM)的探测深度可达300~400m。2.2可控源音频大地电磁法。(CSAMT)可控源音频大地电磁法(CSAMT)的工作原理是通过在工作范围内逐步改变电磁频率,进而对不同地质深度进行取样,其探测深度可达1000m左右。2.3金属矿地震勘探法。金属矿地震勘探法早前只应用于盐田和一些沉积矿床的勘查,而后在加拿大发展成为一种可勘测深部隐伏矿的勘查技术。其工作原理是利用人工模拟的地震波的传播规律来对地质情况进行勘查。国内该技术暂时处于空白阶段。2.4井中物探方法。井中物探是指采用多种传统物探方法对井壁四周和钻孔底部的信息进行获取,其中井中瞬变电磁法作用效果最好。2.5大比例尺航空物探方法。大比例尺航空物探方法具有远距离、快速检测地质信息的能力,配合GPS可区域地质填图中进行深部找矿。

3钻探技术在深部找矿的应用

查看全文

综合物探技术在地质资源勘查的应用

摘要:本文通过对邯郸实地数据分析,结合相关资料,确定了基地断裂及断裂系统的分布,对矿山地质资源开发的远景做出评价,为进一步勘查提供了依据。

关键词:重力;可控源;矿产资源

随着科学技术的发展,近几年在邯(郸)邢(台)东部平原区的地质资源开发有了突破性进展,在邯邢东部大平原成功探采地质资源井拾余眼,不但提高了经济和社会效益,同时丰富了地质资源赋存与勘探理论。根据城市总体规划,打造节能、环保的绿色城市,启动寻找到具备经济和环保价值的地质资源的计划,已经成为该地区的首要任务。

1概述

邯郸地区地层地质构造上属华北平原冀南坳陷,西邻太行山地,东为平原区,属隆起与坳陷的交界处。平原区内NNE和NWW向的两组断裂均较发育,控制着第三系和第四系的沉积,也控制着井下资源的赋存条件。勘探矿区东部属NNE向的邢台-安阳大断裂(又称邯郸大断裂),走向NE10°,倾向东。在邯郸附近,断裂下盘为三叠系,上覆较薄的第三系与第四系,上盘为侏罗系或白垩系,上覆厚千米的第三系和第四系。该断裂附近微震频繁,反映新构造运动强烈,断裂的下盘下庄、黄粱梦附近地温梯度较高。另一方面新生界基底形态向东倾斜,反映该区是东部坳陷的西翼抬起端,这些特征都有利于矿产资源的聚集。

2施工方法

查看全文

音频电磁法在工程地质勘察的应用

摘要:音频大地电磁测深法简称AMT,属于地球物理电法勘探中的一种方法。它采用天然场源,其具有勘探深度大、抗干扰能力较强和工作效率高等特点,适合南方地形起伏地区工程中的中深部地质勘察。对指定隧道测段(YK29+0~YK29+600)开展AMT工作,结合视电阻率剖面进行二维反演,得到地电断面。通过分析研究,推断出了工程地质不利条件,为解决隧道勘察施工中的工程地质问题提供了有力依据。

关键词:地球物理;地形起伏;频率;反演电阻率断面图

我国西南地区有着独特的气候和地质条件,岩溶、断裂、软弱层及地下水发育等工程地质问题突出,对工程建设、矿产资源开采造成诸多不利条件。通常工程勘察、灾害调查等多采用传统的高密度直流电法和浅层地震[1]相结合的手段,但是在地形起伏大[2]、接地条件差、勘探深度较大的西南山区,往往效果不佳。天然场音频大地电磁法[3](以下简称AMT法),采用的是天然电磁场,在频率域数据采集与处理,有效勘探深度达到1000m,该方法抗干扰能力较强,仅受工业电磁影响较大,适合工业偏少的西南山区工程勘察。本次尝试对指定隧道测段(YK29+0~YK29+600)开展AMT工作,其具体目的任务为:探测150m以浅深度范围内断层、破碎带、岩溶、暗河以及富水岩体的埋深、规模和分布,并根据视电阻率对岩体进行围岩类型划分,为隧道施工提供物探依据。

1勘察区地质特征

隧址区出露地层主要为侏罗系中统沙溪庙组(J2s)泥岩夹粉砂岩地层,第四系全新统坡残积层(Q4dl+el),第四系(Q4ml)粉质粘土层等,总厚度816m~1079m。现对主要岩性分别叙述如下:泥岩:呈棕红色,成分主要为长石、石英、云母及粘土矿物,中~厚层状构造,泥质结构,泥质胶结为主,局部有钙质结核。粉砂岩:呈青灰色~褐灰色,成分主要为石英、长石、云母及岩屑,中~厚层状构造,粉细粒结构,泥钙质基底式胶结。

2勘察区电物性特征

查看全文

深究水利水电项目深埋长隧洞勘察方式

多年来,随着我国经济社会发展的需要,水利水电和铁路、公路等行业相继修建了一批深埋长隧洞工程,如国内已建成的辽宁大伙房输水隧洞、引黄入晋南干线7号输水隧洞、穿越秦岭的铁路隧洞、锦屏二级电站引水发电洞等。

其中辽宁大伙房输水隧洞长85km,是当今世界上单洞最长的水工隧洞,锦屏二级电站引水发电洞最大埋深达2500m,是我国目前埋深最大的水工隧洞之一。

另外,还有一批深埋长隧洞工程正在施工或正在规划设计,如新疆某补水工程穿天山隧洞,陕西引汉济渭工程穿秦岭隧洞,南水北调西线工程克柯—黄河隧洞、扎洛—克柯隧洞,青海引大济湟穿大阪山隧洞等,其中最长的达77km,最大埋深达2200m。

无论是国内还是国外,深埋长隧洞的工程地质勘察技术还不成熟,还存在不少困难,是水利水电工程地质勘察突出的难点之一,主要表现在:①地面海拔高,交通困难,勘探设备甚至技术人员难以到达洞线位置。

②勘察测试手段跟不上隧洞工程发展需要,1000~3000m的深度以及高应力、高水头条件尚缺乏适宜的勘探试验设备,现有的勘探试验方法选择受到限制。

③随埋深的显著增加,工程地质问题更为复杂,可借鉴的工程实例不多。

查看全文