大学物理质点运动学总结范文

时间:2023-04-07 01:49:34

导语:如何才能写好一篇大学物理质点运动学总结,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

大学物理质点运动学总结

篇1

1.1研究对象的不同对于研究对象,中学物理一般只讨论自然现象中的简单问题如一维问题,而大学物理讨论的是二维、三维甚至多维等复杂问题。比如对于力学内容,中学力学只研究加速度为恒矢量的质点运动学和动力学问题,而大学力学则还要研究加速度变化时的质点的运动学和动力学问题,中学力学只研究质点的运动问题,而大学物理力学还要研究刚体的运动学、动力学问题,从研究对象上看更广更趋于一般化。中学物理仅对宏观简单特殊规律作一般性的认识和了解就够了,而大学物理则要进一步研究物质运动的理论本质,要运用数理统计的方法得出自然界一般性的普适规律,更上升了一个理论的高度。

1.2研究方法的不同中学物理因研究对象简单,数学知识基础少,所以研究方法基本是归纳法,讨论的规律基本上是从物理现象出发,通过简单实验总结出来的简单规律,比如中学物理力学中得出动量定理、动能定理的时候都是实验归纳法得出的,并且涉及的力基本是恒定的,只讲恒力的冲量、恒力的功,平均冲力等,在电磁学中只介绍匀强磁场、匀强电场的规律等。而大学物理与自然实际就更接近了,要讨论变力的冲量、变力所做的功、非均匀磁场、电场,而研究这些复杂问题所用工具主要是高等数学的微积分思想、矢量代数,通过数学推导演绎的方法结合物理概念得出物理规律,即大学物理讲的规律比中学物理的规律又上升了一个理论的高度。

1.3教学内容和教学进度的不同从教学内容来讲,中学物理量少,概念、原理、规律简单,对物理基本概念和基本定律只有初步浅层的认识,而大学物理涉及的知识量大,概念、原理多且相对复杂,对物理基本规律和物理基本定律要求更多的是掌握其本质和内涵。从教学进度上讲,中学物理讲的较慢,每个概念,每个公式,每个原理教师会进行全面详细讲解,每一个知识点教师都会讲透讲精,讲课重点放在解题技巧的应试训练上,教师会给学生总结题型,归纳方法,并督促学生为了高考不断学习,学生的学多是跟着教师按部就班。而大学物理教学内容量大,而教学时数非常有限,进度快,教师讲课一般都只着重把握知识整体框架,讲清思路,注重理论性、系统性,不象中学那样讲得精细全面。对于解题方法有总结归纳,但习题课的次数较少,学生运用所学知识解决问题的能力较弱,对习惯于被安排、缺乏学习主动性的中学生,就很难在短时间内适应大学教学过程。

1.4学生学习方法的不同中学生一般课前不预习,课后也很少翻阅知识辅导书,只要课堂上跟着老师听课,课余时间除了完成老师布置的作业外,就是作大量的习题,实行题海战术,重复熟练程度高,认为学好物理的标准就是多做题,解难题,学生自主接受新知识的能力较差,不善于提问题,对教师的依赖性较强。而大学生必须做到课前预习,带着问题去听课,课堂上抓住重点、难点,做好课堂笔记,课后要翻阅大量课外资料,对所学知识要融会贯通,及时复结,做的题目不在多,而在精,要学会自学,善于提出问题,要有比较强的学习主体意识。中学物理由于数学知识的欠缺,很多物理概念、规律都是直接给出,没有经过推导,这就决定了中学生接受物理知识的方式主要靠记忆,而大学由于有了高等数学、矢量代数、数理统计等工具,物理概念、物理规律大多可以做详尽的推理,因而大学物理学习概念更注重概念的理解和掌握,物理过程的分析和论证。

2如何做好大学物理和中学物理教学的衔接

2.1循序渐进,适当放慢教学进度学生已习惯于中学教学慢节奏,少容量,讲练结合的教学方法,若一开始就进行快节奏,大容量的教学,学生一下子不能适应,这不仅影响了大学物理的教学效果,同时也会挫伤学生学习物理的积极性。所以,我们在教学过程中最初应适当放慢教学进度,使学生逐渐适应,慢慢逐步进入正常的教学进度,从而达到让学生适应大学的教学进度,学会大学的学习方法。

2.2通过物理绪论课灌输大学物理的重要性大学教师应充分考虑大学物理和中学物理的区别,从一开始就让学生明白大学物理和中学物理在研究对象、研究内容、学习方法等方面有许多的不同,让学生知道大学物理不是中学物理的简单重复。同时我们在绪论课中,应介绍物理学的发展历史、物理学的发展现状和物理学的发展的未来展望,从而引起学生学习物理学的兴趣,另外对理工科学生来说,可以适当地给他们介绍物理学和自己未来的专业的联系,以提高他们学习物理的积极性,例如对我们纺织专业的学生,可适当介绍量子力学与纺织材料等、质点、刚体力学与纺织机械方面的关系。同时还应强调,大学物理的基础学科性质,学学物理不仅仅服务于后续的专业知识,更重要的是学会一种思维的方法、学习方法以及研究问题的方法。

2.3从中学物理内容过渡导入大学物理课题在教学内容方面,很多大学物理知识是在中学物理内容基础上的提高,教师在物理教学时应简要复习中学教材内容,使学生对所学过的内容做一个简单回忆,随后指出中学物理知识的局限性或特殊性,从而比较自然地引入内容,使学生顺利地从中学物理知识过渡到大学物理知识的学习。要做到这一点,必须了解和研究中学物理教材内容,比如直线运动,中学研究了匀加速或匀减速直线运动,但加速度变化时的直线运动该如何考虑呢?比如圆周运动,中学研究的是匀速圆周运动的规律,但当速率变化时,圆周运动的规律又是如何呢?恒力的冲量的定义式和恒力做功的公式中学里都学过,变力的冲量和变力所作的做功又如何计算呢?这样中学内容过渡导入的话学生会很容易从已学过的知识比较顺利地过渡到大学知识。

篇2

关键词 坐标系;大学物理;运动学

中图分类号O4 文献标识码A 文章编号 1674-6708(2013)90-0162-02

微积分有着广泛而重要的应用。用微积分求解物理有关问题,是大学物理教学的重点和难点,不易理解和掌握1。但对刚刚开始学习运动学部分的大一新生而言,最困难的不是微积分本身,而是如何选用坐标系来简化微积分运算的问题。一般而言,一个运动学问题可以用多个坐标系来求解,但选择不同坐标系求解同一运动学问题时,所得到的轨迹方程存在着巨大的差别。

轨迹方程越简单,对其进行求导(求速度和加速度)运算就越简单,列出简单轨迹方程的坐标系就比较适合用来求解这类运动学问题。

可以这么说,在运动学中不同的坐标系适合用来解决不同类型的运动学问题,具体而言就是:直角坐标系比较适合用来求解直线运动问题和轨迹方程为一次函数的曲线运动问题;极坐标系比较适合用来求解轨迹方程无法确定的曲线运动问题;自然坐标系比较适合用来求解轨迹方程为二次函数的曲线运动问题。

下面对提出上述论点的理由和依据进行详细论述。

1 求解直线运动问题时,直角坐标系比较占优势

当物体运动的轨迹为直线时,直角坐标系列出的方程一般比较简单,如y=ax+b;极坐标系和自然坐标系列出的方程是由直角坐标方程转换而来,转换而来的方程又比原来的直角坐标方程复杂一些。

现将直角坐标系、极坐标系和自然坐标系对直线轨迹的描述列表如下:

如表1所示,当运动轨迹为直线时,直角坐标方程非常简单,极坐标方程和自然坐标方程比较相似,比直角坐标方程要复杂得多。

一般来说,方程越简单,对其求一阶导数(求速度)和二阶导数(求加速度)的过程就越简单,对比较简单的直角坐标方程进行求导,无疑要比对极坐标方程和自然坐标方程的求导简单的多。也就是说,运动轨迹为直线的运动学问题,使用直角坐标系求解比较占据优势。

2 解决曲线运动问题时,直角坐标系、极坐标系和自然坐标系各有所长

曲线运动的种类有很多,大致可以分为:轨迹为一次函数的曲线运动、轨迹为二次函数的曲线运动和无法确定轨迹函数的曲线运动3类。直角坐标系、极坐标系和自然坐标系在求解这3类运动学问题时,需要列出的计算公式和有效计算步骤也不尽相同。

下面对什么坐标系适合求解什么曲线运动问题展开详细论述。

2.1求解轨迹方程为一次函数的曲线运动时,直角坐标系比较占优势

当物体曲线运动的轨迹为一次函数时,直角坐标系列出的方程一般比较简单,如:y=sinx,y=cosx。

而要将这些直角坐标函数转换为极坐标函数和自然坐标函数,一般是比较困难的。相当于这种困难而言,对直角坐标函数进行一次求导(求速度)和二次求导(求加速度)并不复杂。这种强烈的反差显示,当曲线轨迹方程为一次函数的运动学问题时,使用直角坐标系求解比较占优势。

2.2求解轨迹方程无法确定的曲线运动问题时,极坐标系比较占优势

有些曲线运动问题中没有给出明确的轨迹的方程,求解这类运动学问题可以用极坐标系和直角坐标系,一般不使用自然坐标系,因为自然坐标系求解运动学问题时一般需要明确的轨迹方程。

这类运动中物体所受的力一般都是有心力,而求解质点受有心力作用而运动的问题时,用平面极坐标系就比用直角坐标系方便的多2。

下面分别使用直角坐标系和极坐标系,对一个轨迹方程无法确定的曲线运动的进行分析,在分析的基础上对求解过程的复杂程度进行比较。

例1、如图,已知速度v在i轴的分量为,j轴的分量为,求沿i、j轴的加速度。

对这道例题分别用直角坐标系和极坐标系,求解其速度。现将解题步骤列表如下:

直角坐标系 极坐标系

如表2所示,极坐标系求解速度是,只有2个计算,有效计算步骤4步;直角坐标系求解速度时,有6个计算,有效计算步骤10步。

经过对比,可以看出极坐标系在求解速度上优势明显,如果在进一步求导(求加速度)的话,极坐标方程求导难度不大,而直角坐标方程求导的难度却大大增加了,极坐标系求解该运动学问题的优势将继续增大。也就是说,极坐标系更适合用来求解轨迹方程不确定的曲线运动问题。

2.3求解轨迹方程为二次函数的曲线运动问题时,自然坐标系比较占优势

当物体曲线运动的轨迹为二次函数时,特别是运动轨迹为圆锥曲线时,直角坐标系列出的轨迹方程一般比较复杂,如:、、等,而极坐标系对圆锥曲线的描述为,当e1时曲线为双极线 。如果参数e和p容易获取的话,对极坐标方程式求一阶导数和二阶导数的过程,要比对直角坐标方程式求一阶导数和二阶导数的过程简单得多。

因此、当物体曲线运动的轨迹方程为二次函数,特别是轨迹方程为圆锥曲线时,比较适合使用极坐标系或自然坐标系求解。求解这类问题,自然坐标系又要略强于极坐标系。

下面分别使用自然坐标系和极坐标系对一个轨迹为椭圆曲线的例子进行分析,写出解题过程,并对解题过程进行详细比较。

例2:质点沿着半径为r的圆周运动,其加速度矢量与速度矢量间夹角保持不变。求质点的速度随时间而变化的规律。已知初速度为。

对这道例题分别用极坐标系和自然坐标系,求解其初速度。现将解题步骤列表如下:

如表3所示,虽然极坐标系和自然坐标系都能够顺利求解,但自然坐标系的求解过程比极坐标系的求解过程要简单很多。也就是说,在同样能够顺利求解的情况下,自然坐标系能更好的求解这类问题。

因此,求解轨迹方程为二次函数的曲线运动学问题时,特别是求解轨迹方程为圆锥曲线的运动学问题时,自然坐标系比较占优势。

综上所述,直角坐标系、极坐标系和自然坐标系在求解运动学问题时,各有各的优势。

具体而言就是:求解直线运动问题时,直角坐标系比较占优势;求解轨迹方程为一次函数的曲线运动,直角坐标系比较占优势;求解轨迹方程无法确定的曲线运动问题时,极坐标系比较占优势;求解轨迹方程为二次函数的曲线运动问题时,自然坐标系比较占优势。虽然在总结这些规律的过程中难免有疏漏之处,但这些规律还是能够大致反映各个坐标系的特点的。在课堂教学中将这些规律传授给学生,对提高学生的解题能力很有帮助。

参考文献

[1]梁小佳.微积分在大学物理中的应用探究[J].甘肃高师学报,2010,2:78.

篇3

关键词:理论力学与材料力学;教学探索;学习探究

中图分类号:G648 文献标识码:B 文章编号:1672-1578(2013)12-0009-01

1.引言

理论力学和材料力学课程作为力学系列课程的重要的组成部分,其教学质量直接关系到后续相关课程的教学进程、学生工程能力的培养及继续深造等方面的问题。与此同时,随着科学技术的不断发展和教学改革的深入,对理论力学和材料力学的教学也提出了更高的要求。为解决不断减少的教学课时和提高学生综合素质之间的矛盾,传统的教学方法、教学模式、教学手段已然不能满足日新月异的社会需求,我们必须更新教学理念和教学模式,调整课程内容,改进教学方法,优化教学手段,以提高课堂质量和信息量。为此,理论力学和材料力学课程的分析与探究便应运而生。

2.理论力学与材料力学课程特点

2.1 内容繁杂,分得过细。理论力学与材料力学的共同特点就是内容繁杂且内容分得过细。就理论力学而言,其主干内容有:静力学部分就分为平面汇交力系、平面任意力系、空间力系等;运动学部分分为点的运动和刚体的运动等;运动学部分则分为质点和质点系的三大定理--动量定理、动量矩定理、动能定理,以及达朗贝尔原理和虚位移原理等。而材料力学则更为繁杂,其主干内容可概括为轴向的拉压、剪切、扭转和弯曲四大基本变形。这样一来,学生学完课程后,感到内容繁杂,理不出头绪,不便于掌握。

2.2 内容陈旧,不利于教学。理论力学课程一般是安排在大学物理之后开设的,而材料力学则安排在理论力学之后。理论力学中的很多内容在大学物理中都有所涉及,学生已经学过。但理论力学传统的讲授方法还是从学生"熟知"的特殊而又简单的情况开始,在逐步向一般情况,引进新内容[1]。这样的内容编排,使学生很容易产生一种错觉,认为理论力学只不过是大学物理的进一步延续和补充,调动不起学生的积极性。

2.3 听课容易,解题困难。由于理论力学中大多数概念和基本定律在大学物理中已经学过,有一定的知识基础,相对其他课程而言,比较容易接受,但等到做题时就感觉脑中一片空白,无从下手或一出手就出错。结合笔者的亲身感受,总能切身体会到这种感受,课堂上,听讲很容易理解,但是当自己独立解题时,就感觉无从下手。

3.理论力学与材料力学课程学习现状

3.1 课时缩减,课程老套。近年来,为了满足社会多样化需要,高校开的选修课日益增多,对选修课的要求也正在逐步提高,与此同时,专业课的学时大幅缩减,理论力学和材料力学也是如此。此外,传统的理论力学教学内容重经典、轻现代;重计算、轻建立力学模型;教学方法重讲授、轻参与,使学生的知识积累与解决问题的能力相脱节[2]。

2.2 题目抽象,缺乏实践。例题、习题中大部分是抽象化的力学模型,很少涉及工程实际问题。由于对例题和习题的过分理想化、学术化,是学生很难将其与实际应用结合起来,知识学习缺乏明确的工程目标,难以理解学习目的和意义,这样不仅不利于提高学生的学习兴趣,更不利于培养学生分析问题、解决问题的能力。

4.理论力学和材料力学教学改革的探索

4.1 课程教学内容体系的改革

4.1.1 合理安排,强化重点。对理论力学而言,需加强静力学学习,尤其是受力图的绘制;运动学要避免重复,将与大学物理重叠的内容,可以弱化,做针对性教学,将节省的学时用于重点和难点内容;同时强调对综合分析处理问题能力的培养。对材料力学,要注重教学内容各章节之间的关联性,合理安排教学内容。无论是理论力学,还是材料力学,其重点内容都必须要强化讲解、强化训练。

4.2 课程教学模式的改革

4.2.1 淡化知识应用,注重思路方法。多年来,理论力学教学内容基本按照静力学、运动学、动力学三大部分逐一讲解,而材料力学按照之后想拉压、剪切、扭转和弯曲进行讲解。尽管理论力学、材料力学各部分内容相对独立,但其研究方法却有诸多相似之处。鉴于此,在教学内容的组织上,可以打破传统的教学模式,淡化知识的横向应用,突出二者研究问题、分析问题的思路和方法。

4.2.2 建立专题,突出重点。采用各个击破的方略,将教学内容分为一系列的小专题,各个专题突出中心,细化解题方法、强化训练,使学生有目的性、针对性的学习,从而加深理解便于掌握。如材料力学,构建横截面上应力分析及强度条件专题:集中讲解杆件各种受力(轴向拉压、联接件的剪切与挤压、平面弯曲)情况下横截面上应力分析的方法,应力的分布规律及构建迁都条件的建立[3]。如理论力学,建立动力学专题,将各种定理使用的条件进行汇总、整合,是学生很容易理解掌握。

4.3 课程教学方法改革

4.3.1 采用启发式教学,强化解题通式通法。启发式教学的关键是提出问题,说明问题的性质和分析问题的方法,着重引导学生学会总结规律性的东西,培养学生科学的思维方法,提高学生分析问题和解决问题的能力[4]。在理论力学和材料力学的学习过程中,通常都会出现一题多解的现象,很多学生过分的追求巧妙的技巧方法。所谓的巧解,都是有一定的使用前提,局限性很强,相反而言通式通法则是没有局限性,它是解题的基本思路和方法。

4.3.2 重点内容系统化、模块化。将重要的内容系统化、模块化,是为了将知识更好地掌握,同时是对知识点的一个理解和整合的过程。很多同学在学习时学习主观能动性较差,很不注重将所学的知识进行系统的整理,往往是被动接受知识。当所学的知识内容过多时,解题就会出现张冠李戴,东拼西凑的现象。为了将所学的知识进一步深化和掌握,将解题重点内容系统化、模块化是十分有必要的。

4.3.3 理论结合实际,加强习题教学。对于工科的学生而言,学习的理论知识最终的目的是解决工程实际问题,而理论力学和材料力学作为工科学生的一门基础性学科,在教学内容的讲解和学习过程中一定要体现出它的实用性。解题是一个从理论到实践的过程,是把书本上的理论知识转化为解题能力的过程,同时解题环节也是对基本理论掌握和运用的检验[5]。课后的练习也很重要,事实上,学生们的课后练习程度很大程度上决定了学生对理论力学和材料力学知识的掌握程度。

5.结束语

民办高校是顺应高等教育改革和社会多样化需求而出现的新事物,因生源、培养目标不同,课程体系势必有别于普本。针对理论力学和材料力学课程特点和学习现状,其教学内容、教学模式、教学方法及教学手段等方面进行了探索与改革。通过改革,不仅可以使教学质量得到提高,而且使学生能够有效地掌握理论力学和材料力学的知识。作为工科学生的重要专业基础课,理论力学和材料力学的分析与探究是一项任重而道远的工作,需要不断的探索和实践。

参考文献

[1] 胡宇达,杜国君. 理论力学教学改革初探[J]. 教学研究,1998(6):95--97.

[2] 李灵君,李晓莲,时志军. 浅谈理论力学课堂教学改革. 甘肃科技 2011(7) 第27卷,第14期.

[3] 吴坤铭,毕守一 基于应用型人才培养的材料力学教学改革探讨. 安徽水利水电职业技术学院学报 2012(3) 第12卷,第1期.

篇4

1.1学生基础差,不重视作为本三院校的学生,高中物理基础普遍比较薄弱,许多同学基础概念及定律不清楚,给大学物理的学习造成了困难.另外,学生的高数基础不扎实,无法在物理模型建立中灵活应用微积分等高数知识.再次,现在的学生学习功利性比较强,学生们主要把精力放在英语、计算机等考证科目,甚至一些校外的考证上,而对大学物理这门课程重视不够.

1.2教师教学模式固定化教师上课大部分还是采用老式的教学法,以教师讲授为主,照本宣科,致使学生觉得课上枯燥无味.另外,教师教学中教学大纲统一化,不同专业采用同一教学大纲,没有专业特色,与学生专业课课程结合不够紧密和充实,因此学生对大学物理课程兴趣不够.

1.3考评方式单一本校大学物理的考评方式基本是采用期末成绩为主,平时出勤和作业为辅的的方式.学生学部分还是以应试为向导,学习被动,没有深入领会到物理的奥妙.

2改革方向

为了解决教学中遇到的这些问题,针对独立学院特色,大学物理改革可以从以下几方面入手.

2.1不同专业区分对待,应制定不同的教学大纲大学物理涵盖的内容是非常广泛的,包括力学、热学、电磁学、波动光学和近代物理等五篇,如果要全部授予学生,学时往往不够,而且只授予学生点滴皮毛知识而已.教师应该深入各系进行调研,了解不同专业的需求.教学中做到心中有数,有针对性的授课.让学生深刻认识到大学物理有本专业的特色,为他以后的专业课学习以及之后的工作有所准备.比如对于机械类专业,跟物理紧密相关的专业课程有“理论力学”“结构力学”“工程力学”等,对于他们大学物理教授时应重点放在力学和热学篇章,如质点运动学、牛顿运动定律、功和能、动量、刚体定轴转动、机械振动、热学等.教师在授课时就应该多注重力学的分析和计算,并且多举一些跟专业相关的例子,如飞轮、皮带轮、滑轮的转动问题,桥梁结构的承重、钢架的频率和周期等.而对于电子信息类专业,后续的专业课程里“电路分析”“电子技术”跟物理关联较大,对于他们大学物理教授时应重点放在电磁学篇章,并多介绍相关的科研新进展,以增强学生对大学物理的兴趣.同时,增设电磁波的知识点并将其作为重点介绍,为后续专业课程电磁场与电磁波做好准备.

2.2物理理论与实验教学结合大学物理是一门实验性的科学,很多物理定律都是实验总结得到的.但是很多学校的大学物理理论课和实验课是分开设置的两门课,由不同的教研室不同的老师教授.这样的教学就有可能使得理论和实验相脱节.应该加强理论课和实验课的统一,或者直接由同一部门来授课.有些比较复杂的实验在实验室操作,而有些仪器比较简单的实验可以直接搬到教室穿插在理论课上进行演示.建议可以学习麻省理工学院的WalterLewin教授在公开课《电和磁》课上的的授课方式,用直观的实验来演示复杂深刻的物理原理,使得课程具有启发性和趣味性.比如,静电屏蔽、光的偏振、驻波等都可以穿插在理论课上进行演示.这样不仅可以化抽象为具体,学生亲眼看到,甚至亲自参与验证,对定理的理解会更加深刻,同时可以提高学生的学习兴趣,激发他们的科研兴趣,培养创新意识.

2.3将物理理论和现实生活和社会实际结合起来物理学并不是一堆枯燥的定理和公式堆砌起来的学科,它反映的是自然界万物的规律,是一门和生活息息相关的学科.物理课程改革要强调“从生活走向物理,从物理走向社会”,即注重与社会实际和生活实际相联系.而物理教师就可以起到这个桥梁的作用,教师在上课时,要特别注意将物理内容和实际生活的应用联系起来介绍,激发学生学习兴趣.比如,讲到涡流时,就可以举电磁炉、涡流探伤、探测金属(安检、扫雷)等例子;讲到角动量守恒定律的应用时,就可以举跳水运动员空中翻转、花样滑冰运动员旋转、舞蹈演员旋转等例子;讲到热学循环时,就可以介绍冰箱、空调的工作原理等.把物理理论知识跟生活社会实际结合起来,学生能够深切体会到物理是一门很有用的学科,变被动接受知识为主动学习.

2.4考评多样化,注重素质教育对学生大学物理课程的考评单纯采用平时作业和期末考试的形式的话,不能完全反映学生对物理知识的掌握和应用程度,这种考核方法不适应素质教育的要求.比较全面而科学的评价标准应该包括对知识的理解、应用和创新.教师可在传统考核方式的基础上增设其他比较开放、灵活的考核方式,比如李元杰推荐的数字物理教学方法。可根据学生专业特点在开学初开设一些小课题或者小应用公布给学生选做,学生可以自由组队选题,也可以个人单独选题.让学生自己检索资料、分析原理,并以科技论文或课件的形式在课上跟大家回报分享和讨论,有些模型还可以做成动画的形式演示出来给大家看.这样不仅可以开阔学生的视野和思路,也能培养学生自学能力、科研能力和创新能力.这样的考核方式还可以让师生很好的互动起来,并让学生充分参与到课堂教学上来,同时锻炼了他们的团队协作精神和社会实践能力.课题的成果最终计入本门课程总成绩中,教师评价的话也可以灵活一点,直接让全班学生现场评分.

2.5成立物理兴趣小组大学物理作为一门公共课,一般都是大班授课,很多学生有问题也很难全部在课上反应给老师,师生互动也会受到限制.为了解决这个问题,可以在班里或者整个学校内成立物理兴趣小组,也可以建立相关的物理网站和论坛,大家可以聚在一起或者在论坛上讨论问题,各抒己见.老师可以定期参与到兴趣小组的讨论中,并随时到物理论坛上跟同学交流讨论.同时还可以把课件、题库、演示实验、上课视频、物理学史介绍等资料上传到网上,还可以设置网上辅导、在线提问等模块,以弥补课上教学课时的限制,同时扩充大家的视野,拉近师生距离.只有当学生和老师之间建立起个人的直接联系的情况下———这时学生可以讨论概念、思考问题和讨论问题———才能达到最好的教学效果.

2.6承上启下大学物理教学要做到承上启下.所谓的承上,指的是要结合中学物理和高等数学的基础.首先要让学生理解大学物理不是中学物理的简单重复,大学物理比中学物理要更加广博,内容也更加深奥.教师在授课过程中,要与已经学过的中学物理内容联系起来,进行比较和区别,引导学生应用新的思维,采用新的方法来解决大学物理问题.其次要让学生明白高等数学与大学物理的密切联系,在大学物理授课之前,都要先了解学生的高等数学基础,对于高数基础比较薄弱的,还要适当的给他们补习高数的知识,特别是矢量代数和微积分运算.大学物理教学也要做到启下,即为学生后续的专业学习和工作服务,让学生认识到大学物理的意义所在.

3结束语

篇5

【摘要】物理学方法是连接原有物理知识与新物理概念、规律的桥梁。文章讨论了几种常见的物理学方法,分析并阐述了物理学方法在物理学学习中的作用以及在培养学生物理学习能力方面的重要意义。

关键词 物理学方法;物理概念;物理学习

中图分类号:G633.7文献标识码:A文章编号:1671-0568(2014)24-0025-02

基金项目:本文系国家科技部项目“沙漠腹地沙尘监测与信息获取关键技术合作研究”(项目编号:2011DFA11780)的阶段性成果。

一、物理学方法的界定

方法是研究问题的门路和程序,也是方式和办法的整合。所谓物理学方法,就是研究、学习和应用物理学的方法,是物理思想的具体表现。物理学方法的指导思想是唯物辩证法理论,它是一种研究性方法,其中包括如何描述、研究物理现象,如何验证、总结物理规律等。

二、物理学方法的分类

在物理学习、研究中用到的物理学方法比比皆是,下面具体介绍几种常用的方法:

1.实验法。物理是一门以实验为基础的学科,实验法是指通过利用实验仪器观察实验现象,记录实验数据,经过整理、分析实验数据进而得出规律性结论的一种方法。在物理的学习中,物理实验与我们形影不离。尤其是理想实验,如“高速运动的汽车”、“伽利略的斜面理想实验”等这种理想实验模型把在实验室中无法完成的实验用人的想象力在人的思维中完成。实验法也是大家最运用自如的物理学方法。当然,在实验法中最重要的就是明察秋毫、实事求是、一丝不苟的实验态度。

2.假设法。由于现实生活与理想的物理环境相差甚远,假设法就成为一种分析物理现象的重要方法。当我们在物理学习和物理教学中遇到一些似是而非的物理问题时,用假设法会有意想不到的收获。例如,分析“放置在墙角的足球是否受到竖直墙面给的支持力”时,我们可以假设没有竖直墙面,看看足球的运动状态是否改变,若改变则竖直墙面对它有支持力,反之没有。这个方法在判断摩擦力的有无时屡试不爽;另外,如果遇到一些较为抽象的物理文字题时,我们不妨大胆地创设相关物理情境,就可以化抽象为具体;还有些题目中已知的物理量较少,这时若能先适当介入一些物理量,或许就会豁然开朗。

3.极限法。自然科学中利用临界条件处理问题的方法叫做极限法。初中物理告诉我们运动是绝对的,静止是相对的,尤其是在解决运动学问题时,当有物理量发生突变时的运动状态就是一种临界状态。把临界状态作为解题的切入点,往往能够化难为易。例如,在高一物理的运动学学习中会遇到很多“追及问题”,这时利用极限法,就会发现当两物体速度相同时,这两个物体间距出现极值,即距离最大、最小或是恰好追上,后面的问题就迎刃而解。

4.类比法。类比法就是在与一些内容、方法或形式相同的事物的比较中发现异同点的方法,在学习物理概念、分析物理规律、推导公式时都会用到。同类比较有:“串联”和 “并联”电路的电压、电流、电阻特点,动量定理与动能定理的区别与联系;以“电流”和“水流”相比来研究电流,通过比较“水压”引入“电压”的概念都是异类比较的例子。类比法不仅仅是一种物理学方法,是一种通用的科学方法,更是提出科学假说、做出科学预言的重要途径。

5.控制变量法。当一个物理过程受多个物理量影响时,我们为了研究某两个量之间的关系,而控制其他物理量不变的方法就叫控制变量法。例如,在探讨“影响滑动摩擦力大小的因素”时,在接触面粗糙程度不变的情况下,反映的是滑动摩擦力与正压力的关系;而在正压力不变的情况下,反映的则是滑动摩擦力与接触面粗糙程度的关系。

6.模型法。在物理学习中经常用通过简化、抽象的方法建立的模型去研究问题。例如,经典物理学中的一个最简单、最重要的质点模型,它把物体看作有质量的点,忽略物体的形状、大小和结构等。在描述光的传播方向和途径时引入了“光线”这一物理模型;在描述磁场的强弱与方向时引入了“磁感线”;我们生活中的实物电路错综复杂,但是通过“电路图”模型电路连接方式就能一目了然。模型法是科学的抽象,通过忽略次要因素,凸显主要因素的作用,用比实际情况简单但同样可以反映实际本质的模型简化问题的方法。

以上物理学方法虽然各不相同,但在物理学习中却彼此联系,相融贯通。

三、物理学方法对物理学习的作用

物理学的发展史告诉我们,物理知识的发展与物理学方法的探究是紧密联系的,没有物理学方法的辅佐就谈不上物理学。任何一位物理学家所取得的成就不仅与他的知识积淀、实验条件有关,而且与物理学方法有关。研究这些方法在物理学习中的作用,对于理解物理学概念和规律无不有很大帮助。方法比物理知识更加通用、普遍、稳定。同一个方法可以应用在不同的物理学领域,同时物理学方法也更有创新意义。

1.在物理概念学习中,物理学方法化抽象为具体。物理概念是物理基础知识中最基本最重要的内容,概念的引入是概念教学中一个关键环节。教师可以通过类比法利用身边事物引入物理概念,也可以借助实验来创设概念学习的情境。中学生学习物理的兴趣几乎都来自直觉兴趣,在物理概念教学时综合利用类比、实验等方法可以将电场强度、电阻、速度等概念具体化,不仅理解起来容易,而且记忆深刻。

2.探究物理规律时,物理学方法如影随形。物理是一门以实验为基础,以思维为核心的课程。在中学阶段,探索并总结物理规律主要运用实验归纳和理论分析的方法。学生可以通过观察、演示实验,分析实验现象,归纳、总结出有关物理规律;或者让学生自己做实验并通过实验进行探究,总结出有关规律。其实,学生综合运用实验、猜想、类比、推导、控制变量法等方法的过程也就是探究物理规律的过程。

3.物理学方法的学习与能力培养的关系。物理教学要培养学生的实验能力,思维能力,分析问题、解决问题的能力等,这些能力与物理方法密切相关,要具备实验能力就要掌握实验的方法;要有较强的思维能力就应该在物理学习中通过多种物理学方法的训练逐步提高;要分析解决物理问题,就应该掌握实验法、假设法、极限法、类比法、控制变量法、模型法。由此可见,要培养学生的物理能力必须从学习物理学方法入手。

4.物理学方法教会我们学习物理。实事求是、独立思考、追求真理是科学的学习精神,也是构成高素质人才的重要因素。而物理学方法更有益于培养学生的这些物理品质,在物理学习和教学中将物理学方法和物理学史相结合,让学生在体会前辈努力探索的同时,用适合的物理学方法认识自然、悟出其理。物理学方法不仅是物理学习的手段,更是沟通能力与知识的桥梁,离开物理学方法就谈不了物理概念、物理规律、物理过程、物理思想。任何一种能力的发展都离不开方法的有效运用,学生的学习效果很大程度上由他们掌握的方法决定。所以,在学习过程中学生要不断探索物理学方法,进而提高解决物理问题的能力。物理学方法论不仅帮助学生有效地掌握物理概念,正确认识物理规律,提高学生解决物理问题的能力,更有益于创造性思维的培养。

会“渔”者必得“鱼”,科学的方法对于不同的学科也可以通用,加强物理学方法教育对学生的综合能力也有重要意义。学生可能会忘记具体的概念、公式,但科学的态度和方法一定可以使他们终身受益。

参考文献:

[1]张宪魁,王欣.物理学方法论[M].西安:陕西人民教育出版社,1992.

[2]王较过,李贵安.物理教学论[M].西安:陕西师范大学出版社,2009.

[3]马惠英.关于物理教学与学习的点滴思考[J].物理通报,2003,(7).

[4]王建国.关于物理方法教育的几点看法[J].中学物理教学参考,2001,(6).

[5]黄守学.物理学发展规律与成见的阻碍作用[J].吉林师范大学学报(自然科学版),1981.