消防设计论文范文
时间:2023-03-26 10:33:53
导语:如何才能写好一篇消防设计论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
1存在的问题
因为本建筑的体量过大,在现行规范范围内仍然存在一些无法解决的困难。具体为:①建筑中间大商业区无自身安全出口;②疏散楼梯不能直通室外;③超市及地上商业疏散宽度不足[1]。
2性能化分析解决方法
(1)为解决洛阳泉舜财富购物中心的中间大商业区无自身的安全出口、部分楼梯间在首层不直通室外的问题,设计中采用将中庭的通道区域作为“亚安全区”的设计方案。“亚安全区”的实现需要保证以下几个条件:①中庭通道区域无固定火灾荷载;②控制中庭周边商铺或商业火灾烟气不进入中庭;③即使中庭周边商铺或商业内发生失效火灾,烟气溢出进入通道区域,也能被排烟系统迅速排出,不会对中庭人员造成危害[2]。
(2)疏散宽度不足的问题。对超市及地上商业疏散宽度不足的问题采取如下措施:①增加开向相邻防火分区的疏散门,使得起火防火分区内有较为充裕的疏散宽度,并尽量缩短人员的逃生路线行走距离;②自动喷水灭火系统采用快速响应喷头,使得在火灾发生或发展初期即可被扑灭或抑制,以控制火灾发展规模,延长人员安全疏散的可利用时间;③在原设计的基础上适量加大机械排烟量。
在此基础上分析地下一层超市和地上商业部分的火灾危险性,设定最具有代表性的火灾场景。通过对加强消防措施下的建筑的火灾危险性进行研究,判断人员是否能安全疏散,从而判断建筑在消防措施加强的情况下能否保证人员的安全疏散。
性能化设计模拟分析
1步骤
①分析现场状况:防火分区、疏散设计、防排烟系统;②设定安全目标:人员安全,财产安全;③选择分析方法:定性、定量、计算机模拟;④分析影响因素:建筑结构,自救系统,使用情况;⑤给出分析报告:到达危险状态时间tH。各时间关系见图1。火灾到达危险状态时间为tH,人员疏散完毕的时间为tE,当tH>tE时,能保证人员安全疏散。
2性能化设计中火灾场景设置
(1)地下商业火灾场景B1。火源功率1.8MW,火灾类型t2快速火。以此检验火灾时机械排烟系统的有效性和人员能否安全疏散。
(2)1层商业火灾场景A1,设于中庭走道防火分区14中庭。火源功率1.0MW,火灾类型t2快速火。检验地下1层防火分区14中庭发生火灾时中庭机械排烟系统的有效性,考察人员是否能安全疏散,进而验证中庭定义为“亚安全区”能否成立。
(3)1层商业火灾场景A4,A5,设于防火分区13商场内。火源功率8.0MW,火灾类型t2快速火。检验商场内自动灭火系统未动作的情况,机械排烟系统的有效性,考察人员是否能安全疏散。
(4)2层商业火灾场景A6,设于2层防火分区2主力店内。火源功率3.0MW,火灾类型t2快速火。检验火源附近的一部楼梯被封堵,检验在部分疏散出口不可用的情况下,2层防火分区2发生火灾时机械排烟系统的有效性,考察人员是否能安全疏散。
(5)2层商业火灾场景A7,设于2层防火分区7商场内。火源功率8.0MW,火灾类型t2快速火。检验在自动喷水灭火系统失效的情况下,2层防火分区7发生火灾时机械排烟系统的有效性,考察人员是否能安全疏散。
3计算结果
(1)人员载荷按GB50016-2006《建筑设计防火规范》(以下简称《建规》)第5.3.17条第4、5项计取,影城内各放映厅人数的确定,参考建筑图纸中放映厅的座位数确定。人员疏散模型软件采用Pathfinder,根据模拟计算结果进行分析,具体见表1。
(2)人员疏散时间:紧急情况下的人员全部疏散完毕时间包括火灾探测时间(talarm)、人员反应时间(tresp)和人员疏散运动时间(tmove):te=talarm+tresp+tmove。本性能化设计中将talarm设为60s,tresp设为120s。通过软件模拟计算,以烟气层能在人员疏散过程中保持在危险高度处能见度不低于10m、温度不超过50℃、浓度不超过500ppm为安全判断依据,人员疏散结果汇总如表2。
性能化设计的主要措施
本文采用“亚安全区”的设计概念来解决洛阳泉舜财富中心购物中心中间大商业无自身的安全出口、部分楼梯间在首层不直通室外的设计难点。
1中庭防火分区应采取的消防安全措施
(1)中庭通道区域禁止布置商铺、展示等,禁止进行任何商业活动。
(2)中庭通道区域的顶棚、墙面、地面装修材料和固定家具采用不燃材料;商铺的顶棚、墙面、地面装修材料采用不燃材料,固定家具采用不燃或难燃材料。采光顶棚应为不燃材料,耐火极限应满足规范要求。
(3)中庭的电气线路应使用低烟无卤阻燃型电缆。
(4)中庭通道区域回廊及周边店铺的自动水喷淋灭火系统均采用响应温度为68℃的快速响应喷头。
(5)大商业与中庭通道区域间应采用防火墙、特级防火卷帘和甲级防火门或防火隔间进行防火分隔。
(6)商铺作为防火单元,最大允许建筑面积为300m2。商铺与中庭通道区域间采用防火墙、特级防火卷帘和甲级防火门或防火隔间进行分隔。商铺、商业等之间采用耐火极限不小于3.0h实体墙分隔。
(7)连接楼梯间前室与中庭通道区域的走道,其两侧应为耐火极限不小于2.0h的实体墙,走道端部应设甲级防火门,走道内应采用不燃材料装修。
(8)中庭顶部应设置机械排烟,排烟量按换气次数不小于6次/h计。
(9)商铺内应设置机械排烟,排烟量应符合《建规》第9.4.5条的规定。
(10)中庭内设置火灾自动报警系统和现场广播系统引导疏散。
(11)中庭内不应设置任何影响人员疏散的设施,地面或墙面应设置保持视觉连续的疏散导流标识。
(12)中庭两侧设室内消火栓,间距不大于30m,每层设消防器材站。
2疏散措施
(1)对于负1层超市部分区域疏散宽度不足的问题,当其他设计均满足相关规范要求的情况下还采取如下加强措施:①负1层超市区域的自动喷水灭火系统采用快速响应喷头。②疏散宽度不足的防火分区应在防火墙上增设开向相邻防火分区的甲级防火门,使得防火分区内的疏散宽度满足规范的要求。
(2)对于1~4层商业区域疏散宽度不足的问题,当其他设计均满足相关规范要求,并采取如下加强措施:①1~4层商业区域应在防火墙上增设开向相邻防火分区的甲级防火门,使得防火分区内的疏散宽度及疏散距离满足规范的要求。②1~4层商业区域的机械排烟量应按《建规》允许最大防烟分区面积乘以120m3/(h•m2)计算。
篇2
关键词:七氟丙烷灭火系统火灾自动报警系统安全疏散设计预算设计图纸
1.前言
哈龙灭火系统自问世以来,由于在灭火方面具有浓度低、灭火效率高、不导电等优异性能,在世界各地获得了广泛的应用。其主要应用于大型电子计算机房、通讯机房、高低压配电室、档案馆等重要场所。然而,大量的科学实验证明哈龙对大气臭氧层有破坏作用,有碍人类的生存环境。为保护人类健康及赖以生存的地球环境,联合国制定了《关于消耗臭氧层物质的蒙特利尔议定书》,发达国家自1994年1月1日,停止生产和使用哈龙灭火剂,发展中国家则可延长到2010年。于是寻找新的灭火剂替代哈龙成为必然。目前哈龙灭火剂的替代物主要有两大方向:一是以其他灭火系统替代哈龙灭火系统,如二氧化碳、细水雾等灭火系统。二是新型的“洁净气体”灭火剂和相应的灭火系统,如卤代烃灭火系统、惰性气体灭火系统。在各种洁净灭火剂中,具有实际应用价值的是七氟丙烷和烟烙尽。
下面就二氧化碳灭火系统、烟烙尽灭火系统和七氟丙烷灭火系统,对其灭火效率、系统投资、保护生命等方面进行比较分析。并说明XXX片区枢纽楼的最佳气体灭火系统的选择是七氟丙烷灭火系统。
二氧化碳灭火系统和烟烙尽灭火系统都是使氧气浓度下降,对燃烧产生窒息作用,从而扑灭火灾的。七氟丙烷在火灾中有抑制燃烧过程基本化学反应的能力,其分解物能够中断燃烧过程中化学连锁反应的链传递,因而灭火能力强,灭火速度快。由此可见,二氧化碳灭火系统、烟烙尽灭火系统和七氟丙烷灭火系统是两种不同的灭火机理,这两种不同的灭火机理决定了七氟丙烷灭火系统在设计浓度上要远远低于二氧化碳灭火系统和烟烙尽灭火系统。三种灭火系统的最小设计浓度7%、34%、37.5%。所以七氟丙烷的灭火效率是最高的,市场上经常使用的气体灭火剂综合性能如表1.1所示。
气体灭火剂综合性能对照表表1.1
灭火剂名称
FM-200
(七氟丙烷)
CO2
(高压)
INERGEN
(烟烙尽)
HALON
(哈龙)
生产厂家
美国大湖公司
国产
美国安素
国产
适用范围
同1301,但由于惰性大,高度和气瓶间距离均受一定限制
与`1301同,适用于无人区域
与1301同,但保护面积不可超过1000米2
A、B、C类及电气火灾,通常适用于无人区域
灭火方式
化学与物理
物理
物理
化学
设计浓度
8-10%
34-75%
37.5-42.8%
5-9.4%
灭火速度
快
最慢
慢
最快
贮存压力
2.5/4.2Mpa
5.8MPa
15Mpa
2.5/4.2Mpa
工作压力
2.5/4.2Mpa
15Mpa
15Mpa
2.5/4.2Mpa
喷嘴压力
≥0.8Mpa
≥1.4Mpa
≥0.8Mpa
酸性值
中等
低
最低
毒性值
中等(含氢氟酸)
低
无
低
LOAEL
10.5
浓度大于20%人员死亡
52
7.5
NOAEL
9.0
43
5.0
气体产物
HF
CO2
N2、CO2、Ar2
HF、HBr
启动产物
N2
N2
N2
N2
气体与空气重量比
5.8
1.51
1.22
5.05
影响系统投资的主要因素是系统设备投资、系统瓶站建筑投资及系统的维护保养费用等。目前市场上二氧化碳、烟烙尽与七氟丙烷的单价比为1:13:110。但二氧化碳灭火系统和烟烙尽灭火系统需要的灭火浓度高,自然灭火剂的用量就大。值得注意的是,烟烙尽灭火系统其气体是以高压气态储存的,其输送距离可长达150米,大大超过了其它以液态储存的灭火剂的输送距离。所以它一套组合分配的装置可以保护的防护区数量可以很多,这样烟烙尽灭火系统的经济性是显而易见的。瓶站的建筑面积与灭火剂的用量是联系在一起的,所以七氟丙烷灭火系统需要的瓶站的建筑面积要大大小于二氧化碳灭火系统和烟烙尽灭火系统。但由于烟烙尽灭火系统保护的距离长,所以需要的瓶站的数量也少。二氧化碳灭火系统需要的储存容器,系统体积大、重量高,需要瓶站的建筑面积大,瓶站的建筑投资大。关于系统的维护保养费用,10年时间二氧化碳、烟烙尽与七氟丙烷系统灭火剂的再充填的费用比约为1:4:85,所以二氧化碳和烟烙尽的再填充费用是相对低的。通过上述各方面比较烟烙尽灭火系统的系统投资是最低的。
在保护人身安全方面,七氟丙烷人未观察到不良反应的浓度为9%,系统最小设计浓度为7%,烟烙尽人未观察到不良反应的浓度为43%,系统最小设计浓度为37.5%,所以七氟丙烷和烟烙尽在防护区喷放对人体是相对安全的。但七氟丙烷在高温条件下会产生对人体有害的HF,所以它使用时的浓度必须低于NOAEL值,而且灭火时的拖放时间不能过长。而二氧化碳在34%以上会使人窒息死亡。据统计,近几年世界上由于火灾中被二氧化碳窒息而死的人每年多达80余人。所以二氧化碳系统不适合人员出入较多的场所。
XXX片区枢纽楼需要气体保护的区域多为通信机房、寻呼机房、交换机房等,工作人员和值班人员较多。六层以下多为商务中心等公共场所,人流量也较大。该建筑需要气体保护的防护区多,空间也较大,组合分配的系统也多。综合考虑以上各方面,虽然二氧化碳灭火系统具有来源广泛、价格低廉、无腐蚀性、不污染环境等优点,但瓶组占地面积大、泄露点多,给以后的维修会带来一系列的难度。而且气体容易从液压站的开口处流失,保证其灭火浓度也较难。灭火剂的沉降也较快,特别是在高度和空间较大的情况下,高处火灾就难以扑灭。烟烙尽灭火系统虽然系统投资低,对人体安全等许多优点,但目前在国内还没有完整的设计规范。所以该建筑采用的最适合的气体灭火系统为七氟丙烷灭火系统。它的灭火效率高,对大气臭氧层的损耗潜能值ODP值为零,对人体相对安全,瓶组占地面积小,但它只适用于扑灭固体表面火灾,不适宜扑救固体深位火灾。
2.七氟丙烷灭火系统设计
2.1工程概况
XXX片区枢纽楼地上十七层,地下两层,裙房三层,辅房三层。建筑面积23000平米,建筑高度为67.7米。四层到十六层层高3.9米,其中七至十六层的通信机房、电力室、电池室、传输机房、LS机房、ATM机房、网管中心、软件中心、计费中心和新技术发展用房,需要用气体灭火系统进行保护,采用七氟丙烷灭火系统对其进行保护。
根据《高层民用建筑防火设计规范》该建筑为一类建筑,耐火等级为一级,危险等级为中危险等级Ⅰ级。七层到十六层需要气体保护的区域,设有防静电地板,地板高0.5米,净空高为3.4米(比例为5:34)。
2.2七氟丙烷(FM—200)灭火系统
2.2.1七氟丙烷气体灭火剂性能及灭火机理
七氟丙烷灭火剂HFC-227ea(美国商标名称为FM-200)是一种无色无味、低毒性、电绝缘性好,无二次污染的气体,对大气臭氧层的耗损潜能值(ODP)为零。其化学结构式为CF3-CHF-CF3。在一定压强下呈液态储存。在火灾中具有抑制燃烧过程基本化学反应的能力,其分解产物能够中断燃烧过程中化学连锁反应的链传递,因而灭火能力强、灭火速度快。
2.2.2七氟丙烷灭火系统工作程序及原理
当防护区发生火灾时,灭火系统有三种启动方式:
自动启动:此时感温探测器、感烟探测器发出火灾信号报警,经甄别后由报警和灭火控制装置发出声光报警,下达联动指令,关闭联锁设备,发出灭火指令,延迟0-30秒电磁阀动作,启动启动容器和分区选择阀,释放启动气体,开启各储气瓶容器阀,从而释放灭火剂,实施灭火。
手动启动:将灭火控制盘的控制方式选择键拨到“手动”位置。此时自动控制无从执行。操作灭火控制盘上的灭火手动按钮,仍将按上述即定程序实施灭火。一般情况,保护区门外设有手动控制盒。盒内设紧急启动按钮和紧急停止按钮。在延迟时间终了前可执行紧急停止。
应急启动:在灭火控制装置不能发出灭火指令时,可进行应急启动。此时,人为启动联动设备,拔下电磁启动器上的保险盖,压下电磁铁芯轴。释放启动气体,开启整个灭火系统,释放灭火剂,实施灭火。
2.3系统设计
2.3.1灭火方式
按防护区的特征和灭火方式采用全淹没灭火系统,管网输送方式为组合分配系统。
全淹没灭火系统是在规定的时间内,向防护区喷放设计规定用量的七氟丙烷,并使其均匀的充满整个防护区的灭火系统。组合分配系统是用一套七氟丙烷的储存装置通过管网的选择分配,保护两个或两个以上防护区的灭火系统。优点是减少灭火剂的用量,大大节省系统投资。因为本建筑需要气体保护的机房较多多,所以采用组合分配系统最为经济可行。
2.3.2防护区的划分
《规范》中规定:防护区宜以固定的单个封闭空间划分;当同一区间的吊顶层和地板下需同时保护时,可合为一个防护区;当采用管网灭火系统时,一个防护区的面积不宜大于500m2,容积不宜大于2000m3。
根据《规范》规定,把该组合分配系统四个系统中各个防护区的划分归纳于下表,其中最大保护区的面积为310.25m2,容积为1210m3。
系统划分表表2.1
系统(一)
系统(二)
编号
保护区名称
楼层
编号
保护区名称
楼层
1
左LS机房
7F
1
左传输机房
9F
2
右LS机房
7F
2
右传输机房
9F
3
电池室
8F
3
左ATM机房
10F
4
小电力室
8F
4
右ATM机房
10F
5
大电力室
8F
5
左同步网监控中心
11F
6
主机房
11F
7
右同步网监控中心
11F
注:防护区的工作区和地板下均设置喷头和探测器,防护区设有弹簧门不需单设泄压口。
2.3.3管网系统
本系统的管网布置为非均衡管网,但工作区和地板下的管网布置都为均衡管网。《规范》中规定,均衡管网要符合下列要求:
①管网中各个喷头的流量相等;
②在管网上,从第一分流点至各喷头的管道阻力损失,其相互间的最大差值不应大于20%。
管网设计布置为均衡系统有利于灭火剂在防护区喷放均匀,利于灭火。可不考虑管网中的剩余量,做到节省。可只选用一种规格的喷头,只计算“最不利点”的阻力损失就可以了。虽然对整个系统来说是非均衡管网,但因把工作区和地板下都尽量布置为均衡,所以该系统工作区中的喷头型号相同,地板下的喷头型号相同,工作区和地板下为不同型号的喷头。在管网设计时,考虑到经济性,应尽量减少管段长度,减少弯头数量。做到管网布置合理、经济。
2.3.4增压方式
根据《规范》规定:七氟丙烷灭火系统应采用氮气增压输送。氮气的含水量不应大于0.006%。额定增压压力选用4.2±0.125MPa级别。
2.3.5系统组件
系统主要组件有:启动钢瓶组、储气钢瓶组以及单向阀、压力继电器、选择阀、泄气卸压阀、金属软管、集流管、喷头及管路附件、灭火剂输送管网、储气钢瓶架、启动钢瓶架等。
启动钢瓶组由电动启动阀、电磁阀、压力表组成。储气钢瓶组由容器阀、导管、钢瓶组成。单向阀包括气控单向阀和液流单向阀。
2.4系统设计与管网计算2.4.1系统设计计算
系统(一):
(一)确定灭火设计浓度
依据《七氟丙烷洁净气体灭火系统设计规范》(以下简称规范)
取C%=8%
(二)计算保护空间实际容积
1区、2区、3区、5区容积相同:
V5区=14.8×22.4×3.9=1292.93(m3)其中地板下:165.76m3工作区:1127.17m3
4区容积:
V4区=(7.6×21.6-8.2×0.9)×3.9=611(m3)其中地板下:78.33m3工作区:532.67m3
(三)计算灭火剂设计用量
依据《规范》中规定W=K×(V/S)×C/(100-C)
其中K=1,S=0.1269+0.000513×20℃=0.13716(m3/kg)
1区、2区、3区、5区灭火剂设计用量相同:
W=1×(1292.93/0.13716)×8/(100-8)=819.69(kg)
其中地板下:104.7kg工作区:714.99kg
根据单瓶设计储量为819.69Kg/59Kg/瓶=13.89(瓶)
需要14只储瓶,所以W取826kg
工作区W1=720(kg)地板下W2=106(kg)
4区灭火剂设计用量:
W=1×(611/0.13716)×8/(100-8)=387.4(kg)
根据单瓶设计储量为387.4Kg/59Kg/瓶=6.57(瓶)
需要7只储瓶,所以W取413kg
工作区W1=360(kg)地板下W2=53(kg)
(四)设定灭火喷放时间
依据《规范》规定,取t=7s
(五)设定喷头布置与数量
选用JP型喷头,其保护半径为7.5m,最大保护高度为5m。工作区布置8只喷头,按保护区平面均匀喷洒布置喷头。地板下与工作区的布置形式相同。
(六)选定灭火剂储存瓶规格及数量
1区、2区、3区、5区相同
根据W=819.69kg,选用JR-100/59储存瓶14只。
4区:
根据W=387.4kg,选用JR-100/59储存瓶7只。
(七)绘制管网设计图,见附图
(八)计算管道平均设计流量
(1)1区、2区、3区、5区相同:
主干管:QW=W/t=819.69/7=117.1(kg/s)
支管:工作区:Q1-2=714.99/7=102.14(kg/s)
Q2-3=51.07(kg/s)
Q3-4=25.535(kg/s)
Q4-5=12.7677(kg/s)
地板下:Q1-2′=104.7/7=14.96(kg/s)
Q2′-3′=7.48(kg/s)
Q3′-4′=3.739(kg/s)
Q4′-5′=1.8696(kg/s)
储瓶出流管:QP=819.69/14/7=8.36(kg/s)
4区:
主干管:QW=W/t=413/7=59(kg/s)
支管:工作区:Q1-2=360/7=51.43(kg/s)
Q2-3=25.714(kg/s)
Q3-4=12.857(kg/s)
Q4-5=6.4286(kg/s)
地板下:Q1-2′=53/7=7.57(kg/s)
Q2′-3′=3.7857(kg/s)
Q3′-4′=1.8929(kg/s)
Q4′-5′=0.9464(kg/s)
储瓶出流管:QP=413/7/7=8.43(kg/s)
(九)选择管网管道通径,标于图上
(十)计算充装率
系统设置用量:WS=W+W1+W2
储瓶内剩余量:W1=n×3.5=14×3.5=49(kg)
管网内剩余量:W2=8×2.9×0.49×1.04=16.55(kg)
WS=819.69+49+16.55=885.24(kg)
充装率η=885.24/(14×0.1)=632.31(kg/m3)
(十一)计算管网管道内容积
依据管网计算图。
1区VP1′=29.807×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×3.42=0.489(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅠ=VP1′+VP2′=0.546(m3)
2区:VP1′=24.507×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.41(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅡ=VP1′+VP2′=0.467(m3)
3区:VP1′=27.307×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.434(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅢ=VP1′+VP2′=0.491(m3)
4区:VP1′=37.45×8.33+3.53×4.7+5.35×2×3.42+1.85×4×1.96+2.675×8×1.19=0.4(m3)
VP2′=6.43×1.19+5.35×2×0.8+1.85×4×0.49+2.675×8×0.31=0.0265(m3)
VPⅣ=VP1′+VP2′=0.4265(m3)
5区:VP1′=21.807×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.3885(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅤ=VP1′+VP2′=0.4455(m3)
(十二)选用储瓶增压压力
依据《规范》中规定,选用P。=4.3MPa(绝压)
(十三)计算全部储瓶气相总容积
1区、2区、3区、5区相同
依据《规范》中公式:V。=n×Vb×(1—η/γ)
=14×0.1×(1—632.31/1407)=0.77(m3)
4区:
依据《规范》中公式:V。=n×Vb×(1—η/γ)
=7×0.1×(1—632.31/1407)=0.385(m3)
(十四)计算“过程中点”储瓶内压力(喷放七氟丙烷设计用量50%时的“过程中点”)
1区:Pm1=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.546]=2.06MPa(绝压)
2区:Pm2=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.467]=2.175MPa(绝压)
3区:Pm3=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.491]=2.133MPa(绝压)
4区:Pm4=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.385/[0.385+413/(2×1407)+0.4265]=1.723MPa(绝压)
5区:Pm5=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.4455]=2.2MPa(绝压)
(十五)计算管路阻力损失
⑴a-b管段
1区、2区、3区、4区、5区:
(P/L)a-b=0.0029(MPa/m)La-b=3.6+3.5+0.5=7.6(m)
Pa-b=0.02204(MPa)
工作区:
⑵b-1管段
1区:(P/L)b-1=0.011(MPa/m)
Lb-1=24.807+10+5×6.4+1.9=68.707(m)
Pb-1=(P/L)b-1×Lb-1=0.011×68.707=0.756(MPa)
2区:(P/L)b-1=0.011(MPa/m)
Lb-1=19.507+10+4×6.4+2.1=57.2(m)
Pb-1=(P/L)b-1×Lb-1=0.011×57.2=0.63(MPa)
3区:(P/L)b-1=0.011(MPa/m)
Lb-1=22.307+10+3×6.4+2.1=53.407(m)
Pb-1=(P/L)b-1×Lb-1=0.011×53.407=0.59(MPa)
4区:(P/L)b-1=0.0031(MPa/m)
Lb-1=32.45+10+4×5.2+2.1=65.15(m)
Pb-1=(P/L)b-1×Lb-1=0.011×65.15=0.2(MPa)
5区:(P/L)b-1=0.011(MPa/m)
Lb-1=16.807+10+3×6.4+2.1=48.107(m)
Pb-1=(P/L)b-1×Lb-1=0.011×48.107=0.53(MPa)
⑶1-2管段
1区、2区、3区、5区:
(P/L)1-2=0.009(MPa/m)
L1-2=7.4+2.1=9.5(m)
P1-2=0.009×9.5=0.0855(MPa)
4区:
(P/L)1-2=0.0085(MPa/m)
L1-2=3.53+5.2+0.6=9.33(m)
P1-2=0.0085×9.33=0.0793(MPa)
⑷2-3管段
1区2区3区5区:
(P/L)2-3=0.007(MPa/m)
L2-3=5.6+7.3+0.6=13.5(m)
P2-3=0.007×13.5=0.0945(MPa)
4区:
(P/L)2-3=0.006(MPa/m)
L2-3=5.35+5.8+0.5=11.65(m)
P2-3=0.006×11.65=0.0699(MPa)
⑸3-4管段
1区2区3区5区:
(P/L)3-4=0.005(MPa/m)
L3-4=3.675+5.8+0.5=9.975(m)
P3-4=0.005×9.975=0.0499(MPa)
4区:
(P/L)3-4=0.0058(MPa/m)
L3-4=1.85+5+0.4=7.25(m)
P3-4=0.0058×7.25=0.042(MPa)
⑹4-5管段
1区:
(P/L)4-5=0.0005(MPa/m)
L4-5=2.8+0.2+5+3.5=11.5(m)
P4-5=0.0005×11.5=0.006(MPa)
2区、3区、5区:
(P/L)4-5=0.0045(MPa/m)
L4-5=2.8+0.2+5+0.4+3.5=11.9(m)
P4-5=0.0045×11.9=0.05355(MPa)
4区:
(P/L)4-5=0.0049(MPa/m)
L4-5=2.675+4+0.3+0.2+2.8=9.975(m)
P4-5=0.0049×9.975=0.049(MPa)
工作区管道阻力损失:
1区:∑P1=1.014(MPa)
2区:∑P1=0.9355(MPa)
3区:∑P1=0.9(MPa)
4区:∑P1=0.462(MPa)
5区:∑P1=0.84(MPa)
地板下:
1区、2区、3区、5区:
⑴1-2′管段
(P/L)1-2′=0.007(MPa/m)
L1-2′=10.3+3.5+2.1=15.9(m)
P1-2′=0.007×15.9=0.1113(MPa)
⑵2′-3′管段
(P/L)2′-3′=0.006(MPa/m)
L2′-3′=5.6+4+0.3=9.9(m)
P2′-3′=0.006×9.9=0.594(MPa)
⑶3′-4′管段
(P/L)3′-4′=0.0046(MPa/m)
L3′-4′=3.675+3.2+0.3=7.175(m)
P3′-4′=0.0046×7.175=0.033(MPa)
⑷4′-5′管段
(P/L)4′-5′=0.004(MPa/m)
L4′-5′=2.8+0.2+1.8+2.5+0.2=7.5(m)
P4′-5′=0.004×7.5=0.03(MPa)
4区:
⑴1-2′管段
(P/L)1-2′=0.0065(MPa/m)
L1-2′=3.53+2.9+1.7+0.9+2.8=11.83(m)
P1-2′=0.0065×11.83=0.0769(MPa)
⑵2′-3′管段
(P/L)2′-3′=0.0055(MPa/m)
L2′-3′=5.35+3.2+0.3=8.85(m)
P2′-3′=0.0055×8.85=0.0487(MPa)
⑶3′-4′管段
(P/L)3′-4′=0.005(MPa/m)
L3′-4′=1.85+2.5+0.2=4.55(m)
P3′-4′=0.005×4.55=0.0227(MPa)
⑷4′-5′管段
(P/L)4′-5′=0.0041(MPa/m)
L4′-5′=2.675+0.2+1.5+2+0.2=6.575(m)
P4′-5′=0.0041×6.575=0.027(MPa)
地板下管道阻力损失:
1区:∑P2=1.012(MPa)
2区:∑P2=0.8857(MPa)
3区:∑P2=0.85(MPa)
4区:∑P2=0.4(MPa)
5区:∑P2=0.786(MPa)
(十六)计算高程压头
依据《规范》中公式:Ph=10-6Hγg
(H为喷头高度相对“过程中点”储瓶液面的位差)
1区、2区相同:
工作区:Ph1=10-6×(—1)×1407×9.81=—0.0138(MPa)
地板下:Ph2=10-6×(—4)×1407×9.81=—0.055(MPa)
3区、4区、5区相同:
工作区:Ph1=10-6×(2.8)×1407×9.81=0.0386(MPa)
地板下:Ph2=10-6×(—0.1)×1407×9.81=—0.00138(MPa)
(十七)计算喷头工作压力
依据《规范》中公式:Pc=Pm—(∑P±Ph)
1区:工作区:Pc1=2.06—1.014+0.0138=1.06(MPa)
地板下:Pc2=2.06—1.012+0.055=1.103(MPa)
2区:工作区:Pc1=2.175—0.9355+0.0138=1.25(MPa)
地板下:Pc2=2.175—0.8857+0.055=1.34(MPa)
3区:工作区:Pc1=2.133—0.9—0.0386=1.193(MPa)
地板下:Pc2=2.133—0.85+0.00138=1.283(MPa)
4区::工作区:Pc1=1.723—0.4622—0.0386=1.22(MPa)
地板下:Pc2=1.723—0.4+0.00138=1.32(MPa)
5区::工作区:Pc1=2.2—0.84—0.0386=1.32(MPa)
地板下:Pc2=2.2—0.786+0.00138=1.415(MPa)
(十八)验算设计计算结果
依据《规范》规定,应满足下列条件:
⑴Pc≥0.8MPa(绝压)
⑵Pc≥Pm/2
1区:Pm1/2=1.03MPa2区:Pm2/2=1.0875MPa
3区:Pm3/2=1.0665MPa4区:Pm4/2=0.8615MPa
5区:Pm5/2=1.1MPa
各防护区均满足,所以合格。
(十九)计算喷头计算面积及确定喷头规格
根据《规范》规定:依据Pc查“七氟丙烷JP-6—36型喷头流量曲线”确定喷头计算单位面积流量q(kg/s·cm2)。然后通过F=Q/q得出喷头计算面积,从而确定喷头规格。Q为喷头平均设计流量。
1区:工作区:qc1=2.1(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=6.08(cm2)喷头规格为JP-36型
地板下:qc2=2.15(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.87(cm2)喷头规格为JP-13型
2区:工作区:qc1=2.4(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.32(cm2)喷头规格为JP-34型
地板下:qc2=2.5(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.748(cm2)喷头规格为JP-13型
3区:工作区:qc1=2.25(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.68(cm2)喷头规格为JP-36型
地板下:qc2=2.45(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.763(cm2)喷头规格为JP-13型
4区:工作区:qc1=2.4(kg/s·cm2)Qc1=6.4286(kg/s)
Fc1=2.679(cm2)喷头规格为JP-24型
地板下:qc2=2.5(kg/s·cm2)Qc2=0.9464(kg/s)
Fc2=0.379(cm2)喷头规格为JP-9型
5区:工作区:qc1=2.5(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.11(cm2)喷头规格为JP-32型
地板下:qc2=2.55(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.733(cm2)喷头规格为JP-13型
(二十)计算达到设计浓度实际喷放时间及校核地板下喷头型号
1区:工作区喷头型号为JP-36型,喷口计算面积6.413(cm2)
喷头流量Q=6.413×2.1=13.467(kg/s)
支管流量为13.467×8=107.738(kg/s)
实际喷放时间为t=714.99/107.738=6.64(s)
校核地板下喷头型号:支管流量为104.7/6.64=15.78(kg/s)
喷头流量为15.78/8=1.97(kg/s)
Fc=1.97/2.15=0.917(cm2)
喷头校核为规格为JP-14型
2区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)
喷头流量Q=5.72×2.4=13.728(kg/s)
支管流量为13.728×8=109.824(kg/s)
实际喷放时间为t=714.99/109.824=6.51(s)
校核地板下喷头型号:支管流量为104.7/6.51=16.08(kg/s)
喷头流量为16.08/8=2.01(kg/s)
Fc=2.01/2.5=0.8(cm2)
喷头规格为JP-13型
3区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)
喷头流量Q=5.72×2.25=12.87(kg/s)
支管流量为12.87×8=102.96(kg/s)
实际喷放时间为t=714.99/102.96=6.944(s)
校核地板下喷头型号:支管流量为104.7/6.944=15.077(kg/s)
喷头流量为15.077/8=1.885(kg/s)
Fc=1.885/2.45=0.769(cm2)
喷头规格为JP-13型
4区:工作区喷头型号为JP-24型,喷口计算面积2.85(cm2)
喷头流量Q=2.85×2.4=6.84(kg/s)
支管流量为6.84×8=54.72(kg/s)
实际喷放时间为t=360/54.72=6.58(s)
校核地板下喷头型号:支管流量为53/6.58=8.056(kg/s)
喷头流量为8.056/8=1.007(kg/s)
Fc=1.007/2.5=0.403(cm2)
喷头规格校核为JP-10型
5区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)
喷头流量Q=5.72×2.5=14.3(kg/s)
支管流量为14.3×8=114.4(kg/s)
实际喷放时间为t=714.99/114.4=6.25(s)
校核地板下喷头型号:支管流量为104.7/6.25=16.75(kg/s)
喷头流量为16.75/8=2.094(kg/s)
Fc=2.094/2.55=0.8212(cm2)
喷头规格为JP-14型
系统(二):
(一)确定灭火设计浓度
依据《七氟丙烷洁净气体灭火系统设计规范》取C=8%
(二)计算保护空间实际容积
1区、2区、3区、4区、5区、7区容积相同:
V1区=14.8×22.4×3.9=1292.93(m3)其中地板下:165.76m3工作区:1127.17m3
6区容积:
V4区=(7.6×21.6-8.2×0.9)×3.9=611(m3)其中地板下:78.33m3工作区:532.67m3
(三)计算灭火剂设计用量
依据《规范》中规定W=K×(V/S)×C/(100-C)
其中K=1,S=0.1269+0.000513×20℃=0.13716(m3/kg)
1区、2区、3区、4区、5区、7区灭火剂设计用量相同:
W=1×(1292.93/0.13716)×8/(100-8)=819.69(kg)
其中地板下:W2=104.7kg工作区:W1=714.99kg
根据单瓶设计储量为819.69Kg/59Kg/瓶=13.89(瓶)
需要14只储瓶,所以W取826kg
工作区W1=720(kg)地板下W2=106(kg)
6区灭火剂设计用量:
W=1×(611/0.13716)×8/(100-8)=387.4(kg)
根据单瓶设计储量为387.4Kg/59Kg/瓶=6.57(瓶)
需要7只储瓶,所以W取413kg
工作区W1=360(kg)地板下W2=53(kg)
(四)设定灭火喷放时间
依据《规范》规定,取t=7s
(五)设定喷头布置与数量
选用JP型喷头,其保护半径为7.5m,最大保护高度为5m。工作区布置8只喷头,按保护区均匀喷洒布置喷头。地板下与工作区的布置形式相同。
(六)选定灭火剂储存瓶规格及数量
1区、2区、3区、4区、5区、7区相同:
根据W=819.69kg,选用JR-100/59储存瓶14只。
6区:
根据W=387.4kg,选用JR-100/59储存瓶7只。
(七)绘出管网计算图,见附图
(八)计算管道平均设计流量
(1)1区、2区、3区、4区、5区、7区相同:
主干管:QW=W/t=819.69/7=117.1(kg/s)
支管:工作区:Q1-2=714.99/7=102.14(kg/s)
Q2-3=51.07(kg/s)
Q3-4=25.535(kg/s)
Q4-5=12.7677(kg/s)
地板下:Q1-2′=104.7/7=14.96(kg/s)
Q2′-3′=7.48(kg/s)
Q3′-4′=3.739(kg/s)
Q4′-5′=1.8696(kg/s)
储瓶出流管:QP=819.69/14/7=8.36(kg/s)
6区:
主干管:QW=W/t=413/7=59(kg/s)
支管:工作区:Q1-2=360/7=51.43(kg/s)
Q2-3=25.714(kg/s)
Q3-4=12.857(kg/s)
Q4-5=6.4286(kg/s)
地板下:Q1-2′=53/7=7.57(kg/s)
Q2′-3′=3.7857(kg/s)
Q3′-4′=1.8929(kg/s)
Q4′-5′=0.9464(kg/s)
储瓶出流管:QP=413/7/7=8.43(kg/s)
(九)选择管网管道通径,标于图上
(十)计算充装率
系统设置用量:WS=W+W1+W2
储瓶内剩余量:W1=n×3.5=14×3.5=49(kg)
管网内剩余量:W2=8×2.9×0.49×1.04=16.55(kg)
WS=819.69+49+16.55=885.24(kg)
充装率η=885.24/(14×0.1)=632.31(kg/m3)
(十一)计算管网管道内容积
依据管网计算图。
1区:VP1′=32.107×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×3.42=0.508(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅠ=VP1′+VP2′=0.565(m3)
2区:VP1′=29.607×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.443(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅡ=VP1′+VP2′=0.5(m3)
3区:VP1′=29.807×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.489(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅢ=VP1′+VP2′=0.546(m3)
4区:VP1′=24.507×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.41(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅣ=VP1′+VP2′=0.467(m3)
5区:VP1′=27.307×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.434(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅤ=VP1′+VP2′=0.491(m3)
6区VP1′=37.45×8.33+3.53×4.7+5.35×2×3.42+1.85×4×1.96+2.675×8×1.19=0.4(m3)
VP2′=6.43×1.19+5.35×2×0.8+1.85×4×0.49+2.675×8×0.31=0.0265(m3)
VP6=VP1′+VP2′=0.4265(m3)
7区VP1′=21.807×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.3885(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅦ=VP1′+VP2′=0.4455(m3)
(十二)选用储瓶增压压力
依据《规范》中规定,选用P。=4.3MPa(绝压)
(十三)计算全部储瓶气相总容积
1区、2区、3区、4区、5区、7区相同:
依据《规范》中公式:V。=n×Vb×(1—η/γ)
=14×0.1×(1—632.31/1407)=0.77(m3)
6区:
依据《规范》中公式:V。=n×Vb×(1—η/γ)
=7×0.1×(1—632.31/1407)=0.385(m3)
(十四)计算“过程中点”储瓶内压力
Pm=P。V。/[V。+W/(2×γ)+VP]
1区:Pm1=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.565]=2.036MPa(绝压)
2区:Pm2=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.5]=2.121MPa(绝压)
3区:Pm3=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.546]=2.06MPa(绝压)
4区:Pm4=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.467]=2.166MPa(绝压)
5区:Pm5=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.491]=2.133MPa(绝压)
6区Pm6=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.385/[0.385+413/(2×1407)+0.4265]=1.7276MPa(绝压)
7区PmⅦ=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.4455]=2.197MPa(绝压)
(十五)计算管路阻力损失
⑴a-b管段
1区、2区、3区、4区、5区、6区、7区:
(P/L)a-b=0.0029(MPa/m)La-b=3.6+3.5+0.5=7.6(m)
Pa-b=0.02204(MPa)
工作区:
⑵b-1管段
1区:(P/L)b-1=0.011(MPa/m)
Lb-1=27.107+10+5×6.4+1.9=71.007(m)
Pb-1=(P/L)b-1×Lb-1=0.011×71.007=0.78(MPa)
2区:(P/L)b-1=0.011(MPa/m)
Lb-1=24.607+10+4×6.4+2.1=62.307(m)
Pb-1=(P/L)b-1×Lb-1=0.011×62.307=0.685(MPa)
3区:(P/L)b-1=0.011(MPa/m)
Lb-1=24.807+10+4×6.4+2.1=62.307(m)
Pb-1=(P/L)b-1×Lb-1=0.011×68.707=0.685(MPa)
4区:(P/L)b-1=0.011(MPa/m)
Lb-1=19.507+10+4×6.4+2.1=57.2(m)
Pb-1=(P/L)b-1×Lb-1=0.011×57.2=0.63(MPa)
5区:(P/L)b-1=0.011(MPa/m)
Lb-1=22.307+10+3×6.4+2.1=53.407(m)
Pb-1=(P/L)b-1×Lb-1=0.011×53.407=0.59(MPa)
6区:(P/L)b-1=0.0031(MPa/m)
Lb-1=32.45+10+4×5.2+2.1=65.15(m)
Pb-1=(P/L)b-1×Lb-1=0.011×65.15=0.2(MPa)
7区:(P/L)b-1=0.011(MPa/m)
Lb-1=16.807+10+3×6.4+2.1=48.107(m)
Pb-1=(P/L)b-1×Lb-1=0.011×48.107=0.53(MPa)
⑶1-2管段
1区、2区、3区、4区、5区、7区:
(P/L)1-2=0.009(MPa/m)
L1-2=7.4+2.1=9.5(m)
P1-2=0.009×9.5=0.0855(MPa)
6区:
(P/L)1-2=0.0085(MPa/m)
L1-2=3.53+5.2+0.6=9.33(m)
P1-2=0.0085×9.33=0.0793(MPa)
⑷2-3管段
1区、2区、3区、4区、5区、7区:
(P/L)2-3=0.007(MPa/m)
L2-3=5.6+7.3+0.6=13.5(m)
P2-3=0.007×13.5=0.0945(MPa)
6区:
(P/L)2-3=0.006(MPa/m)
L2-3=5.35+5.8+0.5=11.65(m)
P2-3=0.006×11.65=0.0699(MPa)
⑸3-4管段
1区、2区、3区、4区、5区、7区:
(P/L)3-4=0.005(MPa/m)
L3-4=3.675+5.8+0.5=9.975(m)
P3-4=0.005×9.975=0.0499(MPa)
6区:
(P/L)3-4=0.0058(MPa/m)
L3-4=1.85+5+0.4=7.25(m)
P3-4=0.0058×7.25=0.042(MPa)
⑹4-5管段
1区、3区:
(P/L)4-5=0.0005(MPa/m)
L4-5=2.8+0.2+5+3.5=11.5(m)
P4-5=0.0005×11.5=0.006(MPa)
2区、4区、5区、7区:
(P/L)4-5=0.0045(MPa/m)
L4-5=2.8+0.2+5+0.4+3.5=11.9(m)
P4-5=0.0045×11.9=0.05355(MPa)
6区:
(P/L)4-5=0.0049(MPa/m)
L4-5=2.675+4+0.3+0.2+2.8=9.975(m)
P4-5=0.0049×9.975=0.049(MPa)
工作区管道阻力损失:
1区:∑P1=1.04(MPa)
2区:∑P1=0.99(MPa)
3区:∑P1=0.92(MPa)
4区:∑P1=0.9355(MPa)
5区:∑P1=0.9(MPa)
6区:∑P1=0.462(MPa)
7区:∑P1=0.84(MPa)
地板下:
1区、2区、3区、4区、5区、7区:
⑴1-2′管段
(P/L)1-2′=0.007(MPa/m)
L1-2′=10.3+3.5+2.1=15.9(m)
P1-2′=0.007×15.9=0.1113(MPa)
⑵2′-3′管段
(P/L)2′-3′=0.006(MPa/m)
L2′-3′=5.6+4+0.3=9.9(m)
P2′-3′=0.006×9.9=0.594(MPa)
⑶3′-4′管段
(P/L)3′-4′=0.0046(MPa/m)
L3′-4′=3.675+3.2+0.3=7.175(m)
P3′-4′=0.0046×7.175=0.033(MPa)
⑷4′-5′管段
(P/L)4′-5′=0.004(MPa/m)
L4′-5′=2.8+0.2+1.8+2.5+0.2=7.5(m)
P4′-5′=0.004×7.5=0.03(MPa)
6区:
⑴1-2′管段
(P/L)1-2′=0.0065(MPa/m)
L1-2′=3.53+2.9+1.7+0.9+2.8=11.83(m)
P1-2′=0.0065×11.83=0.0769(MPa)
⑵2′-3′管段
(P/L)2′-3′=0.0055(MPa/m)
L2′-3′=5.35+3.2+0.3=8.85(m)
P2′-3′=0.0055×8.85=0.0487(MPa)
⑶3′-4′管段
(P/L)3′-4′=0.005(MPa/m)
L3′-4′=1.85+2.5+0.2=4.55(m)
P3′-4′=0.005×4.55=0.0227(MPa)
⑷4′-5′管段
(P/L)4′-5′=0.0041(MPa/m)
L4′-5′=2.675+0.2+1.5+2+0.2=6.575(m)
P4′-5′=0.0041×6.575=0.027(MPa)
地板下管道阻力损失:
1区:∑P2=1.036(MPa)
2区:∑P2=1.009(MPa)
3区:∑P2=1.012(MPa)
4区:∑P2=0.8857(MPa)
5区:∑P2=0.85(MPa)
6区:∑P2=0.4(MPa)
7区:∑P2=0.786(MPa)
(十六)计算高程压头
依据《规范》中公式:Ph=10-6Hγg
(H为喷头高度相对“过程中点”储瓶液面的位差)
1区、2区:
工作区:Ph1=10-6×(—4.9)×1407×9.81=—0.069(MPa)
地板下:Ph2=10-6×(—7.9)×1407×9.81=—0.11(MPa)
3区、4区:
工作区:Ph1=10-6×(—1)×1407×9.81=—0.0138(MPa)
地板下:Ph2=10-6×(—4)×1407×9.81=—0.055(MPa)
5区、6区、7区:
工作区:Ph1=10-6×(2.8)×1407×9.81=0.0386(MPa)
地板下:Ph2=10-6×(—0.1)×1407×9.81=—0.00138(MPa)
(十七)计算喷头工作压力
依据《规范》中公式:Pc=Pm—(∑P±Ph)
1区:工作区:Pc1=2.036—1.04+0.069=1.065(MPa)
地板下:Pc2=2.036—1.036+0.11=1.11(MPa)
2区:工作区:Pc1=2.121—0.99+0.069=1.2(MPa)
地板下:Pc2=2.121—1.009+0.11=1.222(MPa)
3区:工作区:Pc1=2.06—0.92+0.0138=1.154(MPa)
地板下:Pc2=2.06—1.012+0.055=1.103(MPa)
4区:工作区:Pc1=2.166—0.9355+0.0138=1.244(MPa)
地板下:Pc2=2.166—0.8857+0.055=1.335(MPa)
5区:工作区:Pc1=2.133—0.9—0.0386=1.193(MPa)
地板下:Pc2=2.133—0.85+0.00138=1.283(MPa)
6区:工作区:Pc1=1.73—0.4622—0.0386=1.23(MPa)
地板下:Pc2=1.73—0.4+0.00138=1.33(MPa)
7区:工作区:Pc1=2.197—0.84—0.0386=1.317(MPa)
地板下:Pc2=2.197—0.786+0.00138=1.412(MPa)
(十八)验算设计计算结果
依据《规范》规定,应满足下列条件:
⑴Pc≥0.8MPa(绝压)
⑵Pc≥Pm/2
1区:PmⅠ/2=1.018MPa2区:PmⅡ/2=1.0605MPa
3区:PmⅢ/2=1.03MPa4区:PmⅣ/2=1.083MPa
5区:PmⅤ/2=1.0665MPa6区:Pm6/2=0.864MPa
7区:PmⅦ/2=1.0985MPa
各防护区均满足,所以合格。
(十九)计算喷头计算面积及确定喷头规格
根据《规范》规定:依据Pc查“七氟丙烷JP-6—36型喷头流量曲线”确定喷头计算单位面积流量q(kg/s·cm2)。然后通过F=Q/q得出喷头计算面积,从而确定喷头规格。Q为喷头平均设计流量。
1区:工作区:qc1=2.1(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=6.08(cm2)喷头规格为JP-36型
地板下:qc2=2.2(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.85(cm2)喷头规格为JP-13型
2区:工作区:qc1=2.25(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.675(cm2)喷头规格为JP-36型
地板下:qc2=2.4(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.779(cm2)喷头规格为JP-13型
3区:工作区:qc1=2.3(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.55(cm2)喷头规格为JP-34型
地板下:qc2=2.2(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.85(cm2)喷头规格为JP-13型
4区:工作区:qc1=2.4(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.32(cm2)喷头规格为JP-34型
地板下:qc2=2.5(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.748(cm2)喷头规格为JP-13型
5区:工作区:qc1=2.25(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.67(cm2)喷头规格为JP-36型
地板下:qc2=2.45(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.763(cm2)喷头规格为JP-13型
6区:工作区:qc1=2.4(kg/s·cm2)Qc1=6.4286(kg/s)
Fc1=2.679(cm2)喷头规格为JP-24型
地板下:qc2=2.5(kg/s·cm2)Qc2=0.9464(kg/s)
Fc2=0.379(cm2)喷头规格为JP-9型
7区:工作区:qc1=2.5(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.11(cm2)喷头规格为JP-34型
地板下:qc2=2.55(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.733(cm2)喷头规格为JP-13型
(二十)计算达到设计浓度实际喷放时间及校核地板下喷头型号
1区:工作区喷头型号为JP-36型,喷口计算面积6.413(cm2)
喷头流量Q=6.413×2.1=13.467(kg/s)
支管流量为13.467×8=107.738(kg/s)
实际喷放时间为t=714.99/107.738=6.64(s)
校核地板下喷头型号:支管流量为104.7/6.64=15.78(kg/s)
喷头流量为15.78/8=1.97(kg/s)
Fc=1.97/2.2=0.895(cm2)
喷头校核为规格为JP-14型
2区:工作区喷头型号为JP-36型,喷口计算面积6.413(cm2)
喷头流量Q=6.413×2.25=14.429(kg/s)
支管流量为14.429×8=115.434(kg/s)
实际喷放时间为t=714.99/115.434=6.194(s)
校核地板下喷头型号:支管流量为104.7/6.194=16.903(kg/s)
喷头流量为16.903/8=2.11(kg/s)
Fc=2.11/2.4=0.88(cm2)
喷头规格为JP-13型
3区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)
喷头流量Q=5.72×2.3=13.156(kg/s)
支管流量为13.156×8=105.248(kg/s)
实际喷放时间为t=714.99/105.248=6.793(s)
校核地板下喷头型号:支管流量为104.7/6.793=15.412(kg/s)
喷头流量为15.412/8=1.9265(kg/s)
Fc=1.9265/2.2=0.876(cm2)
喷头校核为规格为JP-14型
4区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)
喷头流量Q=5.72×2.4=13.728(kg/s)
支管流量为13.728×8=109.824(kg/s)
实际喷放时间为t=714.99/109.824=6.51(s)
校核地板下喷头型号:支管流量为104.7/6.51=16.082(kg/s)
喷头流量为16.082/8=2.01(kg/s)
Fc=2.01/2.5=0.804(cm2)
喷头规格为JP-13型
5区:工作区喷头型号为JP-36型,喷口计算面积6.413(cm2)
喷头流量Q=6.413×2.25=14.429(kg/s)
支管流量为14.429×8=115.434(kg/s)
实际喷放时间为t=714.99/115.434=6.194(s)
校核地板下喷头型号:支管流量为104.7/6.194=16.9(kg/s)
喷头流量为16.9/8=2.11(kg/s)
Fc=2.11/2.45=0.8624(cm2)
喷头规格为JP-14型
6区:工作区喷头型号为JP-24型,喷口计算面积2.85(cm2)
喷头流量Q=2.85×2.4=6.84(kg/s)
支管流量为6.84×8=54.72(kg/s)
实际喷放时间为t=360/54.72=6.58(s)
校核地板下喷头型号:支管流量为53/6.58=8.056(kg/s)
喷头流量为8.056/8=1.007(kg/s)
Fc=1.007/2.5=0.403(cm2)
喷头规格校核为JP-10型
7区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)
喷头流量Q=5.72×2.5=14.3(kg/s)
支管流量为14.3×8=114.4(kg/s)
实际喷放时间为t=714.99/114.4=6.25(s)
校核地板下喷头型号:支管流量为104.7/6.25=16.752(kg/s)
喷头流量为16.752/8=2.094(kg/s)
Fc=2.094/2.55=0.821(cm2)
喷头规格为JP-13型
2.4.2系统主要组件和设备型号
七氟丙烷储瓶型号:JR-100/59;瓶头阀:JVF-40/59;
电磁启动器:EIC4/24;释放阀:JS-100/4;
七氟丙烷单向阀:JD-50/59;高压软管:J-50/59;
安全阀:JA-12/4;压力讯号器:EIX4/12;
3.火灾自动报警及联动控制系统系统设计3.1火灾自动报警系统设计3.1.1报警区域和探测区域的划分
根据《火灾自动报警系统设计规范》中规定,报警区域应根据防火分区或楼层划分,可将一防火分区划为一个报警区域,也可将同层的相邻几个防火分区划为一个报警区域,但这种情况下不得跨越楼层。按防火分区的划分原则中“高层建筑在垂直方向应以每个楼层为单元划分防火分区”把该建筑一层划为一个防火分区。则一个楼层为一报警区域。
根据《火灾自动报警系统设计规范》中规定,探测区域应按独立房间划分。一个探测区域的面积不宜超过500平方米;从主要入口能看清其内部,且面积不超过1000平方米的房间,也可划为一个探测区域。该建筑把每个防护区划为一个探测区域。
3.1.2自动报警系统的设计
本设计采用集中报警控制系统。根据《电子计算机房设计规范》,设有固定灭火系统的区域,要设感温探测器和感烟探测器的组合。探测器的灵敏度采用一级。感烟探测器和感温探测器两种探测器交差布置,这样可以提高报警的准确性,感烟探测器进行火灾初期报警,感温探测器进行火灾中期报警,可以减少误报。
3.1.3探测器布置计算
⑴与七层LS机房相同大小的区域:
该探测区域净空面积为S=22.4×14.8=331.52(m2)查“各类探测器的保护面积和保护半径表”得感烟探测器的保护面积为60m2,保护半径为5.8m。
N≥S/(KA)=331.52/(0.8×60)=7个
感温探测器的保护面积为20m2,保护半径为3.6m。
N≥S/(KA)=331.52/(0.8×20)=21个
因为采用两种探测器的组合,所以探测器的数量应该在7~21个之间,综合考虑在此防护区中布置8个。
设计布局合理,布置情况详见设计图纸。
地板下布置形式与此相同。
⑵与八层小电力室相同大小的区域:
该探测区域净空面积为S=21.6×7.6=164.16(m2)查“各类探测器的保护面积和保护半径表”得感烟探测器的保护面积为60m2,保护半径为5.8m。
N≥S/(KA)=164.16/(0.8×60)=4个
感温探测器的保护面积为20m2,保护半径为3.6m。
N≥S/(KA)=164.16/(0.8×20)=11个
因为采用两种探测器的组合,所以探测器的数量应该在4~11个之间,在此防护区中布置5个。
设计布局合理。地板下只布置感烟探测器。布置情况详见设计图纸。
走廊内按间距小于15米进行布置感烟探测器。
3.1.4手动报警按钮
《火灾自动报警系统设计规范》中规定:每个防火分区应至少设置一个手动火灾报警按钮,从一个防火分区内的任何位置到最邻近的一个手动按钮的距离不应大于30米,设在公共活动场所的主要出入口处。手动报警按钮、消火栓按钮等处宜设置电话塞孔,其底边距地面高度宜为1.3-1.5米。
该建筑八层、十一层每个防护区的出口处设1个手动按钮,每层共有6个。七、九、十层每层设4个手动按钮。
机械应急操作装置设在储瓶间内。
3.2联动控制系统设计3.2.1联动控制
联动控制系统的报警系统的执行机构,使气体灭火功能在手动或电气控制状态下得以实现。联动控制的功能主要实现自动报警、气体灭火、控制风机等相关设备的启停等功能。
3.2.2控制系统设计计算
各型报警控制设备参数如下表所示,设备数量如前一节计算数量。
设备参数表表3.2.2
设备名称
工作电压
监视电流Ip
报警电流Ij
功耗
感烟探测器
DC24V
≤0.6mA
≤2.0mA
感温探测器
DC24V
≤0.8mA
≤1.4mA
手动报警按钮
DC24V
≤0.8mA
≤2.0mA
单输入/输出模块
DC24V
≤1.0mA
≤5.0mA
双输入/输出模块
DC24V
≤1.0mA
≤8.0mA
声光报警器
DC24V
≤0.8mA
≤160mA
总线隔离器
DC24V
动作电流170mA/270mA
多线控制盘14
DC24V
<4W
气体灭火控制盘6区
DC24V
<10W
放气指示灯
DC24V
≤100mA
启/停按钮
DC24V
0mA
≤20mA
报警联动控制器
≤50W
一、平面线缆线径计算:
⑴与七层相同的楼层(七、九、十层):
LS机房相同大小的区域:净空感烟探测器4个、感温探测器4个,地板下感烟探测器6个。
其它区域:感烟探测器14个、感温探测器1个、手动报警按钮5个、放气指示灯4个、紧急启/停按钮4个、声光报警器2个、双输入/出控制模块6个。
取每层所有总线设备动作电流作为总线最大电流:
Imaxj1=24*Ij+5*Ij+5*Ij+6*Ij=24*2.0+5*1.4+5*2.0+6*8.0
=113.0(mA)
根据以上计算并查电线电缆选用手册,总线选择导线为ZR-RVS-2X1.5。
非总线设备最大电流为:
Imaxj=4*Ij+4*Ij+2*Ij=4*100+4*20+2*160
=800.0(mA)
根据以上计算并查电线电缆选用手册,非总线选择导线为ZR-BV-2.0。
⑵与八层相同的楼层(八、十一层):
与电力室相同大小的区域:净空感烟探测器4个、感温探测器4个,地板下感烟探测器6个。
与小电力室相同大小的区域:净空感烟探测器2个、感温探测器2个,地板下感烟探测器3个。
其它区域:感烟探测器11个、感温探测器1个、手动报警按钮5个、放气指示灯6个、紧急启/停按钮6个、声光报警器3个、双输入/出控制模块10个。
取每层所有总线设备动作电流作为总线最大电流:
Imaxj1=26*Ij+7*Ij+5*Ij+10*Ij=26*2.0+7*1.4+5*2.0+10*8.0
=151.8(mA)
根据以上计算并查电线电缆选用手册,总线选择导线为ZR-RVS-2X1.5。
非总线设备最大电流为:
Imaxj=6*Ij+6*Ij+3*Ij=6*100+6*20+3*160
=1200.0(mA)
根据以上计算并查电线电缆选用手册,非总线选择导线为ZR-BV-2.5。
二、系统容量计算:
1.报警系统容量:
报警系统的容量可简便地计算为报警联动控制器的功率损耗与折算系数(取1.2)的积:
Pjz’=Pj*1.15=50W*1.2=60W
2.联动控制系统容量:
⑴气体灭火控制系统容量:
整个系统有6区气体灭火控制盘3个,由表3.2.2知每个气体灭火控制盘的功耗为10W,气体灭火盘动作因素为0.75,折算系数取1.5,则气体灭火控制系统容量为:
Pfz’=3Pf*0.75*1.5=3*10*0.75*1.5=33.75W
⑵其它控制系统容量:
非总线系统容量:
Pe1’=U*∑Imaxj*1.2=24V*(1.2A+0.8A)*1.2=57.6W
风机等控制系统容量:
风机等设备的控制由多线联动控制盘控制,每个灭火区域设1台多线联动控制盘(共12个),表3.2.2知每个多线联动控制盘的功耗为4W,动作因素取0.75,折算系数取1.5,则风机等控制系统容量为:
Pe2’=12*Pe2*0.75*1.5=12*4*0.75*1.5=54W
联动控制系统总容量为:
Ptz=Pfz’+Pe1’+Pe2’=33.75W+57.6W+54W=145.35W
系统总容量:
Pz=Pjz’+Ptz=60W+145.35W=205.35W
查手册得,该系统的工作电源选取DC24V/38Ah。主电源采用AC220V市电经DC24V/38Ah浮充稳压电源变换后提供DC24V电源。直流备用电源采用火灾报警控制器的专用蓄电池组提供DC24V/38Ah电源。
3.3布线
该系统采用树状布线,传输线路采用穿金属管保护方式布线。消防控制线路采用金属管顶板内暗敷管保护,且保护层厚度不小于30mm。火灾探测器的传输线路,选择不同颜色的绝缘导线,相同用途的导线的颜色一致。接线端子有标号。火灾自动报警系统的传输网络不与其他系统的传输网络合用。
3.4系统组件
感温探测器;感烟探测器;灭火控制箱;声光报警器;紧急启动停止按钮;放气指示灯;警铃;应急照明灯等。
4.安全疏散设计
防护区应有足够宽的疏散通道和出口,保证人员在30秒内能撤出防护区。七氟丙烷在火场的高温条件下会产生HF,对人员和设备都有轻度危害。在发生火灾时,为了避免建筑物内人员因火烧、烟气中毒、建筑构件倒塌破坏、灭火剂喷放后中毒而造成的伤害,也为了能及时启动灭火剂,扑灭火灾,尽可能减少损失。人员安全撤离防护区的允许疏散时间为30秒。所以要求人员在30秒内撤离防护区,否则是不安全的。
安全疏散计算:
在防护区内离门最远的距离为L=16.1m
人走到房门所需时间T1=L/V(V取1.2m/s)
T1=L/V=16.1/1.2=13.42s
检验是否有人员滞留现象T2=Q/(NB)
Q为室内人数,取15人
B为房门宽度为1米
N为房门通行系数,平地取1.3人/m·s
T2=15/(1×1.3)=11.54s<T1
所以疏散时不会发生人员滞留现象。
为了更好的进行安全疏散,保护人员安全,对防护区有下列安全要求:防护区的疏散通道和出口应设置应急照明与疏散指示标志。防护区内设置声光报警器,防护区的入口处设置放气指示灯。防护区的门应向外开启,并能自行关闭;疏散出口的门必须能从防护区内打开。
5.经济预算
根据国家政策,进行工程建设应遵守的基本原则是“安全可靠、技术先进、经济合理”。“安全可靠”以安全为本,要求必须达到预期目的;“技术先进”则要求火灾报警、灭火控制及灭火系统设计科学,采用设备先进、成熟;“经济合理”则是在保证安全可靠、技术先进的前提下,做到节省工程投资费用。
本设计在设计计算时已验算了达到设计灭火浓度所需要的时间都小于7秒,而且自动报警系统采用感烟探测器和感温探测器两种探测器的组合进行布置,这样报警准确,所以该系统基本可以达到预期目的。在进行管网布置时,尽量布置成均衡管网,尽量减少弯头数量和管道长度,节省了工程投资费用。
经济预算采用《全国统一安装工程预算定额四川省估价表》SGD-5-2000。
依据我公司长期经验,其中气压试验、吹扫试验的数量按管径100毫米内的管道长度计算,主材数量按管道内表面积除以3m2/瓶来确定氮气瓶数量。支架制作安装、支架除锈、支架刷红丹、支架刷银粉的数量按支架长度乘以1.7kg/m来确定。系统组件水压试验和系统组件严密试验的数量按选择阀、气液单向阀、高压软管、汇集管的数量之和来确定。
6.结束语
通过紧张的毕业设计,我的收获很大。我已经很好的熟悉了《七氟丙烷灭火系统设计规范》。对《火灾自动报警系统设计规范》和安全疏散等方面的知识也有了比原来更深的认识和理解。加深了七氟丙烷灭火系统的设计计算和设计方法。而且还强化了消防工程的预算编制技术。尤其重要的是毕业设计培养了我仔细认真,坚韧严谨的科学态度和虚心求教的精神。更加深了我对工程设计工作的热爱。
在毕业设计期间,得到了张银龙教授的悉心指导,张老师的指导使我的毕业设计更加完善。王智慧同志对我的初进行了详细的审核,并进行了部分稿件的文字录入和定稿后的核稿工作。在此对他们深表感谢!
7.参考文献
⒈国家技术监督局、中华人民共和国建设部《电子计算机房设计规范》(GB50174-93)1993
⒉深圳市消防局、天津消防科学研究所《七氟丙烷(HFC-227ea)洁净气体灭火系统设计规范》
⒊中华人民共和国公安部《火灾自动报警系统设计规范》(GB50116-98)1998
⒋蒋彦、雷志明《新型气体灭火系统(卤代烷替代物)设计手册》中国环境科学出版社1999.8
⒌《消防科学与技术》
⒍《消防产品与信息》
⒎中华人民共和国公安部《建筑设计防火规范》(GBJ16-87)1988.5.1
⒏中华人民共和国公安部
篇3
关键词:性能化设计;处方式设计;消防设计;火灾模型
1前言
如果说纳米技术使新材料的研究起到了革命性飞跃,那么也可以说性能化设计方法将开创消防科技的新局面。
消防设计目前有两种设计思想,一种是传统的“处方式设计方法”,其基于场所类型进行设计考虑;另一种是“性能化设计方法”,它立足于危害分析及火灾假想,对于解决超越法规或现行法规无法解决的复杂建筑的消防设计具有很大意义。
由于性能化防火设计的方法与传统的设计方法相比具有许多优越性,所以很快成为建筑防火的一种新理念,并将发展成为建筑防火技术领域里一个全球性发展潮流,受到许多发达国家和发展中国家的高度重视,得到越来越广泛的应用。
2性能化消防设计的概念
性能化消防设计是建立在消防安全工程学基础上的一种新的建筑防火设计方法,它运用消防安全工程学的原理与方法,根据建筑物的结构、用途和内部可燃物等方面的具体情况,由设计者根据建筑的各个不同空间条件、功能条件及其它相关条件,自由选择为达到消防安全目的而应采取的各种防火措施,并将其有机地组合起来,构成该建筑物的总体防火安全设计方案,然后用已开发出的工程学方法,对建筑的火灾危险性和危害性进行定量的预测和评估,从而得到最优化的防火设计方案,为建筑结构提供最合理的防火保护。
与“处方式”设计相比较,性能化设计方案更关注是否能够实现“保证人员疏散和灭火救援不受火灾烟气影响”这一“目的”,而不是拘泥于满足规范要求的最低排烟量。性能化的消防设计方案通过科学的论证,能够提供比之处方式的消防规范更为安全的设计表现效果,比较起来,性能化设计方案具有设计成本有效性,设计选择多样性及设计效果更为优化性的特点。
篇4
民用建筑的消防给水系统的设计可根据实际情况的房屋结构、楼层的高度,以及经济、合理和科学要求,按压力分为:临时高压消防给水系统、低压消防给水系统和高压消防给水系统。在低压消防给水系统中,由于自身管网的水压低于0.1MPa,在小型的民营建筑中较为适用,低压消防给水系统通常在室外应用,灭火时,需要消防车等用外力来满足水压和流量的需求。对高压消防给水系统主要通过灭火设备自动灭火,不需要直接启动消防泵及其他设备进行加压,由于市政给水压力的不足和水量达不到要求,需要配备相应的天面水池来保证高压消防给水系统的压力和水量需求。临时高压消防给水系统通常适合火灾情况,如官网内最不利点周围水量和压力无法满足当前的火情需要,可启动消防泵等设备进行加压。临时高压消防给水系统对第二种火情如管网内压力和水量都比较充足的情况下,通过起亚给水设备保证稳定输出,设置消防泵满足火情需要的水压和水量。气压给水设备的作用主要是为满足消火栓和水幕喷头的压力需要。根据消防供水的实际情况,对民用建筑的高度、供水压力流量的大小和供水的范围等,还可将消防给水系统分区域集中高压给水系统和独立高压给水系统。在区域集中的高压给水系统中,使用一定范围内、建筑比较密集区域的高压给水系统管理是比较严谨的,以便于集中应用,对辖区内的民用建筑都有消防作用,经济实惠且性价比较高。独立的高压给水系统是一种应急性的消防给水系统,是在遇到地震、自然灾害、突发性大火同时建筑群较为分散等的情况下可充分发挥的高压给水系统,相比区域集中的高压给水系统投资较大。自动喷水灭火系统是根据自动预警、控火和灭火等特定,比较适合民用建筑人员较为密集、不易疏散、外部增援灭火比较困难的情况所使用的。在使用时,应避免遇水容易爆炸或加速燃烧的物品和遇水发生强烈化学反应产生有毒物质的物品。这种自动喷水灭火系统的实际灭火效果很好、可在第一时间采取灭火措施,且具备先进的自动报警功能,造价相对较高。在民用建筑消防给水系统可用消防栓给水系统,利用建筑物的高度和室外水管网的压力、流量,以及室内消防管道的水压水量要求可分四种,如无加压泵和水箱消防栓给水系统、竖向分区消防栓给水系统、设加压泵和水箱给水系统、单设水箱消防栓给水系统。在民用建筑工程中一般消防栓超过10个,消防用水量为15L/S以上,其造价较低,但没有自动喷水灭火系统效果显著。
2民用建筑消防给排水分区的设计
民用建筑消防给排水设计要保证建筑的安全、人民财产的安全,为达到民用建筑消防的最好效果,需要对民用建筑消防给排水设计以科学设计。
2.1科学合理设计管网、消防池和消防泵及消防栓的设计要合理布置消防管网,保证供应消防用水,为消防工作做准备。在市政管网满足不了消防用水时,要有必要的设置消防水池。将各种消防用水量减掉进水管的补水量,保证消防水池有足够的消防用水,并及时得到补充。在设置水池时,不能用建筑物本身作为池壁,要另外设消防水池,保证水质、防止污染,也可在屋顶设置消防和生活两用水箱。消防水池的引入管道要在两根以上,保证消防水池的水能引入水泵间,避免出现供水隐患,有利于消防部门开展工作,保证供水安全。同时,在设置消防水池时,应保证水池容量满足火灾延续时间内的消防用水量,或者同时满足火灾延续时间内需水量和室外不足水量。消防的补水管流速在2.5m/s以下,消防水池的补水时间在48小时以内,一般设置两个消防水池,有条件的话,应增加相应的防辐射及防冻措施。消防泵房的设计应不低于二级耐火等级设计,疏散门设置在首层时应直通室外,若设置地下或楼层上,要靠近安全出口,且设计成甲级防火门。消防泵房至少应有两条以上出水管与消防给水管直接连接,且出水管需进行防超压设置,消防泵要设置备用泵。室内消火栓的供水设计要按照规定,设置在明显操作的地方,消火栓箱外面不能再有其他设置,如门和装饰等。多层民用建筑与高层公共建筑之间的同一防火分区不能用双消火栓布置形式满足粮谷水柱,非同一防火分区的消火栓不可相互借用。
2.2放水阀与稳定回流设计消防水泵的供水管,是为了能够有效的排水,方便检查和试验水泵,要设置放水阀。在排水量较小的情况下,可以直接排到泵房及水池,在排水量比较大的情况下,应该把放水阀排到消防水池内。这样对排水的正常进行,消防工作的展开都有非常大的作用。除此外,消防水泵的出水口应采取稳压回流措施。在消防使用过程中,一般会出现水量小于规定值的情况发生,在水量较小的情况下,如果不用回流措施,会引发消防管网压力过大,进而导致发生事故。所以,必须在供水管上设置稳压阀,在管网出现超压情况下,可通过回流管进行泄压,并将回流水排回消防水池。
2.3合理安排末端试水装置的设计在进行设计末端试水装置时,主要是为解决末端试水装置的排水问题,对末端试水装置的压力表和试水阀装置之后,要设置试水接头,在出水口的口径一般被忽视,给消防工作带来不便,不利于消防部门顺利开展工作,对消防末端试水装置要根据设计要求,实际情况和试水接头出水口的流量选择合适的型号产品。针对出水口直径没有明确的标准,市面上有许多消防设备制造商生产一整套完整的末端试水装置,要根据现实情况进行选择。
3结语
篇5
本工程建筑面积为89m2,周边道路及人行道等达3000m2;结构层数为地上一层;桩基选用管桩规格为PHC-A型D400(95)型桩;基础承台采用标号C30砼;柱、梁、飘板采用标号C25砼;钢筋采用Φ8~Φ25的圆钢和螺纹钢;干挂石材厚度为50mm,骨架采用镀锌角钢,挂件采用不锈钢;石材干挂后,在结构与石材缝中还需水泥砂浆灌浆;所有雕刻石材都是整石打造并采用吊装,精雕细琢,雄伟壮观。
设计时,考虑到经济原则和施工方便,石材饰面内可采用钢筋混凝土结构,部分外露构件也可用混凝土支模浇筑。按结构施工图先浇铸钢筋混凝土主体骨架,根据牌坊柱截面,混凝土柱浇成亚字形。屋面板底支模浇出方椽条和博风板,并浇铸梁头以方便安置石构件,用PVC管预留管线及钢筋穿孔位。在各个分项工程中,有监理人员、质监人员严格把关,在施工完成静压桩和主体结构后,便做静压试验和抽蕊回弹等试验,以保证工程质量。
石材面装饰工程是本工程的重要内容,主体采用钢骨架干挂,局部有系挂,甚至贴石,有些复杂处喷石漆。柱采用干挂石材,为厚50mm、长1500mm的浅黄色花岗岩,这比厚25mm的一般挂石要大,从转角就可看到石材的拼接厚度,使柱有厚实感。用1:2的白水泥砂浆比例灌缝和聚氨酯胶嵌缝(图4)。梁为砼梁,顶面贴30厚花岗石,20厚1:2白水泥砂浆结合层;其它三面栓挂30厚浅黄色花岗岩,1:2的白水泥砂浆比例灌缝和聚氨酯胶嵌缝(图5)。屋面板底采用灰白色石漆。屋面板也是仿石效果,但现浇的屋面板下桷板及侧面博封板形式复杂,无法再贴石,考虑到距离地面较远的施工操作和理想的视线效果,最后采用喷石漆,石漆色泽接近挂石(图6)。石雕要求比较高的石构件,基本采用整石打造,如柱头、雀替、抱鼓石、梁头卷花、柱础等。其中柱头根据形式分上下两段,之间有榫口,并与混凝土柱卯口相连(图7)。柱础分四块,安于四角,左右用石胶填缝,前后缝由抱鼓石遮挡(图4)。抱鼓石分上下两端,与混凝土柱连接处用膨胀螺丝和钢筋焊接。雀替则用Φ25螺纹钢穿孔与混凝土构架拉结,保证结构牢固。穿孔处补石块用石胶填缝(图8)。石雕、抱鼓石、柱头、雀替等石作,按图纸上已提供大样及工艺做法施工,细节处理由施工方按传统做法,提出施工方案,绘制草图、提供材料样板,经设计方或建设方审定后,先做出样板,确认后方可全面施工。石缝拼接是施工设计的重要内容,总的原则是尽量避免通缝、长缝的出现,把石缝适当隐藏。亚字型柱贴石面时,保证正立面的石材完整,拼接缝出现在侧面。过梁挂石同样处理,将完整面留于正立面,拼接缝出现在上下面。精确计算石材完成后的尺寸,干挂系挂及贴石的预留尺寸不一样,尽量减少完成面后的缝隙,如有缝隙可用石胶填缝。
瓦面采用传统琉璃瓦,瓦的排列方式参考传统作法,由于屋面斜度较大,要采用钢钉、扎线及灰浆座砌固定瓦面[2]。瓦面层由上而下排列为:a筒板瓦盖六留四底铺1:3水泥砂浆卧瓦最薄处20厚,使用直径3~3.5mm钢钉穿过瓦,插入砂浆中;b配Φ6@500X500钢筋;c20厚1:2.5水泥砂浆找平层;d混凝土屋面板。
一些与国立中山大学有关的校区,不少都建有类似的牌坊的校门,佳作不少,华农新校门牌坊也自不逊色,亮点有三:
1设计上的继承与创新
设计师有比较专业的传统建筑修养,对老中大南门牌坊研究透彻。对校门牌坊的整体比例把握到位,特别是总高与面阔的比例及各开间的比例关系。并对细部周详仔细设计,取其他牌坊细部之精华。绿色琉璃屋面是设计的创新之处,这种组合既体现了传统形制,又加强了学校民国建筑的历史特色。
2用料讲究
主校门工程是华南农业大学的一个标志性建筑,是百年校庆的重点工程,受到学校领导的重视,对建筑的设计及施工要求很高,监管到位,用料尽量配合设计要求,舍得用大料好料。
3施工到位
篇6
[关键词]油库;消防设计;注意事项
中图分类号:TE88 文献标识码:A 文章编号:1009-914X(2017)01-0261-01
前言:在我国市场经济中,石油化工行业占据着重要组成,发挥着不可替代的作用。而作为石油化工生产的主要环节,油库主要负责产品的储存和中转。为了保证我国石油行业的健康发展,必须做好油库的消防设计工作,着重关注其中存在的题,确保消防系统及时发挥出作用。
一、 自动化消防系统的建设
对于油库自动化消防系统的建设,可以从下面三项内容中开展:第一、动力系统。需要配备备用的柴油发动机,同时确保所选择的柴油发动机,能够与整个系统的参数相对应,避免出现输出过小的情况;保证所配备的启动发电机是直流电源。此外,在日常管理过程中,需要对应急发电机的启动电池电压、油压参数、以及油箱油位高度等数据,加强监管力度,从而保证发动机可以随时处于正常的工作状态中。在一些油库的火灾事故中,可以明显发现备用柴油发电机所发挥出的重要性作用。第二、火灾自动检测系统。现如今所使用的火灾探测传感器,普遍使用光线传感,其具有较为理想的耐高温、抗腐蚀等特点,备受相关单位所青睐。工作人员只需要对油罐外壁的油气温度、以及温度上升的速率进行监控,同时根据系统提前设置的参数信息,便可以分析出能否发生火灾。在实际的工作过程中,工作人员还需要结合其他数据,以此来分析火灾发生概率。第三、灭火系统。灭火系统又包括两种形式,分别是自动灭火形式和手动灭火形式,同时要求上述两种灭火方式相互配合。特别是在自动灭火形式启动的过程中,可以充分展示出人工灭火形式的监控和调节作用。比如说可以对各个环节的动力供应、火灾走向、灭火剂的选择、火点的精准位置等等进行监控。自动灭火系统起到之后,依旧需要参照综合灭火方案、以及视频监控系统进行实施。
二、 油库消防冷却水强度的调节措施
一旦油库中发生火灾,最容易受到火灾的影响,必将会是着火储罐的罐壁。如果火灾类型属于地上发生的钢罐类型,一般来讲,仅仅需要五分钟左右的时间,罐壁温度便可以达到500℃左右,此时会导致钢板强度处于逐渐下降的状态中,经过十分钟左右的时间,钢板所具有的支撑能力便会消失。因此,工作人员必须第一时间,将火罐温度降低下来。如果是火灾是发生在利用易燃材料制成的内浮顶油罐中,或者是发生在固定顶油罐中,着火罐的直径大小,对辐射热的强度产生直接的影响,例如如果是位处于罐壁1.5D的距离,便会受到很大强度的辐射热强度,通常情况下可以达到8600KJ/m2.h,温度几乎是达到60℃左右。因此,对距离着火罐1.5D范围内的油罐,展开及时有效的冷却措施,同样非常具有必要性。为了获取理想的冷却效果,那么必须制定科学、可行、合理的调节措施,而其中最为简洁、有效的调节手段,也就是从整个储罐区域的防火堤外部的消防环网,一直到每一个油罐消防支管控制阀,均安装一个压力表。在系统标定和调试的过程中,作为一种辅助措施,超声波流量计能够展开计量工作,并且在保证阀门开启度的基础上,需要对着火罐、以及其他油罐在冷却过程中,压力表的及时刻度进行标定。在以后的使用中,工作人员便可以参照着火罐、以及相邻的油罐,便可以控制阀门开启度,同时给与足够强度的冷却水。
三、 油库消防水系统的设计
在我国一级、二级油库消防设计中,针对于消防工艺系统的设计,要求其必须具有完整的供给,具体包括油罐喷淋用水供给、消防泡沫用水供给、消防栓用水供给、消防泡沫枪的消防泡沫供给。在油库消防设计中,上述供给非常普遍和常见。但是针对于特级油库、或者是特大型立式储罐来讲,由于其具有较大的着火面积,以及较高的火焰问题,严重情况火焰可以达到几十米高度,而着火又产生较为复杂的热流流动,在火灾现场常会出现爆裂和爆炸的情况,由此增加了消防人员的灭火难度,使消防人员更容易受到伤害。
在油库火灾的扑救过程中,主要使用的灭火剂具体有消防泡沫和消防用水,但是如果是面对特大型储量的油罐,其不具有简单的累加效果,而扑灭火灾最理想的效果,便是在保证油罐不发生变形的情况下,完成火灾的扑救工作。但是由于具有较大的液面表面积,致使一些泡沫不能够在整个着火液面实现有效流淌和覆盖,很多泡沫在液面流淌的过程中,受到较高温度影响出现蒸发现象,大约只有30%左右的泡沫,能够发挥出应有的灭火作用。如果依旧是采取此种灭火措施,必将需要增加泡沫的数量,才能够将特大型储油罐表面积火灾扑灭。随着消防泡沫数量的增加,消防用水量也必将会增量,此外消防用水,还需要对其他需要保护的相邻油罐进行喷淋。为了更好的控制火灾,需要有足够的消防水储量,因此,在《石油库设计规范》GB50074-201版中将“直径大于20米的地上固定顶储罐和直径大于20米的浮盘用易熔材料制作的内浮顶储罐”的灭火时间改为不少于9小时,而其他地上立式储罐不小于6小时。此外,可以根据不同的地区,设计人员可以适当考虑周围的水资源,充分利用周边的有利条件。
四、 新型灭火技术的应用
新型灭火技术的使用,可以从下面三点内容展开分析:第一、消防机器人。通常情况下,此类机器人的动力支持是蓄电池,但是蓄电池不具有长时间的蓄电能力,所以用于侦查方面的机器人可以选择此类电池。而用于消防灭火的机器人,尽可能使用柴油机提供动力。消防机器人自身具有消防枪炮,喷射流量非常巨大,其灵活的特点能够在火灾现场,发挥出非常大的作用。还有一些消防机器人,其机械手能够开启和关闭阀门,也可以搬移物品,对于消防灭火具有较大的辅助作用。第二、微胞囊技术。此技术也就是将微胞囊技术产品 F-500与水按3%的比例混合,其可以将燃料温度迅速降低。并且其能够存在于液相燃料和气相燃料分子周围,使燃料无法再次燃烧。可以说,利用微胞囊技术,极大程度的降低了灭火时间,快速降低火场温度,同时不具有复燃的概率。第三、细干粉灭火剂。此种灭火剂的灭火速度非常快,同时具有良好的扩散性能。相比较普通干粉灭火剂,细干粉灭火剂具有6-10倍左右的单位容积灭火率。在油库火灾扑救中,细干粉灭火剂可以发挥出重要性作用。所以在油库消防设计中,可以对此种灭火剂着重考虑。
总结:总而言之,加强油库消防设计的科学性和有效性,可以充分发挥出消防系统的关键性作用。可以说,只有做好油库的消防设计,才能够将各种引发火灾的因素进行及时监管,防止火灾的发生。因此,设计人员必须结合油库的综合特点,合理设计消防系统,确保油库可以稳定安全运行,切实推动我国石油产业的发展。
参考文献:
篇7
学校公用房管理软件其的主要目的是能够达到学校资源共享,实现公用房的有效分配,它涵盖了学校的所有公用房的详尽资料,能实现用户的查询和申请功能,实现公用房分配,并且能及时的更新数据。本设计主要在数据库和可视化软件的基础上编程实现的,它能够达到以上要求,其主要要包括一个数据库(公用房信息系统)和可视化部分(各大功能模块),即后端与前端,其原理如下。
1.1数据库数据库的建立
主要是公用房信息系统的建立。本论文设立了对应数据的关联。通过分析,将数据分为18项数据信息表。房屋基本信息表主要包括房屋的物理属性如房屋ID、房屋名称、房屋面积、方位等,通过房屋的ID,能唯一确定一间用房。房屋分配信息表主要包括房屋的分配属性如分配信息ID、房屋ID、分配时间、分配状态、所属团队等,通过房屋分配ID、房屋ID能够查到相关用房的分配情况。房屋类型信息表提供了房屋的使用类型ID、类型名称和房屋的描述属性,以此作为选用用房的参考。学院信息表提供了学院的一些基本信息如学院ID,作为主键用于学院的信息查找;学院的名称、专业类别系数、院办电话等。通过学院的基本信息表,能够申请学院的指定用房。除此之外,还设定了其他多项表信息,具体如图1。
1.2功能模块的设计
根据需求分析的结果,按照“低耦合、高内聚”的原则,本系统的可视化部分将划分为以下主要功能模块:登录模块、密码修改模块、管理员模块、用户模块、用户注册模块、用户用房申请模块。各模块图如图2所示,主要分为管理员管理系统和用户查询系统,管理系统包括对用户的管理、公用房信息的管理(如住房面积、位置、布局等信息)及更新信息管理等。用户查询系统主要包括查询公用房信息(实现对公用房的各种信息查询)和申请公用房两大部分。
2软件设计
软件设计也分为前端和后端的设计,前端设计采用delphi软件和C++语言编写实现,后端采用SQLServer软件实现。
2.1数据库的设计概念
结构设计是数据库设计的核心。概念结构设计是将系统需求分析得到的用户需求抽象为信息结构的过程,它是用实体-联系(Entity-RelationShip,简称E-R)图进行描述的。根据公用房数据信息表之间的关系建立完整的数据库,实现信息表的相连。图3为房屋基本信息表_房间分配信息表外键关联图。
2.2可视化部分的设计
根据需求分析的结果,按照“低耦合、高内聚”的原则,本系统将划分为以下主要功能模块:登录模块、用户操作信息模块、管理员操作信息模块、公用房申请模块等。其中的管理员操作界面如图4所示。1)登录模块:在此模块中用户可以根据用户名、密码和自己的身份来登录到相应的主界面。其中可以选择用户类别:①管理员②申请用户。它可以链接到用户注册模块(在此模块中,用户填写相应的信息来注册。用户注册信息的录入,包括用户名、密码等信息)。2)用户操作信息模块:本模块是面向对象是用户,其主要用来查询公用房信息,同时可链接到公用房申请模块。具体功能为:用户可以根据公用房的不同的字段对某个特定的表进行查询,通过检索得到所需全部信息。用户操作模块只对信息有查询操作,其他的如修改、删除等功能不存在,及设置了权限。在此模块中,又包含了两个模块:密码修改模块和房屋申请模块;3)管理员操作信息模块:管理员操作界面主要实现对公用房和用户的信息管理功能。例如,当用户进行公用房申请后,管理员根据用户提供的信息对用户进行审核,审核通过后通过相关人员实现该用户公用房的分配。其具体功能为:程序运行时,管理员可以分别根据不同的字段来查询所对应的信息表,也可以实现修改、删除、录入等功能。程序运行后,管理员点击登录则进入的界面如图所示。在管理员操作模块里,管理员可以根据自己得需要对数据进行查询、修改、删除、录入等操作,也可以调用所有的信息。4)公用房申请模块本模块是用户申请公用房的界面,用户在对公用房的申请条件了解清楚后,提出公用房申请,由管理员考核是否通过。
3结语
篇8
论文摘要:面对德州市小城镇消防基础设施建设方面存在的突出问题,通过调查分析,结合小城镇发展扫建设实际,提出了几点有针对性改进意见。
1、前言
小城镇消防基础设施建设事关小城镇消防安全和农村城镇化发展战略实施大局,是推进社会主义新农村建设的重要基础和保障。我国作为一个农业大国,农村城镇化建设总体水平比较低,消防基础设施建设滞后和欠帐问题十分突出。我们通过对德州市小城镇消防基础设施状况的调查分析,提出几点对策意见,供大家参考。
2、小城镇消防基础设施建设存在的主要问题
2.1消防规划不落实,消防基础设施建设无章可循,存在盲目性和不科学性
消防规划是小城镇消防基础设施建设的重要基础和前提。目前大多数小城镇缺少消防规划,有的虽在小城镇总体建设规划中提及有消防内容,但缺乏深度,内容不完整,可操作性不强。目前,德州市126个小城镇中,只有6个城镇编制有专门的消防规划,在总体规划中形成了消防规划专篇的不足30%0消防规划不完善,导致消防基础设施建设无序、混乱和欠帐。
2.2城镇消火栓建设缺口大、到位差
许多小城镇消火栓建设还没有起步,现有消火栓安装普遍存在安装数量不足,管网管径小,压力低等问题,加之,日常管理维护保养差,完好率低。目前,德州市126个乡镇中,安装有消火栓的仅88个,占总数的69.8%,其中38个乡镇尚未安装消火栓,每个乡镇平均消火栓数只有2.2具,欠帐率80%。全市供水主管不到100mm的乡镇53个,相当一部份供水主管不到50mm,一半以上供水压力不足0.25Mpa,其中还有近35%的不足0.1Mpa。目前,大多乡镇白来水厂(站)通过改制已私有化,加之,政府专项维护经费不到位,城镇消火栓、消防供水管网日常维护保养不落实,许多消火栓年久失修,无法正常开启。
2.3灭火救灾的基本装备缺乏,城镇自我救灾能力十分薄弱
小城镇大都离公安消防队比较远,火灾时关键要立足自我救护。各地小城镇普遍存在重组织队伍建设,轻装备配备问题。目前,德州市90%以上的小城镇依托乡镇干部、基干民兵和志原者等组建有兼职的抢险救灾应急小分队,但是,从调查情况看,大都空有一个组织,而没有配备消防手抬泵、水带、水枪、消火栓钥匙等基本的灭火救灾和其它抢险救灾装备。火灾时,主要靠的还是锅、碗、瓢、盆、桶等端水、递水灭火这种最原始和简陋的手段,一方面使小城镇现有消火栓等消防设施无法取用灭火造成浪费;另一方面也使应急分队的组建缺乏真正的现实意义和作用。
2.4自然、天然水源取水设施不完善,可借消防水源利用率低
各地小城镇大都有极为丰富的自然或天然水源,这是小城镇灭火救灾的重要储备力量。黄河流经本市62公里,年可引水25亿立方,目前,德州市126个乡镇中,89个在镇区500m范围内有江河、水塘、湖泊、水库等自然、天然水源达186处,但真正能直接作为消防给水之用的不足30%,普遍没有因地制宜建立供消防车取水用的码头、取水井或取水口,消防车无法直接取水灭火,白白浪费了本就紧张的小城镇消防水源,火灾时,往往只有望火兴叹,望水兴叹。
3、加强小城镇消防基础设施建设的几点意见
3.1搞好小城镇消防基础设施建设统一规划,做到有章可循
搞好小城镇消防基础设施建设的基础和前提是必须编制切实可行的小城镇消防规划。各地政府应当按照《消防法》、《山东省城市消防规划编制办法》等法规要求,将小城镇消防基础设施建设纳入城镇总体规划,并组织有关主管部门具体实施和落实。小城镇消防规划的编制,必须与城镇总体规划相配套,与城镇发展相适应,具有可操作性,特别要结合我国作为农业大国,小城镇总体建设水平还不发达的现状,注重实用,正确处理好需要与可能的关系,重点从城镇功能分区和安全布局、市政消火栓、消防通道、消防基本装备等几个方面人手,不宜面面俱到,宜粗不宜细。
3.2加强小城镇消火栓建设和消防基础设施的维护管理和保养工作
消火栓是小城镇消防基础设施建设的重要基础内容,是小城镇灭火救灾的基本武器。在小城镇消防基础设施建设中,必须把消火栓建设作为重点,切实按照国家规范要求进行规划和建设。对于新开发建设的区域,要按照城镇消防规划要求,坚持路修到哪里,消火栓就安装到哪里的原则,努力保证消火栓开始就建设到位。对于原有镇区消火栓欠帐问题,要认真制订计划,及时补充安装,尽快还清旧帐。另外,城镇消防基础设施维护保养工作环节多,任务重,要求高,必须从组织机构,责任制度,维护经费等方面予以保障。要落实小城镇消防基础设施维护管理和保养工作的归口部门和责任单位,解决谁主管问题。要制定完备的消防设施检查、维护、修理、验收等一系列规章制度,落实严格的奖惩措施,做到有章可循,有据可依。超级秘书网
3.3加强灭火救灾基本装备配备,提高小城镇自我救灾能力
小城镇火灾自我救护能力的提高,除了加强组织机构和救灾队伍建设以外,更为重要和关键的还在于救灾装备建设,否则就是巧妇难为无米之炊。在强化抢险救灾应急小分队等多种形式救灾队伍建设的同时,要进一步加强基木灭火救灾装备的配备。要配备一定数量的消防手抬泵(轻便型)、消防水带、水枪等最基本的灭火救灾装备,对干条件较好的地方,可以配备一定数量的轻便消防车,组建专兼职多功能消防队伍,并配备一定数量的灭火救灾个人防护装备等。要加强灭火救灾基本装备管理,组织开展经常性的应用性训练、演练,提高实战水平,保障火灾情况下能随时集结,快速出动,有效灭火。
3.4因地制宜,抓好自然、天然水源取水设施建设,提高后备消防水源灭火救灾利用率
从各地小城镇现有河流、湖泊、水塘、水库等自然、天然水源情况来看,其水质、水量大都可作为消防给水使用。要加强消防取水设施建设,保证火灾时消防车或消防泵能够及时、方便取水灭火。要因地制宜,结合当地自然、天然水源的情况,有计划地修建一定数量的消防车用取水码头,开辟供消防车或消防泵用的取水井、取水口。可根据城镇发展建设的需要,有计划地在镇区主要建筑区域修建一定数量的景观水池,既美化城镇景观,又可作消防水源之用,一举两得。
篇9
典型消失面的构成及造型思路
如图3所示是产品设计中常见的典型消失面,这种消失面结构由三个面组成,曲面①是产品的原始曲面,是消失面结构的根基面;曲面②是与原始面存在着一定高度差的曲面,该面落差的高低直接影响着消失面结构的平陡程度;曲面③是消失面结构的核心曲面,该面的特点是中间部分明显存在的曲面往两则慢慢延伸后逐渐地消失了,也可以表述为曲面①和曲面②由中间明显的高度差往两侧渐渐融合到一起,变成没有高度差了。从产品整体曲面的光顺角度考虑,消失面的各个部分的曲面是必须保证能够光顺过渡的,造型质量要求一般的产品可以控制为G1(相切)连续,造型质量要求特别严格的则需要控制为G2(曲率)连续。如图4所示,从该曲面的斑马线反射分析图谱可以看出:曲面①和曲面②接触部分是做成了G1连续,曲面③与曲面①、曲面②的接触部分均做成了G1连续。消失面造型设计的关键是在面①的基础上构建出如图5所示的四边网格的边界条件,大致可以按照这样的造型思路来设计:(1)在原始曲面上修剪出制作消失面效果的范围,从面得到了边界a;(2)在修剪的区域建立与原始曲面相连续的曲面②,从而得到边界b;同时,因为曲面②的出现,使得在曲面①上的另一边界分成了三部分,其中两头的边就自然形成了边界c和边界d;(3)在曲面①和曲面②的中间部位构建一条公切线,即线e,用于辅助控制消失面的平陡效果;(4)将以上5边构建成网格曲面,注意设定边界a-d与曲面①或曲面②的G1以上的连续。
典型消失面的参数化造型设计
按照前面消失面造型设计的思路,运用常用的三维CAD软件都能顺利完成具体的设计任务。下面就介绍运用一款主流的三维CAD软件——UGNX完成曲型消失面造型设计的方法和步骤,同时阐述如何通过设计过程的参数化来控制消失面的形状。
1典型消失面造型方法
(1)用“相交曲线”功能求出产品原始曲面与曲面中心平面(基准面)的交线,用“偏置曲线”将求得的交线往下偏置P1(文中P1…Pn代表一个合适的数值),如图6所示。(2)用“草图”或“基本曲线”画出制作消失面的范围,能过“修剪的片体”剪出用来制作消失面结构的范围,如图7所示。(3)在边f上取比例为P2的关联点,由该点为起点往左做一条平行原始曲面长方向的直线,将直线投影至原始曲面后镜像;在步骤(1)得到的偏置曲线上取比例为P3的关联点C;通过两投影线的端点和点C做样条曲线,控制样条两端为G1连续。完成效果如图8所示。(4)用“通过曲线组”功能将边f的中间段和前面所得的样条线构建成曲面②,注意控制边f处与原始曲面的G1连续,如图9所示。(5)用“相交曲线”功能求出产品原始曲面和曲面②与中间平面的交线,用“桥接曲线”功能得到中间的形状控制线,如图11所示。(6)用“通过曲线网格”功能将前面所得的如图5所示的曲线a-e构建成曲面③,注意控制四条边界的G1连续,完成效果如图3所示。(7)将曲面①②③进行“缝合”,完成效果如图11所示。
2消失面形态的参数化控制
消失面的效果需要根据产品的总体形态和设计师想表达的目标形态来不断调整,方能达到理想效果,因此,设计过程的参数化就会大大提高对消失面效果调整的效率,在上述造型设计的方法中,有多处的参数可以用来调整消失面大小、平陡等效果:1)改变步骤(1)中的偏置值P1能调整消失面的落差程度;2)改变步骤(2)中草图的轮廓能调整消失面的小心范围和轮廓形状;3)改变步骤(3)中的比例值P2和P3能影响曲面②的形态,从而调整消失面的总体形态;4)改变步骤(5)中桥接曲线的形状控制(如相切幅值或深度与歪斜)能影响该桥接曲线的扭曲情况,从而调整消失面的形态。
篇10
关键词:行政事业单位;小金库;长效机制
中图分类号:F275 文献标识码:A 文章编号:1001-828X(2013)12-00-01
一、“小金库”问题产生的原因
“小金库”是指企业、事业单位未将应列入会计账簿的各项资金,按照相关法律、规章制度的要求列入会计账簿。其主要特点表现在以下几个方面,即非法性和违规性、广泛性和普遍性、复杂性和多样性、秘密性和隐蔽性、群体性和福利性、随意性和挥霍性。
根据国际著名的行为学家兼心理学家,维托·弗鲁姆的期望理论可知,设立“小金库”行为的产生,主要取决于人们对目标价值的判断和对预计目标的期望值,即当目标的价值越高,人们对目标的期望值也会越大,返之则越小。但往往人们对于“小金库”的期望值都是很高的。
二、构建防治“小金库”问题的长效机制
1.X事业单位概况。X事业单位是国务院批准设置的海事局,由交通运输部直接管辖,对我国水上安全和船舶污染等水上安全保障进行监督管理。其下设有8个海事分局,45个海事处,46个办事处,115个待命站点,20个基层预算单位以及职工培训中心等相关直属机构。
X事业单位主要职能是规划、协调、监督和服务于海上相关工作。其工作的性质主要表现为效益的公益性、公务的政府性以及工作的防范性。它为从事海上事业的公民生命财产安全付出了巨大的努力。
根据上级直属管辖部门交通运输部的相关要求,X事业单位成立了“小金库”治理工作领导小组,深入海事局各个基层,加强宣传教育工作,并督导检查工作实施情况。治理工作已经初步取得了成效,但“小金库”问题依然存在。对此,X事业单位“小金库”治理工作领导小组结合本单位实际情况与问题产生的原因重新构建了长效的治理“小金库”机制。
2.X事业单位资金收支情况。从X事业单位收入结构上看,其中财政拨款与政府性基金收入占其收入的70%多,其余不到30%的收入由X事业单位先收入单位账户,再由X事业单位转账给财政专户,而且这部分收入的征收项目较多,征收流程也有所不同。
从X事业单位支出结构上看,90%多的收入额由X事业单位自行支配,其支出项目大多为海上安全建设项目,投入大,项目复杂;只有不到1%的收入上缴上级单位。
如此复杂的收支情况加大了“小金库”问题发生的风险。对此,X事业单位的“小金库”治理工作领导小组根据本单位的具体情况,建立了往来资金管理管理办法和长效的监督机制。
三、构建防治“小金库”长效机制的内容
1.往来资金的管理办法。根据X事业单位通过加强单位的收入和支出管理、工程项目管理、内部审计管理以及财务信息化管理等工作,找出工作的重点,堵塞单位管理制度上的漏洞。其具体实施办法是通过单位内部会计控制规范和预算管理办法双重有效的管理单位内部的货币资金、固定资产、财务信息、内部审计制度以及签定的各种合同和工程项目的实施。
2.制定长效的监管机制。首先,X事业单位明确了监督与奖惩的目标。监督与奖惩的内容遵循国家法律法规和单位各项制度,以保证财务信息的质量和有效性为前提。
其次,X事业单位对监督的程序做了明确的规定,同时在奖惩问题上也了详尽的评定方案,并为此成立了专门的评定小组,保证监督与奖惩的科学性与合理性。其监督与奖惩的重点包括以下几方面:
第一方面,完善内控监督制度。对X事业单位下属的各个分支机构建立了完善的资金管理制度、会计制度、审计制度以及对重大事项的决策等一系列权力运行的监督控制。首先,明确了企业资金的收入与支出的项目和审批程序,对于往来资金的结算与清理也做了明确的要求;其次,强化了对工程项目和合同协议签定的内审的力度,有效的防治了资金的乱用和无益工程项目的实施和无效合同协议的签定。
第二方面,完善制度,公开单位财政收支机制。X事业单位加大了对群众举报的核查,使职工把监督工作当成一种责任。并对下属分支机构的财务收支状况也积极的扩大了公开内容,由广大职工干部和群众共同监督。
第三方面,“小金库”监督责任落实到个人。监督小组与单位的每一位员工都做了“小金库”承诺备案,并对每一个职工的权限和责任也做了具体的分配,做到照章办事、人尽其责。对于特殊情况,应及时上报上级,请示处理意见,征得批准后再进行下一工作环节,确保了专项监督治理工作数据的真实性与完整性。
最后,加强宣传力度,提高单位职工思想认识。X事业单位将制定的相关制度以书面形式下发到各个分支机构,由各分支机构负责人将制度的精髓传达给每一位职工,使X事业单位每一位职工从思想上认清“小金库”问题的严重性,使每一位职工从主观意识上抵制“小金库”。
以上X事业单位对治理“小金库”问题制定的长效机制,会随着X事业单位经营管理模式的转变做出适时的调整,以深化单位职工对“小金库”问题的认识,及时堵塞旧机制的漏洞。
四、总结
“小金库”问题的出现,即危害了社会经济秩序,又引发了行政事业单位职务犯罪,造成了国有资产的大量流失。只有还从思想上转变人们意识,降低人们对“小金库”的期望值,才能真正的杜绝“小金库”问题的再次出现。
参考文献: