抗震技术论文范文
时间:2023-04-12 06:02:07
导语:如何才能写好一篇抗震技术论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:建筑结构;抗震设计;相关问题;
中图分类号:TU318 文献标识码:A
引言:由于开发商对于建筑物的地震破坏原因和破坏程度没有足够的了解,导致建筑物在抗震设计方面存在十分大的困难。所以,我们不仅要追求建筑物的造型美观,还有考虑建筑物的抗震设计。要为人们营造一个安全舒适的生活环境。针对地震问题我们要在房屋结构找突破点。只有设计出抗震、牢固的建筑结构,才能保障人类的人身安全。
一、房屋建筑结构设计相关因素分析
建筑物按建筑结构分类可分为:砌体结构、砖混结构、钢筋混凝土结构、钢结构等。建筑物结构形式的确定,与其抗震能力是密切相关的。相关的科学研究表明,在遭遇相同等级的地震灾害后,采用钢结构的建筑物受损坏的程度明显要低于钢筋混凝土结构的建筑物。日本也是一个多地震的国家,其钢结构的房屋建筑占全国建筑的半数以上,也是其在遭遇地震后人员伤亡较少的主要原因之一。目前,我国的建筑抗震系数系统依旧是不完善的,不能确保结构设计人员准确、有效地应用。历次地震灾害表明,影响抗震系数的因素是很多的,比如其抗震的等级、建筑物的类别、场地类别、建筑物总高度等。为了促进其实际工作的需要,应对各种相关因素和相关参数展开一系列的优化分析,得到一个最优的设计方案。房屋建筑的抗震性能与许多因素有关系,比如其建筑的体型设计。汶川地震震害表明 , 许多平面形状复杂 , 例如平面上的较大外凸和凹陷、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。海城地震和唐山地震中有不少这样的震例。而平面形状简单规则、传力途径明确的建筑在地震中都未出现较重的破坏;有的甚至保持完好。上述情况表明,很多损害严重的建筑物的设计方案不是很合理,如果能够选择一个好的设计方案,震后损失可能会减小很多。
二、建筑结构抗震设计的要点
在我国,对于建筑物抗震设计的要求是采取“三水准设防、两阶段设计”的标准。在这种标准的影响下,建筑结构设计经历了柔性设计、刚性设计、结构控制设计和延性设计四个阶段。但是由于地震产生了很多不确定因素,导致建筑结构存在非常大的偶然性和复杂性,甚至还有计算模拟与实际情况的不符的情况出现,导致计算结果误差很大。所以,我们不仅要考虑建筑物良好的概念设计,还要提高建筑结构抗震性能。具备完善的建筑结构体系。一个良好的建筑体系,对于建筑业是十分有必要的。在实际的建筑抗震设计时,要注重依赖建筑结构体系的协同工作,从而使建筑物中的每个构件都能够共同工作。所以,这就需要建筑结构构件在允许受力的情况下不仅能够具有良好的耐久性,还要能够在高压,强力的作用下共同工作。在砌体结构的建筑中避免建筑结构单纯的依靠建筑结构自身刚度来承受载荷。充分提高建筑物材料利用率的协同工作。从建筑物抗震设计经验表明,材料的利用率越高,结构的协同工作能力也就越高。
三、建筑结构抗震设计中的主要问题
1、建筑结构体系的合理选择。建筑结构设计中最主要的一方面就是结构体系的选择,它的合理选择决定着建筑物的安全性。对于建筑结构体系的合理选择应注意以下两个方面的设计:(l)体系应具有合理的地震传递途径和明确的计算简图。在这个过程当中,房屋内部结构的布置,应使得更多的受力在主梁上,并且使垂直重力以最短的路径传递到主受力部位;竖向构件的布置,要让竖向构件的压应力接近均匀(2)建筑体系应具有合理的强度。一个良好的建筑物必须要有合理的强度进行支撑,一些建筑的薄弱部位要由合理的强度防止:在框架结构设计方面,要保证节点不受破坏,要使梁、柱端的塑性尽可能的分散;对于容易出现的薄弱环节,必须提高薄弱部位的抗震能力。
2、抗震场地的选择。抗震场地的选择直接影响建筑物的抗震设计工作,应选择有利的抗震场地,要避开对建筑抗震不利的地段。地震对于地面的危害是十分巨大的。地震造成的地裂和地表错动,直接使得房屋倒塌,结构损坏。所以,选择抗震场地不能选择易液化土地、软弱场地、状态明显不均匀等场地;如果不能避免不理的场地,可以采用适当的抗震措施进行加强强度:对于地震时有可能存在的地裂或者滑坡的场地,必须采取科学合理的措施进行稳定;如果地基需要建立在最近填土和土层十分不均匀或者软弱粘性土层时,必须采用桩基、地基加固和加强基础和上部结构的处理措施。
建筑工程选址应注意的问题:四川汶川地震的震害情况表明,那些建在断裂带上和断裂带沿线的建筑物都完全倒塌,破坏极其严重。因此,建筑物建设地点的确定是极其重要的,它是决定建筑物抗震性能的前提条件,只有正确的选址方案,才能保证建筑物满足建筑抗震设计的相关要求,保证其安全性、可靠性。选择建筑场地时应根据工程的实际需要和工程地质、地震活动情况等相关资料,选择对建筑物抗震有利的地段,避开对抗震不利的地段,严禁在地震断裂带及断裂带沿线附近建造甲、乙、丙类建筑物。应避开地震时可能发生山体滑坡、崩塌、地陷、地裂、泥石流等次生灾害地段。汶川地震发生时,北川老县城发生规模较大的山体滑坡,王家岩山体在地震作用下瞬间崩塌,崩塌的山体倾泻而下瞬间摧毁山下及周边的建筑物,北川老县城的 5个街区的大部分建筑物被厚厚的土体掩埋,造成大量人员伤亡。这样的结果不是靠提高抗震设防等级、提高建筑物的抗震性能和措施所能避免的。所以避开此类危险地段,才能避免因选址不当所造成的严重的人员伤亡和财产损失。
3、重视建筑平面布置的规则性。在建筑平面布置方面,应尽可能的采用抗震概念设计原则,不能使用严重不规则的设计方案。有关资料表明,对于一些楼板布局不够规范时,要采取相应的楼板计算模型;对于平面不规则、立体不规则的建筑结构,必须采用空间结构计算模型。结构的规则性具体分为三个部分:第一是建筑主体必须具备良好的抗压能力,侧力结构不能变形,要尽可能的均匀;第二是建筑主体抗侧力结构的平面布置,建筑主体抗侧力结构的布置要注重同一侧的强度要均匀;第三是建筑主体抗侧力结构的布置要与周围的结构具有相同的刚度,必须保障良好的抗扭刚度。总之,重视建筑平面布置的规则性对于建筑的抗震设计十分重要。
建筑物平面设计应该注意的问题:建筑物的平面布置规则与否、是否对称和具有良好的整体性,也是影响建筑物抗震性能的重要因素之一。例如酒店、公寓、商场、住宅、体育馆等不同建筑物的使用功能不同,其平面布置也千变万化,其柱距、开间、进深、隔墙的布置、楼梯的位置、电梯井的布置等也有很大差别,如果柱子、墙体等布置不对称、不规则,使得平面刚度急剧变化,遭遇地震后,将发生严重的扭转破坏。因此,建筑设计时,应使柱子和抗震墙(剪力墙)等抗侧力构件均匀、对称布置,刚度较大的楼梯间、电梯井应尽可能居中布置,不要布置在建筑物的转角处。要尽可能作到使结构的质量和刚度分布均匀、对称协调,避免突变,防止在地震作用下产生扭转效应。
4、建筑物竖向设计应该注意的问题
建筑物的竖向布置设计也将对其抗震性能产生巨大的影响。近些年来,由于国民经济的迅速发展,商场、写字楼等高层、超高层建筑越来越多,其要求底层或下面几层大开间、大空间,这就形成了建筑物下面几层柱子和抗震墙(剪力墙)较少,层间质量和抗侧刚度沿建筑物高度分布不均匀,在抗侧刚度较差的楼层形成了对抗震极为不利的薄弱层,在地震作用下,引起较为严重的破坏。汶川地震中,有许多底层框架—抗震墙砌体房屋底层柱子直接破坏,建筑物由原来的 4 层直接变为 3层。主要原因就是,沿着建筑物高度方向,质量和抗侧刚度发生突变,底层柱子较少,抗侧刚度较小,地震作用下,底层柱子直接坏掉。所以,建筑物的竖向布置设计时,应尽可能使其沿竖向的抗侧刚度分布比较均匀,抗震墙(剪力墙)并使其能沿竖向贯通到建筑底部,不宜中断或不到底,尽量避免某一楼层抗侧刚度过小,以避免在地震作用下,因薄弱层的存在引起建筑物的倒塌。
四、提高建筑结构抗震能力的建议
建筑结构抗震设计是在不断的实例验证中逐渐分析,日益总结归纳出来的。在目前的房屋建设当中,抗震设计是十分有必要的。所以,建筑抗震设计在建筑设计中应该引起十分重视。为了设计出高抗震性的建筑物,在我看来需要注意以三点:第一,科学合理的建筑布局是不可缺少的,于此同时还有保证各个主要受力物体处在同一平面,在地震来临时要能禁得住压力。在墙段没有发挥作用之前,需要依照“强墙弱梁”的标准实施加强建筑物的承受力,防止地震强大的破坏力。第二,要按照不同的抗震等级,对梁、柱以及墙的节点使用相对应的抗震措施,确保建筑结构在地震作用下达到相关标准。为了保障钢筋混凝土在地震作用下不受破坏,要科学合理的添加合适的化学试剂,加强混凝土的强度与刚度,还有注意构造配筋的要求,尤其是要加强节点的构造措施。第三,必须设置多层抗震防线,一个良好的抗震体系对于地震的压力是十分重要的。抗震体系就如果人类身体的三道防线,不同等级的地震采取不同的防线。第一层不行,还有多层防线保护。这样的保护体系对于防震将是十分有效的。
五、结语
通过多年对于建筑结构抗震设计的研究,我国已经逐渐形成了自己的一套较为先进的、有效的抗震设计方法并日趋成熟,但是也有很多不足之处,需要我们在实践中加以完善。总之,要确保建筑结构中抗震设计能高效完成,应在遵循相关建筑抗震规范要求的原则上,进行科学的、合理的设计,确保建筑物具有稳定的、可靠的抗震性能,达到建筑物小震不坏、中震可修、大震不倒的标准。我们有理由相信,随着相关技术人员抗震设计水平的不断提高,我国的建筑工程结构抗震设计也会迈上更高的台阶。
参考文献:
[l]倪广林.对建筑结构抗震设计的若干思考田.山西建筑,2010.
篇2
关键词:高层建筑,建筑结构,抗震设计
地震是一种随机振动,所以建筑结构设计人员为防止、减少地震给建筑造成的危害, 就需要分析研究建筑抗震问题不断总结工程经验,妥善处理这一工程问题。
一、实行建筑抗震设计规范,总结工程经验妥善处理工程问题:
(一)选择有利的抗震场地
地震造成建筑物的破坏, 除地震动直接引起的结构破坏外,场地条件也是一个重要的原因。地震引起的地表错动与地裂,地基土的小均匀沉陷, 滑坡和粉、砂土液化等。科技论文。因此,应选择对建筑抗震有利的地段, 应避开对抗震不利地段。当无法避开时, 应采取适当的抗震加强措施,应根据抗震设防类别、地基液化等级,分别采取加强地基和上部结构整体性和刚度、部分消除或全部消除地基液化沉陷的措施; 当地基主要受力层范围内存在软弱粘性土层、新近填土和严重不均匀土层时,应估计地震时地基不均匀沉降或其他不利影响, 采用桩基、地基加固和加强基础和上部结构的处理措施; 对于地震时可能导致滑移或地裂的场地,应采取相应的地基稳定措施。
(二)优化的平面和立面布置
关于建筑结构设计的平面与立体结构, 我们根据认为有以下几个方面可以参考:
1、结构的简单性。结构简单是指结构在地震作用下具有直接和明确的传力途径。只有结构简单,才能够对结构的计算模型、内力与位移分析, 限制薄弱部位的出现易于把握,因而对结构抗震性能的估计也比较可靠。
2、结构的刚度和抗震能力。水平地震作用是双向的,结构布置应使结构能抵抗任意方向的地震作用。通常, 可使结构沿平面上两个主轴方向具有足够的刚度和抗震能力, 结构的抗震能力则是结构强度及延性的综合反映。结构刚度的选择既要减少地震作用效应又要注意控制结构变形的增大, 过大的变形会产生重力二阶效应, 导致结构破坏、失稳。论文参考网。
3、结构的整体性。在高层建筑结构中,楼盖对于结构的整体性起到非常重要的作用,楼盖相当于水平隔板,它不仅聚集和传递惯性力到各个竖向抗侧力子结构, 而且要求这些子结构能协同承受地震作用, 特别是当竖向抗侧力子结构布置不均匀或布置复杂或抗侧力子结构水平变形特征不同时, 整个结构就要依靠楼盖使抗侧力子结构能协同工作。
(三)设置多道设防的抗震结构体系
多道抗震防线, 是指在一个抗震结构体系中, 一部分延性好的构件在地震作用下, 首先达到屈服, 充分发挥其吸收和耗散地震能量的作用, 即担负起第一道抗震防线的作用, 其他构件则在第一道抗震防线屈服后才依次屈服,从而形成第二、第三或更多道抗震防线, 这样的结构体系对保证结构的抗震安全性是非常有效的。同时底框建筑底层高度不宜太高, 应控制在4.5m 以下。高度加大, 底层刚度减小, 重心提高, 使框架柱的长细比增大, 更容易产生失稳现象。论文参考网。而且由于高度较大,很多建筑房间被业主一层改成了两层, 造成了较大的安全隐患。科技论文。宜具有合理的刚度和强度分布, 避免因局部削弱或突变形成薄弱部位.产生过大的应力集中或塑性变形集中;可能出现的薄弱部位, 应采取措施提高抗震能力。
(四)保证结构的延性抗震能力
合理选择了建筑结构后, 就需要通过抗震措施来保证结构确实具有所需的延性抗震能力,从而保证结构在中震、大震下实现抗震设防目标, 系统的抗震措施包括以下几个方面内容。强柱弱梁: 人为增大柱相对于梁的抗弯能力,使钢筋混凝土框架在大震下,梁端塑性铰出现较早,在达到最大非线性位移时塑性转动较大; 而柱端塑性铰出现较晚, 在达到最大非线性位移时塑性转动较小,甚至根本不出现塑性铰。从而保证框架具有一个较为稳定的塑性耗能机构和较大的塑性耗能能力。强剪弱弯: 剪切破坏基本上没有延性, 一旦某部位发生剪切破坏, 该部位就将彻底退出结构抗震能力, 对于柱端的剪切破坏还可能导致结构的局部或整体倒塌。因此可以人为增大柱端、梁端、节点的组合剪力值, 使结构能在大震下的交替非弹性变形中其任何构件都不会先发生剪切破坏。
(五)合理的建筑结构参数设计计算分析
对于复杂结构进行多遇地震作用下的内力和变形分析时, 应采用不少于两个不同的力学模型,目前主要有两种计算理论: 剪摩理论和主拉应力理论, 它们有各自的适用范围:砖砌体一般采用主拉应力理论,而砌块结构可采用剪摩理论。对计算机的计算结果, 应经分析判断确认其合理、有效后方可用于工程设计。结构计算控制的主要计算结果有结构的自振周期、位移、平动及扭转系数、层间刚度比、剪重比、有效质量系数等。另外, 地下室水平位移嵌固位置,转换层刚度是否满足要求等, 都要求有层刚度作为依据。复杂高层建筑抗震计算时,宜考虑平扭耦联计算结构的扭转效应, 振型数不应小于15,对多塔结构的振型数不应小手塔楼数的9 倍, 且计算振型数应使振型参与质量不小于总质量的90%。总之, 高层结构计算很难一次完成,应根据试算结果, 按上述要求多次调整,才能得到较为合理的计算结果,以保证建筑物的安全。
二、高层建筑抗震设计中经常出现的问题
(一)部分建筑物高度过高
按我国现行高层建筑混凝土结构技术规程规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑都有一个适宜的高度。在这个高度,抗震能力还是比较稳妥的,但是目前不少高层建筑超过了高度限制。在震力作用下,超高限建筑物的变形破坏性会发生很大的变化,建筑物的抗震能力下降,很多影响因素也发生变化,结构设计和工程预算的相应参数需要重新选取。
(二)地基的选取不合理
由于城市人口的增多和相对空间的缩小,不少建筑商忽略了这一问题,哪里商业空间大就在哪里建。高层建筑应选择位于开阔平坦地带的坚硬土场地或密实均匀中硬土场地,远离河岸,不应垮在两类土壤上,避开不利地形、不采用震陷土作天然地基,避免在断层、山崖、滑坡、地陷等抗震危险地段建造房屋。高层建筑的地基选取不恰当可能导致抗震能力差。
(三)材料的选用不科学,结构体系不合理
在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。由于我国建筑结构主要以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,而且效果不大,有时不得不加大混凝土的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值。
(四)较低的抗震设防烈度
许多专家提出,现行的建筑结构设计安全度已不能适应国情的需要,建筑结构设计的安全度水平应该大幅度提高。我国现行抗震设防标准是比较低的,中震相当于在规定的设计基准期内超越概率为lO%的地震烈度,较低的抗震设防烈度放松了高层建筑的抗震要求。论文参考网。科技论文。
三、结语
地震是一种目前难以准确预测的自然灾害,为避免它给人类带来大的灾难。作为工程技术设计人员在建筑结构的研究和工程设计中,应从整体宏观的观点出发,综合处理好建筑功能、技术、艺术、安全可靠性和经济合理等几方面内容,从而创造出更加安全、适用、经济美观的高层建筑;新型结构的出现,高性能材料的发展,计算机技术水平的提高,促使人类建筑精品再上新的台阶。
篇3
论文摘要:《混凝土异型柱技术规程}(JGJ149—2006)的颁布为我国的结构设计人员提供了一本可以参照的国家标准,同时为广大结构设计人员指明了异型柱结构与普通混凝土结构的区别,现将其与《建筑抗震设计规范》(GB 500l1-2001)的区别与广大设计人员共同探讨。
引言
新的《混凝土异型柱技术规程》(JGJl49—2006)(简称异型柱规程)于2006年8月颁布,改变了异型柱设计只有地方性规定而没有国标的历。随之而来就是我们对规范的理解可能没有比较深入的研究,另外《异型柱规程》有些规定比《建筑抗震设计规范》(GB50011-2~1)(简称抗震规范)严格。现就规范的几点规定,谈谈个人的一点看法:
(1)异型柱结构最大适应高度
由于异型柱是一种新型的结构形式,只经过十余年的实践。综合考虑现有的理论研究、实验研究成果及设计施工经验,其房屋适用的最大高度较一般的钢筋混凝土结构有所降低。现就《异型柱规程》与《抗震规范》对比见下表:
沈阳市抗震设防烈度为7度,设计基本加速度值为0.10g,超过40米的结构,建议采用短肢剪力墙结构。
(2)异型柱的抗震等级
由于异型柱结构的抗震性能相对于普通混凝土房屋较弱,异型柱结构的抗震等级相对于普通混凝土房屋也应较严格。由于异型柱结构的适用范围较普通混凝土结构小,相应《异型柱规程》的抗震等级分类较《抗震规范》详细。对于丙类建筑抗震设计的房屋,《异型柱规程》给出了抗震等级的确定方法,现就《异型柱规程》与《抗震规范》的异《抗震规范》现浇钢筋混凝土房屋的抗震等级
《异型柱规程》中表3.3—1注3,当为7度(0.15g)时,建于Ⅲ、Ⅳ类声地的异形柱框架结构和框架一剪力墙结构情形时,也按8度(O.20g)采取抗震构造措施,但于括号内所示的抗震等级形式来具体表达,需注意的是《异型柱规程》采取了“应”按表中括号所示的抗震等级采取抗震构造措施,比《抗震规范》的上述对应部分规定(“宜”按……)有所加严
(3)不规则异型柱结构的抗震设计应符合下列要求
1.当异型柱结构楼层竖向构件的最大水
平位移(或层间位移)与该楼层层两端弹性水平位移(或层间位移)平均值之比大于1.20时,根据《抗震规范》有关规性,可界定为平面不规则的“扭转不规则类型”,但《异型柱规程》规性此时控制该比值不应大于1.45(第3.2.5条第1款),较《抗震规范》相应规定“不大于1.5”有所加严,目的是为了为严格控制异型柱结构平面的不规则性,避免过大的扭转
效应而导致严重的震害。
2.当异型柱结构的层间受剪承载力小于上一楼层的80%时,根据《抗震规范》有关规性,可界定为竖向不规则中的“楼层承载力突变类型”,并规定其薄弱层的受剪承载力不应小于上一层的65%,但《异型柱规程》规性此时乘以1.20的增大系数(第3.2.5条第2款),较《抗震规范》相应规定乘以增大系数1.15有所加严。
(4)异型柱的抗震作用计算规则
1.《抗震规范》第3.1.4条规定:“抗震设防为6度时,除本规范规定外,对乙、丙、丁类建筑可不进行地震作用计算”及第5.1.6条规定:“6度时的建筑(建造于Ⅳ类场地上较高的高层建筑除外),以及生土房屋及木结构房屋,应允许不进行截面抗震验算。”但《异型柱规程》第4.2.3条则以强制性条文方式规定:“抗震设防为6度、7度(0.1Og、0.15g)及8度(0.20g)的异型柱结构应进行地震作用计算及结构抗震验算。”本条是基于异型柱结构的抗震性能特点而制定的,6度设防时设计者应注意此条。
2.异型柱的双向偏压正截面承载力随荷载(作用)方向不同而有较大的差异,在L形、T形和十字形三种异型柱中,以L形柱的差异最为显著(设计者应着重加强L形柱的构造)。如根据《抗震规范》5.1.1条第一款(一般情况下(所有烈度),应允许在建筑结构的两个主轴方向分别计算地震作用并进行抗震验算,各方向的水平地震作用应由该方向抗侧力构件承担),则可能在某些情况下造成结构的不安全性,所以《异型柱规程》4.2.4条第一款规定, 7度(0.15g)及8度(0.20g)时尚应对与主轴成45°方向进行补充计算。
(5)异型柱的抗震变形验算
由于异型柱结构的特殊性,《异型柱规程》对异型柱结构的弹性层间位移角限值也较《抗震规范》严格,现比较如下:
考虑到异型柱结构的特殊性,本人建议进行异型柱设计时弹性层间位移角应从严控制:框架结构【】应小于l,800,框架一剪力墙结构【]应小于1/I100。
(6)异型柱框架梁柱节点核心区受剪承载力验算。
篇4
关键词: 建筑;结构设计;抗震;设计;策略
中图分类号:TU318文献标识码: A 文章编号:
近几年来,全球性的地震灾害的频发,给我们的人类,带来了更加深重的灾难。从汶川地震、舟曲地震,在到雅安地震,这些灾难,带给了我们无尽的伤痛,房毁人亡,建筑损坏等的发生,使得人们更加注重起了灾后依然屹立不倒的建筑,这些建筑,在灾难来临时,无疑可以为人们提供一个避风港,在一定程度上减少了人员的伤亡。为了提高建筑的抗震性能,本文对建筑结构设计中的抗震问题,进行了分析。
一、建筑抗震结构设计的基本原则
一是在最大限度上安排多道抗震防线。由于多个延性相对较好的分体系会构成一个抗震结构体系,通过有一定延性的结构构件共同协作。比合如延性框架以及剪力墙构成了框架-剪力墙结构。在经过了级数较大的地震之后,往往随之而来是多次的余震。如果只设计了一道防线,则余震带来的破坏在很大程度上会给已经受过损伤的建筑物带来致命的一击,而造成倒塌。为了防止大地震时发生倒塌,需要在抗震结构体系中设计较大的内部、外部冗余度。所运用的耗能构件需要满足较好的延性和适当的刚度,这样才能在很大程度上提高结构的抗震性能。
二是采取相应的措施在可能出现的薄弱部位加强其抗震能力。
判断薄弱部位的基本因素是构件的实际承载能力,发生强烈地震的过程中,构件没有所谓的强度安全储备。在设计过程中,需要实现楼层(部位)的实际承载能力和设计计算的弹性受力的比值处于相对均匀的变化趋势。且不能过分重视局部的刚度和承载力而忽视了整体的协调程度。对于从总体上加强抗震性能的手段,效果较为显著的手段是重视薄弱层的设计,能够具备充足的变形能力而不会发生薄弱层转移的情况。
二、建筑结构设计的抗震设计策略
1、建筑抗震场地的选择
(1)房屋平面布置应当规则,在结构上应当力求对称。如果房屋在建筑过程中,其外形不规则,或者是不对称,带有凹凸变化尺度,或者是形心质心偏大,在同一个结构的单元内部,结构的平面形状以及刚度不均匀或是不对称的情况下,平面的长度过长等现象,对于抗震性能均不利。
(2)强度以及刚度都要匀称。在多层的建筑结构当中,应该使各个层面之间的强度和具备的刚度都要匀称,无论哪一层,如果存在薄弱的一个楼层,那么这一处,就会在地震力的强大作用下导致变形或成为变形集中区,从而使得建筑物最初开始从此部位发生严重的变形导致破坏,最后甚至波及到整个建筑的整体遭到严重破坏。
(3)结构的超静定次数多。静定结构的杆件,其受力系统和传力路线单一,其中一根杆件遭到破坏,就会波及整个结构体系由此而导致失效。在超静定的结构中,超过其荷载能力的时候,会先使一些多余的杆件发生一些塑性的变形,并且容易消耗吸收一部分的能量,而保证整个的结构所具备的稳定性,并且还可以减少地震的破坏。超静定结构次数多,那么消耗地震能量,也就越多,同时建筑的抗震能量也就越强。
2、建筑结构抗震体系的合理选择
建筑结构中的抗震体系的合理选择,是在建筑结构抗震结构的设计当中,应当慎重考虑的一个重要性的问题,其中建筑结构的抗震方案的选取是否合理,这是决定建筑结构的安全性以及经济性的一个重要的组成部分。
(1)首先建筑结构体系,在地震的灾害中,应当避免因为部分结构或者是构件的破坏,从而导致的整个建筑结构丧失了抗震能力,或者是对重力荷载的承载能力。建筑结构抗震设计所具备的一个重要的设计原则就是,建筑结构本身应当具有十分必要的赘余度、以及良好的变形能力,和其具备的内力重分配的功能,在地震的过程当中,即使是有一部分的构件退出了工作,但是其余部分构件,应该仍然能够承担起竖向的荷载能力,且还要避免整体的建筑结构失稳。
(2)建筑结构体系当中,其应当具备清晰而且明确的计算的简图,包括恰当而且合理的地震作用下的传递的路径。在抗震设计过程当中,竖向建筑构件的布置设计,就应当尽量使得竖向建筑构件,在垂直的重力荷载的作用下,压应力水平应当接近均匀;且其中的楼屋盖梁体系的布置,也应当尽量的使用垂直重力荷载,主要目的是以最短的路径来传递到竖向构件墙和柱的上面去;
(3)建筑结构体系应当具有合理适度的强度和刚度。应当具有合理而且恰当的强度以及刚度分布,这是因为在抗震过程中,为了防止以及避免因为局部的削弱或者是突然的变形而形成薄弱的部位,并且对薄弱的部位产生过大的塑性变形集中或者是应力集中的现象;建筑的框架结构设计,应当使节点基本不遭到破坏,同时底层柱底的塑性铰应当形成的晚些,应当使柱、梁端的塑性铰出现得尽可能地分散;这对于震中可能出现的薄弱部位,应当及时采取适当的措施来提高抗震的能力。
3、重视建筑结构平面布置的规则性和对称性
建筑的平、立面布置应符合抗震理念设计原则,宜采用规则的建筑结构设计方案,不应采用十分不规则的设计方案。建筑结构抗震设计规范规定,对平面不规则或竖向不规则,或平面、竖向都不规则的建筑结构,应采用空间结构计算模型;对凹凸不规则或楼板局部不连贯时,应采用符合楼板平面内的实际刚度强度变化的计算模型;对薄弱部位应乘以内力增大系数,应按规范的有关规定分析弹塑性变形,并应对薄弱部位采取强有效的抗震构造措施。
4、提高建筑结构抗震能力的对策
(1)要合理且恰当地布局地震外力的能量传递与吸收的途径,在地震当中,要确保建筑的支柱、梁与墙的轴线,处于同一个平面上,从而可以形成构件的双向抗侧力结构体系。并且可以使其在地震的作用下,呈现弯剪性的破坏,并使塑性屈服情况,尽量的发生在墙的根底部,从而连梁适合在梁端产生塑性屈服,这样还具有足够的变形的能力。在震灾中,在墙段部分充分发挥抗震功能之前,要按照"强墙弱梁"的原则,来大力加强墙肢的承载力,避免墙肢遭到剪切性的破坏现象,从而最大限度的提高建筑结构的整体的抗震能力。
(2)要根据抗震等级,在对墙、柱以及梁节点设计中,采取相对应的抗震构造措施,力求确保建筑物结构,在地震的作用下可以达到三个水准的设防标准。还可以根据"强柱弱梁"、和"强剪弱弯" 、以及"强节点弱构件"几种构造的原则,在建筑设计中,合理的选择柱截面的尺寸,以此控制柱的轴压比,并还要注意构造配筋的要求,还要保证,钢筋砼结构建筑在地震的作用下,能够具有足够的承载能力以及具备足够的延性。
(3)在建筑设计过程中,要设置出多道抗震的防线,即,在设计一个抗震结构的体系当中,有一部分延性比较好的构件,在地震的作用下,首先可以担负起第一道抗震防线的作用,然事,其他的构件,在第一道抗震防线屈服以后,在地震中,会依次的形成第二道、第三道或者是更多道的抗震的防线,这样的抗震结构体系的设计,在建筑设计当中,对于确保建筑结构具有的抗震安全性,是非常的行之有效的设计方法和手段。
总之,建筑行业关系到我国的经济发展和社会稳定,关系到国民的生命财产安全,加强对建筑结构的防震设计,提高抗震能力,是促进社会和谐稳定的客观要求。因此实施科学合理的设计方法,选择科学的抗震措施,重视抗震关键要点,具有重大的社会意义。
参考文献:
[1] 瞿岳前 杨将 汤卫华 建筑结构基于性能的抗震设计理论与方法 [期刊论文] 《山西建筑》 -2009年35期
篇5
【关键词】房建结构,结构设计,抗震设计现状,要求
中图分类号:S611 文献标识码:A 文章编号:
一、前言
房建结构抗震设计,关乎民生,关乎经济发展,社会稳定,对房屋建筑实施结构设计,主要涉及对建筑高度,承载力,总体结构,各个部件的性能规划等一系列的因素,要求通过对各个构件和整体规划的基础上,既实现满足居民生活生产保障安全的需要,又具有值得欣赏的美学价值。增强房建结构的抗震设计,必须综合考虑地基,房屋的结构体系选择,综合布局等多方面建设因素,是一项及其专业,严谨,复杂的高技术工作。
二、建筑抗震的主要影响因素
1、抗震设计标准
目前,国内在不同地区设定的基本设防烈度,主要是根据该地区以及具体建筑在一段时间内遭受地震以及地震强度的概率而定的。如果是一般建筑,则执行基本烈度设防,如果是重要的建筑物,则相应地提高设防烈度,但是,随着设防烈度的提高,建筑的造价会相应增加。
2、建筑结构形式
为了有效地保证建筑物“小震不坏,中震可修,大震不倒”,在最新的设计规范中,砖混内框架结构被严格取缔了。目前,主要采用的是框架结构、剪力墙结构等。框架结构空间布置灵活,相对造价低,但是其在水平地震力作用下,容易发生剪切变形,因此,框架结构适用的高度相对较低。剪力墙结构平面布置没有框架灵活,但其平面内自身刚度大,强度高,整体性能好,在水平荷载作用下变形小,抗震性能较强,适用于高度较高的高层建筑。
3、抗震措施
抗震措施主要是根据建筑的重要性决定的。在确定建筑等级及场地类型之后,将先进的抗震理念和系统的分析计算纳入到抗震设计中,即可改善建筑抗震性能,提高建筑抗震效果。
三、框架结构抗震设计的基本要求
有抗震性要求的框架结构,应设计成延性框架,遵守“强柱弱梁” 、“强剪弱弯”、强节点、强构件等设计原则,柱截面不宜过小,应满足结构侧移变形及轴压比的要求。在进行框架结构抗震设计的时候,需要确定框架结构的抗震等级,根据不同的等级进行设计,主要是为保证框架结构具有较好的延性,并且能满足合理、经济的设计要求。构件设计时应满足各自的基本要求:①框架结构在进行梁端抗震设计时,既要允许塑性铰在梁上出现又不要发生梁剪切破坏,同时还要防止由于梁筋屈服渗入节点而影响节点核心区的性能,使梁形成塑性铰后仍有足够的受剪承载力,梁筋屈服后,塑性铰区段应有较好的延性和耗能能力。②框架柱在设计时,应该遵循强柱弱梁,使柱尽量不要出现塑性铰,在弯曲破坏之前不发生剪切破坏,使柱有足够的抗剪能力,同时控制柱的剪切比不要太大。③框架节点在地震破坏时,主要是节点核心区剪切破坏和钢筋锚固破坏,因此在设计时,要采取“强节点弱构件”的设计概念,保证在多遇地震时,节点应在弹性范围内工作;在罕遇地震时,节点承载力的降低不得危及竖向荷载的传递。
四、框架结构构件抗震设计的构造措施
1、框架梁的截面抗震设计尺寸,宜符合下列各项要求:截面宽度不宜小于 200mm;截面高宽比不宜大于 4;净跨与截面高度之比不宜小于4。在计算出梁控制截面处考虑地震作用的组合弯矩后,可按一般钢筋混土受弯构件进行正截面受弯承载力计算。梁端纵向受拉钢筋的配筋率不应大于 2.5%,且计入受压钢筋的梁端混凝土受压区高度和有效高度之比,一级不应大于 0.25,二、三级不应大于 0.35。梁端截面的底面和顶面纵向钢筋配筋量的比值,除按计算确定外,一级不应小于 0.5,二、三级不应小于 0.3。梁端剪力设计值应根据强剪弱弯的原则,按的要求加以调整,对一、二、三级抗震等级分别采取1.3、1.2、和1.1梁端剪力增大系数。
2、框架柱的截面抗震设计尺寸,宜符合下列各项要求:截面的宽度和高度均不宜小于 300mm;圆柱直径不宜小于 350mm。剪跨比宜大于 2。截面长边与短边的边长比不宜大于3。柱轴压比不宜超过下表的规定;建造于Ⅳ类场地且较高的高层建筑,柱轴压比限值应适当减小。柱的钢筋配置,应符合柱纵向钢筋的最小总配筋率,中柱和边柱的一、二、三、四抗震等级分别是1.0、0.8、0.7、0.6,角柱、框支柱的一、二、三、四抗震等级分别是1.2、1.0、0.9、0.8。同时每一侧配筋率不应小 0.2%;对建造于Ⅳ类场地且较高的高层建筑,数值应增加 0.1。 当采用HRB400 级热轧钢筋时应允许减少 0.1,混凝土强度等级高于 C60 应增加 0.1。
3、框架节点核芯区箍筋的最大间距和最小直径宜按规范中的柱箍筋加密区的箍筋最大间距和最小直径,一、二、三级框架节点核芯区配箍特征值分别不宜小于 0.12、0.10 和 0.08 且体积配箍率分别不宜小于 0.6%、0.5% 和 0.4%。柱剪跨比不大于 2 的框架节点核芯区配箍特征值不宜小于核芯区上、下柱端的较大配箍特征值。
五、基于剪力墙结构建筑体形的抗震优化设计
高层建筑结构的设计,除了要合理选择结构抗侧力体系外,要特别重视建筑体形和结构总体布置。建筑体形是指建筑的平面和立面;结构总体布置是指结构构件的平面布置和竖向布置。建筑体形和结构总体布置对结构的抗震性能具有决定性的作用。
1、震害及抗震概念设计
结构抗震设计有许多不确定因素(地震特性、结构扭转等),进行精确的抗震计算是非常困难的。结构的抗震设计除了进行细致的计算外,要特别注重结构概念设计。概念设计是指在结构设计中,结构工程师运用“概念”进行分析,做出判断,并采取相应措施。根据概念设计,抗震房屋的建筑体形和结构总体布置应符合如下原则:采用规则结构,不采用严重不规则结构;明确的计算简图和合理的传力路径;具有必要的刚度和承载力,具备良好的弹塑性变形能力和消耗地震能量的能力;部分结构或构件破坏不应导致整体结构倒塌,增加超静定结构的次数。满足抗震设计原则:即:“强节弱杆”、“强竖弱平”、“强剪弱弯”;置多道抗震防线,形成两道或多道的抗震防线,增强结构抗倒塌能力。
2、建筑平面和结构平面布置
高层建筑的外形分为板式和塔式两大类:板式建筑平面两个方向的尺寸相差较大,塔式建筑平面两个方向的尺寸接近。多数高层建筑为塔式。对抗风有利的建筑平面形状是简单规则的凸平面,如圆形,正多边形、椭圆形等平面,以减小风压,有较多凹凸的复杂平面,对抗风不利,如V形、Y形等。对抗震有利的建筑平面形状是简单、规则、对称、长宽比不大的平面。
六、结束语
综上所述,建筑结构设计中的抗震设计十分重要,加上我国今年来地震较多,加强房屋抗震设计对于居民的安全具有很大作用,应该不断的加强研究。
参考文献:
[1] 张立军 房屋建筑结构设计体系选型及抗震没计 [期刊论文] 《科技与生活》 -2011年14期
[2]孟虎 房建工程砖混结构的抗震设计与前瞻性研究 [期刊论文] 《科技与企业》 -2011年9期
[3]万忠伦 成都驿园高层住宅结构抗震设计 [期刊论文] 《铁道建筑》 PKU -2008年12期
[4]吕西林.周德源、李思明、陈以一、陆浩亮.抗震设计理论与实例[M].同济大学出版社.2011
篇6
关键词:型钢混凝土结构;抗震性能水平;容许变形值;量化指标
abstract
combining with performance grades of reinforced concrete structures at home and abroad, the seismic
performance of steel reinforced concrete (src) structures can be induced into four levels: normal service, temporary service, life safety and collapse prevention. the failure modes and characteristics of src columns are introduced, and limit states of the four seismic performance levels and their dominating parameters are put forward. on the basis of the experiments and results of src frames and columns, the story drifts angle limitation and range of crack width on the column end are obtained for four different seismic performance levels. finally considering ideas of performance based seismic design, problems needed much further study about src structures are proposed.
keywords: steel reinforced concrete (src) structures, seismic performance levels, tolerantdeformation values, quantitative index
1. 引 言
型钢混凝土结构(src 结构)又叫劲性钢筋混凝土结构或钢骨混凝土结构,是钢-混凝 土组合结构的一种形式。src 结构通过把钢和混凝土巧妙地组合在一起,充分发挥了这两 种材料的特性,其具有比传统结构承载力高、强度刚度大、稳定性和抗震性能好等优点。随 着超高层建筑的发展和理论研究的深入,src 结构在我国将具有非常广阔的应用前景。目 前国内外对 src 结构的研究工作和成果主要集中在构件的承载能力,即针对强度计算开展 研究[1]。随着基于性能抗震设计理论的提出和发展,人们意识到这种传统基于力的设计方 法还存在缺陷,开展基于性能的 src 结构抗震设计理论则更加科学合理,既符合当代抗震 设计理念的发展趋势,又为工程实践应用和推广型钢混凝土结构提供基础。
确定 src 结构在不同性能水平下的容许变形值是实现其基于性能抗震设计理论的前提 和关键。由于结构的性能与破坏状态有关,而结构的破坏状态又可由结构的反应参数或者某 些定义的破坏指标来确定,所以,结构性能水平可以用这些主要的参数来划分。容许变形值 被认为是比较重要的反应参数,但对此方面的研究还比较欠缺,本文即在此背景下研究 src 结构功能失效的判别参数和容许变形值的大小。
2. src 结构的性能水平和抗震设防目标
2.1 性能水平划分
结构的抗震性能水平是指建筑物在某一特定设防地震水准下预期达到的最大破坏程度, 或容许的损坏极限状态。目前对钢筋混凝土结构性能水平的划分比较明确,比如我国现行抗 震规范[2]将其分为三档,美国 vision2000、fema273 和 atc-40 分为四档,当然还有学者 提出其他不同的划分标准。
性能水平为基于性能的抗震设计和震后修复加固提供依据,对于 src 结构,结合已有 的划分方法和试验理论研究成果[2],将其性能水平分为四档,见表 1 所示。
表 1 src 结构四个性能水平及其宏观描述
tab.1 target performance levels and damage control of src structures
2.2 抗震性能目标确定
结构的性能目标是指一定超越概率的地震发生时,结构期望达到的某种功能水平。我国 现行抗震规范采用小震不坏、中震可修、大震不倒的三水准设防目标,但在表 1 提出的 src 结构性能水平背景下,已有的三水准抗震设防目标需要更加细化。按照小中大三个地震作用 水平和“四档”性能水平,可对 src 结构建立表 2 所示的抗震性能目标。
表 2 src 结构抗震性能目标
tab.2 seismic performance objectives
(其中:①为基本目标,指一般使用要求的建筑应具备的最基本性能目标;②为重要目标,指重要性很高
或地震后危险性较大的性能目标;③为非常重要目标,指对安全有十分危险影响的性能目标)
可以看出,排除掉不符合实际工程的情况,这里对 src 结构建立了 10 个抗震性能目标,
其比钢筋混凝土结构的三水准设防目标有所提高,且“中震可修”的性能目标变得更加具体 化。以上三个地震作用水平、四档结构性能水平和 10 个抗震设防目标的提出为实现 src 结 构基于性能的抗震设计理论奠定了基础。
3. src 框架柱的破坏模式及描述
src 构件是在混凝土中主要配置型钢,同时配有受力和构造钢筋。型钢分为实腹式和 空腹式,实腹式型钢主要有 i 字钢、h 形钢和 l 形钢等。理论和实践均证明,实腹式 src 构件具有较好的抗震性能,而空腹式 src 构件的抗震性能与普通 rc 构件的抗震性能基本 相同。因此,这里主要研究含钢率为 4%~8%的实腹式 src 构件。
3.1 破坏模式和特点
src 柱在水平荷载作用下主要产生三种破坏模式,破坏形态按剪跨比的不同大致分为 三种。当剪跨比小于 1.5 时,src 柱发生剪切斜压破坏,首先剪跨段产生许多大致平行的斜 裂缝,将混凝土分成斜向受压短柱,钢骨腹板此时基本处于纯剪应力状态,最后钢骨腹板在
近似纯剪应力状态下达到屈服强度,剪压区混凝土压碎而破坏;当剪跨比为 1.5~2.5 时,src
柱在反复荷载作用下发生剪切粘结破坏,首先在最大弯矩处出现剪切斜裂缝或竖向粘结裂 缝,随着荷载的增加与往复循环,粘结裂缝扩展成两条沿型钢翼缘的竖向粘结主裂缝,最后 裂缝处混凝土保护层剥落,剪切承载力下降,构件破坏;当剪跨比大于 2.5 时,src 柱的承 载力往往由弯曲应力起作用,一般发生弯曲破坏,其首先在最大弯矩截面处形成水平裂缝, 随着荷载增加,柱底纵筋屈服,紧接着型钢翼缘屈服,随之腹板屈服,外围混凝土不断剥落, 纵筋和型钢翼缘压屈,最后 src 柱达到最大承载力而破坏。
3.2 与 rc 柱破坏的主要区别
试验研究表明,src 柱比 rc 柱具有更优越的抗震性能,其优越性主要在于型钢的影响。 型钢的存在使构件的变形能力增强,破坏时吸收的能量增大,延性也相应得到提高。rc 柱 的最终破坏是由于压区混凝土的压酥,src 柱由于设置较强劲的钢骨,压区混凝土逐渐压 酥后,rc 部分的承载力将向钢骨转移,其后期仍有相当大的变形能力来延缓破坏。可见, 无论在承载能力和刚度方面,还是在延性和耗能能力方面,src 构件均体现了良好的抗震 性能,其在不同性能水平下的变形容许值也将大于传统 rc 结构,这方面的研究工作值得深 入开展。
4. src 结构功能失效的判别标准和容许变形值大小
4.1 四个性能水平及其极限状态
目前关于结构性能水平的划分方法很多,美国 vision2000、fema273 和 atc-40 均将 其划分为四种性能水平,日本和墨西哥则采取三重性能水准,参照已有的划分标准和我国新 的“建筑工程抗震性态设计通则(试用本)”,本文按照我国抗震设计的需要和建筑损伤加重 的程度,对 src 结构采用正常使用、暂时使用、生命安全和接近倒塌四个性能水平。
传统基于力的抗震设计理论将 rc 结构的极限状态分为承载能力极限状态和正常使用 极限状态,基于性能的抗震设计考虑到“投资-效益”因素,从结构受力和业主损失两方面出 发,对应于所提的四个性能水平,将 src 结构的破坏极限状态分为正常使用极限状态、暂 时使用极限状态、生命安全极限状态和接近倒塌极限状态。
4.2 不同性能水平的失效判别标准和参数
为了确定 src 框架柱在四个性能水平下的容许变形值,首先应该能够对各种性能水平 的损坏极限状态进行描述,相应的就必须建立 src 柱不同性能水平的失效判别标准和参数。 传统的 rc 结构采用层间位移角这种单一指标作为量化参数,对于 src 结构,可以利用层 间位移角、裂缝宽度、塑形耗能、塑形转角和延性系数等加以描述和量化。
src 压弯构件经历了混凝土开裂、裂缝延伸扩展,直到压区混凝土剥落,受压纵筋和 型钢受压翼缘屈服,承载力达到峰值的一系列过程,构件最终以受压区混凝土破碎作为丧失 承载力的标志。为了与上述四档性能水平相对应,可将其整个受力过程划分为弹性阶段、带 裂缝工作阶段、弹塑性工作阶段和破坏阶段。
在前述 src 柱破坏形态与剪跨比的定量关系基础上,可以建立 src 柱三种破坏模式各 自的失效判别标准。经过分析,发现得出的三种失效判别标准之间有很多共同点,因此可将 其归纳为统一的判别标准以便应用。对于 src 柱,从开始加载到沿柱身出现剪切斜裂缝或 弯曲裂缝为正常使用性能阶段,此为弹性工作阶段,以开始出现斜裂缝或弯曲裂缝为正常使
用性能极限状态;从混凝土开始出现裂缝到受拉钢筋或型钢受拉翼缘屈服为暂时使用性能阶
段,此阶段是带裂缝工作阶段,以受拉纵筋或型钢翼缘屈服为暂时使用性能极限状态;从型 钢开始出现屈服到外围混凝土剥落,纵筋压屈且水平荷载达到最大值为生命安全性能阶段, 此为弹塑性工作阶段,以水平荷载达最大值为生命安全性能极限状态;从 src 柱承载力达 最大值到混凝土保护层严重剥落,直至核芯混凝土发生局部破碎且承载力严重下降为接近倒 塌性能阶段,此阶段为塑形阶段,以核芯混凝土发生局部破碎为接近倒塌性能极限状态。
4.3 不同性能水平的容许变形值
结合上述判别标准,可分别以层间位移角、裂缝宽度、塑形耗能和延性系数等作为 src 结构四个性能水平极限状态的判别参数。考虑到其中一些指标计算的难度,并为了与我国抗 震规范的性能指标相一致,这里以层间位移角和框架柱的裂缝宽度作为各种性能水平极限状 态的判别指标。
为了得到各种性能水平的层间位移角范围,本文对国内外 src 试验柱、src 平面框架 试验共约 90 个数据进行了统计分析,试验框架柱大部分为实腹式 src 构件,轴压比范围为
0.3~0.8,体积配箍率为 0.8%~2.2%。通过分析文献[4]-[20]中试验柱和平面框架的变形性能, 以及对各个性能水平极限状态的层间位移角统计结果来看,所有试件在未开裂弹性阶段的层 间位移角分布范围为 1/400~1/185,其中 1/400 对应的 src 柱仅有不到 4%的配钢率且轴压 比较高,大部分试件的弹性位移角集中在 1/350~1/200 范围内;仅有少数试件测到 src 柱 受拉钢筋或型钢屈服时的层间位移角,分布范围为 1/120~1/100,有的学者统计为 1/133~
1/100,但大部分集中在 1/120 左右;所有试件均得到了 src 构件在接近倒塌极限状态的层 间位移角,其分布范围为 1/53~1/11。
表 3 src 结构各性能水平的层间位移角分布范围及分布比
tab. 3 distribution range and proportion of inter-storey drift
正常使用阶段
从上表各性能阶段的层间位移角分布情况来看,src律性较好。按照各个性能水平层间位移角的分布比例,在达到一定安全保证率的情况下,将
src 框架结构正常使用、暂时使用和接近倒塌三个性能水平极限状态的层间位移角限值定
为 1/350、1/120 和 1/35;同时,将生命安全状态的层间位移角限值设在 1/120 和 1/30 之间, 取为 1/75。
另外,框架柱的裂缝宽度也易于作为各种性能水平极限状态的判别指标。文献[4]-[20]
所做的 src 框架柱抗震性能试验中,在对层间和柱端位移角测量的同时,考察到的柱端裂
缝宽度 在正 常使用 、暂 时使用 、生 命安全 和接 近倒塌 四个 性能水 平的 分布范 围为
0.05~0.1mm、0.5~1mm、1~2mm 和大于 2mm。
综上所述,本文提出的 src 框架结构在不同性能水平时的层间位移角限值和柱端裂缝 宽度可总结为表 4。
表 4 src 框架结构性能水平量化指标限值
tab. 4 limit value of quantitative index for src structures
5. 结论及建议
1) 提出基于性能的 src 结构抗震设计理论这一新课题,结合国内外对钢筋混凝土结构 性能水平的划分标准,将 src 结构的性能水平划分为正常使用、暂时使用、生命安全和接 近倒塌四个等级,在此基础上建立了 src 结构的 10 个抗震设防目标;
2) 总结了 src 柱在不同剪跨比时的破坏形态,提出了四个性能水平的失效判别标准和 参数,建议各自的层间位移角限值分别取 1/350、1/120、1/75 和 1/35,并将对应的柱端裂缝 宽度范围定为 0.05~0.1mm、0.5~1mm、1~2mm 和>2mm;
3) 本文所提四个性能水平的容许变形值仅建立在少量试验基础上,还需要将试验量测 结果和大量数值模拟结合起来,从理论上建立容许变形值的计算公式;同时,已有的 src 结构试验研究主要针对框架结构,目前迫切需要开展型钢混凝土组合件和型钢混凝土剪力墙 的试验研究,以便为全面实现 src 结构性态抗震设计提供依据。
参考文献
[0]
[1] jgj138—2001/j130-2001. 型钢混凝土组合结构技术规程[s]. 北京:中国建筑工业出版社,2001.
[2] gb50011-2001.抗震结构设计规范[s]. 北京:中国建筑工业出版社,2002.
[3] 李俊华, 王新堂等. 低周反复荷载下型钢高强混凝土柱受力性能试验研究[j]. 土木工程学报.2007,
40(7):11~18.
[4] 贾金青,姜睿,厚童.钢骨超高强混凝土框架柱抗震性能的试验研究[j].土木工程学报,2006,39(8):14~18.
[5] 闻洋.钢骨高强混凝土柱受力性能的试验研究[j].混凝土,2006,(9):25~26.
[6] 薛伟辰,胡翔.钢骨混凝土框架滞回分析研究[j].地震工程与工程振动,2005,25(6): 76~80.
[7] 李斌,闻洋,李云云.钢骨高强混凝土柱受力性能的试验研究[j].包头钢铁学院学报,2006,25(2):197~199.
[8] 蒋东红 , 王连广 , 刘之 洋 . 钢 骨高强 混凝土框 架 柱开裂荷 载 的试验研 究 [j]. 四川建筑 科 学 研 究,2002,28(3):7~9.
[9] 曹万林等.异性截面钢骨混凝土柱抗震性能试验研究[j].世界地震工程,2004,20(2):64~68.
[10] 白国良,石启印.空腹式型钢混凝土框架柱的恢复力性能[j].西安建筑科技大学学报,1999,31(1):32~34.
[11]黄亮.深圳时代财富大厦超高层建筑结构若干问题研究[j].工程抗震与加固改造,2006,28(3):60~64.
[12] 薛建阳,赵鸿铁.型钢混凝土框架模型的弹塑性地震反应分析[j].建筑结构学报,2000,21(4):28~33.
[13] 徐培福等.带转换层型钢混凝土框架—核心筒结构模型拟静力试验对抗震设计的启示[j].土木工程学 报,2005,38(9):1~8.
[14] 杨勇, 郭子雄, 聂建国. 型钢混凝土竖向混合结构过渡层抗震性能研究综述[j]. 工程抗震与加固改 造,2006,28(5):78~86.
[15] 李丕宁, 秦荣.基于性能的高层钢—混凝土混合结构住宅设计 [j].工程力学, 2007, 24(sup1):87~93.
[16] 田玉基等.钢骨混凝土梁式托柱转换层结构的研究[j].工业建筑,2000,30(2):54~57.
[17] 刘阳.核心型钢混凝土柱抗震性能实验研究[硕士论文].华侨大学硕士学位论文,2006.
[18] 庄云.src 柱—rc 梁组合件抗震性能试验研究[硕士论文]. 华侨大学硕士学位论文,2006.
[19] 王妙芳 , 郭子 雄 . 型钢混凝土柱抗震性态水平及极限状态的讨论 [j]. 工程抗震与加固改造 .2006,
28(3):31~36.
[20] mizuo inukai, kazuya noguchi, masaomi teshigawara, and hiroto kato. seismic performance composite columns using core steel under varying axial load [j]. 13th
world conference on earthquake engineering, 2004:598~606.
篇7
关键词:超高层结构,抗震性能,施工技术
0.前言
钢结构建筑具有强度高、自重轻、施工速度快、抗震性能好、节能环保及工业化程度高等特点,是我国十五期间重点推广项目之一。随着城市建筑业的迅速发展,高层钢结构工程应用越来越多,合理确定钢结构安装的施工顺序、采取各种措施提高安装质量是保证整个工程质量和工期的关键。论文参考网。一旦钢结构在施工过程中出现了问题,就会带来许多后患。轻者会影响工期,破坏结构外观,浪费材料等;重者则可能会造成人员的伤亡,甚至给社会带来严重的不良影响。因此,对于钢结构工程的施工必须严格控制,防患于未然。
1.钢结构施工中存在的问题
钢结构工程施工中产生的问题,是由于施工单位施工不善而造成的。论文参考网。主要问题有以下几点:
(1)不熟悉图纸,盲目施工,图纸未经会审,仓促施工;未经设计部门同意擅自修改图纸。
(2)未按相关施工验收规范施工。
(3)未按相关操作规程施工。
(4)施工方案不周全,质量管理紊乱。
2.两种钢结构的施工技术
2.1 钢结构厂房的施工技术
钢结构构件主要制作工艺流程为:放样→F料→电脑编程→拼板一CNC切割→组立→埋弧焊接→钻孔→组装→矫正成型→铆工零配件下料→制作组装→焊接和焊接检验→防锈处理、涂装、编号→构件验收出厂。钢材不易久放露天,造成母材锈蚀过度而不合格;焊接材料受潮后不能施焊等;构件严格按照操作流程制作。
钢结构厂房施工技术:综合考虑工程特点、现场的实际情况、工期等因素,选择合适的吊装设备、安装设备等。
(1)地脚螺栓的安装:地脚螺栓的精度关系到钢结构定位,地脚螺栓的埋设须严格保证其精度,地脚螺栓的埋设精度:轴线位移±2.0mm,标高±5.0mm。
(2)钢架安装顺序:钢柱→钢梁→吊车梁→连系梁→水平支撑→檩条→拉杆→隅撑。
(3)钢柱吊装:钢柱安装前应测出钢柱牛腿面的标高,以此标高反算到柱脚及基础支承面标高,并予以调整支承面。
(4)钢梁的安装:首先在地面胎架上拼接成整体,同时在钢梁上架设好生命线,安装檩条时可以在钢梁上来回走动,吊装就位后在钢梁的两侧用缆风绳将钢梁固定,保证钢梁的平面外的稳定,然后吊装下一跨间钢梁,待下一跨间钢梁安装完成后,在此跨间安装檩条,固定钢梁,保证钢梁不会倾斜扭曲。
2.2 高层建筑钢结构的施工技术
我国的高层与超高层钢结构建筑自改革开放以来已有20年的历史,并在设计和施工中积累了不少经验,我国已自行编制了《高层民用建筑钢结构技术规程》。针对高层建筑钢结构安装构件数量多和施工技术复杂的特点,对关键工序进行了研究,通过编制各种专项施工技术方案及质量控制措施,实现高精度安装、快速完成工期的目标。
高层建筑钢结构的施工技术具体有:
(1)地脚螺栓预埋:地脚螺栓预埋位置的准确程度对钢结构工程整体的安装质量至关重要,为保证地脚螺栓的定位准确,采用适宜厚度的钢板制作加工成定位钢板,进行地脚螺栓的定位固定。
(2)钢柱的安装:钢柱标高的控制一般有两种方式:一是,按相对标高制作安装钢柱的长度误差不得超过3mm,不考虑焊缝收缩变形和竖向荷载引起的压缩变形,建筑物的总高度只要达到各节柱子制作允许偏差总和及钢柱压缩变形总和就算合格;二是,按设计标高制作安装土建的标高安装第一节钢柱底面标高,每节钢柱的累加尺寸总和应符合设计要求的总尺寸,每一节柱子的接头产生的收缩变形和竖向荷载作用下引起的压缩变形应加到每节钢柱加工长度中。
(3)钢梁的安装:钢梁安装的重点在于控制钢梁与钢柱连接形成整体后的轴线位置及垂直度,可通过限位钢板临时固定、多次反复校正逐步完成。
(4)焊接:高层钢结构的现场焊接顺序
应按照力求减少焊接变形和降低焊接应力的原则加以确定。在平面上,从中心框架向四周扩展焊接。
(5)高强螺栓施工技术:对于通过高强螺栓进行连接的钢结构,制作时必须首先注意高强螺栓摩擦面的加工质量及安装前的保护,并应按标准要求对每两千吨每种规格每种加工工艺的高强螺栓摩擦面进行抗滑移系数试验。钢构件角度偏差将严重影响构件组装时的高强螺栓穿孔率。论文参考网。构件的扭曲会影响连接面间的间隙,因此在钢结构制作时应准备。一定的胎架模具以控制其变形,并在构件运输时采取切实可行的固定措施以保证其尺寸稳定性。钢结构安装单位在安装高强螺栓摩擦面前,必须将摩擦面保护好,防止污染、锈蚀并在安装前进行高强螺栓摩擦面的抗滑移系数试验,检查高强螺栓出厂证明批号,对不同批号的高强螺栓定期抽查并做轴力试验,对高强螺栓安装工艺、包括操作顺序、安装方法、紧固顺序、初拧、终拧,进行严格控制检查,拧螺栓的扭力扳手应进行标定等。
3.结语
钢结构项目施工过程中的问题非常复杂,主要是由于引发质量问题的因素繁多,产生质量问题的原因也复杂,即使是同一性质的质量问题,原因有时也不一样。因此,在钢结构的施工中应严格按照施工程序和施工规程进行,不得无图施工和随意修改设计图纸。
参考文献
[1]路克宽.钢结构工程便携手册[M].北京:机械工业出版社,2003.
[2]顾纪清.实用钢结构施工手册[M].上海:上海科学技术出版社,2005.
[3]鲍广鉴.钢结构施工技术及实例[M].北京:中国建筑工业出版社,2005.
[4]轻钢结构在中国发展的现状、前景与对策[R].中国冶金报,2004.
篇8
英文名称:Journal of Seismological Research
主管单位:云南省地震局
主办单位:云南省地震局
出版周期:季刊
出版地址:云南省昆明市
语
种:中文
开
本:大16开
国际刊号:1000-0666
国内刊号:53-1062/P
邮发代号:64-6
发行范围:国内外统一发行
创刊时间:1978
期刊收录:
CBST 科学技术文献速报(日)(2009)
中国科学引文数据库(CSCD―2008)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)
期刊荣誉:
联系方式
篇9
【关键词】拉索减震,桥梁抗震,应用研究
中图分类号:U445 文献标识码:A
一、前言
近年来,我国在减震支座及桥梁抗震设计上虽然取得了飞速发展,但依然存在一些问题和不足需要改进,在社会经济不断发展的背景下,加强对拉索减震支座及桥梁抗震设计应用研究,对确保居民的切身利益有着重要意义。
二、拉索减震支座的内容
拉索减震支座可以分为滑动支座和固定支座。固定支座主要由拉索(钢绞线、高强度钢丝束或碳纤维)、抗剪螺栓、上座板(包括顶板和不锈钢滑板)、聚四氟乙烯滑板、中间钢板、密封圈、橡胶板、底盆、地脚螺栓和防尘罩等组成。滑动支座是通过取消设置在双向滑动支座中心处的抗剪螺栓而成。
拉索减震支座具备了普通盆式支座的优点,如在梁端传递的垂直荷载作用下,竖向承载能力大,梁端转动灵活。上支座板的不锈钢板与聚四氟乙烯板间的摩擦系数小,水平滑移能力强等,而且由于拉索的使用成功克服了传统支座限位能力不强的弱点,能最大程度避免地震中落梁等现象的发生,并在地震后可靠复位。此外,由于盆式支座与限位索装置已经在我国各类桥梁减隔震设计中普遍采用,因此拉索减震支座制造技术成熟,相较于同类型产品造价也相对较低。
在连续梁桥的固定墩设置拉索减震支座,在正常使用荷载作用下,抗剪螺栓能够保证支座是固定的,此时水平荷载主要由固定墩承担;但在强震、船撞等极端荷载作用下,当支座传递的水平荷载超过某一量值,抗剪螺栓剪断,固定支座转变成滑动支座,改变体系的传力特性,同时水平荷载分摊给一联的每一个桥墩,从而大大减小固定墩的受力。同时锚固于上、下座板的拉索在上、下座板间发生较大的相对位移时可以有效起到缓冲限位作用。
三、桥梁震害分析
调查与分析桥梁的震害及其产生的原因是建立正确的抗震设计方法,采取有效抗震措施的科学依据。
1.上部结构的破坏
桥梁上部结构本身遭受震害而被毁坏的情形不多,一般都是由于桥梁结构的其他部位的毁坏而引起的。如落梁,一种是由于弹性设计理论采用毛截面刚度,这样就会低估横向地震作用和位移。
2.支座连接部位的震害
这中破坏比较常见,由于连接部位的破坏会引起力传递方式的变化,从而对结构其他部位的抗震产生影响,进一步加重震害。这种破坏是抗震设计中最关注的问题之一。
3.下部结构和基础的震害
下部结构和基础的严重破坏是引起桥梁倒塌,并在震后难以修复使用的主要原因。除了地基毁坏的情况,桥梁墩台和基础的震害是由于受到较大的水平地震力,瞬时反复振动在相对薄弱的截面产生破坏而引起的,从大量震害实例来看,比较高柔的桥墩多为弯曲破坏,矮粗的桥墩多为剪切型破坏,介于两者之间的为混合型。
4.桥台沉陷
当地震加速度作用时,由于桥台填土与桥台是不完全固结的,桥台填土的纵向土压力增大,桥梁与桥台之间的冲撞会产生相当大的被动土压力,造成桥台有向桥跨方向移动的趋势。由于桥面的支撑作用,桥台将发生以桥台顶端为支点的竖向旋转,导致基础破坏。如果桥台基础在液化土上,又将引起桥台垂直沉陷,最终导致桥梁破坏。
四、提高桥梁抗震性能的措施
1.隔震支座法
隔震支座法是在抗震应用的较为广泛的方法。这种方法是通过增加结构的柔性和阻尼来减小桥梁的地震反应的。具体做法是采用减、隔震支座在梁体与墩、台的连接处,通过设计或是应用新材料来实现结构柔性和阻尼的增加。这个方法是有大量的实验理论依据作支撑的,很多试验的分析结果都反映出桥梁连接处的结构与对地震的反应是有着直接关系的。以上的连接方法可以有效的减小墩、台所受的水平地震力,从根本上减小了地震的影响,提高了桥梁的抗震性能。
2.利用桥墩延性
桥墩的延性是抗震设计中可以加以利用的特点。由于桥墩自身是具有延性的,将这一性质加强。在强震时,这些部位形成的稳定延性塑性铰可以产生弹塑性变形,这样变形将延长结构的周期同时耗散地震的能量。利用桥墩自身加强的延性,将地震力通过限度内的塑性变形渐渐分散,是在桥梁设计中比较容易实现的抗震方法。延性的抗震设计,需要根据弹性反应来计算塑性变形的程度,然后根据抗震等级进行修正,尽可能提高桥梁的抗震载荷。在桥梁的抗震设计规范中,综合影响系数用来反映塑性变形程度,所以根据综合系数可以知道桥梁的抗震能力。
3.采用隔震支座和阻尼器相结合的系统
隔震支座法可以提高桥梁的抗震性能,增加对地震力的阻尼也是提高桥梁性能的方法,将二者结合起来,抗震性能加倍。隔震支座和阻尼器可以在地震的作用下,加强桥墩的弹塑性变形从而耗散地震能量,使地震的危害减小,也就是加强了桥梁的抗震性。
4.引进新型桥梁的抗震设计方法
在新型的桥梁设计多采用型钢混凝土结构,这种结构与传统的混凝土结构有着很多先进之处。因为型钢混凝土结构的承载能力高于同样外形的钢筋混凝土的一倍以上,而且前者抗剪能力、延性都明显的高于后者,这样抗震能力自然得到提到。除此之外,新型的型钢混凝土结构能够吸收、隔离和耗散地震能量,将桥梁的地震反应减小,从而避免了较大的变形造成的不可恢复的变形。这样的结构不但提高了桥梁结构的安全度,而且还可以节约材料、降低造价,可以说是首选的抗震方法。
五、拉索减震支座及桥梁抗震设计应用
根据以上的分析可以看出,随着支座所受竖向力的逐步增加,支座摩擦系数有减小趋势,摩擦耗能性能基本处于稳定(滞回曲线趋于平稳,且各级竖向荷载作用下重复性较好),拉索在上顶板、下底板相对位移超过特定值后起到限位作用,支座滞回曲线有突变;试验所得滞回曲线形式与理想恢复力模型保持一致,印证了理论推导的正确性。同济大学曹新建博士通过建立有限元模型,研究了拉索减震支座的减震效果,结果表明拉索减震支座滞回曲线计算数据与试验所得数据吻合较好,拉索减震支座的有限元模拟是切实可行的。
在中等地震或者强震作用下,常规连续梁结构的支座、桥墩、桥梁基础(一般为桩基础)等桥梁构件通常是易损部位,特别是固定墩处的桥梁结构构件。通过引入减隔震技术可以使桥梁下部结构的地震力减小。一般可以将作为上、下部结构传力核心的桥梁支座设计为减隔震支座,达到减隔震的效果。新型拉索减震支座的力学特性比较简单,既发挥了滑动摩擦耗能的功能,又通过拉索的限位保证了支座和梁体在正常范围内工作,而且支座具有较强的经济适用性.在桥梁结构的动力计算中此支座也可以得到合理的模拟。通过在传统固定墩上使用拉索减震支座,能够明显减小固定墩墩底的地震内力,同时墩、梁相对变形也在可控制范围内.如果连续梁结构全部采用拉索减震支座,则所有的桥墩共同承担纵桥向地震力,
较常规支座布置的桥梁地震受力更为合理。拉索减震支座的初始间距、摩擦系数都会影响到桥梁的减隔震效果。拉索间距应该根据选定的地震输入、地震动强度设计为合理的数值,太小或者太大都不利于合理发挥其减隔震作用。
六、结束语
随着桥梁抗震技术的不断完善,拉索减震支座及桥梁抗震设计应用将会得到更多管理者的重视,在预防一些不可预料的突发状况的背景下,拉索减震支座及桥梁抗震设计应用研究将会发挥着越来越重要的作用。
参考文献
[1] 王宏谋.桥梁盆式橡胶支座的研究与应用[D],成都: 西南交通大学硕士论文,2008.
[2] 曹新建.大型桥梁的抗震能力设计策略[D],上海: 同济大学博士论文,2009.
篇10
【关键词】高层建筑;结构工程;抗震设计
一、结构抗震设计的重要性
地震是一种随机振动,有难于把握的复杂性和不确定性,要准确预测建筑物所遭遇地震的特性和参数,目前尚难做到。在结构分析方面,由于未能充分考虑结构的空间作用、结构材料的非弹性性质、材料时效、阻尼变化等多种因素,同时也存在着不准确性。因此,工程抗震问题不能完全依赖“计算设计”解决,而必须立足于“概念设计”。概念设计是指设计人员从结构的宏观整体出发,用结构系统的观点,着眼于结构整体反应,正确地解决总体方案、材料使用、分析计算、截面设计和细部构造等问题,力求得到最为经济、合理的结构设计方案以达到合理抗震设计的目的。结构抗震概念设计的目标是使整体结构能发挥耗散地震能量的作用,避免结构出现敏感的薄弱部位。地震能量的聚散,如果仅集中在少数薄弱部位,必会导致结构过早破坏,目前各种抗震设计方法的前提之一就是假定整个结构能发挥耗散地震能量的作用,在此前提下才能以多遇地震作用进行结构计算、构件截面设计并辅以相应的构造措施,必要时采用弹性时程分析法进行补充计算,试图达到罕遇地震作用下结构不倒塌的目标。
二、高层混凝土建筑结构抗震设计策略
1、从建筑的全局出发
高层混凝土建筑结构设计要从建筑的全局出发,全面考虑各种建筑部位的功能,在此基础上,科学设计每个部分的构件,保证每个部件之间的契合,促使每个部件或者是若干部件组合起来可以完成某一特定的设计要求,满足一定的现实需求,同时,通过抗震设计,使得每个构件都可以具有相应的承载力,当地震来袭,每个构件都可以有着一定的次序先后破会,整体组合构件将会有着更强大的承载力和柔性,从而延缓地震破坏的速度,消耗爆发的能量。增强建筑的整体抗震能力。
2、地基选址
地基选址是进行建筑结构设计的基础,因此,在房间结构抗震设计中,要科学避开山嘴,山包,陡坡,河流等不利因素,要本着坚硬,牢固,平坦,开阔的选址原则。亲身实地,利用先进技术设备,进行地质勘探,山石水土监测,并取样论证,科学严谨分析。力求使得整个地基牢固可靠,地质稳定无渗漏,无坍塌,无暗河,无熔岩,无火山……从而保证整个地基不会因为承载而发生小范围的坍塌。影响到整体承载能力和抗震能力设计。
3、高度的确定
按我国现行高层建筑混凝土结构技术规程(JGJ3-2002)规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑都有一个适宜的高度。这个高度是我国目前建筑科研水平、经济发展水平和施工技术水平下,较为稳妥的,也是与目前整个土建规范体系相协调的。可实际上,已有许多混凝土结构高层建筑的高度超过了这个限制。对于超高限建筑物,应当采取科学谨慎的态度:一要有专家论证,二要有模型振动台试验。在地震力作用下,超高限建筑物的变形破坏性态会发生很大的变化。因为随着建筑物高度的增加,许多影响因素将发生质变,即有些参数本身超出了现有规范的适宜范围,如安全指标、延性要求、材料性能、荷载取值、力学模型选取等。
4、材料的选用和结构体系
在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。我国150m以上的建筑,采用的三种主要结构体系(框—筒、筒中筒和框架—支撑体系),都是其他国家高层建筑采用的主要体系。但国外,特别在地震区,是以钢结构为主,而在我国钢筋混凝土结构及混合结构占了90%。如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大地震作用的考验。在高层建筑中采用框架———核心筒体系,因其比钢结构的用钢量少,又可减少柱子断面,故常被业主所看中。混合结构的钢筋混凝土内简往往要承受80%以上的震层剪力,有的高达90%以上。由于结构以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,且效果不大,有时不得不加大混凝土筒的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值;此外,在结构体系或柱距变化时,需要设置结构转换层。加强层和转换层都在本层形成大刚度而导致结构刚度突变,常常会使与加强层或转换层相邻的柱构件剪力突然加大,加强层伸臂构件或转换层构件与外框架柱连接处很难实现强柱弱梁。因此在需要设置加强层及转换层时,要慎重选择其结构模式,尽量减小其本身刚度,减小其不利影响。
在高层建筑中,应注意结构体系及材料的优选。现在我国钢材生产数量已较大,建筑钢材的类型及品种也在逐步增多,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。在超过一定高度后,由于钢结构质量较小而且较柔,为减小风振而需要采用混凝土材料,钢骨(钢管)混凝土,通常作为首选。
另外,许多高层建筑底部几层柱虽然长细比小于4,但并不一定是短柱。因为确定是不是短柱的参数是柱的剪跨比,只有剪跨比≤2的柱才是短柱。有专家学者提出现行抗震规范应采用较高轴压比。但是即使能调整轴压比限值,柱断面并不能由于略微增大轴压比限值而显著减小。因此在抗震的超高层建筑中采用钢筋混凝土是否合理值得商榷。
总之,钢筋混凝土框架结构是我国大量存在的建筑结构形式之一,钢筋混凝土框架结构的柱端与节点的破坏较为严重,其抗震设计中应该钢筋混凝土高层建筑结构抗震关键设计,另外,必须满足“强柱弱梁”“、强剪弱弯”“、强节点”“、强底层柱底”等延性设计原则和有关规定。
5、运用延性设计
结构良好的延性有助于减小地震作用,吸收与耗散地震能量,避免结构倒塌。因此,结构设计应力求避免构件的剪切破坏,争取更多的构件实现弯曲破坏。始终遵循“强柱弱梁,强煎弱弯、强节点、弱锚固”原则。构件的破坏和退出工作,使整个结构从一种稳定体系过渡到另外一种稳定体系,致使结构的周期发生变化,以避免地震卓越周期长时间持续作用引起的共振效应。
三、结语
总之,高层建筑结构的抗震设计方法和技术是不断变化和进步的,需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。
参考文献:
[1]计静.套建增层预应力钢骨混凝土框架抗震性能与设计方法研究.哈尔滨工业大学博士学位论文,2008.
[2]蒋新梅.高层建筑结构的抗震设计[J].广东科技.2009(08)