抗震设计论文范文

时间:2023-03-20 06:27:12

导语:如何才能写好一篇抗震设计论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

抗震设计论文

篇1

论文摘要:本文从抗震的角度探讨建筑的体型,建筑平面布置和竖向布置、规范中设计限值的控制、屋顶建筑等设计问题。

建筑设计是否考虑抗震要求,从总体上起着直接的控制主导作用。结构设计很难对建筑设计有较大的修改,建筑设计定了,结构设计原则上只能是服从于建筑设计的要求。如果建筑师能在建筑方案、初步设计阶段中较好地考虑抗震的要求,则结构工程师就可以对结构构件系统进行合理的布置,建筑结构的质量和刚度分布以及相应产生的地震作用和结构受力与变形比较均匀协调,使建筑结构的抗震性能和抗震承载力得到较大的改善和提高;如果建筑师提供的建筑设计没有很好地考虑抗震要求,那就会给结构的抗震设计带来较多困难,使结构的抗震布置和设计受到建筑布置的限制,甚至造成设计的不合理。有时为了提高结构构件的抗震承载力,不得不增大构件的截面或配筋用量,造成不必要的投资浪费。由此可见,建筑

设计是否考虑抗震要求,对整个建筑起着很重要的作用。因此,我们在建筑抗震设计过程别要注重以下几个问题。

一、建筑体型设计问题

建筑体型包括建筑的平面形状和主体的空间形状的设计。震害表明,许多平面形状复杂,如平面上的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。唐山地震就有不少这样的震例。平面形状简单规则的建筑在地震中未出现较重的破坏,有的甚至保持完好无损。沿高度立体空间形状上的复杂和不规则在地震时都会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则;在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型。尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼。在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称的扭转反应。

二、建筑平面布置设计问题

建筑物的平面布置在建筑设计中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距离、内墙的布置、空间活动面积的大小、通道和楼梯的位置、电梯井的布置、房间的数量和布置等,都要在建筑的平面布置图上明确下来。而且,由于建筑使用功能不同,每个楼层的布置有可能差异很大,建筑平面上的墙体,包括填充墙、内隔墙、有相应强度和刚度的非承重内隔墙等等布置不对称,墙体与柱子分布的不对称、不协调,使建筑物在地震时产生扭转地震作用,对抗震很不利。有的建筑物,其刚度很大的电梯井筒被布置在建筑平面的角部或是平面的一侧,结果在地震中造成靠电梯一侧建筑物的严重破坏。这是因为电梯井筒具有极大的抗侧力刚度,吸引了地震作用的主要部分[3]。有的建筑物,在平面布置上一侧的墙体很多,而另一侧的墙体稀少,这就造成平面上刚度分布的很不对称,质量分布也偏心,使结构的受力和变形不协调,导致扭转地震作用效应,带来局部墙面的破坏。有的建筑物,如底层为商场的临街建筑,临街一侧往往不设墙体,而其另一侧则有刚度很大的墙体封闭,两侧在刚度上相差很多,也将在地震时引起扭转地震作用,对抗震不利。还有的建筑平面布置上,经常出现内隔墙不对齐或中断,使刚度发生突变和地震力传递受阻,对抗震也带来不利,客易引起结构的局部破坏。建筑平面布置设计对建筑抗震关系很大,从概念上要解决的一个核心问题是:建筑平面布置设计上要尽可能做到使结构的质量和刚度分布均匀,对称协调,避免突变,防止产生扭转效应。在建筑平面布置的总体设计上要尽可能为结构抗侧力构件的合理布置创造条件,使建筑使用功能要求与建筑结构抗震要求融合成一体,充分发挥建筑设计在建筑抗震中的作用。

三、建筑竖向布置设计问题

建筑的竖向布置设计问题在建筑设计中主要反映在建筑沿高度(楼层)结构的质量和刚度分布设计上。无论是单层或多层,还是高层建筑或超高建筑,这个问题是比较突出的。存在的这个主要问题是,由于建筑使用功能的不同要求,如底层或下面几层是商场、购物中心,建筑上要求是大柱距、大空间;而上面的楼层则是开间较大的写字楼或布置多样化的公寓楼,低层设柱、墙很少,而上面则是以墙为主,柱很少。有的建筑在布置上还设有面积很大的公用天井大厅,在不同楼层上设有大会议厅、展厅、报告厅等,建筑使用功能的不同,形成了建筑物沿高度分布的质量和刚度的严重不均匀、不协调。突出的问题是沿上下相邻楼层的质量和刚度相差过大,形成突变[3]。在刚度最差的楼层形成对抗震极为不利的抗震承载力不足和变形很大的薄弱层。这是在建筑设计中必须高度重视的问题。在实际设计中,在建筑使用功能不同的情况下,很可能出现上下相邻楼层的墙体不对齐,柱子不对齐,墙体不连续,不到底;上层墙多,下层墙少;上层有柱,下层无柱等,使地震力的传递受阻或不通;抗震用的剪力墙设置不能直通到底层、剪力墙布置严重不对称或数量太少。所有这些布置都将给建筑物带来地震作用分布的不均匀、不对称和对建筑物很不利的扭转作用。多次大震害表明,建筑物竖向楼层刚度的过大变化,给建筑物造成很多破坏,甚至是整个楼层的倒塌。在1995年的日本阪神大地震中,有多栋钢筋混凝土高层建筑发生了中间楼层的整体坐落倒塌破坏。因此,尽可能使剪力墙布置比较均匀并使其能沿竖向贯通到建筑物底部,不宜中断或不到底。尽量避免其某楼层刚度过少,尽量避免产生地震时的钮转效应。

四、建筑上应满足的设计限值控制问题

根据大量震害的经验总结,现行《建筑抗震设计规范》(GBJll-89)对房屋建筑在建筑设计中应考虑的一些抗震要求的限值控制提出了规定。这些规定,建筑设计应予遵守:一是房屋的建筑总高度和层数;二是对房屋抗震横墙问题和局部墙体尺寸的限值控制。

五、屋顶建筑的抗震设计问题

在高层和超高层建筑设计中,屋顶建筑是一个重要的设计部分。从近几年对一些高层建筑抗震设计审查结果来看,屋顶建筑存在的主要问题,一是过高,二是过重。这样的屋顶建筑加大了变形,也加大了地震作用。对屋顶建筑自身和其下的建筑物的抗震都不利。屋顶建筑的重心与下部建筑的重心不在一条线上,且前者的抗侧力墙与其下楼层的抗侧力墙体上下不连续时,更会带来地震的扭转作用,对建筑物抗震更不利。为此,在屋顶建筑设计中,宜尽量降低其高度。采用高强轻质的建筑材料和刚度分布比较均匀、地震作用沿结构的传递比较通畅,使屋顶重心与其下部建筑物的重心尽可能一致;当屋顶建筑较高时,要使其具有较好的抗震定性,使屋顶建筑的地震作用及其变形较小,而且不发生扭转地震作用。

六、结束语

总的来说,建筑设计是建筑杭震设计的一个重要方面,建筑设计与建筑

抗震设计有着密切关系。它对建筑抗震起着重要的基础作用。一个优良的建筑抗震设计,必须是在建筑设计与结构设计相互配合协作共同考虑抗震的设计基础上完成。为此,要充分重视建筑设计在建筑抗震设计中的重要性,在建筑抗震设计中更好地发挥建筑设计应有的作用。

参考文献:

[1]《建筑抗震设计规范》(CBJll-89),中国建筑工业出版社,2005。

[2]包世华、方鄂华,《高层建筑结构设计》,清华大学出版社,2003。

篇2

1.1合理的选址在建筑结构抗震水平设计中,合理的选址是最基本的先决条件。为了保证选址的正确、合理性,我国政府部门已经出台了《中华人民共和国减灾抗震法》等法律条文,其中明确规定“对于有可能发生的重大建设性工程以及次生灾害进行严格的地震安全指标评价,按照地震安全评价结果,明确相关建筑物的抗震设防要求,并对其进行分别设防”。建筑结构的设防标准根据其实际质量可分为四个标准,其中:甲类:地震时间或大型建筑工程可能发生的次生建筑类灾害;乙类:地震中不能中断使用功能,且必须要逐步恢复的建筑类型;丙类:除甲、乙两类建筑外的其他普通建筑类型;丁类:抗震级别相对较低的建筑。根据对相关法规的分析,在进行建筑物结构设计时,必须要选择对建筑有利的场地,避免在不利地段建设大型民用建筑,以防止地震破坏隐患的出现。对于一些软基地段,也必须要进行充分的处理,才能够进行合适的建筑设计。另外对于地震可能引起的次生灾害问题,也必须要予以正确的处理,进一步保证选址的正确性。

1.2科学的设计当地震发生时,不同的建筑结构所受到的地震影响是不同的,为了最大限度降低地震灾害的影响,建筑设计人员在抗震设计环节中,要根据当地地段的实际情况来进行建筑结构的选择。目前,我国常用的鹅建筑结构可以分为“钢筋混凝土结构”、“砌体结构”、“钢混结构”和“钢结构”四种类型。通过对四种结构的比较分析得出,钢筋混凝土结构的抗震能力相对较强,因为其自身具有较好的柔韧性,所以当建筑物因地震灾害而出现应力变形时,钢筋混凝土结构能够依靠自身良好的承载力对其进行一定程度的控制,这是其它三种结构所不具备的优势。近年来,高层建筑建设的增多,大大增大了其在地震灾害影响下的水平位移和抗侧移刚度,这在无形之中就加大了地震灾害的影响,为了避免地震灾害影响程度的增大,在设计和审核高层建筑抗震设计时,必须要考虑结构的侧移度。

1.3坚实的质量地震作为破坏性超强的自然灾害,想要最大限度降低其对建筑的破坏,保证建筑设计坚实的质量是最基本的防护措施。相比较而言,我国建筑设计水平发展较为缓慢,在地震设计方面也存在不够合理的情况,这使得很多建筑结构都出现了地震安全隐患,过大的自身重量也加大了地震危害。为了保证建筑结构抗震水平,必须要在建筑抗震设计环节中科学的运用抗震理论,根据相关设计原则,利用有效措施来提高建筑结构的可靠性与安全性。

2实现建筑结构抗震水平设计的措施

2.1基础性防震措施应用基础性防震措施根据建筑的结构的不同位置有着不同的措施:(1)地基隔震。地基隔震是在建筑地基与土层之间设置缓冲层,以便在地震发生时减小建筑与土层之间的震动碰撞,实现对震能的有效吸收和反射作用,减小地震对建筑物的破坏。目前,我国最常使用的地基隔层为沥青原料隔震层。(2)基础隔震。基础隔震是整个建筑结构抗震设计中的关键,想要降低地震对建筑物的破坏,就必须要做好基础隔震措施。在对建筑基础采取抗震措施时,为了减小地震对上部结构的破坏,需要在建筑物的上部结构和基础位置接触处设置隔震层,防止地震力由地基处向上部结构传播,降低地震对建筑上部结构的破坏。基础抗震装置一般采用混合隔震装置、基底滑移隔震装置和夹层橡胶隔震装置等。(3)间层隔震。间层隔震是为了吸收地震的冲击余力而设置的,间层隔震的有效设置能够对震力进行再次削减,以达到降低地震对建筑的破坏作用。间层隔震一般都安装在原始结构层上,其实我国最早使用的的抗震措施,具有施工操作简单的优势。(4)悬挂隔震。悬挂隔震是通过悬挂的方式,将建筑物全部或部分结构脱离地面,从而在地震出现时,降低地面震动与建筑物之间的震力作用。目前,此种抗震措施多用于大型钢结构建筑当中,收到了较为不错的抗震效果。

2.2机敏减震支撑体系机敏减震支撑体系是集成现代科技技术的防震系统,其利用活塞运动的原理,对建筑结构进行设计。在地震灾害发生时,保证建筑结构中的内、外钢能够通过不断的滑动来消减地震的破坏力,减轻震力破坏和消耗地震作用力的传导。目前,这项技术还在不断的研究和完善当中,相信其很快就能够实现有效的应用,为建筑抗震设计水平的提升做出贡献。

2.3效能减震技术应用效能减震是实现对地震所产生动能的消耗,来减轻地震能的传导大小,从而降低其对建筑物的破坏程度。目前,在此技术方面一般采用消能器和阻尼器,两种器械都能够实现地震能量的有效消耗和吸收,减小震力对建筑主体的破坏,以达到对建筑主体结构安全、稳性定的保护。目前,效能减震技术在我国建筑防震设计中得到了有效的应用,其在新建筑的防震设计和旧建筑的抗震加固方面,都起到了良好的效果。

3总结

篇3

高层建筑抗震设计应当非常重视概念设计,因为高层建筑结构的复杂性,发生地震时动力的不确定性,人们对地震时结构认识的局限性,摸拟地震波的模糊性,材料性能与施工安装时的变易性等因素,致使计算结果可能和实际相差较大。简单地依赖数值计算得出的结果不能充分解决现实中的抗震问题,特别是地质特征差异性原因,致使许多国家所制定的抗震规范有很大差距。高层建筑结构概念设计在依据数值计算的基础上,加入了实践经验元素,使得这一设计理念更能满足区域差别下从事高层建筑结构的设计需求,结构概念设计甚至比分析计算更重要。强调其重要性,目的在于结构工程师在高层建筑设计中应特别重视结构规范及规程中有关结构抗震概念设计的各款规定,在具体工程设计中不能陷入只重视计算结果的误区。若结构平面或竖向出现严重不规则或整体性差,则仅按现有的结构设计计算水平,很难保证结构的抗震性能。

二、抗震概念设计的基本原则及影响因素

完成高层建筑结构设计,要建筑师与工程师的通力配合。结构工程师要统筹全面地考虑工程构件、整体结构及延性。工程师和建筑师要全程协作对结构体系的合理性进行设计。针对地震形态,高层建筑结构抗震概念设计的基本原则及影响结构抗震性能的因素主要包括以下几方面。一是形状简单。简单的设计形状使建筑结构明了,在对各构件进行受力情况分析上易于把握,保证了受力数据的精准度。简单的建筑构造减轻了地震对建筑物的破坏,减少了工程整体的薄弱环节,提高了建筑物的整体抗震能力。二是结构规则。保证建筑结构对称布局,包括立体刚度对称和外形对称,提高建筑抗侧力。保证质量对称,使建筑物能均衡抵御外力,避免重心偏离。三是竖向均匀。这在设计上要优先考虑,在建筑横隔层的上下结构比例上要严控竖向收进尺寸,详细进行竖向受力分析,避免因分隔层导致的薄弱环节和承重不均、超标。洞口开设应保持规则整齐,增强整体结构的刚度和强度,避免外力突发下刚度突变而导致的结构扭曲。保证刚度和延性,同一层面支柱和其他连接结构刚性要一致,刚度趋于均衡,增加结构延性,使构件更能吸收和发散地震能量。合理设计抗震墙间距,上下连续受力均匀。设置填充墙将墙与柱分开,不影响整体结构的受力状态,根据需要设置防震缝并保证其质量。四是整体合理。基础要符合建筑要求,保证基础的承载能力完全达到刚度强度指标,与上部构件连接可靠。柱体与基础和隔板到楼盖的连接上有足够的刚度和抗力,各部件牢固连接紧密协同,增强竖向和水平的抗震能力。

篇4

1.1结构抗震性能目标本工程存在扭转偏大、楼板不连续、尺寸突变、竖向构件不连续、承载力突变等多项不规则,属特殊类型高层建筑。结构设计确定的抗震性能目标见表1。由表1可知,本工程采用的性能目标较高,介于《高层建筑混凝土结构技术规程》(JGJ3—2010)[2](简称高规)定义的A,B级之间,主要原因有两个方面:一方面是经对比分析,与B级目标相比较,性能目标提高后仅核心筒部分需要增加较少工程造价,对于总体造价而言,增加比例很小的造价即可满足性能目标要求;另一方面是考虑到结构悬挑比较大,且是乙类建筑,特意提高其性能目标。本工程于2012年6月通过广东省超限高层建筑工程抗震设防专项审查。

1.2结构受力特点及分析地震作用下整个结构有比较复杂的反应,主要有以下几个方面:一是水平和竖向震动耦合;二是悬挑端有比较大的竖向震动反应,导致核心筒远离悬挑端一侧混凝土承受拉力;三是水平地震和竖向地震引起的整体结构扭转作用导致结构筒体有比较大的扭转效应。(1)大震作用下悬挑端位移分析大震作用下悬挑端的位移见表2。由表2可知,X向地震作用下,悬挑远端Z向位移比较显著;Y向地震作用下,因结构扭转造成悬挑远端Y向水平位移比较显著。X向地震作用下,悬挑远端Z向位移由框筒部分的剪弯变形(包含绕Y轴的转动变形)及悬挑部分自身的竖向弯曲变形组成;Y向地震作用下,悬挑远端Y向位移由框筒部分绕Z轴的转动变形和悬挑部分自身的水平弯曲变形组成。(2)小震Y向作用下核心筒的总力矩分析图6给出了核心筒外筒墙、柱编号,表3给出了各墙体在Y向小震作用下的剪力及其相对于核心筒形心点O的力臂。由表3可知,核心筒外筒墙体对核心筒形心点O的力矩之和为979014kN•m。Y向地震作用为61147kN,等效力臂为979014/61147=16.01m。此巨大力矩将通过内藏钢骨的核心筒传递至地下室的核心筒,再传至基础。(3)核心筒外筒墙体轴向内力分析表4给出了小震、大震作用下核心筒外筒墙体轴向内力,其中小震作用考虑恒荷载和活荷载及风荷载,大震作用仅考虑恒荷载和活荷载,活荷载均按最不利布置(仅悬挑部分有活荷载)。从表4可看出,小震作用下,墙体Q2,Q5均受压,墙体Q3受拉,墙体Q1总体是以受压为主,但其与墙体Q3相连端受拉;在大震作用下,墙体Q1,Q3受拉,墙体Q2在4层以上受压、在4层及其以下受拉,墙体Q5在5层以上受压、在5层及其以下受拉。(4)核心筒外筒墙体剪压比分析图7给出大震作用下核心筒外筒墙体的剪压比曲线,其中剪力按照墙体中混凝土和型钢所能承担的比例分配,此处用于计算剪压比的剪力为混凝土部分承担的剪力。由图7可见,大震作用下核心筒外筒墙体的剪压比均小于限值0.18,满足设定抗震性能目标的要求。图7核心筒外筒墙体剪压比曲线(5)悬挑部分竖向地震作用及其收敛分析通过SATWE和ETABS软件,采用振型分解反应谱法与弹性时程分析法对比分析了竖向地震作用下结构的反应,得到了竖向地震作用下悬挑部分的竖向地震作用系数(即悬挑部分所承受的总竖向地震力与悬挑部分的重力荷载代表值的比值)。悬挑部分恒荷载总重GDL=58269kN,活荷载总重GLL=7822kN,悬挑部分结构重力荷载代表值GE=GDL+0.5GLL=62180kN,故小震作用下悬挑部分的竖向地震作用系数α小震=2641kN(小震竖向地震力)×1.25(小震放大倍数)/62180kN=0.053,在大震作用下竖向地震作用系数为α大震=16145kN(大震竖向地震力)/62180kN=0.260。高规中并未规定7度(0.10g)时的竖向地震作用系数,但参照高规插值,可以得到7度(0.10g)时的竖向地震作用系数为0.05,本文如不考虑1.25放大系数,其竖向地震作用系数仅为0.0424,小于0.05,故在采用振型分解反应谱法计算竖向地震作用时应注意其所计算的竖向地震作用是否达到高规规定值。Z向地震时程分析所得的竖向剪力平均值与弹性反应谱分析所得的竖向剪力之比为2987/3389=0.88。尽管不同位置的构件内力随竖向振型参与系数的变化是不一致的,但是当振型参与系数在15%~90%之间时,其竖向地震引起的构件内力增长非常缓慢,此与高层结构有较大不同。

1.3结构性能化设计措施(1)为提高剪力墙连梁的延性,在连梁中配置型钢,并加强其腰筋及箍筋配置(配筋率不小于0.4%且不小于计算配筋)。(2)在核心筒剪力墙中配置型钢,一是为了承担部分剪力及弯矩;二是与墙体竖向钢筋共同承担拉力。(3)通过核心筒的连梁来实现结构耗能,虽然连梁中设置了型钢,但墙体中也设置了型钢,相对于墙肢而言,连梁截面内力远小于墙体截面,所以地震作用时是连梁首先发生弯曲破坏,起耗能作用。虽然结构承载力已按较高的性能目标实现,但为使结构具有较好的塑性变形能力,结构仍然按高延性设计,核心筒及框架柱抗震等级为一级,钢构件抗震等级为二级。

2结构计算分析

2.1振动模态采用SATWE,ETABS软件进行多遇地震作用下的计算对比分析。ETABS软件计算得到的结构的振型图如图8所示(两种软件计算得到的振型一致),由图8可以看出,悬挑部分有较大的振动反应。

2.2整体分析结果对比由SATWE,ETABS软件计算的结构总体指标对比见表5。由表5可知,两个软件计算的结果比较接近,相符度较好。SATWE软件计算的整体稳定性验算指标刚重比X向为117.86,Y向为46.79,均大于规范限值2.7(不考虑二阶效应的限值);ETABS软件计算的整体稳定性验算指标刚重比X向为106,Y向为46.79,均大于规范限值1.4(稳定限值)和2.7(不考虑二阶效应的限值)。

2.3施工卸载模拟计算悬挑桁架部分采用满堂脚手架施工,脚手架支承于地下室顶板上,地下室顶板考虑60kN/m2的施工荷载。采用分段吊装的施工方案,桁架在现场焊接成型,采用塔吊和汽车吊相结合的方法完成吊装(图9)。全部钢结构构件安装完毕后再进行脚手架卸载,卸载顺序为由远端向根部逐渐延伸,在卸载过程中应对钢结构变形及位移进行现场测量。卸载完毕后,开始安装钢筋桁架,浇筑楼板,砌筑固定隔墙,然后封闭楼板后浇带。图9施工方案示意图本工程进行了施工卸载模拟分析,分四步拆脚手架,首先拆第四节下对应的脚手架,接着拆第三节、第二节、第一节下对应的脚手架。卸载过程远端位移模拟显示悬挑远端满足《钢结构设计规范》(GB50017—2003)[3](简称钢规)要求,虽卸载过程与使用状态下的结构支撑条件和荷载作用条件不同,但卸载过程中构件的内力符号没有发生变化,且其应力比均小于正常使用状态下的应力比。

2.4防连续倒塌分析与设计对于防连续倒塌的分析,参考高规采用了两种方法:一是拆除构件法;二是施加表面荷载法。(1)KZ1是受荷最大、最为重要的柱,所以对其按拆除构件法验证是否满足防连续倒塌的要求。计算结果表明,与所拆除构件直接相连的构件最大应力比为[(0.69/1.35)/1.25]×2=0.818,斜拉腹杆最大应力比为(1.13/1.35)/1.25=0.67,其余各构件应力比均小于1。(2)对于桁架的主要弦杆和腹杆,采用在构件表面附加80kN/m2侧向荷载的方法进行验证分析,分三步进行:第一步是按未加侧向荷载进行计算;第二步是将构件从整体结构中取出来,施加侧向荷载进行内力计算;第三步是叠加前两步内力。计算结果见表6,由表6可知,桁架一的主要杆件应力比均小于1.0。

2.5人群荷载下楼盖振动舒适度验算由于楼盖结构的跨度比较大,故对其进行了舒适度研究,采用MIDAS/Gen进行楼盖振动舒适度分析。楼盖振动舒适度分析考虑两种人群荷载工况:工况一为21人同频率、同相位行走;工况二为60人同频率、不同相位行走的。计算结果表明,楼盖最大振动加速度为0.0452m/s2,满足规范限值0.05m/s2要求。

2.6楼盖风振时程分析基于风洞试验实测数据,结合风速时程样本,采用MIDAS/Gen软件模拟结构风振[5],本工程中只考虑顺风向风速的影响,采用了Davenport脉动风速谱,参考深圳市气象局近年来的风速统计资料,设定参考风速,以MonteCarlo法为基础采用谐波叠加法,设定关心的频率始值和终值,随机产生风速时程曲线。局部风振时程荷载按点荷载直接施加于模型相应测点处。分析结果表明,不同风振时程样本引起的楼盖最大加速度差别较大,这主要是由于随机生成的风振时程的自身差异所导致的;基于本文的时域分析方法及风振报告提供的频率方法(其中楼盖振动最大加速度为0.221m/s2)计算出的楼盖风振效应均很明显。针对本工程而言,风荷载引起的竖向振动是设计的控制因素。

3关键节点设计及有限元分析

悬挑桁架从混凝土核心筒及外框柱伸出,第7层E,B点(图3)处节点交汇杆件达11根,节点受力比较复杂。悬挑桁架下弦杆根部弯矩非常大,尽管钢材已采用Q420GJC,但板厚仍超过100mm,基于此提出了解决桁架根部局部弯矩过大的新型节点,见图10。此节点通过对工字形截面翼缘板加下挂板的方式,变相增加了翼缘板的宽度。此种做法一是可以减小板厚,降低焊接难度;二是相对于箱形截面其便于焊接和混凝土浇捣。节点分析拟考虑两种荷载工况:一是大震作用工况;二是构件屈服工况,即加载至某构件(根据大震的分析结果,选取承载能力利用率最高的构件)发生屈服。选取桁架一下弦杆梁柱节点及桁架二下弦杆梁墙节点进行节点分析。采用MIDAS/FEA[7]进行分析。大震作用下节点应力云图如图11所示,结果表明,节点区几乎所有的钢构件均保持在弹性状态,混凝土受拉及受压均保持在弹性状态,节点区构件满足承载能力极限状态的要求。构件屈服工况下节点应力云图如图12所示,结果表明,应力最大钢构件中和轴以下全部发生屈服时,节点核心区内板件仍保持在弹性状态,节点板屈服区域仅分布在以屈服构件相连的局部区域,没有向节点板核心区扩展,满足“强节点、弱构件”的控制要求。

4结语

篇5

关键词:高层建筑;抗震;结构设计;理论

中图分类号:[TU208.3] 文献标识码:A

1 我国的高层建筑发展历程

上世纪80年代,我国高层建筑在设计计算机施工技术等领域快速发展,100m左右及以上的将建筑快速发展,多以钢筋为主要材料,在层数与高度增加的同时,功能与类型也日益增多。各大城市几乎都建立了具有各自特色的建筑,以上海锦江饭店为代表:高度达到153.52m,全部采用的钢结构体系;而深圳的发展中心大厦有43层,高度达到165.3m,算上天线高度达到185.3m,是我国第一幢大型的高层钢结构建筑。到了90年代,我国的高层建筑结构从设计到施工进入到一个新的阶段,除了体系与材料的多样化,高度上也有了质的飞跃。在1995年完工的深圳地王大厦,共有81层,高度达到385.95m,居世界第四高。

2 建筑抗震的理论

2.1 建筑结构的抗震规范

一般的抗震规范都是各国结合具体的情况进行的经验总结,是指导抗震设计的法定文件,及反应国家经济与建设的发展水平,也反映了各个国家的抗震经验。尽管抗震理论不断完善,技术水平也在不断地提高,但是必须要有实践的指导,要将建筑工程的安全性放在首要位置,容不得任何的大意与疏忽。基于这一认识,现代建筑部分条文被列为强制条文,使用了“严禁、不得”等绝对性的字眼,同时也有不同条文有较大的自由空间。

2.2 建筑抗震设计的理论

当前建筑抗震设计的理论主要分为拟静力理论、反应谱理论及动力理论。拟静力理论起源于20世纪10~40年代出现的理论,在估测地震对结构的影响时,假设结构为刚性,地震水平作用在结构或构件的质量中心,地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论是在上世纪40-60年展起来的,以强地震动加速度观测记录的增多与对地震地面运动特性的进一步了解,及结构动力反应特性的研究为基础,是加理工学院的学者对地震加速度记录的特性进行分析后获得的成果。

动力理论是上世纪70-80年代的应用较为广泛的地震动力理论,是在60年代以来电子计算机技术与试验技术的发展为基础,人们对各类结构在地震作用下的线性与非线性的反应过程也有了较多的了解,随着强震观测台的增加,各种受损结构的地震反应记录也在不断地增加。进一步动力理论也称地震时程分析理论,它将地震作为一个时间过程,选择具有代表性的地震加速度时过程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,完成设计工作。

3 高层建筑的抗震结构设计

3.1 必要的抗震对策

在高层建筑结构的抗震设计中国,出了要考虑到概念的设计,还要进行验算,结合地震的情况,要在高度允许的范围内建造,增加结构的延性。在当前的抗震设计中,抗震验算及构造与措施等角度入手进行分析,提高结构的抗震性与消震性能。建立地震力与结构延性互相影响的双重设计指标,直到达到预期的抗震效果。当前强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计思想

在《建筑抗震规范》中有明文规定,建筑的抗震设防要符合“三水准、两阶段”的要求。所谓的“三水准”就是指“小震不坏,中震可修,大震不倒”。当遇到第一设防烈度地震即低于本地区抗震设防烈度的地震时,结构处于弹性变形阶段,建筑物可以正常使用。一般情况下,建筑物不会被损害,也不需要修理即可使用。所以,高层建筑结构的抗震设计要满足地震频发下的承载力极限,要求建筑的弹性变形不超过规定的弹性变形限值。当遇到第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物结构会发生损害,但是不经修理或者简单修理就可以继续使用。所以,建筑结构必须要有足够的延性能力,不会出现脆性破坏。当发生第三设防烈度地震的情况下,就是遇到本地区地震极限外的情况,结构会受到非常严重的损害,但是结构的非弹性变形距离倒塌仍有一段距离,不致产生危及生命的损害,保障了居住人员的安全。所以在进行高层建筑结构设计的过程中,要保证建筑的足够变形能力,其弹塑变形要在规范的数值之内,保证结构良好的抗震性能。三个水准烈度的地震作用水平是根据不同超越概率进行区分的,一般情况下是:

多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。

从高层建筑的抗震水准来看,设防的要求是通过“两个阶段”设计来实现的,具体方法如下:第一环节,第一步采用与第一水准烈度相应的地震动参数,提前计算出高层建筑结构在弹性状态下的地震作用效应,与风力、重力荷载进行高效组合。同时引入承载力抗震调整系数,进行构件截面的准确射击,进而达到第一水准的强度要求;然后是运用同一地震参数计算出结构的层间位移角,使其可以在抗震规范设定的限值之内;同时采用相应的抗震构造对策,确保结构可以有足够的延性、变形能力与塑形耗能,进而达到第二水准的变形目的。而第二阶段则是运用与第三水准对应的地震动参数,算出结构的弹塑性层间位移角,使其在抗震规范的限值之内,然后进行必要的抗震构造对策,进而实现第三水准的防倒塌目的。

3.3 现代高层建筑结构的抗震设计方法

在《建筑抗震设计规范》中对各类的建筑结构的抗震计算应该采用的方法都有明确的规定:高度要在40m之内,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

结语

地震是威胁较大的天灾之一,必须要加强防御,从上文的分析中我们可以看到,高层建筑的抗震结构设计必须要在要求的限值之内,保证结构的良好性能,提高建筑的使用性能。

参考文献

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.

[2]李彬.对于高层建筑结构的抗震设计探讨[J].中国新技术新产品.2012(02).

篇6

【关键词】建筑结构;抗震;设计;问题;探讨

中图分类号:TU3文献标识码: A

一、前言

目前,我国建筑在抗震设计方面来存在很多误区,同时,在具体设计方面还有很多的设计问题有待于研究。因此,对建筑结构抗震设计的相关问题进行分析很有现实意义。

二、我国对抗震性设计的要求

为了保证建筑物结构的基本抗震性能,我国从法律上对建筑结构的抗震性设计进行了详细的规定。这些具体的规定都在我国“《建筑抗震设防分类标准》GB50223”中,而具体内容大致如下。

“建筑根据其使用功能的重要性分为甲类、乙类、丙类、丁类四个抗震设防类别。”在这四类抗震类别当中,甲类建筑物的使用功能应该是比较重要的,因此,对其要求的抗震性能也比较高,“地震作用应高于本地区抗震设防烈度的要求,其值应按照批准的地震安全性评价结果确定。”具体的抗震措施应该比当地地质状况要求的抗震烈度要高,如果当地要求的抗震烈度要在6~8之间,那么,实际设计的抗震烈度就应该要比要求高出1度,而如果当地的抗震要求在9度时,实际设计的抗震烈度至少要比9度高出一点。乙类建筑物的抗震烈度与当地的地震作用相符合即可,在采取抗震措施时,如果抗震烈度要求在6~8之间,那么设计的抗震烈度与其相符合即可,如果是在9度以上,实际设计值则需要比9度要高。对于丙类来说,无论是什么情况,设计的抗震烈度值同当地的抗震要求相符合即可,而丁类建筑结构的抗震烈度可以在实际的抗震烈度要求之上适当减低。

三、目前建筑结构抗震性设计的关键问题

1、场地选择

在建筑结构设计中,场地的选择是其中重要的一部分,所以,在建筑结构抗震性设计中,建筑场地的选择对建筑结构抗震性能的影响也是比较大的。在选择建筑场地时,一定要对当地的地理环境有所了解,避开不利的地段。如果场地不利会造成地表发生错动或者断裂、地基沉降、滑坡等状况,对工程质量会产生一定的影响。正因如此,在选择建筑场地过程中,要尽量避免在“软弱场地、易液化土、状态不均匀”等场地进行建筑物的建筑。如果建筑地点的土壤普遍不合格,那么就需要采取一定的抗震防裂措施来提高建筑结构的抗震等级,比如可以强化地基,加强结构的整体性等,对于地基来说可以采用桩基、强化基础等处理措施,这样即使不可避免地出现了不利场地,也能通过措施的应用而得以改善。

2、结构体系选择

建筑结构体系的选择关系到了建筑结构的稳定性,自然也会成为抗震设计中的重要部分。首先,结构体系要具有相对的独立性。对于建筑结构体系的整体功能发挥来说,其应该具有一定的整体性和联系性,但是,对于抗震性来说,建筑结构体系就应该具有相对的独立性。主要是指结构体系应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。因此,在设计建筑结构时,应该要确保建筑结构具有一定的内力分配功能,这样如果一个构件受到了震力的破坏,其他的构件仍能够正常承载,一定程度上避免了整体结构失效可能性的出现。其次,合理分布震力传递途径。在结构设计过程中应该重视竖向的建筑结构要具有垂直重力传递的作用,“楼屋盖梁系的布置”要尽量保证从上部结构中传递过来的重力荷载能够通过转换层进行转换,同时,抗侧力结构要明确,尽量保证其连续性,如果结构出现了竖向变化则要尽量确保变化的均匀发生。最后,要具有适当刚度和以及强度。对于建筑结构体系来说,适当的刚度和强度能够在一定程度上避免因为结构的部分薄弱给整体结构造成影响,在框架设计过程中要保证节点在受到较大的重力荷载或者是应力过于集中时,不会出现破坏的状况。

3、规则布置建筑平面

建筑平、立面布置应符合抗震概念的设计原则,宜采用规则的建筑设计方案,而不应采用严重不规则的设计方案。因此,在进行建筑结构抗震性设计过程中,要尽量规则布置建筑平面,通常我们都比较重视建筑结构的对称性和规则性,结构的对称性主要是指抗侧力主体结构之间的对称,而规则性主要体现在以下几个方面,第一,抗侧力结构主轴方向刚度和变形特性相近。第二,在抗侧力结构竖向断面均匀、构成的变化均匀。

四、抗震设计方法及存在的问题

1、直接位移设计法

直接位移设计法是一种偏重于结构性能的设计方法,这种方法概念简单,可根据在一定的地震等级作用下预期的位移计算地震作用,进行结构设计,使构件达到预期的变形,结构达到预定位移。但该方法的使用尚存在一些问题:由于替换结构的刚度是对应于最大位移时的线性刚度,其周期一般比弹性结构的周期长许多,因此,用于位移设计的位移设计反应谱必须比加速度反应谱具有较长的周期范围;弹性加速度设计反应谱一般是针对阻尼比为0.05,而位移设计反应谱必须适应替换结构所需要的较大阻尼比范围的要求;近年来的研究表明,近场强震效应对结构的位移反应有较大的放大作用,但直接位移设计方法只从材料的极限应变出发得到构件的变形值进行结构设计,不能考虑近场强震的这种放大效应;结构构件的滞回特性。因此,就现阶段而言,采用直接位移设计法实现基于结构性能的抗震设计还具有一定的局限性;½这一设计理论没有体现出结构的非线性分析方法和对所设计结构的实际抗震性能进行验算的方法。

2、位移影响系数法

位移影响系数法主要体现在确定给定结构非线性静力弹塑性分析时的最大期望位移,这一最大期望位移定义为目标位移d;采用此方法结构来确定最大非线性位移,概念相对来说比较简单,但在实际设计计算中需进一步研究:此种方法仅仅是一种衡量结构整体抗震水平的评估方法,无法提供具体楼层和主要构件的损坏情况以及具体结构构件的抗震水准;结构的最大非线性位移与线性位移的关系比较复杂,采用上述多系数的表示方法,每一个系数取值的变化都会对结果产生较大的影响,而在各个系数都不能明确确定其取值的情况下,计算结果与结构的实际最大非线性位移会产生较大的误差。

3、能力谱方法

能力谱方法是一种偏重于对所设计结构的实际抗震性能进行评估验算的方法。对结构抗震性能评估的能力谱方法的研究。还存在以下问题需要解决:¹在能力谱方法中,需要将原型多自由度结构体系转化为等效单自由度体系,而现有的转化方法都是以结构反应的单一振型或主振型为基础,而对于高阶振型对结构反应影响比较显著的多高层结构体系或扭转效应不可忽略的结构体系来说,这种转化方法将产生比较大的误差;通常能力谱方法对于抗侧刚度沿结构高度方向分布不均匀的结构体系或楼层平面内扭转反应比较明显的结构体系无法进行验算。

五、提高结构设计的质量管理

1、根据《建筑工程设计招标投标管理办法》业主要求设计单位组建设计项目组,安排结构设计各阶段的设计人员、校对人员、专业负责人、审核人员并安排相应的完成时间,形成设计进度计划表。

2、设计质量直接影响工程周期、成本,是工程建设重要的内容。有效地缩短工程周期和节约成本有利于在市场中能取得先机,获取更大的效益。设计单位执行ISO9001:2008全面质量管理来保证设计质量是一种行之有效的方法。

3、针对建筑工程的不同类型,由专业负责人对设计和校对人员进行事先指导,形成事先指导表。同时专业负责人应起草本设计项目结构设计统一措施,经结构总工程师批准后,结构人员保证人手一份使用。

六、结束语

建筑抗震设计是一项系统的工程,需要严格把握设计的各个环节,按照设计的科学流程,结合建筑的特点,尽量提高设计的合理性,提高建筑抗震的能力。

【参考文献】

篇7

【关键词】部分框支剪力墙;结构设计;抗震策略

Abstract: paper first part of the frame supported shear wall structure made ​​a brief overview, and then analyzes some of the shear wall structure supported frame design points. In the right part of the frame supported shear wall design, it should reduce the conversion, make overall planning. Meanwhile, in the design of the time to pay attention to maintaining the stability of the overall structure of a large space, as far as possible in the design calculations to be accurate and comprehensive section. Finally, the paper recommends seismic design of high-rise buildings should be performance-based seismic design, and gives the right part of the frame supported shear wall structure seismic design requirements and strategies.

Key words: section frame supported shear wall; structural design; seismic Policy

中图分类号:TU398+.2 文章标识码:A

0 引言

随着我国经济及社会的快速发展,我国城市化率越来越高,城市有限的空间及土地资源已经很难满足人们的需求,因此为了争取更大的建筑空间,高层建筑越来越多。同时,为了更为有效地利用地面的空间,部分框支剪力墙结构设计越来越多地应用在现代建筑的结构设计中。基于此论文对部分框支剪力墙结构设计与抗震策略进行了较为系统的研究。

1、部分框支剪力墙结构概述

部分框支剪力墙结构是现代高层建筑中常用的一种结构,具有底部大的特点,因此也被称为底部大空间剪力墙结构。从这个界定可以看出部分框支剪力墙结构通常在高层或多层剪力墙结构的底部,这种结构的设计一般是根据实际需要,为增加底部空间的使用功能而设置的[1]。所以上层建筑的部分剪力墙不能沿用到底层,不然的话会影响底层空间的使用效率,甚至有些底层的建筑空间在设计之处就已经规划好用途。所以在建筑的设计过程中就要设计一个结构转换层,通过结构转换层来减少建筑底层的压力[2]。而转换层下面的一层,即建筑的底层则称为框支层,框支层中的贯穿上下层的墙则是剪力墙。同时,界定建筑的部分框支剪力墙结构的时候,不仅要看其抗侧刚度,还要整个结构的特点,看是不是形成了薄弱层,抗侧刚度是不是发生了突变等情况。不能仅仅依据建筑的竖向构件有没有贯通落地。

2、部分框支剪力墙结构的设计要点分析

通过上面的分析可以看出,部分框支剪力墙结构的界定是有一定的规范的,并不是所有的贯穿转换层与底层的墙面都属于部分框支剪力墙结构,还要观察整个建筑本身的特点。所以在进行部分框支剪力墙结构的设计的时候要注意以下几个要点。

(1)在对部分框支剪力墙进行设计的时候,应该减少转换,尽可能采用上下主体竖向布置的方式,以保证主体间的连续贯通。特别是在设计框架—核心筒结构时,要尽量保证核心筒可以上下贯通,这样可以保证设计的安全性及可靠性。

(2)在设计时要注重统筹规划,不要将各部分独立开来,各构件间的关系及布置要主次分明,传力直接,这样便于施工,同时减少识图错误的概率。而在转换层上下主体的竖向结构设计时,要尽量减小水平方向传力的影响,避免多级复杂的转换,这样可以有效地保证水平转换结构的传力比较直接。

(3)在设计的时候要加强转换层下部主体结构的刚度,弱化转换层上部主体结构的刚度,这样就可以有效地保证下部的大空间整体结构的稳定性,转换层上下主体结构之间的刚度及变形度也会比较接近。

(4)在部分框支剪力墙结构设计的计算阶段,最为重要的一点就是要全面而且要确保准确,如果计算及计算结果出了问题,将会严重影响整栋建筑的质量。而且要特别注意将转换结构作为整体结构的一个重要的组成,并采用正确的计算模型进行计算。

3、部分框支剪力墙结构的抗震设计

我国地域广阔,横跨环太平洋地震带与欧亚地震带,所以地震活动比较频繁,而且强度比较大,同时地震常发地区分布广,可以说我国是一个震灾严重的国家[3],所以建筑防震性能的设计非常重要。

3.1 部分框支剪力墙结构抗震设计概述

部分框支剪力墙结构的抗震设计主要是为应对地震发生而进行的一种设计,这种设计是在地震发生的假设前提下进行的。我国高层建筑的城市几乎都在抗震设防范围之内,因此部分框支剪力墙结构的抗震设计是部分框支剪力墙结构设计的一项极为重要的内容。一般来说地面运动主要有三种运用描述方式,即强度、频谱和持时。而地震的强度是由振幅来表示,振幅对建筑的破环程度跟很多因素有关,比如说时间、速度、加速度,还有建筑本身的特性。所以在进行抗震设计的时候要综合考虑多方面的因素。

3.2 部分框支剪力墙结构的抗震设计要求分析

我国为了更好地预防地震灾害,对建筑的抗震设计做了一系列的规定。上世纪80年代的抗震设防目标是“小震不坏、中震可修、大震不倒” [4],但随着我国经济及技术的发展,我国在2010年对建筑的抗震设防目标进行了修改,并给定了具体的抗震设计方法,表3-1是常规的设计方法与抗震设计方法的对比表(表3-1)。通过两种抗震设计的防震目标、实施方法及实践运用方面的对比可以发现,我国明显加大了地震灾害的预防力度。基于性能的抗震设计虽然运用还不够广泛,但是对新技术、新材料的适应性比较好,而且也满足社会发展的趋势,未来的运用潜力比较大。同时,基于性能的抗震设计可以增加结构概念设计的内容,比如刚度尽量对称,框支转换梁上墙体尽量居中布置,从初设阶段将一些对结构不利的东西规避掉。综上所述,对于现代高层建筑的抗震设计应采用基于性能的抗震设计方案。

表 3-1 常规设计方法与性能设计方法的对比分析表

3.2 部分框支剪力墙结构的抗震设计策略分析

通过上面的分析,论文对部分框支剪力墙结构的抗震设计应该采用基于性能的抗震设计方案。因为部分框支剪力墙结构基本上都是高层建筑,采用的基本上都是框架—剪力墙结构,这种结构本身就具有良好的抗震性。导致抗震灾害形成的原因大都是由于建筑物的造型与建筑的抗震性能不协调导致的。所以在设计的过程中要特别关注这两部分的设计。

(1)建筑体型的抗震设计策略分析

对于建筑体型的设计主要关系到的是建筑的布局及体量等方面的设计,这也是建筑设计的一个重要的部分。很多设计师在设计的时候由于太过于关注建筑的造型及建筑本身的使用价值,很容易忽视建筑体型与建筑抗震性能之间的关系。所以在设计的过程中,设计者应该科学地设计建筑的空间体量,包括建筑的高度、比例,建筑的对称性,还要关注建筑的转角的设计,同时建筑周边的抗力,建筑整体的均衡性等方面都要进行综合的考虑。

(2)建筑立面的抗震设计策略分析

建筑立面通常来说都是由大量的建筑部件组成的,所以建筑立面的设计要关注的主要是立面材料的选择,部件之间的比例的设计,还有其尺寸大小的控制等方面。而从抗震的角度来说,建筑的设计则要关注以下几个要点。首先,在设计的时候,不能孤立地进行孤立面的设计,而应该将正立面、侧立面及背立面各个立体面之间协调起来,是他们之间得到统一,从而形成一个完整的整体。同时,要注意立面的空间效果和立面各部件之间的均衡性和规则性。

4、结语

通过论文的分析可以看出,随着城市化进程的进一步推进,部分框支剪力墙结构越来越多地应用在现代建筑的结构设计中,建筑防震性能的设计十分重要。而且在设计的过程中要减少建筑部件间的转换,采用合理的布置方式,以保证建筑的安全性。同时,要注重设计的统筹规划,将建筑的各部件之间有机地联系起来,以实现建筑的整体性和统一性。在分框支剪力墙结构的抗震设计要采用抗震设计方法,并对建筑物的造型及立面的进行抗震设计。最后,希望论文的研究为相关工作者及研究人员提供一定的借鉴与参考价值。

【参考文献】

[1] 京浩.建筑抗震鉴定与加固[M].中国水利水电出版社,2010.

[2] 敬书,潘宝玉.现行抗震加固方法及发展趋势[J].工程抗震与加固改造,2011.

篇8

关键词:高层结构抗震,抗震规范,高层抗震注意问题,纤维增强混凝土

1引言

地震是一种突发性和毁灭性的自然灾害,它对人类社会的危害首先是引起建筑物的破坏或倒塌,导致严重的人身伤亡和财产损失;其次是引起火灾、水灾等次生灾害,破坏人类社会赖以生存的自然环境,造成严重的经济损失,产生巨大的社会影响。近十年来,地壳运动进入活跃期,世界各地都爆发了不同程度的地震,而我国更是世界上大陆地震最多的国家之一,20世纪以来,全球发生7级以上地震1200余次,其中十分之一在我国。例如,1976年7月28日的唐山7.8级地震,2008年5月12日的汶川8.0级地震,2010年4月14日的玉树地震,都给人们的生命财产安全带来巨大的损失。同时,由于地震破坏的后果严重,我国抗震规范在2008年与2010年都进行了不同程度的修正,目的是加强建筑结构的安全性。因此,为保障地震作用下人们的生命财产损失降至最低,有必要对建筑物的抗震设计进行研究,本文就高层结构的一些常用抗震设计方法进行了讨论。

2结构抗震设计方法的发展

结构抗震设计方法的发展历史是人们对地震作用和结构抗震设计能力认识不断深化的过程,对结构抗震设计方法发展历史进行回顾,有助于对结构抗震设计原理的认识,

结构抗震设计方法经历了静力法、反应谱法、延性设计法、能力设计法、给予能量平衡的极限设计方法、基于损伤设计方法和近年来正在发疹的基于性能/位移设计法几个阶段[1]。这些抗震设计方法在发展阶段相互交错与渗透,对齐进行系统化整理,结构抗震设计方法可以分为以下几类[2]:

基于承载力设计方法

基于承载力和构造保证延性设计方法

基于损伤和能量设计方法

能力设计法

基于性能/位移设计方法

根据清华大学叶列平教授的研究,第(5)种方法在结构抗震设计中较前几种方法优点更为突出,并且在各国规范中应用最广泛。

3高层抗震设计的设防目标

长期的地震观测表明,在同一地区不同强度地震的重现期是不同的。强度小的地震重现期,一般10~50年左右发生一次,即所谓频遇地震或“小震”;强度较大的地震,重现期较长,一般100~500年发生一次,即所谓偶遇地震或“中震”;而强度特别大的强烈地震,重现期一般为数千年,即所谓罕遇地震或“大震”。

高层建筑的使用寿命一般为50~100年,高层住宅的寿命更短,因此要求结构在“大震”作用下不破坏显然四不合适和不经济的。这就提出了对于不同强度地震的重现期,结构应具有不同的抗震性能,即所谓抗震设防目标。目前国际上公认的较为合理的抗震设防目标是:

(1)在频遇地震作用下,结构地震反应应处于弹性阶段,结构无损坏或轻微破坏,且结构变形很小,不会导致非结构构件的破坏,震后可无条件继续使用;

(2)在偶遇地震作用下,结构和非结构构件损伤在一定限度内,震后经修复可继续使用;

(3)在罕遇地震作用下,结构不产生倒塌,非结构构件无脱落或落下,保证人身安全,

上述抗震设防目标与我国抗震设计规范中的“三水准”即“小震不坏,中震可修,大震不倒”是一个含义。现在的问题是这种单一的抗震设防目标已不能适应现代工程结构对抗震性能的需求。许多重要建筑对大震作用下的性能要求也不再是不倒塌,而是应满足一定性能指标要求,以保证其仍具有一定的建筑功能和使用功能,这即是基于性能抗震设计方法研究的目的。

高层抗震设计方法的几点讨论

4.1遵循建筑抗震设计规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件。它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然收抗震有关科学理论的引导,向技术经验合理性的方向发展,但它更是具有坚定的工程实践基础,把建筑工程的安全性放在首位。正是基于这种认识,现代规范的条文有的被列为强制性条文,有的条文中应用了“严禁、不得、不许、不宜”等体现不同程度限制性和“必须、应该、宜于、可以”等体现不同程度灵活性的用词。任何结构的抗震设计都必须以抗震规范为基础,按其规定条文执行。

4.2高层建筑抗震设计应注意的问题

高层建筑结构应根据房屋高度和高宽比、抗震设防类型、抗震设防烈度、场地类别、结构材料和施工技术条件等因素考虑其适宜的结构体系,高层建筑的高宽比是对结构刚度、整体稳定、承载能力和经济合理性的宏观控制,在设计过程中应注意以下几点:

应当注意抗震缝的设计,必须留有足够的防震缝宽度;

平面形状和刚度不对称,会是建筑物产生显著的扭转、震害严重,设计中应避免这种情况,不能避免时应对抗震薄弱处进行加强;

凸出屋面的塔楼受高振型的影响,产生显著的鞭梢效应,破坏严重,设计中加以注意;

高层部分和底层部分之间的连接构造是否合理;

框架柱截面太小、箍筋不足、柱子的延性和抗震能力不够等容易导致剪切破坏或柱头压碎;

沿竖向楼层质量与刚度变化太大容易导致楼层变形过分集中而产生破坏;

地基的稳定性尤为重要;

伸缩缝和沉降缝宽度过小(W昂王与防震缝一切三缝合一)使得碰撞破坏很多;

不应在建筑物端部设置楼梯间,楼板有大洞口会因刚度不均匀而产生扭转;

中间部分楼层柱子截面和材料改变或取消部分剪力墙,都会产生刚度或承载力的突变,形成结构薄弱层。

4.3采用纤维增强混凝土

对于高层建筑,混凝土材料由于其自身缺陷,地震作用下易于发生脆性破坏,引起结构损伤,因此从建筑材料角度分析,可以在某些关键部位采用韧性材料代替混凝土提高整体结构的吸收能量能力与抗震能力。抗震建筑材料必须具备轻质、高强、高韧性特征,例如,木材、轻钢、型钢、钢筋混凝土、复合材料等都可以从某些方面达到抗震目的。而在我国,森林覆盖面积少,人居木材占有量少,而钢材成本较高,这些材料的使用都有相当的局限性。而在钢筋混凝土结构的关键部位采用一些韧性较高、延性较好、抗性强度高的纤维增强混凝土对提高结构的抗震性能具有非常明显的作用[3]。目前,我国的纤维增强混凝土种类繁多,例如,钢纤维混凝土、聚丙烯增强混凝土、聚合物增强砂浆、超高韧性水泥基复合材料等,这些材料的研究与发展对高层结构的抗震也起着重要作用。

结束语

本文在回顾结构抗震设计方法发展历史的基础上,探究了高层结构的抗震设防标准,并讨论文高层抗震设计中应该注意的问题。高层抗震是个很复杂的课题,涉及的考虑因素众多,由于笔者参加工作时间较短,相关工程经验较少,本文仅提供一般性的参考,如有不到之处,敬请指正。

参考文献

白绍良. 对新西兰、欧共体、美国、日本和中国规范钢筋混凝土结构抗震条文的初步对比分析. 重庆大学, 2000.

小古俊介, 叶列平. 日本基于性能结构抗震设计方法的发展. 建筑结构, 2000年第6期.

Parra-Montesinos G.. High Performance Fiber Reinforced Cement Composites: an Alternative for Seismic Design of Structures. ACI Structural Journal, 2005, 102(5):668-675.

篇9

关键词:建筑结构、抗震设计、现代抗震设计理念、国际抗震设计新理念

中图分类号:TU3文献标识码: A

一、建筑抗震设计的重要意义

不同的变量可以体现出建筑结构的地震反应,在抗震设计中具体使用哪一种设计的变量,要与结构自身的类型相结合,与地震反应的特性以及地震破坏的模式相结合。结合结构抗震设计变量的不同,对结构抗震的设计方法进行分类,一般可以分为以下四种:基于承载力的抗震设计法、基于能量的抗震设计方法、基于位移的抗震设计方法及基于损伤的抗震设计方法。

通过抗震设防目标的角度可以看出,现在的抗震设计方法说到底是以对生命安全进行保护的单一设防目标。现代社会在不断的发展,抗震设计不但要预防建筑物的倒塌破坏,更要结合建筑物的重要性以及用途进行有效的控制它的破坏状态。这对于抗震设防目标来讲要求更多级化,基于性能的抗震设计方法的提出就是为了对此问题的解决。性能这一概念具有宏观性,与力或位移这样的物理概念不同,不能作为设计变量在抗震设计中直接运用,更多是与建筑物的破坏程度联系在一起,建筑物的破坏程度可以用位移、力、能量以及损伤等反应参数进行表示,所以,基于性能的抗震设计与基于承载力或者基于位移等抗震设计相比,其设计的理念更为广义,如今,在进行有针对性的基于位移、损伤以及能量等抗震设计方法的研究中,一般的主导思想都是基于性能的抗震设计。

二、现代抗震设计综述

第一,基于承载力的结构抗震设计,基于承载力的结构抗震设计,建立在静力分析的理论之上,以惯性力的形式来反映地震作用,并按弹性方法来计算结构地震作用效应的大小、进行结构弹性位移验算,把结构构件的强度是否达到特定的极限状态作为结构失效的准则。一是设计地震作用的确定,在基于承载力的结构抗震设计方法中,设计地震作用取值由设防烈度的地面运动有效峰值加速度考虑放大效应和地震作用效应降低系数的综合影响后得来的,可以用如下公式表示:f = kβig/r式中:f―建筑结构总水平地震作用;k―地震系数(不同地震分区所取的相当于设防烈度水准的地面运动有效峰值加速度或地面运动峰值加速度与重力加速度的比值,它反映了不同地区设防烈度地震的强弱);β ―动力放大系数(对应于不同周期的结构反应峰值加速度与地面运动有效峰值加速度或峰值加速度比值的拟合值,它反映了不同周期体系对地震作用的动力放大效应);i―建筑重要性系数;r―地震作用降低系数;g―结构重力荷载代表值(取恒载和可能与设计地震作用同时出现的活载之和)。地震系数k 反映的是不同地区设防烈度地震的强弱,根据各地区不同的地震危险性将其细分为不同地震区域,并对每个地区根据统计结果重现期给出其地震系数。动力放大系数β反映了不同周期弹性单自由度体系的动力放大效应,它通常是从相对于地面运动有效峰值加速度作归一化处理后的多条弹性加速度反应谱曲线中经归纳和简化后得到的。加速度反应谱是确定的地面运动通过一组阻尼比相同自振周期不同的单自由度体系所引起的各体系最大加速度反应与相应体系自振周期间的关系曲线。二是基于承载力结构抗震设计方法的研究现状,基于承载力的抗震设计法作为产生较早的方法,从20世纪年代中期开始广泛应用,经过多年的研究发展较之其他抗震设计方法相对成熟。目前加速度反应谱的短周期段的精度已基本满足工程使用要求,研究主要关注反应谱的不合理性。随着高层、超高层等长周期结构的发展,对反应谱长周期的研究也逐渐开展。考虑到现有的科技水平及设计习惯,弹性加速度反应谱仍是现阶段结构抗震设计计算的最基本依据,研究工作主要集中在结合场地影响、强震观测改进及结构时程分析对加速度反应谱的长周期段进行修正,以求使地震作用计算更加合理准确。

第二,基于能量的结构抗震设计,基于能量的抗震设计理论主要是通过能量的角度在地震地面运动对结构的作用进行考虑,具有明确的概念,也能把地震的动强度、频谱以及持时对结构带来的破坏进行很好的反映,通过输入能量与耗散能量的角度对结构进行捕捉到在强烈的地震作用下的变形过程。因为能量分析具有一定的复杂性,基于能量的结构抗震设计的方法还正在研究的阶段,要在实际工程设计中进行运用,到现在为止还没有真正建立起来。在抗震研究中有两个非常重要的论题就是能量概念与破坏模型,尤其是现在提出的基于性能的抗震设计的思想,对于抗震结构的耗能力以及性能的研究又提出更高的要求。此方法能够对结构滞形而对结构破坏影响的特点进行全面的考虑,并且对于基于性能的抗震设计理念有着非常重要的意义,所以,基于能量的抗震设计的方法对于抗震理念的进一步发展起着很大的促进作用,也是传统抗震设计方法得到改进的重要发展方向。

第三,基于损伤的结构抗震设计,近些年以来,经过各国的学者的研究表明,因为地震具有往复性,而且地震动持的时间比较短,所以,受地震的作用,其损伤不但与最大变形有关系,同时,与结构的低周疲劳效应带来的累积损伤也有关系。通过反映结构的变形以及累积损伤效一些的损伤性能参数能把结构的非弹性性能更好的描述出来。因为计算损伤指数是把计算结构的累积滞回耗能作为基础的,而结构能量分析的重点是累积滞回耗能计算,因此,也可把基于损伤的设计方法作为能量法结合性能设计思想的一种应用的方法。基于损伤的抗震设计就是对结构损伤指数的反映,对地震损伤模型的损伤指数进行适当的选取,再进行验算看是否与预定的损伤性能目标相符合。

第四,基于性能的抗震设计的概念,组织描述基于性能抗震设计就是性能设计是要对设计标准进行选择,结构的形式要恰当,规划要合理,才能使建筑物的结构与非结构的细部构造设计得到保证,对建造质量进行控制并进行长期的维护,让建筑物在受到一定水平地震作用下,破坏的结构处于特定的范围内。Atc组织的描述是对基于性能抗震设计在进行结构设计中,选用的标准通过结构性能目标来体现,主要是对混凝土结构而且采用基于能力的设计原理。

三、国际抗震设计新理念分析

很多国家在进行高层建筑的抗震设计中,都有很多新的结构出现,例如:美国的纽约四十二层高的建筑物,建在基础分离的九十八个橡胶的弹簧上,日本 的建在弧型的钢条上,前苏联的建在基础分离的沙垫层上,这些都是在实际中成功的案例,都在建筑结构的体型上得到明显的提升,对传统的插入式刚箍捆住内力的结构体系进行入改变。总之,在很多建筑设计的结构中都要想办法避免地震灾害。实质上也是对似地球为相当好的惯性参考系”为指导理论的反映,现行的抗震硬抗以及死抗地震打击设计的制定,实质也是对建筑结构受力体系的改变,而不在似地球为绝对静止不动的惯性参考系了。

日本东京建造的弹性建筑达到十二座,经过6.6级地震的考验,达成非常明显的减灾效果。此种弹性的建筑物在隔离体上进行建设,隔离体的组成包括分层橡胶、硬钢板组以及阻尼器,建筑结构不会与地面发生直接的接触。阻尼器是由螺旋钢板组成,可以使颠簸的感觉得到减缓。在美国硅谷建造了一座电子工厂大厦,就是滚珠大楼,采用了一种新的抗震法,也就是在建筑物的每一根柱子或墙体下进行不锈钢滚珠的安装,通过滚珠来对整个建筑进行支撑,钢梁纵横交错,却把建筑物紧紧的固定在地基上,在地震发生的时候,富有弹性的钢梁会进行自动的伸缩,而大楼在滚珠上发生轻微的前后滑动,可以把地震带来的破坏大大的减弱。在日本的鹿岛,建筑部门对弹簧大楼发明了一种俗人的防震营造法,就是通过弹簧把与地基连接的基础部分与建筑物的主体分离开来,让建筑物的主体处于一种能对地震吸收和其他振动冲击的中介物上。不管地基发生怎样的摇晃,振动的能量在传到建筑物的时候,其振动量也会减到原来的十分之一。

四、结束语

总而言之,通过对建筑抗震设计的综合分析,以及国际抗震设计新理念的总结,可以发现建筑结构的抗震设计是一个庞大的课题,并且具有一定的复杂性,具有非常广泛的涉及面,本文中对此理念并没有深入的研究,因为时间以及能力还非常有限。在未来的研究中,在建筑抗震设计中还需要进一步探讨各个方面的知识。

参考文献:

[1] 胡聿贤.地震工程学[m].北京:地震出版社,2006:5-8.

[2] 叶列平,经杰.论结构抗震设计方法[c].第六届全国地震工程会议论文集,2002.

篇10

关键词:建筑结构;性能;抗震设计;概念;特点;问题;方法

中图分类号:TU318 文献标识码:A 文章编号:

随着人们生活水平的提高,人们对社会的需求开始呈现多样化的特点,而随着建筑物越来越高,体型变得越来越复杂,建筑结构的抗震设计也变得更有挑战性。人们为了保障自身的安全,对此便有了更多的关注,对基于性能的抗震设计也更加重视起来,在此种方法下,会对设计者有所要求,那就是要对建筑物在地震作用下可能形成的性态反应做出一定的评价。这种方法有很多好处,最主要的就是对于不安全的设计,能够正确的辨别出来,还可以提出一些方案来解决问题,使得建筑结构更加安全和经济。

1基于性能的抗震设计概念

以往提到的基于力的抗震设计或者基于位移的抗震设计,由于力和位移都是很明确的物理概念,可以被很容易地理解。但是基于性能的抗震设计,由于性能一词是一个宏观概念,不像力或位移可以直接成为设计参数,也可以直接应用到设计中去事实上,这里提到的结构性能往往可以与结构的破坏程度相关,而结构的破坏程度又可以由结构的反应参数来表示(如应力、力、位移、能量以及一些定义的破坏指标)。所以基于性能的抗震设计是比基于力或者基于位移抗震设计更为广泛的设计理念,更为直接地满足个人或者社会对建筑物的要求,即要求建筑物是否安全可靠,是否满足他们的使用需要,而不是普通使用者能提出的建筑物可以抵抗多强地震力,或者是变形控制在什么程度。

基于性能的抗震设计并不是一个全新的概念,尽管目前基于性能的抗震设计得到国际上广泛的重视与研究,也取得一些初步的成果,但是对于基于性能的抗震设计,现在还没有一个统一的定义。比较有权威性的是美国SEAOC,ATC和FEMA等组织给出的基于性能设计的描述。其中,对基于性能抗震设计的描述是“性能设计应该是选择一定的设计标准,恰当的结构形式,合理的规划和结构比例保证建筑物的结构与非结构的细部构造设计,控制建造质量和长期维护水平,使得建筑物在遭受一定水平地震作用下,结构的破坏不超过一个特定的极限状态”。一些学者也对基于性能抗震设计进行了描述,可见,尽管不同的机构或者个人对于基于性能的抗震设计描述不完全相同,但是这些论述中有一共同思想,就是基于性能抗震设计的主要思想:即结构在其设计使用期间内,在遭受不同水平的地震作用下,应该有明确的性能水平并使得结构在整个生命周期中费用达到最小。

2 我国现行建筑抗震设计理论的存在的问题

2.1我国现行的建筑抗震设计理论设计方法较为保守,缺乏新的设计理念,很大程度上阻碍了新的设计技术的实施。同时,在设计时候,缺乏对建筑结构性能的考虑,而只是根据我国一些曾经制定的抗震设计规范而行,只从刻板的标准出发,没有能综合考虑到各种实际状况。

2.2我国的设计理论和设计方法在很多抗震指标上规定不清晰,抗震设计理念不明确,加上很多建筑的使用者缺乏一定的抗震建筑知识,难以对所使用的建筑结构的抗震性能和抗震能力做出一个很明确的评判。

2.3目前,我国的建筑抗震设计多是重视对建筑的整体承载力和建筑的结构强度来进行,而忽视了对其他因素的考虑比如建筑结构的性能设计。同时,很多现行设计理论在进行建筑的设计时候,更多的注意着建筑的主题结构的抗震损失,而忽视了很多细节,对损失的控制力度不强。经济评估准则并没有在建筑业中得到广泛应用。

3 性能抗震设计理念的特点

通过对现行抗震设计理论的实践,可以对两者进行对比,以得到性能抗震设计理念的特点。

3.1多级设防。

相对于现行的三阶段设防目标(小震不坏、中震可修、大震不倒),性能抗震设计注重多级设防,保护非结构件与内部设施,后者的设计理念既保证使用者安全,又减轻业主和社会的经济损失与压力。

3.2投资效益准则。

性能抗震设计偏重于安全、经济等多方面。在安全与经济之间找到合理、平衡的切入点,确定最佳方案,以优化设计为目的。

3.3自由度大。

相比较传统抗震设计刻板的被动状态,性能抗震设计可根据业主的要求确定目标,给设计带来新的动力。

4 建筑结构基于性能的抗震设计方法

作为性能设计理论的重要内容,基于性能的抗震设计方法显得尤为重要。那么怎样合理的运用基于性能抗震设计理念则引起了人们的广泛关注,为了能够把它有效地运用到实际中来,有很多学者都对此进行了思考,但是却还没有统一的认识,通过他们的总结,我们可以知道让性能设计思想运用到实际设计中来主要有以下步骤和方法:

4.1性能抗震设计阶段

4.1.1概念设计。根据用途和业主的要求,合理确定设防目标,通过场地、建筑平面等进行初步设计。

4.1.2 计算设计。根据预定的设防目标,计算出能影响各类因素的抗震参数,参数与预定目标不符要及时修改,直至满足参数需求。以基于位移的抗震性能设计为例,主要包括步骤有确定不同强度地震作用下性能目标;根据初步设计,确定结构内的位移的极限值;通过等效阻尼比等各类等效数值,确定等效刚度;设计采用必需的构造措施;评价结构强度要求和变形能力。以严谨、科学、合理的态度进行评估,如计算阶段有不符合,则需重复计算设计步骤,以不断完善结构设计。

4.1.3性能评估。通过各类的分析法得出设计结果来确定该建筑结构的性能。

4.2 性能抗震设计方法

目前大致主要有:位移影响系数、能力谱、直接位移设计等方法。

4.2.1位移影响系数法。基于结构性能设计方法,通过分析得出的最大期望位移值,利用等效方法、模态进行确定。以达到此系数的修正作用。此方法还存在着由于它是整体抗震评估方法,无法具体体现主要结构、楼层的损坏情况与抗震水准等问题。

4.2.2能力谱法。1975年被提出,随后不断改进。能力谱设计是将能力谱曲线与地震反应谱转化而来的需求谱,进行比较来评估其抗震性能。此方法侧重对结构的实际性能进行验算、评估。另外,能力谱设计法比较适用于平面结构可简化且分布较均匀的结构,否将会产生不小的误差。

4.2.3直接位移设计法。侧重于结构性能设计,概念简单,根据地震等级来预期位移计算,使结构达到预定位移。此方法也存在着只能从建筑结构材料的极限变化得到数值,而不能考虑到预期以外的强震效应的不足。

5 结语

建筑结构基于性能的抗震设计是比较宽泛的体系,它是现行抗震设计的延续与发展,以结构性能分析作为基础,建筑物的性能目标以全面、科学的因素来确定,使建筑物在面对不同等级的地震时,能达到预期的抗震目标。与传统抗震设计相比,优点明显:基于性能抗震相较于以往更系统化;性能抗震设计的适应性、连贯性更好,应用意义更大;灵活性的加大,使设计人员能发挥创造性,增加对新技术、新材料的推广应用等。性能抗震设计方法也需要解决一些设防水准数据化的划分,合理的参数取值范围介定等问题,才能更好的服务于社会经济建设,达到符合我国国情的设计规范。

参考文献:

[1]贾明明.钢框架结构基于性能可靠度的抗震性能设计.哈尔滨工业大学 硕士论文.2003,9.

[2]邹昀,吕西林.基于结构性能的抗震设计理论与方法[J].工业建筑. 2006,36(9).

[3]汪梦甫,周锡元.基于性能的建筑结构抗震设计[J].建筑结构,2003,33 (3).

[4]程耿东,李刚.基于功能的结构抗震设计中一些问题的探讨.建筑结构学报,2001,21(1).

[5]SEAOC VISION 2O00 COMMITTEE.“Performance-Based Seismic Engineering”, Report Prepared by Structural Engineers Association of California, Sacramento, California, U.S.,1995.