建筑节能管理论文范文
时间:2023-04-02 02:26:35
导语:如何才能写好一篇建筑节能管理论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:建筑节能评价体系室内环境品质
1概述
发达国家的能源统计,是按产业(Industry)、交通(Transportation)、居民和商业等四个部门统计。因此,很容易得到建筑能耗数据,即居民(Residential)和商业(Commercial)能耗之和。其建筑能耗一般占全国总能耗的三分之一左右。如美国,2000年的建筑能耗占全美总能耗的35%。但我国的能源统计模式与发达国家不同,是分工业、农业、建筑业、交通运输及邮电通讯、批发零售、生活消费和其它等多个部门统计。如果将后三个部门的能耗当作建筑使用能耗,则我国的建筑能耗在总能耗中的比例多年来一直在20%左右。2000年为20.4%。而我国建设部公布的2000年建筑能耗比例数字是27.6%。建设部的数字中包括了建材工业的能耗,实际是广义建筑能耗。此外,还有好几个版本的比例数字。
其次,在很多建筑中,也没有区分各部分能耗。比如,通常认为在公共建筑中,空调采暖的能耗在总能耗中占最大比例。其实这一结论在我国并没有实际数据的支持。因为国内建筑物中能耗计量很粗糙,一般只有冷水机组有单独的功率表,而空调的末端装置和输送系统的耗能无法与其它动力设备和照明的耗能区分开来。在工业建筑中,传统上又把空调等建筑设备能耗计入生产能耗。笔者曾经引用过日本建筑环境·省能机构统计得到的办公楼中各部分能耗比例的调查结果,但这一数据在被许多文章多次转引之后,以讹传讹,变成“上海地区办公楼能耗比例”,甚至进入某些正式的研究报告和文件。
在基础数据和能耗现状不清的情况下,难以恰当地确定建筑节能的目标(例如,在某一时间节点基础上的节能率),也难以恰当地分配各部分的节能率(例如,总节能率中围护结构、照明、空调各承担多少)。
图1某高层办公大楼全年能耗分布
图1是上海某高层办公楼全年的总能耗曲线。可以发现,图1的能耗曲线有两个最低点,分别出现在4月和11月。在上海地区,这两个月是气候最宜人的时期,一般来说建筑物既不需要采暖,也不需要供冷。取这两个月能耗量的平均值,在曲线图上划一道水平线(图2-17中的虚线)。可以认为,这道水平线以上由曲线所围成的面积就是该大楼采暖空调所消耗的能量;水平线以下的矩形面积则是照明和其它动力设备(如电梯)所消耗的能量。
因此,可以把照明、插座、电梯等设备能耗当作稳定能耗。尽管冬季昼短夜长,夏季则相反,人们使用照明的时间有一些差别,但在现代商用建筑中从全年能耗角度来看,这种差别并不明显。而采暖和空调的能耗是变动的、不稳定的能耗,它不但随气候区变化,而且随建筑类型、形状、结构和使用情况变化,甚至今天和明天都会有所不同。这就给建筑节能工作带来了复杂性和多样性,但同时也是建筑物中节能潜力最大的部分。
在美国,建筑能耗统计是由政府进行的,在日本,则是由专业学会和学术团体完成的。但在中国,还没有像美、日等发达国家那样大规模地进行建筑能耗调查。因此,大多数节能政策制定者和从事建筑节能的研究者都不能像发达国家那样对全国或一个城市的建筑能耗情况了如指掌。而由于缺乏必要的检测计量手段,许多建筑楼宇的物业管理人员对自己所管理的建筑各部分能耗情况也是心中无数。因此,建筑节能必须从计量做起。
2结构节能与空调系统节能
围护结构采取节能措施,是建筑节能的基础。由于我国建筑节能是从采暖居住建筑起步的,因此,建筑节能首先考虑加强围护结构保温无疑是正确的决策。从管理的角度看,可以对围护结构制订限定性指标,易于评价。但是,建筑节能的关键是空调采暖系统的效率,最终的节能量也要从空调采暖系统来体现。北方地区在墙改之后又发展到热改。如果没有调节阀和热计量,围护结构保温越好,可能浪费的热量越多。
图2采用不同形式窗户的空调总冷负荷(MWh)
图3不同墙体传热系数条件下的全年总负荷(MWh)
而在间歇运行的空调建筑中,在空调关机之后,室温升高,当室外气温低于室温时,通过围护结构的逆向传热可以降低第二天空调的启动负荷。因此,围护结构保温越好,蓄热量越大,空调负荷也越大(见图2)。
对公共建筑而言,围护结构形成的负荷在总负荷中所占比例很小,因此,围护结构的节能潜力有限。
从图3中可以看出,墙体传热系数降低40%,所得到的节能率最大8.1%(哈尔滨),最小2.8%(广州)。可见,在公共建筑节能中重要的环节是降低内部负荷、减少内部发热量。例如,在保证照度的前提下降低照明负荷,既降低照明耗电,又降低空调负荷,可谓一举两得。
3节能与室内环境品质
非典之后,人们的健康意识和自我保护意识增强,对室内环境品质提出更高的要求。
我国大城市80%以上的公共建筑中的空调末端(AHU)仅有一级粗效过滤,有的甚至只有一层滤网。而根据美国ASHRAE标准62-2001,应在冷却盘管或其具有湿表面的处理设备的前端加设最小效率(MERV,MinimumEfficiencyReportingValue)不低于6的除尘过滤器或者净化器。欧洲标准也要求AHU过滤器达到F7标准。即需要有粗效和中效两级过滤。整个风系统阻力至少比现在增加200Pa。假定一台3600m3/h的空调箱,全年运行,要增加耗电量2500kWh。
另外,很多大楼的空调新风量也没有达到规范的要求。而且,非典之后,一些新建大楼的业主对新风量提出了超出规范的要求。新风负荷占空调负荷的20~30%,加大新风量就意味着能耗的增加。
在公共建筑中,室内环境品质直接影响用户的舒适、健康和工作效率。对大楼管理者来说,这是“开源”。而建筑节能则是降低运营成本,是“节流”。开源和节流应该是相辅相成。
因此,建筑节能工作要以室内环境为底线。一方面,建筑节能决不能以牺牲室内环境品质为代价;另一方面,对不合理的环境消费(例如夏季过低和冬季过高的环境温度、过大的新风量、边使用空调边开窗等)行为,即不合理的用能,则应该改变。
解决节能与室内环境品质矛盾还可以采用很多新技术或原有技术的集成。例如,独立新风系统(DOAS)、辐射吊顶+置换送风系统、除湿空调系统等。
4节能与节电
2003年夏季高温期间全国19个省市严重缺电和美国加拿大部分地区的大停电事故为我们敲响了警钟,电力空调的应用关系到电网安全,因此,在节能的同时还要关注节电。
某些节能技术可能可以降低全年建筑能耗,但却不节电。例如本文第2节所论述的围护结构保温就是如此。在传统的空调能源结构中,夏季用电供冷、冬季用一次能源供热。对于采暖为主的地区,加强围护结构保温隔热可以降低全年能耗(例如哈尔滨);而在供冷为主的地区,加强围护结构保温隔热的总节能效果有限,反而会增加空调能(电)耗。
某些技术可能能耗稍大,但是可以使用清洁能源,对保护环境有利。例如,燃气直燃机在国内一直被很多人视为“节电不节能”。但是,直燃机不使用CFC和HCFC冷媒、燃用天然气对环境影响极小、温室气体排放极低,从而被世界各国当作一项绿色技术。夏季利用低谷燃气、平整高峰电力负荷,可以使电力和燃气得到“双赢”。
某些技术可能在微观层面上不节能、但在宏观层面上却是节能的。例如蓄冰空调,利用夜间低谷电力制冰时制冷机组的COP值降低。在用户侧,如果没有合理的峰谷差价,则蓄冰空调是既不节能又费钱。但在发电侧,大量蓄冰空调的使用填平了夜间电力负荷低谷,使发电机组常时处于高发和满发,发电煤耗下降。满负荷工况与40%部分负荷工况相比,30万千瓦发电机组可以节能15.7%。同时,发电设备的利用率提高。发达国家电力平均年负荷率为66.6%,我国发电设备年平均负荷率1999年达到最低值50%。以后逐年有所上升,2002年达到54.8%。与发达国家相比还有很大差距。
因此,建筑节能工作需要在能源、环境、经济、技术等各个方面进行权衡,这应该成为建筑节能工作者的一项基本素质。
5设备节能和系统节能
节能设备不一定能连成节能系统。例如,空调冷水系统的扬程与楼高无关,一般在30m~40m。如果水泵的扬程选择过大,定水量系统中会使流量过大,水温差往往只有2~3℃。这时测得的离心机COP仅在2~3之间。这说明,空调系统的配置合理是系统节能的重要环节。
我国正在积极推广建筑热电冷联产技术。但在热电冷联产应用上,存在一些误区。似乎凡热电冷联产系统就一定是节能系统。笔者认为,热电冷联产技术的关键并不在于其动力装置用微型燃气轮机还是用内燃机,也不在于其理论效率有多高。实际上如果系统配置不当,热电冷联产系统的节能效益便完全不能发挥。热电冷联产的理论效率达到70%或80%的前提是设备满负荷运行。在我国热电联产电力尚不允许上网的条件下,还必须将热电联产所发电力和所产热量全部用掉,才能体现出效益。
热电联产机组的产热和发电之间存在着平衡关系。取得的热量多、得热的品位(温度)高,就势必要降低发电效率;反之亦然。无论从热力学第一定律还是从热力学第二定律的观点分析,热电联产系统都应该充分发挥发电效率、充分利用排热,而不应该是相反。
图4微燃机热电联产系统全供冷模式
(直燃机热力制冷+离心机电力制冷)
图5电动离心式制冷机能流图
图6微燃机热电联产系统全供冷模式
(双效吸收机热力制冷+离心机电力制冷)
假定某建筑的微型燃气轮机热电冷联产系统的产热和发电完全用来为大楼供冷,分别采用热力制冷和电力制冷。其能流图见图4。在图4的模式下,总一次能效率为1.51。因为在热力制冷部分采用了直燃机,就必须使微燃机排气温度达到500℃以上,而此时发电效率只有13~15%。
与传统电制冷相比,用离心机制冷的能流图见图5。
可见其一次能效率(1.5)与热电冷联产基本持平。说明对热电联产机组和直燃机的投资是无效投资。而如果要提高发电效率,则相应的排气温度比较低,只适于采用热力制冷效率比较低的吸收式制冷机。(见图6)
图6中的供冷一次能利用率高于传统电制冷。
由此可见,热电冷联产系统的本质是回收发电系统过去被丢弃的排热、废热或余热,以提高综合能效。即在保证发电效率的前提下充分利用余热。如果为了用热而抑电,就是本末倒置了。尤其是楼宇热电冷联产,所用的发电机组功率比较小,效率远远比不上大型电厂的大发电机组。它的优势在于综合效率和就近供能。而发挥其综合效率的关键是系统合理的配置和科学的运行。
在建筑节能中,选择设备不仅要看它在额定工况下的效率,更要看它在部分负荷条件下的效率。对制冷机而言,就是综合部分负荷值(IPLV)。
制冷机的综合部分负荷值IPLV在空调系统节能中是一个十分重要的参数。我国的制冷机标准中基本沿用了美国空调与制冷学会(ARI)标准。而ARI最初制订IPLV标准时是用美国亚特兰大市的气象参数、通过对一幢假想办公楼的模拟计算得到的。即使对美国的不同气候区,这一IPLV都不能完全适用,ARI用不同纬度的美国29个城市的数据得到新的IPLV(ARI550.590-1998)。因为没有自己的数据,我国新版的制冷机标准中没有IPLV。
笔者根据我国的气象参数,用实测数据和计算机模拟的方法,得到适应我国气候特点的平均IPLV。
对IPLV的研究,还要进一步深入。
6建筑节能的评价
开展建筑节能,需要建立一套科学的建筑能效评价体系。我国基本上还在沿用按建筑面积平均的能耗绝对值的评价方法。这种评价方法属于静态评价,对不同档次、不同用途的建筑很难区分在建筑节能方面孰优孰劣。在上海市地方标准《集中式空调系统(中央空调)合理用能技术要求与运行管理》中引用了日本建设省所推行的PAL/CEC方法。
所谓PAL,是PerimeterAnnualLoad的缩写,即“全年热负荷系数”:
另外还有设备系统能量消费系数(CEC,CoefficientofEnergyConsumption)。分别有空调、换气、照明、电梯和供热水5个能耗系数。以空调能耗系数CEC/AC为例,表达式为:
很明显,能量消费系数CEC实际上是建筑设备系统全年能效的倒数。因此,用PAL能够评价建筑物围护结构的保温隔热性能,而用CEC则可以更直接地评价建筑的能量转换效率。PAL和CEC反映了动态节能的思想和转换效率的思想,是一种性能性指标。
7结论
空调公共建筑的节能,是一个比较复杂的课题。必须建立动态节能、系统节能的思想,正确处理好几对看似矛盾的关系。有很多中国特有的建筑节能课题等待我们去研究。
主要参考文献
[1]龙惟定:国内建筑合理用能的现状及展望,能源工程,2001年02期,1~6
篇2
工程项目的成功与否大部分原因在于风险管理的好坏,对于传统性工程项目风险管理,已有很多学者对其进行了研究,提出了各种风险识别、风险评价、风险转移及风险规避方法,在风险管理理论研究层面和实践探索层面上都取得了一定的成就。但我国工程项目风险管理水平与发达国家相比较,还存在较多的不足之处。
1)风险管理意识不强烈。我国市场经济存在着某些不规范的运行机制,企业不能积极主动地进行风险管理。
2)风险管理体系不完善。没有积累形成系统的风险管理数据库,没有专业的风险管理咨询机构,对企业自身而言,对风险进行很好的管控难度较大。
3)风险管理法律法规制度不完善。我国目前已有的各种建筑法规、条例缺乏实质的可操作性,在企业风险管理过程中无法应用。
4)工程担保制度不完善。工程项目不确定性因素多,风险种类繁多,保险对其各种风险针对性不强,保险内容老套,缺乏灵活性。因此,对于节能建筑的风险管理,目前对其研究更加处于空白状态,与一般工程项目风险一致,节能建筑风险也注重的是各类风险给节能建筑项目带来的不利后果,但节能建筑风险类型与一般建筑相比有所改变和扩大,节能建筑不仅仅注重经济效益,更重要的是经济效益、环境效益和社会效益整个目标体系的协调。因此,节能建筑风险管理比传统建筑更为困难和突出。需面对节能建筑这种新兴的建筑形式,探索风险特性及其管理方法,对节能建筑和工程风险管理体系的发展起到一定的推动作用。
2节能建筑的风险特性及风险因素
“风险”,就是生产目的与劳动成果之前的不确定性,一般有两层含义,一种是强调风险表现为收益的不确定性;另一种则强调风险表现为成本或代价的不确定性。不确定性使其形成了风险因素、风险事件和可能造成的损失。而工程项目以建筑物或构筑物为目标产出物,需要支付一定的费用、按照一定的程序、在一定的时间内完成,并应符合质量要求,是技术、经济、组织、管理等各方面协调而得到的综合产物。较一般项目而言,节能建筑风险特征加入了社会及环境效益对其的影响,这大大增加了项目的风险因素,使得节能建筑建设风险比一般建筑更为明显。
2.1节能建筑的风险特性分析
1)目标复杂性、长期性。传统建设项目目标仅为质量、进度、投资、安全等目标,更多的是着眼于建设阶段,不考虑建筑物对后期运营的影响。而节能建筑重点在于考虑对能源环境的影响,在全寿命周期内,使其发挥很好的环境效益和社会效益,在建造阶段增加少量的成本达到全寿命周期内成本节约的效果。建设目标更多、涉及的时间范围更长,风险更为复杂多样。
2)效益的模糊性。传统建筑物重视项目产生的经济效益,而经济效益易于量化。节能建筑具有典型的经济附加性,而节能建筑物从建设到使用直至报废,由经济、环境、社会效益公共作用下所体现的长期效益难以直观地用数字展现出来,在节能建筑相关评价体系和管理制度不明确的现状下,增加了项目各参与方的风险管理难度。
3)节能建筑是为适应当前的社会经济环境,坚持可持续发展,响应节能减排而诞生的新型建筑。国内外对节能技术、节能方案以及制定相应的政策制度都还处于探索阶段,可供借鉴的节能建筑风险管理案例较少,所以对于节能建筑项目参与者而言,风险管理难度加大。
2.2节能建筑的风险影响因素分析
1)技术风险性。每一工程项目都会经历立项、设计、施工、竣工验收、投入使用、后期评价几个阶段,对于节能建筑,需要满足一些特殊的需求,因而需要采用一些新的设计思路、施工技术、使用新型材料等等。设计人员的水平高低直接影响节能项目的成功与否,若设计人员缺乏节能建筑设计经验或过于自信的创造性设计以及图纸施工操作性差都会给承包商带来额外的风险。再则,承包商对节能施工技术的把握是否透彻也是项目成功与否的关键,承包商技术不过关导致无法达到节能目标,增加了项目本身的风险。以及节能材料设备生产技术对节能建筑的影响,节能材料、设备性能不稳定会给项目带来极大的风险。
2)管理风险性。项目各参与方的管理能力影响项目质量的好坏,节能建筑存在管理风险原因在于我国节能建筑发展处于初始探索阶段,业主方、承包方、设计方均对节能建筑的认识有限,不能很好把握节能建筑成本与效益的合理比例,缺乏有经验的管理人员,且国内外可供借鉴的管理案例少之又少,达不到对节能建筑有效控制和动态管理的效果,增大了风险转变为损失的可能性。
3)社会及政策风险性。节能建筑申报环节多,审批程序复杂,公众对节能建筑的接受程度不高。相关法律法规及节能标识评价体系不够完善,且节能建筑相应政策处于发展探索阶段,政策标准变化大,使节能建筑的社会及政策风险远远超过一般建筑。
3节能建筑建设风险管理措施
3.1技术风险管理措施
1)提高项目各参与方技术水平,成立专家组对节能建筑知识进行培训,加强节能建筑知识普及,这是一个长期的过程。
2)加强项目各参与方沟通,有效规避部分风险。针对实际操作过程中所发生的问题,如节能设计施工操作性不强,施工单位对设计理解不足等,应加强施工单位与设计单位的沟通力度,可使施工单位提前介入设计阶段,为设计人员提供参考意见。
3)加强新型节能建筑材料和设备稳定性试验,严格把关质检,避免节能材料、设备造成的风险损失。
3.2管理风险规避措施
1)建立专门的节能建筑风险管理咨询机构,弥补业主方、设计方、承包方自身等对节能建筑风险管理的局限性。
2)加强工程招投标管理和合同管理,严格考核设计单位及施工单位的业务水平,系统论证节能施工技术方案的可行性。在合同中明确各方责任,督促各参与方自我管理行为。
3)建立节能建筑风险信息系统,由专门的机构负责节能建筑的数据整理与收集,积累节能建筑风险信息,便于专家学者研究以及后续项目的经验借鉴。
3.3社会及政策风险应对措施
1)强化大众的风险管理意识,大力宣传节能建筑的综合效益,使大众认识到节能建筑风险管理的重要性。
2)积极建立节能建筑规范化实施的政策文件,落实相应的资金补助和保障措施。对于政策标准的变化所带来的风险,可通过调整营销策略,提前考虑节能规划,制定相应的节能施工方案。
4结语
篇3
关键词: 建筑节能;保温材料;发展趋势
中图分类号:TE08文献标识码: A
一、目前现状
我国是能耗大国,建筑能耗又占全国总能耗的很大一部分,单位建筑能耗比同气候条件下发达国家高出二十余倍,建筑能源在高消耗的过程中很容易对环境产生诸多不良影响。建设资源节约型社会,是我国重大战略决策,建筑节能在我国经济发展中占有重要地位,直接关系到社会经济的可持续发展。提高建筑的保温隔热性能是降低建筑能耗的关键,建筑保温材料是实现建筑节能的最基本的条件。在国外发达国家已经广泛使用的背景下,全国范围内新型建筑保温材料的用量日益增多,推广使用的政策力度加大。随着建筑节能要求的进一步提高,各种新型墙体材料的研究和应用是建筑建材工业可持续发展的又一个新趋势。
二、影响建筑节能效果的因素
加强建筑节能措施,首先要了解决定节能效果的因素,影响建筑节能的因素有很多,笔者认为主要有墙体节能、屋面节能、门窗节能等几个主要方面。这几个方面目前存在的主要问题为:
2.1 墙体
就墙体节能而言,传统的用重质单一材料增加墙体厚度来达到保温的作法已不能适应节能和环保的要求,而复合墙体越来越成为墙体的主流。墙体保温分为墙体内保温和墙体外保温两种。墙体内保温节能因效果不理想已不再提倡采用,墙体外保温应用比较广泛。目前,墙体外保温多采取无机保温砂浆拌合波化微珠或聚苯颗粒保温砂浆,两者的阻燃性能,试块抗压强度,传热系数各有优劣,大多数城市因为消防要求,采用无机保温砂浆这种阻燃性能A级材料,但由于材料本身的材质,和施工过程中的技术水平参差不起,使得外保温存在抗裂技术水平不足,容易出现保温层与保护层裂开的现象,不能起到保温的作用;在温差变化较大地区,外墙保温材料的保温层及保护层容易损坏,耐久性差;传统的保温节能墙体不能满足新的节能标准的要求,需要新的节能墙体体系。
2.2 屋面
建筑工程的屋面形式主要有坡屋面和平屋面两种。坡屋面多应用于低层建筑,平屋面多应用于高层建筑。目前,屋面工程节能方式和选取材料种类较多。坡屋面应用较多的是瓦片和钢筋砼形式。平屋面应用较多的是保温材料隔层,大多采用聚苯板,泡沫玻璃等,架空隔层以及使用很少的蓄水形式。这些保温隔热节能措施都存在一定程度的阻热小、传热快、外观质量差等不足,因此,研究新的屋面节能形式是当前至关重要的。
2.3 门窗
门窗是建筑围护结构的重要组成部分,也是房屋室内与室外能量阻隔最薄弱的环节。然而,回顾近年来推广应用节能门窗的历程,发现了不容忽视的问题。
目前,塑料节能门窗,技术上已经发展成熟,从性能上看,是一个理想产品。而铝塑复合节能门窗近几年开发出来的新产品,生产厂家和使用工程越来越多。就整体铝塑复合门窗产品而言,它刚度好,外观美,制作快,保温性能能够达到标准要求,是个前景较为广阔的产品。当然也存在着急待解决的问题:一是铝塑复合节能门窗型材标准问题。经常会出现铝塑型材复合强度低、脱节等现象,影响在门窗上的使用。二是由于铝塑复合型材先天设置不足,无法在成窗上设置排水、导流及气压平衡孔,使铝塑复合节能窗的导水、排水性能大为降低。三是目前的铝塑复合节能窗缺少与之配套的标准五金配件,现有的铝塑节能门窗同闭器,执手,铰链等五金件均是各企业自己加工制造,属非标准件,不具互换性。
三、提高建筑节能效果的措施
3.1 墙体节能改进措施
根据建筑节能新标准,墙体材料发展要适应节材、节能、环保和墙体隔热的要求。为提高墙体节能体系的抗裂抵制能力和耐久性,应研制新的墙体节能材料体系。
3.1.1 复合烧结新型墙体
新型的复合烧结墙体节能体系,可以生产出低能耗、低污染、高性能、高强度、多功能的墙体材料。发展绿色制砖技术,合理利用现有资源,设置生活及建筑垃圾,使“无用”变“有用”,还能更好的保护不再生资源,起到增强墙体节能的作用。大力推广节能型烧砖窑的研究和开发,提高技术设备水平,降低能耗,淘汰落后的生产工艺,结合不同地区的资源情况,制定符合本地区特点的墙体节能体系的研发和运行。
3.1.2 新型粉煤灰砖
高掺量的高性能粉煤灰制品具有高强度、低收缩、高热工性能等优良特性,并且减少对大气的污染,又可以大量的利用粉煤灰,是墙体材料创新和节能的新思路。
3.1.3 新型混凝土砌块
目前,混凝土砌块的型式也是多种多样,适合建筑节能的主要为多排孔的保温复合砌块。小型建筑砌块由于其良好的抗压强度和保温性能,近年来也得以迅速发展。目前工程中所采用的混凝土空心砌块、硅酸盐砌块、加气混凝土砌块、陶粒砌块、粉煤灰砌块等具有一系列优点:自重轻、单块体积大、砌筑灰缝少、工效高、工人劳动强度减轻、保温隔热性能好、能耗低、可以利用废物、节约土地资源。
3.2 屋面节能改进措施
屋面节能方式虽然多种多样,可都不同程度的存在着很大的不足,本文重点介绍新型屋面节能形式――绿色屋面节能形式。
所谓绿色屋面节能形式主要是指以土壤和植被为介质,利用建筑屋面种植花草树木,改善生态环境,营造绿色空间,降低能耗,节约能源,提高人民群众的居住、生活质量。绿色屋面节能的主要优势在于:
3.2.1 对于室内温度,可以起到冬暖夏凉的控制作用,有效的发挥保温隔热作用。从而有效控制了能源的消耗,达到节能的目的。
3.2.2 绿色屋顶不仅可以吸收热量,降低温度,增加湿度,还能形成一层“空气过滤网”。据资料统计,一平方米屋顶草地每年可以去除0.2公斤空气中悬浮颗粒。
3.2.3 绿色屋顶还能起到吸收噪音、隔音的作用。土壤层易阻挡频率较低的声音,植物易阻挡频率较高的声音。土壤层厚12厘米,绿色屋顶可以降低噪音40分贝,土壤层厚20厘米,可降低46至50分贝。
3.2.4 储存雨水:在建筑承重量允许的情况下通过土壤层和排水层储存更多雨水,满足灌溉需求。这样,大量降水不会白白从雨水管流走,也可以减少对城市下水道排水系统的压力。
3.2.5 除了环保和节能等功能,绿色屋顶还具有审美价值,可望成为都市新景色。
3.3 门窗节能改进措施
根据门窗节能方面存在的问题,主要应通过如下几个方面改进:
3.3.1 新产品在国家和行业标准未颁布前,各相关复合型材的生产企业,可借鉴同类产品标准,并及时进行逐一相应的检测,推荐指标一定要因地制宜,作到科学、适用,并合理调整复合工艺,确保型材的复合强度。
3.3.2 合理设计铝塑复合型材的截面构造,要具有起码三个以上的保温隔热腔,一个排水兼导流、气压平衡腔。
3.3.3 可参照相应的国际标准进行设计生产,主管部门和监督部门应对其通用性、技术性把关审查,确保各企业生产的配件都具有使用功能和统一互换性。
四、总结
无论是经济发达国家还是发展中国家,在各国的总能耗中,建筑能耗都占有相当大的比重。据统计,全世界有30%的能源消耗在建筑上。建筑能耗包括建材生产、建筑施工、建筑日常运转及建筑拆除等项目的能耗,其中比重最大(约占80%左右)的是建筑日常运转能耗(主要为采暖、空调、照明、电器、热水等能源)。随着各国工业化和人民生活水平的提高,民用建筑的发展,尤其是居住建筑的发展,建筑能耗的比重将越来越大。因此,做好建筑节能这一富有深远意义的课题将在二十一世纪引起世界广泛关注。
参考文献:
[1]. 王宏. 玻化微珠保温砂浆系统的耐久性研究[D]. 太原:太原理工大学, 2010.
[2]. 杨公侠. 建筑、人体、效能. 天津: 天津科学技术出版社, 2000.
[3]. 贾衡. 人与建筑环境 [M]. 北京: 北京工业大学出版社, 2001
[4]. 陈春滋,朱未禺. 保温绝热材料与应用技术(第一版)[M]. 北京: 中国建材出版社, 2005.
相关期刊
精品范文
10建筑工程课程设计