检测系统论文范文

时间:2023-03-27 13:19:09

导语:如何才能写好一篇检测系统论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

检测系统论文

篇1

供电电压自动测控系统技术方案和特点

监控模块根据接收到以CAN通讯卡传来的指令来控制电机的停止/启动,同时检测取芯仪供电电源的运行状态,并将电压、电流、温度、运行信息及故障信息等参数通过CAN通讯传给上位机进行处理和显示。电压一次侧由芯片3875发出的移相脉冲控制H桥的IGBT模块,正弦脉宽调制(SPWM)波由SPWM输出模块编程实现,并且实现电机软起动和软停车,驱动负载电机自适应等功能。方案结构(图略)。测控系统特点测控系统采用凌阳公司的16位高速微型计算机SPMC75F2413A为核心,CAN控制器采用MCP2515,CAN驱动器采用TI公司的低功耗串行CAN控制器SN65HVD1040D,通过CAN总线能够实时地检测和传递数据,实现数据通讯和共享,更能够实现多CPU之间的数据共享与互联互通,其它电子元件均选择150℃温度的等级。此外系统还设计有散热器、风扇等。该测控系统具有极高的高温可靠性,能够确保系统在高温环境下可靠工作,控制、检测、显示的实时性好,可靠性高。测控系统采用智能化控制算法软件来实现马达机的高性能运行,其具有效率高、损耗小、噪音小、动态响应快、运行平稳等特点。

硬件电路设计

CAN通信电路检测系统采用SPMC75F2413A凌阳单片机,不集成CAN外设模块,选择外部CAN模块控制器MCP2515,该模块支持CAN协议的CAN1.2、CAN2.0A、CAN2.0BPassive和CAN2.0BActive版本,是一个完整的CAN系统,直接连接到单片机的SPI总线上,构成串行CAN总线,省去了单片机I/O口资源,电路简单,适合高温工作。CAN通信电路原理图(图略)MCP2515输出只要加一个收发器就可以和上位PC机进行CAN通信,收发器采用TI公司生产的SH65HVD140D。电机温度检测电路该系统中供电电源温度的检测由温度传感器PT100来完成。PT100与高频变压器、供电电源散热器、高频电感发热器件的表面充分接触,当器件的温度变化时,PT100的阻值也随之变化,将温度传感器的阻值转换为电压信号,电压信号放大整形送给单片机,再由单片机计算出供电电源各发热点的实际温度。当温度过高,供电电源自动停止运行。同时实时将检测到的各发热点的温度通过CAN通讯发给上位PC机。输入直流电压检测电路检测电路(图略)。供电电源为多电压变化环节,前级变换为AC/DC,仪器要深入井下工作,交流高压从地面通过长达7000m的电缆线供给,直流阻抗(电阻)值约为240Ω,一般由两根电缆导线并联使用[5]。系统不工作时,电缆导线无电流,供电电压相对较高,电机电流约1.5A。系统运行时电缆中有电流,电缆线路就会有压降,电机电流会达到3A。由于采用了高频变压器,变比约18,当负载电流增加1.5A时,原边电流就增加约27A,如果重载,原边电流增加更多,就会拉垮输入电源。所以对输入的一次侧直流电压电流进行监控就非常必要,根据检测值来调整输入的直流高压[6]。检测电路采用的是差分电路采样直流电压,检测时,直流高压加到分压电阻的两端,通过分压电阻运放调理后输入到CPU。

软件设计

CAN通信协议系统CAN总线的节点流程图。上位机向监控模块发送指令帧,帧号为0x11,用来控制电机启停和SPWM输出。监控模块向上位机发送状态帧,帧号为0x21,用来反馈电机的状态信息。软件流程图监控模块根据上位机的指令控制电机的停止/启动,同时检测取芯器供电电源的运行状态,并将参数传给上位机进行显示。软件分为两大模块,主程序模块和定时器T1中断服务模块。主程序模块主要实现上电初始化功能、CAN通讯功能和定时器T1中断设置等功能;定时器T1中断程序模块实现电机参数采样及发送,并能根据CAN总线接收的指令控制输出参数。

实验结果

上述检测系统安装在井壁取芯仪上得以成功实现运行。将安装有检测控制系统的井壁取芯仪整体放在恒温箱里面做加温运行带载实验,恒温箱145℃恒定不变,连续运行24h,每隔0.5h使电机带载运行10min,即电机憋压运行。同时改变电机的给定转速(从500r/m到3000r/m),观测测量的电机实际运行速度稳定,又根据电机的带载运行调整输入直流高温。检测控制系统经高温24h连续运行,电机在空载和带载时能够可靠运行,满足要求。(a)(b)(c)是实验时测得的CAN总线数据帧。(a)为CAN总线数据一帧的数据波形,由10个字节组成。为测控系统CAN总线数据帧发送接收,每隔120ms传送一帧数据。

篇2

网络安全管理技术

目前,网络安全管理技术越来越受到人们的重视,而网络安全管理系统也逐渐地应用到企事业单位、政府机关和高等院校的各种计算机网络中。随着网络安全管理系统建设的规模不断发展和扩大,网络安全防范技术也得到了迅猛发展,同时出现了若干问题,例如网络安全管理和设备配置的协调问题、网络安全风险监控问题、网络安全预警响应问题,以及网络中大量数据的安全存储和使用问题等等。

网络安全管理在企业管理中最初是被作为一个关键的组成部分,从信息安全管理的方向来看,网络安全管理涉及到整个企业的策略规划和流程、保护数据需要的密码加密、防火墙设置、授权访问、系统认证、数据传输安全和外界攻击保护等等。在实际应用中,网络安全管理并不仅仅是一个软件系统,它涵盖了多种内容,包括网络安全策略管理、网络设备安全管理、网络安全风险监控等多个方面。

防火墙技术

互联网防火墙结合了硬件和软件技术来防止未授权的访问进行出入,是一个控制经过防火墙进行网络活动行为和数据信息交换的软件防护系统,目的是为了保证整个网络系统不受到任何侵犯。

防火墙是根据企业的网络安全管理策略来控制进入和流出网络的数据信息,而且其具有一定程度的抗外界攻击能力,所以可以作为企业不同网络之间,或者多个局域网之间进行数据信息交换的出入接口。防火墙是保证网络信息安全、提供安全服务的基础设施,它不仅是一个限制器,更是一个分离器和分析器,能够有效控制企业内部网络与外部网络之间的数据信息交换,从而保证整个网络系统的安全。

将防火墙技术引入到网络安全管理系统之中是因为传统的子网系统并不十分安全,很容易将信息暴露给网络文件系统和网络信息服务等这类不安全的网络服务,更容易受到网络的攻击和窃听。目前,互联网中较为常用的协议就是TCP/IP协议,而TCP/IP的制定并没有考虑到安全因素,防火墙的设置从很大程度上解决了子网系统的安全问题。

入侵检测技术

入侵检测是一种增强系统安全的有效方法。其目的就是检测出系统中违背系统安全性规则或者威胁到系统安全的活动。通过对系统中用户行为或系统行为的可疑程度进行评估,并根据评价结果来判断行为的正常性,从而帮助系统管理人员采取相应的对策措施。入侵检测可分为:异常检测、行为检测、分布式免疫检测等。

企业网络安全管理系统架构设计

1系统设计目标

该文的企业网络安全管理系统的设计目的是需要克服原有网络安全技术的不足,提出一种通用的、可扩展的、模块化的网络安全管理系统,以多层网络架构的安全防护方式,将身份认证、入侵检测、访问控制等一系列网络安全防护技术应用到网络系统之中,使得这些网络安全防护技术能够相互弥补、彼此配合,在统一的控制策略下对网络系统进行检测和监控,从而形成一个分布式网络安全防护体系,从而有效提高网络安全管理系统的功能性、实用性和开放性。

2系统原理框图

该文设计了一种通用的企业网络安全管理系统,该系统的原理图如图1所示。

2.1系统总体架构

网络安全管理中心作为整个企业网络安全管理系统的核心部分,能够在同一时间与多个网络安全终端连接,并通过其对多个网络设备进行管理,还能够提供处理网络安全事件、提供网络配置探测器、查询网络安全事件,以及在网络中发生响应命令等功能。

网络安全是以分布式的方式,布置在受保护和监控的企业网络中,网络安全是提供网络安全事件采集,以及网络安全设备管理等服务的,并且与网络安全管理中心相互连接。

网络设备管理包括了对企业整个网络系统中的各种网络基础设备、设施的管理。网络安全管理专业人员能够通过终端管理设备,对企业网络安全管理系统进行有效的安全管理。

2.2系统网络安全管理中心组件功能

系统网络安全管理中心核心功能组件:包括了网络安全事件采集组件、网络安全事件查询组件、网络探测器管理组件和网络管理策略生成组件。网络探测器管理组件是根据网络的安全状况实现对模块进行添加、删除的功能,它是到系统探测器模块数据库中进行选择,找出与功能相互匹配的模块,将它们添加到网络安全探测器上。网络安全事件采集组件是将对网络安全事件进行分析和过滤的结构添加到数据库中。网络安全事件查询组件是为企业网络安全专业管理人员提供对网络安全数据库进行一系列操作的主要结构。而网络管理策略生产组件则是对输入的网络安全事件分析结果进行自动查询,并将管理策略发送给网络安全。

系统网络安全管理中心数据库模块组件:包括了网络安全事件数据库、网络探测器模块数据库,以及网络响应策略数据库。网络探测器模块数据库是由核心功能组件进行添加和删除的,它主要是对安装在网络探测器上的功能模块进行存储。网络安全事件数据库是对输入的网络安全事件进行分析和统计,主要用于对各种网络安全事件的存储。网络相应策略数据库是对输入网络安全事件的分析结果反馈相应的处理策略,并且对各种策略进行存储。

3系统架构特点

3.1统一管理,分布部署该文设计的企业网络安全管理系统是采用网络安全管理中心对系统进行部署和管理,并且根据网络管理人员提出的需求,将网络安全分布地布置在整个网络系统之中,然后将选取出的网络功能模块和网络响应命令添加到网络安全上,网络安全管理中心可以自动管理网络安全对各种网络安全事件进行处理。

3.2模块化开发方式本系统的网络安全管理中心和网络安全采用的都是模块化的设计方式,如果需要在企业网络管理系统中增加新的网络设备或管理策略时,只需要对相应的新模块和响应策略进行开发实现,最后将其加载到网络安全中,而不必对网络安全管理中心、网络安全进行系统升级和更新。

3.3分布式多级应用对于机构比较复杂的网络系统,可使用多管理器连接,保证全局网络的安全。在这种应用中,上一级管理要对下一级的安全状况进行实时监控,并对下一级的安全事件在所辖范围内进行及时全局预警处理,同时向上一级管理中心进行汇报。网络安全主管部门可以在最短时间内对全局范围内的网络安全进行严密的监视和防范。

篇3

超压出流是指给水配件前的静水压大于流出水头,其流量大于额定流量的现象,两流量的差值为超压出流量,这部分流量未产生正常的使用效益,且其流失又不易被人们察觉和认识,属“隐形”水量浪费。此外,超压出流会带来如下危害:①由于水压过大,龙头开启时水成射流喷溅,影响人们使用;②超压出流破坏了给水流量的正常分配。③易产生噪音、水击及管道振动,使阀门和给水龙头等使用寿命缩短,并可能引起管道连接处松动、漏水甚至损坏,加剧了水的浪费。为了解建筑给水系统超压出流现状,笔者对此进行了实测分析。

1测试对象

选择11栋不同高度和不同供水类型的建筑作为测试对象,其中多层建筑3栋,均为外网直接供水;高层建筑8栋,一般均分为2个区,低区由外网供水,高区由水泵、高位水箱联合供水或由变频调速泵供水,有的楼层住户支管上设有减压阀。

通过对目前建筑中普遍配置的螺旋升降式铸铁水龙头(以下简称“普通水龙头”)和陶瓷片密封水嘴(以下简称“节水龙头”)使用时的压力和流量进行测试,了解建筑给水系统超压出流现状。

2测试装置

由于测试是在已投入使用的建筑中进行,为不妨碍用户的正常用水,采用了图1所示的试验装置,即用塑料软管与一新安装的试验用水龙头相连,试验用水龙头前安装压力表,测试时只需将软管的另一端与原水龙头紧密相连即可。

测试采用φ15普通水龙头和节水龙头各1个;天津市星光仪表厂Y—100型压力表(测量范围为0~0.6MPa,最小刻度为0.01MPa)及附件两套;φ15塑料软管、1000mL量筒、秒表、三通、管箍等管件若干个。

3测试内容和方法

3.1测试点和测试时间

对每个楼体中测试点的选择一般为:从第一层开始隔层入户测试(但实测中因有的住户家中无人,测点有所变化),测试点水源为室内已有污水盆水龙头或洗涤盆水龙头出水。测试时间为上午9:00~10:30。

测试建筑内普通水龙头和节水龙头在半开、全开状态下的出流量及相应的动压和静压值。

3.2测试方法

①流量测定

采用体积法测定流量,测试时水源水龙头全开,测试用水龙头分为半开和全开两种状态。记录普通水龙头和节水龙头在两种开启状态下水的出流时间t及相应的出流量V。每个测点在同一开启状态下测三次,取三次的平均值作为此状态下的最终测定值。

②压力测定

在每次测试用水龙头开启前读压力表值,此值为该测点静压值;测试用水龙头开启后,在记录流量的同时记录压力表读数,此值为该状态下的动压值(工作压力)。

4结果及分析

两种水龙头半开状态时的动压、流量测试结果及回归曲线和曲线方程分别见图2、3。

4.1普通水龙头半开状态

《建筑给水排水设计规范》(GBJ15—88)中规定:污水盆水龙头当配水支管管径为15mm、开启度为1/2(半开状态)时,额定流量为0.2L/s。根据上述规定,对67个用水点的测试结果进行了统计,有37个测试点的流量超过此标准(超标率达55%)。

4.2节水龙头半开状态

节水龙头与普通水龙头相比,在管径、水压相同时的全开、半开流量均小于后者。节水龙头虽然出流量小但水流急,在较小流量下就可满足人们的用水需求,因而节水龙头的额定流量应小于普通水龙头的额定流量。结合现行的和送审的《建筑给水排水设计规范》中的充气水龙头和单阀龙头的额定流量范围,笔者认为应将0.15L/s作为节水龙头额定流量的参考值,以此作为判别现有建筑水龙头是否超压出流以及新建建筑采取控制超压出流措施的依据。

由图3可见,节水龙头出流量为0.15L/s时对应的工作压力为0.08MPa,其与普通水龙头出流量为0.2L/s时对应的工作压力(0.06~0.07MPa)非常相近,这进一步说明将0.15L/s作为节水龙头额定流量的参考值是比较合理的。

节水龙头以半开状态并以流量为0.15L/s作为其额定流量时,实测中有41个测试点的流量超标(超标率达61%)。

5结语

从测试结果可以看出,普通水龙头和节水龙头的超压出流率分别为55%和61%,实际上水龙头出流量的超标率要大于以上数值。以普通水龙头为例,有的水龙头(如洗手盆)的额定流量不是0.2L/s而是0.15L/s;有的水龙头额定流量虽是0.2L/s,但要求的开启度不是1/2而是3/4或全开(全开状态下有60个测试点的出流量超过0.2L/s),这样就使得水龙头出流量的实际超标率远大于55%。

测试中普通水龙头半开时的最大流量为0.42L/s,全开时最大流量为0.72L/s;节水龙头半开和全开时最大流量分别为0.29L/s和0.46L/s。不论是普通水龙头还是节水龙头,在半开状态时最大出流量约为额定流量的2倍;在全开状态时最大出流量约为额定流量的3倍以上。

综上所述,在现有建筑中水龙头的超压出流现象是普遍存在而且是比较严重的,由此造成的“隐形”水量浪费是不容忽视的,必须采取措施加以解决。

篇4

1.1一般资料

2001年8月至2013年2月新乐市医院收治的泌尿系统感染患者100例。按照随机数字表法,将100例患者分为观察组和对照组,每组患者50例。观察组患者中,男23例、女27例,年龄23-74岁,平均(49.6±10.2)岁。对照组患者中,男24例、女26例,年龄25-78岁,平均(52.2±10.4)岁。两组患者基本资料比较差异无统计学意义(P>0.05),具有可比性。

1.2方法

采用无菌、干燥塑料杯采集所有受试对象清晨首次尿液标本,混合均匀后倒入已编号的玻璃试管中。对照组尿液标本采用干化学法进行检测。观察组尿液标本采用UF1000i型尿沉渣分析仪(日本Sysmex公司)检测白细胞数量(参考区间:小于20个/微升)。所有标本均进行微生物培养。上述检测方法均参照文献。

1.3统计学处理

采用SPSS20.0软件进行数据处理和统计学分析。计数资料以百分率表示,组间比较采用卡方检验。P<0.05为比较差异有统计学意义。

2结果

2.1尿白细胞检测结果

观察组患者尿白细胞数量分布为小于20个/微升25例、大于或等于20个/微升25例,所占比例分别为50.0%、50.0%%。对照组患者尿白细胞数量分布为小于20个/微升35例、大于或等于20-100个/微升15例,所占比例分别为70.0%、30.0%。观察组患者中,尿白细胞数量超过参考区间上限的患者所占比例大于对照组,组间比较差异有统计学意义(P<0.05)。

2.2尿微生物培养检测结果

观察组患者尿微生物培养阴性13例,阴性率为26.0%;微生物培养阳性24例,阳性率为48.0%;微生物培养可疑阳性3例,可疑率为6.0%。对照组患者尿微生物培养阴性21例,阴性率为42.0%;微生物培养阳性12例,阳性率为24.0%;微生物培养可疑阳性2例,可疑率为4.0%。观察组患者尿微生物培养阳性率明显高于对照组(P<0.05)。

3讨论

3.1尿沉渣检验及其优越性 在住院患者临床常规检查项目中,尿液生化检验具有极为重要作用和临床意义,能够通过测定尿液的理化性质和有形成分,有效诊断和鉴别诊断泌尿生殖系统、肝脏等脏器及系统的病变,同时也有助于判断疾病的预后。尿沉渣检测通常采用显微镜和流式细胞技术对尿液中的有形成分进行定性和定量检测。生理情况下,尿液中的有形成分,例如红细胞、白细胞、管型、细菌、结晶等均极为少见。多数泌尿系统疾病患者尿沉渣检测可检出结晶和上皮细胞,因此尿沉渣检测可用于疾病的初步诊断。尿沉渣检测主要是对尿液中的有形成分进行检验。载玻片法属于尿沉渣检测的传统方法,但存在操作标准难以统一、影响因素较多等不足,因此检测结果无法真实、客观地反映真实情况,检测结果见的可比性也相对较差。定量分析板法是用于尿沉渣检测的新方法,具有标准化及规范化程度高、操作简单、可重复性强及准确度高等优点,同时还能够对检测结果进行一次性处理,数据结果也具有较高的量化程度。

3.2泌尿系统感染尿沉渣检测应注意的问题

健康者尿液中没有红细胞或数量极少。当连续数次尿液高倍镜观察均检出1-2个红细胞时,可判为镜下血尿;肉眼观察即可发现尿液呈赭红色或洗肉水样,可判为肉眼血尿。一旦出现肉眼血尿,说明泌尿系统疾病的病情已十分严重,患者需接受进一步检查,以发现病因和明确诊断。在对泌尿系统感染患者进行尿沉渣检测时,应注意规范操作,以保证标本染色效果、防止标本污染,同时应采用标准的检查器材。在尿沉渣检测的临床应用中,通常采用晨尿标本,因为晨尿具有较高的浓缩度,能够更好地反映尿液中有形成分的实际情况。一般而言,尿沉渣检测应在标本采集后1H内进行,从而避免长时间保存标本对检测结果的影响,提高检测结果的准确性。

3.3泌尿系统感染尿沉渣检测的优点

泌尿系统感染患者的尿液中通常存在一定量的病原体和白细胞,因此对患者尿液中的细菌及白细胞进行检测对泌尿系统感染的临床诊断极为重要,也有助于判断疾病的病程。Sysmex公司UF1000i型尿沉渣分析仪同时采用了流式细胞技术及荧光染色法,因此检测白细胞、红细胞等有形成分的线性范围较大,准确度、灵敏度和检测效率也较高,有效避免了干化学法尿沉渣检测的不足,适用于泌尿系统感染患者早期诊断。本研究结果表明,与干化学法相比,采用UF1000i型尿沉渣分析仪对泌尿系统感染患者进行尿沉渣检测,可明显提高异常检出率(P<0.05)。

4结语

篇5

本设计是基于大区域农田土壤监测的实际需要进行设计的。系统主要由传感器节点、协调器、WCDMA终端、上位机监测中心等部分组成。系统采用太阳能电池供电方式,使用蓄电池存储电能,通过太阳能电源控制模块为各节点提供所需电能,维持系统的正常运行。传感器组采集土壤温度、湿度、pH值和电导率数据,发送给以CC2530模块为核心的ZigBee无线传感网络终端节点的模数转换接口,终端节点将采集到的数据发送给协调器;协调器通过RS232串口通信与WCDMA终端连接,将轮流采集到的各传感节点数据发送给WCDMA终端;WCD-MA终端通过3G无线通信网络将数据实时发送到远程监测中心,监测中心对收到的数据进行处理、显示并进行Web;外网用户可通过互联网实时访问。

2系统硬件设计

2.1终端节点硬件设计

终端节点是组成无线传感网络的基本单元,用于采集各采集点土壤参数信息,并将数据通过无线发送给协调器。

2.1.1传感器模块

土壤温度决定作物生长环境,土壤水分是作物水分的主要来源,土壤pH值反映土壤酸碱程度,土壤电导率反映了土壤压实度、黏土层深度及水分保持能力等。本设计选择在大区域农田种植中对农作物生长影响较大的温度、湿度、pH值及电导率4个参数进行监测,选取的传感器如图3所示。1)温度传感器:选用Dallas公司推出的数字式防水封装的DS18B20温度传感器,采用不锈钢外壳封装,防水防潮输出数字信号,无需进行AD转换,大大提高了系统的抗干扰性;工作电压3.0~5.5V,测量温度范围为-55~+125℃,在-10~+85℃范围内,精度为±0.5℃。2)湿度传感器:选用SMTS-II-50型土壤湿度传感器,4~20mA输出,响应速度快,性能可靠,平均电流小于10mA,功耗低;抽真空灌封,密封性极好,耐土壤中酸碱盐的腐蚀,适用于各种土质。3)pH值传感器:选用上海陆基公司的土壤pH值传感器,输出4~20mA;测量范围为0~14pH,零电位pH值为7±0.25pH,斜率≥95%;功耗低,抗干扰性能较强,耐腐蚀性好。4)电导率传感器:选用上海陆基公司E-113-02-t型电导率传感器,电导范围10~2000μs/cm,适合各种土质;分辨率为1μs/cm,5~35℃内温度自动补偿;耐腐蚀好,适合长期进行土壤测量。

2.1.2CC2530模块

农田土壤监测节点选用TI公司的高性能CC2530芯片作为射频模块,采集并传送土壤数据。CC2530应用了业界领先的Z-StackTM协议栈,提供了一套解决ZigBee网络的完整方案。CC2530集成了RF前端、高灵敏度的接收器、8kBRAM、可编程Flash及101dB的链路质量,输出功率最高可达4.5dBm,包括定时器、5通道的DMA、8通道12位ADC、AES安全协处理器、21个通用I/O引脚和2个串行通信协议UART等。CC2530适用于对功耗要求严格的系统。

2.2嵌入式网关硬件设计

嵌入式网关的主要工作是接收各终端节点采集到的土壤参数并通过WCDMA发送给远程监测中心。嵌入式网关主要由协调器及DTU无线通信模块两部分组成。

2.2.1协调器模块

协调器部分仍然选用TI公司的CC2530芯片,与终端节点共同构成ZigBee网络,底板比终端节点只增加了串口通信部分。

2.2.2DTU无线通信模块

无线通信系统主要由DTU组成,是一种可以使用2G/3G/4G网络进行远程数据传输的终端设备。综合考虑成本和实用性,本设计采用通过第三代移动通信WCDMA上网方式的DTU,其内部集成了高性能ARMCortex-M332RISC内核STM32F107处理器和WCDMA联通3G模块,支持1900M/1800M/900M/850M工作频段;内嵌TCP/IP协议栈,数据无线透明传输;采用低功耗电源监控技术,值守电流小于2mA;采用软件和电路双重滤波,稳定可靠。

2.3电源模块设计

系统采用太阳能电池为终端节点和嵌入式网关供电。电源模块主要包括:蓄电池、太阳能电池板和太阳能控制器3个部分。蓄电池选用12V7.5AH免维护铅酸蓄电池;太阳能电池板选用功率20W,工作电压18V的单晶硅太阳能电池板。太阳能控制器选用额定充电/负载电流均为10A,12V/24V充电电压自动识别的DL-12/24-10a系列控制器,内置充放电智能控制技术。

3软件设计

3.1终端节点软件设计

终端节点的主要任务是负责大区域农田土壤参数的采集与数据的无线传输。ZigBee协议实现数据的短距离无线传输,终端节点在ZigBee协议中属于半功能节点,不支持路由功能,只能与上层的路由器、协调器节点进行通信,负责向上一层节点传输土壤数据。

3.2嵌入式网关软件设计

嵌入式网关节点的软件设计由两部分组成,分别为协调器接收土壤参数和WCDMA远程发送土壤数据。工作时,需要先给DTU无线通信终端设备安装联通3G手机卡,并将DTU和PC机通过RS232相连对其波特率、中心IP、端口号及SIM卡号等参数进行配置,配置软件界面。

3.3远程监测中心软件设计

远程监测管理中心界面采用LabVIEW图形化软件进行设计。其主要实现的功能如下:1)多通道农田土壤参数采集功能。设置了多个数据采集通道,可实时采集大区域农田土壤的温度、湿度、pH值及电导率4个参数。2)报警功能。设置土壤参数上下限,远程监测中心会相应的给出报警信号。3)通过LabVIEW的Web功能,外网用户可通过互联网进行实时访问。

4测试与结果分析

考虑到农田土壤的特性,为了在监测区域内得到全面、准确、实时的有效数据,对传感器节点的布置进行了合理的优化。选取的试验田为长宽均为200m的矩形区域,分成4块长宽均为100m的区域,每块农田4个终端节点数值取均值后通过汇聚节点发送给协调器,后期可根据大区域农田实际需求灵活对其进行扩展。系统设置安装完成后,给整个系统上电1min后,观察协调器和终端节点,看到绿色组网LED亮,可以判定系统组网成功。打开位于监测中心的上位机软件对系统功能和稳定性进行测试。上位机软件以人性化的方式向用户显示采集到的参数,并具有人员登录、参数设置、历史数据查询等功能,可以通过选项卡切换不同区域农田的土壤参数。监测界面既可以数值方式显示温度、湿度、pH值和电导率数值,也可以绘制参数的变化曲线。经过与标准仪器比较,各参数误差均小于3%,满足农业监测精度要求,达到预期设计标准。通过LabVIEW软件的Web工具,将软件进行Web。经测试,外网用户能通过互联网随时随地进行访问。

5结论

篇6

在评测标准上,本院《放射产品使用规则》规定放射防护产品应采取目检、触检以及X透视检测三个步骤进行检测。首先,观察放射防护产品是否存在表面污迹或破损,是否完好。如果有破损,及时登记并反馈所属科室或厂家进行处理。其次,通过触摸来检测其是否有缠结或松软,并进行拉力测试,以检测其韧性是否达标。最后,通过管电压为85kV的数字胃肠机快速透视放射防护产品,观察内部的铅层是否出现裂缝或缠结。裂缝根据长度和宽度分为小裂缝、中裂缝和大裂缝三个等级:宽度小于1mm且长度小于20mm的裂缝为小裂缝;宽度大于1mm且小于3mm,长度小于50mm的裂缝为中裂缝;宽度大于3mm或长度大于50mm的裂缝为大裂缝。图1显示铅衣在双肩部产生了大面积的破损,铅层产生了断裂和缺失,在破损缺失部分该铅衣已经无法起到应有的防护作用,且由于材质的问题无法进行补救,此类放射防护产品为严重破损,应该进行报废处理。

的深黑色贯穿线为产品缠结,铅衣缠结并不会造成防护作用的下降,但缠结的存在导致缠结部分的承受力增加,导致铅层产生裂缝的几率大大增加,因而缠结也是放射防护产品检测中的重要检测项,主要是靠触摸是否有硬结以及通过X射线透视检测是否有铅层缠结来评定。在最终结果的评定上,应通过裂缝大小、裂缝位置以及是否有污渍、破损以及缠结进行综合评定,再根据评定结果对放射防护产品进行下述处理:如果出现小裂缝,且位置处于尼龙搭扣重叠区或者非辐射直接照射区域(例如腋下等),则可认为产品防护能力基本完好,可以继续使用,但需要对出现小裂缝的放射防护产品进行备案,记录折损位置并通知所属科室。如果出现中裂缝或者在辐射直接照射区域出现小裂缝,则需要与生产厂家联络对受损铅衣进行修补,对修补后的放射防护产品进行记录、备案,再次检测通过后方能使用。如果产品出现大裂缝或者大规模破损并且难以修补,则判定该产品已经丧失了防护能力,检测评定结果为不合格,该放射防护产品不得继续使用。

2结果

我部门于2014年7月对全院222件放射防护产品进行了检测,其中涉及到骨密度室、内镜中心、麻醉手术部、PET中心、ECT室、放射科、心血管介入中心以及放射介入中心8个科室,其中包括铅衣59件,铅上衣41件,铅围裙51件,铅围脖69件,铅眼镜2件。在所检测的222件防护产品中,其中有189件合格产品,占总比例的85.1%,有11件不合格产品,占总比例的5%,有22件待处理的产品,占总比例的9.9%,这些待处理的产品中,大多数有微小的破损,需要厂家进行进一步的检测来确定其是否能继续使用、是否需要进行修补后使用等。

(1)产品类型与检验结果之间的关系。我们对每种铅系列防护产品进行了分析,根据总体的统计结果来判断得到的折损率是否具有统计学意义,并分析在铅系列产品中折损更容易产生在哪种产品上,并初步分析其产生原因,分析的统计学结果如下:铅眼镜的合格率达到100%,铅围脖的合格率为95.7%,铅上衣的合格率为85.4%,均高于总体检测合格率,而铅围裙和铅衣的合格率分别只有76.5%和79.7%。放射防护产品的透视检查发现铅层裂缝的位置多出现在尼龙搭扣的缝合处、肩膀处以及下装部分的裙摆处,这些部位的共同的特点是在穿戴时都会经常受力或者发生折叠。可以初步推断,铅系列防护产品折损率的高低与该产品是否经常受力和弯曲折叠有关。

(2)产品所属科室与检测结果之间的关系。为了观察不同科室放射防护产品保存与使用的情况,我们对数据中的科室与合格率进行了统计学处理,结果表明,放射介入中心的合格率仅为57.1%,放射科与ECT室的合格率分别为72.2%和75%,均低于总体检测合格率。骨密度室、麻醉手术部、心血管介入中心等科室产品合格率较高。结合各个使用科室的实际情况,分析放射防护产品折损的原因如下:首先,在客观条件上,各个科室所用的放射防护产品的使用时间的长短会影响检测合格率。如ECT室、放射介入中心的铅衣已经使用了两年以上,而心血管介入中心的部分防护产品为今年购入的产品,因而产品使用的时间会影响检测合格率。其次,放射防护产品的使用频率是影响铅系列产品折损率不同的主要原因。麻醉手术部、心血管介入中心、放射介入中心以及放射科的放射防护产品使用率较高,尤其是涉及放射防护产品进行手术的部门,在术中的行动往往导致放射防护产品反复弯曲折叠,而弯曲折叠是产生裂缝的主要原因,因而相比其他部门的放射防护产品有较高的折损率。最后,放射工作人员和患者及陪护人员的防护意识低、不了解放射防护产品的正确使用与存放方法也是影响防护产品检测合格率的原因之一。

(3)缠结、外观破损和污渍与产品类型之间的关系。缠结、破损和污渍也是产品是否完好的评定因素,这三种因素的存在会对铅系列产品造成一定的影响。在统计结果中,缠结、破损和污渍与产品是否合格之间没有统计学意义。外观破损虽然不会直接的导致铅系列产品屏蔽能力的下降,但是会使裂缝、断裂等因素出现的可能性大大增加。缠结区域的屏蔽能力要强于周边,但缠结会导致该区域裂缝产生的几率大大增加,从而会间接影响铅系列产品的使用寿命。另外,检测过程中发现9.5%的放射防护产品表面存在污渍,这些血渍或汗渍不能随意用酒精清洗消毒,清洁起来比较不方便,但定期的清理消毒是必要的。

3讨论

放射防护产品作为需要在X射线、γ射线下工作的医护人员的一道重要防线,其完好程度直接关系到医护人员的人身安全。在本次放射防护产品检测中,我们使用数字胃肠机对每件防护产品进行了细致的透视检查,检测的总体合格率为85.1%,总体来说,各个科室中正在使用的铅上衣、铅围裙、铅围脖、铅眼镜、连体铅衣基本符合防护要求。有瑕疵的防护产品裂缝位置大多处于衣料缝合处及缠结处:衣料缝合处的裂缝沿着衣料缝合时产生的孔洞延伸,一般为单一裂缝,且大多位于尼龙卡扣附近;缠结处的裂缝与缠结呈垂直分布,一般位于缠结中央。位于尼龙卡扣附近的裂缝产生的主要原因为在防护产品的穿戴、脱下时使用者对尼龙卡扣用力拉扯造成;位于缠结处的裂缝产生的主要原因为缠结产生后受到剪切力超出铅层的可承受应力造成。部分医护人员和病患陪护在使用放射防护产品时,没有做到使用完铅衣、铅上衣、铅围裙后悬挂保存的习惯,导致部分产品由于折叠产生缠结或裂缝。由上可见,放射防护产品的折损与生产厂家、临床使用部门和临床医学工程部都有关系,为了降低放射防护产品的折损率、增加放射防护产品的使用寿命,我们提出以下建议:

(1)对于生产厂家,建议对产品的缝合进行优化处理。数据分析表明,放射防护产品的折损主要出现在产品的缝合处,如铅衣上尼龙搭扣的缝合处,铅衣边沿的缝边。这些位置的针孔导致承力上限降低,使铅层容易发生断裂,产生裂缝。厂家在设计放射防护产品的时候应该对连接处、边沿等部位进行额外的加工处理,或者多采用一体化的产品设计,使用更细、更坚韧的缝合线来进行衣料之间的缝合。除此之外,在材料上也可选择韧性更加强的复合型铅材料作为屏蔽材料,从而降低产生缠结、裂缝的几率。

(2)对于临床使用科室,建议明确建立一套完整的放射防护产品存放规则。放射防护产品不同于普通衣物,不可折叠存放,不可随意清洗。现在很多科室对于放射防护产品并没有形成良好的存放习惯,使得产品使用寿命降低,折损几率增加。

(3)对于临床医学工程部,建议对所有放射防护产品进行详细的编码备案,并且对备案信息进行电子化处理。建议系统地对全院放射防护产品进行编号整理,是因为现阶段防护产品的编号仅由科室和序号组成,或者仅用使用者名称命名,没有一个全院统一的编码方式,不利于监管部门的统计分析。我们提议放射防护产品编号可由年份(2位)+科室(2位)+科室内编号(4位)+产品类型(2位)等十位罗马数字组成。建议对备案信息进行电子化处理,是因为现在的检测记录,仅仅是将产品是否合格进行电子化处理,什么地方有问题,出现什么问题,只是进行了纸质备案,这样一是增加了记录时的工作量,二是在修改、查阅的时候增加了工作难度。通过对放射防护产品编码,并结合条形码扫描技术,可以使信息录入电子化,简化繁杂的记录过程,方便管理部门进行统计管理,也利于放射防护产品数据库的建设。

4结语

篇7

关键词:检测系统;毕业设计(论文);思考

作者简介:王长鹏(1977-),男,江苏南京人,三江学院教务处,讲师;华沙(1978-),男,江苏南京人,三江学院教务处,副研究员。(江苏 南京 210012)

中图分类号:G642.477 文献标识码:A 文章编号:1007-0079(2014)08-0200-01

毕业设计(论文)是深化教学改革、提高教学质量、培养具有创新精神和实践能力的高等学校培养人才的不可缺少的重要教学环节,是评价学生综合素质、专业技术、思维方法和实践能力的重要内容。学生毕业设计(论文)的质量是评价高校教学质量的重要指标。近年来,高校本科生毕业设计(论文)的质量普遍下滑,引起了教育界专家的广泛关注。2013年1月1日教育部颁发了《学位论文作假行为处理办法》,针对论文作假行为制定相应的处理办法,加大处罚力度,从制度上进行遏制,以促进学风建设,保证高等教育事业科学发展。为了更好地执行教育部颁布的此办法,许多高校纷纷采购了论文抄袭检测系统对本校的论文进行抽查或普查。如何通过检测系统保证和提高毕业设计(论文)的质量已成为当前高校关注和研究的课题。

一、主要问题分析

1.学生因素

各高校的毕业设计(论文)工作基本上在第七学期末或者第八学期初启动,而且大部分都持续16周,即每年的12月(1月)至次年的6月上旬。而这段时间正是毕业生毕业实习或找工作的高峰期,在当前找工作困难的形势下毕业生不得不提前准备,参加各类招聘会场和用人单位的面试,有的毕业生往往在第七学期末就早早向学校提交了用人单位开具的实习证明,使得毕业设计(论文)与学生就业之间的矛盾越来越明显。由于学生在实习期间忙于熟悉单位业务操作,因此投入在毕业设计(论文)中的精力也非常有限。在就业压力的冲击下本科毕业设计(论文)整体质量有下降的趋势。

毕业设计(论文)是实现培养目标的重要教学环节,是理论联系实际、教育与社会实践相结合的重要体现,是培养大学生的创新意识、创造能力和创业精神的重要手段。然而,大部分论文基本上是借鉴了前人的研究成果,自己独创的东西少,理论阐述深度不足。个别同学的论文复制比太高,抄袭严重。有些学生选题大而空,或者不能做到与专业培养目标紧密联系。这些也是造成毕业设计(论文)质量下降的因素。

2.指导老师因素

在教育大众化背景下,高校经过连续几年的扩招,学生人数猛增,一个教师指导学生的数量也逐渐增多,许多院校一般都达到10名学生左右。此外,高校给每个教师规定了工作量,除了完成课堂教学任务外还有其他相关的科研项目。如果教师指导学生人数过多,由于精力有限,自然就会影响论文指导的质量。而对于民办本科院校来说,一方面专职年青教师自身的科研水平有限,没有能力指导学生完成高水平的毕业设计(论文);另一方面兼职指导教师比较多,会出现个别的兼职教师责任心不强,对学生要求不严格,也使得毕业设计(论文)质量难以保证。

3.管理制度因素

各高校虽然都制订了比较全面的毕业设计(论文)的有关工作规程和管理办法,但是只能保证毕业设计(论文)程序、流程、格式等方面的规范,而毕业设计(论文)的本身质量却依然无法保证,如论文工作量不足、对知识和技能的应用过于简单、叙述不深入、图表制作粗糙等质量问题。学校缺乏对毕业设计(论文)全方位的质量评价和监控体系,答辩环节往往出现过于集中或“走过场”的现象。这些因素都使得毕业设计(论文)的质量得不到保证。

二、方法与措施

1.加强过程管理

为了严把毕业设计(论文)质量关,需要重视过程管理中的以下几个环节:选题方向和内容要符合本学科专业培养目标,达到科学研究和实践能力培养的目的,难易度要满足专业培养方案中对素质、能力和知识结构的要求,难易适中,工作量适当;虽然毕业生由于毕业实习或找工作难以返校集中进行当面指导,但是除了通过电话、电子邮件、QQ等通讯方式之外,仍要保证当面指导的次数和时间;对学生的毕业设计(论文)通过系统进行,低于某个比例(江苏地区各高校自行制订的,基本上以20%和30%为标准)才允许答辩,抄袭严重者推迟答辩;答辩前指导教师、评阅教师和答辩教师须认真审阅学生论文,严把论文质量关,答辩工作不能流于形式。为保证答辩的质量,学生答辩的时间不得少于25~30分钟,合理安排答辩工作的时间、批次及流程等。

2.培养实践能力

为了避免学生毕业设计(论文)出现纸上谈兵、抄袭资料、拼凑论文等现象,应该从源头抓起,在入校后就要有意识地让学生接受科学研究方法、工程设计方法与实践技能的基本训练,实现实践能力、创新能力与综合素质的全面提高。鼓励学生参加大学生创新创业训练计划项目和相关的学科竞赛,在实践过程中锻炼能力,毕业设计(论文)可以在创新项目和学科竞赛的研究成果基础上进行提升和深化。理工科学生能够运用本专业设计或研究的方法、手段和工具开展课题的设计与研究工作。指导教师在下达任务书时必须明确学生完成毕业设计(论文)工作的具体任务和参数指标,同时,在答辩之前院(系)还要参照任务书的参数指标对学生设计的实物进行验收,填写《软硬件验收表》。文管类学生能够综合应用所学知识对课题所研究的问题进行分析。指导教师对学生论文的研究目标要明确,内容要具体,且具有一定的深度。同时,文管类学生要尽量通过实地考察和实证研究撰写毕业论文。

3.加强校企合作

理工类学生在校内进行三年半的理论知识学习和模拟实践后,最后一学期全程参与到实际项目和工作环境中,将毕业实习与设计结合起来,在校内和校外指导教师的联合指导下完成毕业设计。现场教师都是拥有丰富实践经验的技术人员,他们在学生具体工作中的指导不仅及时解决了学生的问题,更重要的是教给了学生课堂上、实验室中无法接触到的最新的技术知识、解决问题的思路以及言传身教的做人、做事道理。他们是校外毕业设计的师资队伍补充,也是学生刚踏上社会的领路人。毕业设计改革后,实际校内教师指导仅指导了理论部分,实践部分由现场教师指导完成,即由2名及2名以上指导教师指导1名毕业生,实行了双导师制,因此,在落实好企业导师指导的前提下校内指导学生人数可适当增加,缓解专职指导教师人数紧张的压力。

4.规范论文撰写

通过对结果的分析,有许多高复制比率的论文是因为学生引用不规范或无引用造成的。因此,论文中的术语、图表、数据、公式、引用、标注及参考文献的引用及著录要符合学校毕业设计(论文)工作规程的规范要求。尤其在借鉴和引用前人研究成果时一定要将引用部分标明清楚,避免发生因为引用和标注的不规范而造成论文复制比增高的情况。

三、结语

各高校刚刚接触系统,而检测系统能否成为提高当前毕业设计(论文)整体质量的良药仍需要今后多年的实践来证明。笔者认为检测系统只是提供判断论文是否抄袭的一个标准,而提高毕业设计(论文)整体质量则不是一蹴而就的,需要学校、院系、指导教师和学生的共同努力,这样才能达到标本兼治的效果。

参考文献:

[1]薛宏丽,马朝兴.高校毕业设计(论文)质量保障体系的研究与实践[J].职业时空,2009,(10).

篇8

【摘 要】 本文分析了华中师范大学师生2012年发表的论文在JCR学科分布情况、JCR学科期刊分区分布情况、学校二级单

>> 2003~2012年SCI收录内蒙古农业大学学术论文的统计分析 厦门地区被SCI收录医药论文统计分析 2004年至2012年北京交通大学SCI收录论文统计与分析 北京交通大学2007―2009年被SCIE收录论文的统计分析 无锡市妇幼保健院近五年发表SCI收录论文统计分析 2006~2012年SCIE数据库收录扬州地区二、三级医院科技论文的统计分析 SCI收录科技期刊文献的统计分析与研究 本科生发表SCI论文现象统计分析及启示 2001-2010年山东轻工业学院SCI论文统计分析 2013年新疆SCIE论文统计分析 2012年杭州师范大学学生体质健康测试结果分析 湖北9所高职院校2003—2012年学术论文统计分析 2010―2012年学术情况统计分析 2004—2012年“一村一名大学生计划”研究论文统计分析 华中师范大学:梦想起航的地方 湖州师范学院体育学院教师论文统计分析 近十五年英语专业四级考试听写项目统计分析及建议 1998年-2008年我国网球硕博论文统计分析 《高等教育研究》2007年—2011年刊发论文统计分析 某院10年护理论文文献统计分析 常见问题解答 当前所在位置:l.

[2]郭玉,翟丽华,王晓春.基于SCI数据库的新兴国家食品科学技术学科的比较研究[J].中国基础科学,2013.

[3]梅伏生,段治国,颜宁江.华中师范大学“十一五”期间获国家自然科学基金资助情况分析[J].中国科学基金,2011.

[4]陈越,方玉东,常宏建.谈科技论文署名的新趋势[J].中国科学基金,2011.

篇9

【关键词】校园网络;网络安全;防范体系

【中图分类号】G40-057 【文献标识码】B 【论文编号】1009―8097(2011)11―0066-05

引言

随着国内高校新一轮信息化建设的不断深入,高校校园网规模越来越大,承载的应用系统越来越多,校园网络的结构也变得越来越庞大和复杂。随着人才培养、科学研究等各项工作对校园网的依赖性不断增加,校园网及各类应用系统的服务质量也应不断提高标准和要求,作为一个使用成熟技术和成熟设备的园区网络,网络安全是影响网络服务质量的重要因素。

但目前各高校的校园网“重建设,轻管理”的现象仍然十分普遍。在社会信息化发展的大潮中,各高校都已清楚地认识到校园网在学校各项工作中的基础地位,因此在校园网硬软件系统建设上进行了大量的投入,而正是硬件和软件系统的大规模快速增长,使得对网络的管理难以跟上建设的步伐,而网络管理是软性的工作,是不能够通过统计报表看得出问题或成绩的,因此网络管理工作很难引起学校领导的重视。但在实际工作中,相对滞后的网络管理会导致网络安全问题的频频发生,反言之,网络安全防范也是网络管理的重要内容。

本文根据目前高校校园网络存在的安全隐患来分析其成因,并在实际工作经验的基础上提出构建一套基于分层控制的“IAAPNS”网络安全防范体系,自底向上、由内到外、从技术到管理层面排查高校校园网络中潜在的安全威胁并给出防护建议。

一 高校校园网络的安全隐患及成因

目前高校校园网络的主干网都是基于TCP/IP协议的以太网,与其他类型的Intranet网络相比有其自身的特点,相应的安全隐患也就有其特定的成因。目前国内高校校园网络普遍存在的安全隐患和漏洞主要来自以下几个方面:

1 校园面积广阔,网络基础设施管理困难

经过兼并和扩张,高校的校区面积动辄上千亩、几千亩,许多高校还有地域上独立的新老校区,作为楼宇间连线的光纤布线遍布校区各处,而且往往跟其他强电或弱电线缆共用走线沟槽。对这些光纤的管理要涉及基建、后勤等多个部门,需要协调的工作也很繁杂,如果缺少一个明确的安全管理体系,就不容易分清工作界限,在出现突发故障后往往互相推诿,导致难以在短时间内恢复网络畅通。

另外一方面,校园内楼宇繁多,楼字里每几层都会有楼层网络设备间放置汇聚层或接入层网络设备,这些设备间的数量众多,但往往安全防范措施简易,门锁形同虚设,甚至有些设备间连门都没有,极易出现人为破坏或私拉乱接网线的情况,严重影响网络的运行安全。除此以外,雷击等外界原因也容易造成对网络设备的破坏。

2 网络设备种类繁多,不利于统一管理

校园网的建设一般是分批建设,不同批次、不同层次的网络设备使用的规格、品牌往往不尽相同,而这些网络设备的管理软件大多都是基于私有MIB库进行开发,这就造成了很难有一套统一的全网管理软件。病毒或黑客对网络设备进行攻击时,就很难在第一时间发现和应对,常常是在设备瘫痪之后才意识到出现了问题、进行紧急恢复。

3 网络终端数量众多,安全措施薄弱

一般高校的学生人数都是以万计,教师以干计,密集的用户群意味着网络终端的数量巨大,绝大多数网络终端以计算机为主,随着无线的普及,智能手机和平板电脑也成为重要的网络终端设备。数量众多的用户使用计算机或手机的技术水平差异很大,尤其是文科专业的师生对计算机的使用掌握得并不熟练,未装防火墙和杀毒软件的计算机比比皆是。而高校校园网只要一处出现漏洞,整个网络就无安全可言。近年来智能手机上也出现了不少的病毒和木马程序,智能手机的系统安全问题正变得日益严重。

4 系统软件本身并不安全

在目前的校园网环境中,个人终端装机占有率最高的仍然是Windows操作系统,由于使用面广,研究其漏洞的人也就更多,不少黑客都是利用其系统漏洞侵入用户的计算机,再以这些被控制的计算机作为跳板,攻击整个网络。

与个人计算机相比,服务器操作系统漏洞更具有灾难性。服务器的操作系统种类较多,除Windows之外还有Linux、Solaris等Unix系列的操作系统,而高校网络管理人才队伍中,对此类操作系统熟悉的人员比例不高,包括打补丁、差错、优化在内的各种操作系统管理手段很难周全到位。除了操作系统本身,其上所运行的各类服务软件(如IIS、Tomc~等)也存在安全漏洞问题,需要管理人员投入大量的精力进行研究和学习。

5 应用系统的安全漏洞

由于建设成本的考虑,高校的网络应用系统提供商的层次差异很大,有些就是自行组织教师或学生进行开发,缺少软件开发过程中各个层次的安全规划设计与实现,使得应用系统层面的漏洞层出不穷,这些漏洞很容易成为黑客攻击最直接的目标。还有些高校在建立Web网站时使用了开源程序,这类系统的漏洞更是容易被利用,甚至不懂黑客原理的用户经过几分钟的学习便可以掌握攻击方法。

二 高校校园网络的安全防范体系

由此可见,形成高校校园网络安全隐患的原因是多层次的,也是相互关联的,但目前各高校的网络管理部门往往采用的是“头痛医头、脚痛医脚”的“救火式”解决办法,只从某个方面或某个层次来应对。网络管理人员每天都在疲于解决各种突发性的网络安全事故,但问题还是与日俱增,网络服务质量和用户满意度仍然处于较低的水平,这种“费力不讨好”的现象迫使我们去思考更好的解决方案。

为此,针对目前高校校园网络的安全现状和威胁,结合实际工作经验,我们运用系统论的分析方法,提出构建一套名为“IAAPNS”(Integrated Associated Architecture Policy ofNetwork Security,网络安全集成关联架构策略,同时也是体系中六个层次的英语词组首字母组合)的网络安全防范体系,为高校校园网络安全提供一套完整的解决方案,以求由点到面、由“标”到“本”地系统地解决校园网络的安全问题。该体系从六个层次和角度来阐述网络安全的内容,并分析每个层次可能存在的隐患以及相应的应对策略,其中自底向上的五个层次分别是物理安全、网络安全、系统安全、应用安全和信息安全,管理安全则融合、穿插于这五个层次之中。整个安全体系的示意图如图l所示。

该体系将现行的高校校园网络安全性划分为5个横向层次和1个纵向层次,在5个横向层次中,最底层的物理安全是基础,网络安全是关键,系统安全、应用安全、信息安全是重点,管理安全是保障。下面分别对六个层次的内容、隐患来源以及应对措施进行详细阐述。

1 物理安全(Physical Security)

物理安全,主要工作是防止物理通路的损坏、窃听和对物理通路的攻击(干扰等)。保证高校校园网络和信息系统各种设备的物理安全是网络整体安全的前提,通常包括环境安全(系统所在环境的安全保护)、设备安全和媒体安全三个部分。抗干扰、防窃听是物理安全措施制定的重点。目前,物理实体的安全管理已有大量标准和规范,如GB9361-88《计算机场地安全要求》、GFB2887-88《计算机场地技术条件》、GB50173-93《电子计算机机房设计规范》等。

这一层次的安全威胁主要包括自然威胁和人为破坏等方面。自然威胁可能来自于各种自然灾害、恶劣的场地环境、电磁辐射和干扰、网络设备的自然老化等。这些无目的离散事件有时会直接或间接地威胁网络的安全,影响信息的存储和交换。人为破坏则主要来自于高校校园网周边内外的人为性的损坏,这些损坏有时是主观故意的(如学生发泄对网络服务质量的不满而对网络设备或线路进行故意损坏),有时是客观意外的(如园区周边建筑施工导致挖断网络线路)。

面对以上威胁,为保证网络的正常运行,在物理安全层次上应重点考虑两个方面:

(1)校园网规划、设计、建设时将物理安全作为重点工作对待,适当提高安全标准,为网络设备或线路搭建防护设施、建立安全控制区域,尽量降低自然威胁可能带来的风险。

(2)加强巡查,将重点网络设备或线路所在地定为安全巡逻必到点,定期安排保卫人员在巡逻时查看网络设备或线路的外观和运行状态(如各种状态指示灯是否正常等),降低人为破坏的几率。

2 网络安全(Network Security)

网络安全主要包括链路安全、传输安全和网络访问安全三个部分。链路安全需要保证通过网络链路传送的数据不被窃听,主要针对共用信道的传输安全;传输安全需要保证信息的完整性、机密性、不可抵赖性和可用性等;网络访问安全需要保证网络架构、网络访问控制、漏洞扫描、网络监控与入侵检测等。

这一层次的安全威胁主要包括:

(1)通信链路上的窃听、篡改、重放、流量分析等攻击。

(2)网络架构设计问题、错误的路由配置、网络设备与主机的漏洞、病毒等。

相应地应对措施主要有:

(1)在局域网内可以采用划分VLAN(虚拟局域网)来对物理和逻辑网段进行有效的分割和隔离,消除不同安全级别逻辑网段间的窃听可能;若是远程网,可以采用链路加密等手段。

(2)加强网络边界的访问控制。对于有明显安全等级差别的网络区域尽量增加防火墙设备进行隔离。如在校园内网、服务器区域之间设置防火墙;校园网出口处、与Intemet之间设置防火墙。

(3)在交换机上启用DHCP-Snooping技术,使任何接入校园网的计算机只能动态获得IP地址,同时杜绝未经批准建立的网站通过私自手工设置静态IP地址来架设服务器。

(4)使用IDS(入侵检测系统)。入侵检测系统是近年出现的新型网络安全技术,目的是提供实时的入侵检测及采取相应的防护手段,如记录证据用于跟踪和恢复、断开网络连接等。实时入侵检测能力之所以重要首先它能够对付来自内部网络的攻击,其次它能够阻止攻击者的入侵。当检测到有网络攻击或入侵时,可以实时发出报警,并详细保存相关证据,以便用于追查或系统恢复。

(5)对网络安全进行定期检测,以实现安全的持续性。可以利用漏洞扫描类的工具软件定期对系统进行扫描,根据扫描结果进行安全性评估,通过评估报告指出系统存在的安全漏洞,组织专家讨论后给出补救措施和安全策略。

(6)建立网络防病毒系统。在校园网中部署网络版的防病毒系统,统一管理服务器和各类网络终端的防毒软件,定时自动升级与维护,以保护全网不被病毒侵害。通过对网络中的病毒扫描集中控制,建立各种定时任务,统一集中触发,然后由各被管理机器运行,同时可对日志文件的各种格式进行控制。在管理服务器上建立了集中的病毒分发报告、各被管机器的病毒扫描报告、所安装软件的版本等报告,所有病毒扫描状态信息都可由控制台得到。

3 系统安全(System Security)

系统安全即运行在网络上的服务器、交换机、路由器、客户端主机等具有完整网络操作系统的设备的操作系统的安全。这一层次的安全威胁主要来自因操作系统本身的设计缺陷被攻击者利用从而引发的后果。对于高校校园网络而言,半数以上的攻击往往属于这一层次。这一层次的主要应对措施主要有:

(1)更新操作系统、安装补丁程序。任何操作系统都有漏洞,因此,系统管理员的主要工作内容之一就是监控运行在网络上的各类设备的状态,发现异常应当及时解决、排除故障。对于交换机、路由器等设备而言,主要是更新操作系统的版本,这一类设备主要用于数据交换,因此其内置固化的操作系统往往功能简单、体积很小,厂商的常规做法是新版本的系统,因此只需直接刷新即可。对于服务器、客户端主机等设备,因其主要是用于数据处理,操作系统功能复杂、体积庞大,厂商通常是一些补丁程序来进行更新,因此直接安装即可。

(2)优化系统。现代操作系统往往是多功能、多模块、多组件的,可能一项系统设置可能会影响多个功能,也可能多个选项来共同作用于一个功能。因此,对操作系统进行优化是一项非常必要的工作,甚至个别系统的个别选项如果不加以优化可能会被攻击者利用,从而产生威胁。实际当中包括关闭不需要的服务和端口并建立监测日志等。

(3)实行“最小授权”原则,分配正确和合适的权限。仅仅保持系统的版本最新、并做了优化是不够的,试想如果网络上的设备被设置了“123456”这样的密码,而且使用这个密码登录后还是最高权限的系统用户帐号,那么整套网络和信息系统的危险可想而知。实行“最小授权”原则(网络中的帐号设置、服务配置、主机间信任关系配置等为网络正常运行所需的最小限度),关闭网络安全策略中没有定义的网络服务并将用户的权限配置为策略定义的最小限度、及时删除不必要的帐号等措施可以将系统的危险大大降低。例如,根据需要设置帐号和权限,并为帐号设置强密码策略是必须完成的工作,如至少应该在8位以上,而且不要设置成容易猜测的密码,并强制用户每个月更改一次密码等等。

(4)及时查杀服务器系统中的病毒、木马和后门程序。

4 应用安全(Application Security)

应用安全主要是针对网络中提供的各种功能和服务而提出的,例如Web服务:E-Mail服务、数据库服务、各种业务系统、各种信息系统等等。应用安全的威胁主要有:应用系统缺陷、非法入侵等。这一层次的主要应对措施有:

(1)及时升级和更新各应用软件和信息系统,降低因软件设计缺陷引起的风险。若应用软件或业务系统是高校自行开发,系统的使用部门(往往是业务部门)应联系开发人员及时跟进,发现漏洞及时修补。

(2)对应用软件和信息系统实行身份认证和安全审计。

与系统安全类似,应用软件和信息系统也应对使用者进行分类、分配权限、认证身份并审计各种操作。例如可以按照需要在高校校园网内部建立基于PKI的身份认证体系(有条件还可以建立基于PMI的授权管理体系),实现增强型身份认证,并为实现内容完整性和不可抵赖性提供支持。在身份认证机制上还可以考虑采用IC卡、USB-Key、一次性口令、指纹识别器、虹膜识别器等辅助硬件实现双因子或多因子的身份认证功能。同时,还应特别注意对移动用户拨入的身份认证和授权访问控制。

5 信息安全(Information Security)

信息安全注重的是网络上各类数据、信息的内容安全。这一层次可能的威胁和相应的应对措施有:

(1)植入恶意代码或其他有害信息。一部分攻击者经常采用的攻击方法是扫描网段找到有漏洞的主机,接着使用黑客软件或攻击程序进行刺探,在获得系统权限后将恶意代码植入到在该主机上运行的各应用软件或信息系统中,待其他用户正常使用时发作,或修改页面的内容造成不良影响。针对这种情况,可以部署网页防篡改系统,减少Web站点的内容被恶意更改植入恶意代码或其他有害信息。

(2)垃圾邮件和病毒的传播。目前,电子邮件已经成为垃圾信息和病毒的主要传播途径之一,采用垃圾邮件网关并部署电子邮件反病毒模块能够在一定程度上减轻危害,缺点是垃圾邮件识别模块和反病毒模块需要经常性升级,在查杀和拦截上有一定的滞后性。

(3)负面舆论导向。高校历来是思想碰撞的场所,网络作为新兴载体己经发挥着越来越大的作用,因此,舆情监督和正面舆论导向将逐渐成为高校信息安全的重点工作内容。除了采取技术手段进行监督管理外,高校的信息化管理部门还应与宣传部门一道培养舆论导向的专业人员或学生,主动将信息安全的风险降到最低。

6 管理安全(Administration Security)

目前,部分高校的网络管理人员及其用户的安全意识总的来说较为淡薄,且大多数高校的网络管理制度不完善、管理技术落后、管理机构不健全。上述因素不仅使得校园网络性能下降、运行成本提高,而且还会造成大量非正常访问,导致整个网络资源浪费,带来极大的安全隐患,使得网络受到攻击的概率大幅提高。

管理安全是整个防范体系的主线和基础,贯穿于整个体系的始终。如果仅有安全技术方面的防范,而无配套的安全管理体系,也难以保障网络安全的。必须制订相应的安全管理制度,对安全技术的实施落实到具体的执行者和执行程度。

网络安全工作可以说是一项群体性的工作,网络用户的安全意识是网络安全的决定因素,对校园网络用户安全意识的教育是安全防范体系中至关重要的环节,是形成高校校园网络安全体系的基础。尤其是在病毒泛滥的大环境下,需要通过定期培训、及时通过各种手段病毒预警通知、监督和促使用户尽快打补丁等方法,达到增强师生用户的安全意识,提高必要的安全防范技能的目的。

以上便是我们提出的网络安全防护体系的六个层次,除管理安全层次外,其余五层与TCP/IP协议的层次类似,上一层的安全是建立在其下一层的安全基础之上,下一层的安全是上一层安全的重要保障,层次之间环环相扣,不留安全死角。

本体系中的六个层次也基本涵盖了高校网络管理工作的方方面面,将网络安全工作的思路分层次清晰化,具有极强的实用价值和指导作用。

三 应用效果

重庆理工大学从2001年开始大规模建设校园网络,2003年开始建设数字化校园系统。校园网按照核心层、汇聚层和接入层三个层次进行规划设计,共有各类网络设备600多台,接入信息点18000个,活跃用户大约2万人,各类服务器40多台,安装有Windows、Linux和Solaris等操作系统,数据库以Oracle和SQL Server为主。数字化校园系统覆盖办公、教务、学工、人事、财务、后勤等各个方面的工作,共计有各类系统模块80余个。在大规模的硬件和软件系统建设前期,缺乏对网络安全的系统认识,在遭遇网络安全事故时,常常只能采取临时性的应对措施。随着网络和系统规模的不断扩大,网络安全已经成为影响网络服务质量的重要根源,网络信息中心的员工几乎天天都在疲于应对各类突发性的网络安全事件。

学校从2008年开始总结网络安全工作的经验与教训,运用系统工程的分析方法,从整体和系统的角度提出网络安全防范方案,形成了“IAAPNS”网络安全防范体系,并应用到校园网的建设与维护工作中,经过三年多的运行,学校校园网络安全工作进得了明显的成绩(如图2所示):

对网络设备攻击(包括病毒)而导致网络故障的次数由2008年的334次降到2010年的65次,2011年上半年为19次;利用操作系统漏洞(包括Web服务器漏洞)攻击成功次数由2008年的46次降到2010年的6次,2011年上半年为2次;利用应用软件的安全漏洞攻击成功次数由2008年的125次降到2010年的43次,2011年上半年为15次。

随着网络安全防范工作的加强,网络服务质量明显提升,如图3所示,用户满意度从2008年61%提升到2010年的73%,2011年上半年为78%。