数据加密技术论文范文

时间:2023-03-17 01:51:31

导语:如何才能写好一篇数据加密技术论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数据加密技术论文

篇1

一:数据加密方法

在传统上,我们有几种方法来加密数据流。所有这些方法都可以用软件很容易的实现,但是当我们只知道密文的时候,是不容易破译这些加密算法的(当同时有原文和密文时,破译加密算法虽然也不是很容易,但已经是可能的了)。最好的加密算法对系统性能几乎没有影响,并且还可以带来其他内在的优点。例如,大家都知道的pkzip,它既压缩数据又加密数据。又如,dbms的一些软件包总是包含一些加密方法以使复制文件这一功能对一些敏感数据是无效的,或者需要用户的密码。所有这些加密算法都要有高效的加密和解密能力。

幸运的是,在所有的加密算法中最简单的一种就是“置换表”算法,这种算法也能很好达到加密的需要。每一个数据段(总是一个字节)对应着“置换表”中的一个偏移量,偏移量所对应的值就输出成为加密后的文件。加密程序和解密程序都需要一个这样的“置换表”。事实上,80x86cpu系列就有一个指令‘xlat’在硬件级来完成这样的工作。这种加密算法比较简单,加密解密速度都很快,但是一旦这个“置换表”被对方获得,那这个加密方案就完全被识破了。更进一步讲,这种加密算法对于黑客破译来讲是相当直接的,只要找到一个“置换表”就可以了。这种方法在计算机出现之前就已经被广泛的使用。

对这种“置换表”方式的一个改进就是使用2个或者更多的“置换表”,这些表都是基于数据流中字节的位置的,或者基于数据流本身。这时,破译变的更加困难,因为黑客必须正确的做几次变换。通过使用更多的“置换表”,并且按伪随机的方式使用每个表,这种改进的加密方法已经变的很难破译。比如,我们可以对所有的偶数位置的数据使用a表,对所有的奇数位置使用b表,即使黑客获得了明文和密文,他想破译这个加密方案也是非常困难的,除非黑客确切的知道用了两张表。

与使用“置换表”相类似,“变换数据位置”也在计算机加密中使用。但是,这需要更多的执行时间。从输入中读入明文放到一个buffer中,再在buffer中对他们重排序,然后按这个顺序再输出。解密程序按相反的顺序还原数据。这种方法总是和一些别的加密算法混合使用,这就使得破译变的特别的困难,几乎有些不可能了。例如,有这样一个词,变换起字母的顺序,slient可以变为listen,但所有的字母都没有变化,没有增加也没有减少,但是字母之间的顺序已经变化了。

但是,还有一种更好的加密算法,只有计算机可以做,就是字/字节循环移位和xor操作。如果我们把一个字或字节在一个数据流内做循环移位,使用多个或变化的方向(左移或右移),就可以迅速的产生一个加密的数据流。这种方法是很好的,破译它就更加困难!而且,更进一步的是,如果再使用xor操作,按位做异或操作,就就使破译密码更加困难了。如果再使用伪随机的方法,这涉及到要产生一系列的数字,我们可以使用fibbonaci数列。对数列所产生的数做模运算(例如模3),得到一个结果,然后循环移位这个结果的次数,将使破译次密码变的几乎不可能!但是,使用fibbonaci数列这种伪随机的方式所产生的密码对我们的解密程序来讲是非常容易的。

在一些情况下,我们想能够知道数据是否已经被篡改了或被破坏了,这时就需要产生一些校验码,并且把这些校验码插入到数据流中。这样做对数据的防伪与程序本身都是有好处的。但是感染计算机程序的病毒才不会在意这些数据或程序是否加过密,是否有数字签名。所以,加密程序在每次load到内存要开始执行时,都要检查一下本身是否被病毒感染,对与需要加、解密的文件都要做这种检查!很自然,这样一种方法体制应该保密的,因为病毒程序的编写者将会利用这些来破坏别人的程序或数据。因此,在一些反病毒或杀病毒软件中一定要使用加密技术

循环冗余校验是一种典型的校验数据的方法。对于每一个数据块,它使用位循环移位和xor操作来产生一个16位或32位的校验和,这使得丢失一位或两个位的错误一定会导致校验和出错。这种方式很久以来就应用于文件的传输,例如xmodem-crc。这是方法已经成为标准,而且有详细的文档。但是,基于标准crc算法的一种修改算法对于发现加密数据块中的错误和文件是否被病毒感染是很有效的。

二.基于公钥的加密算法

一个好的加密算法的重要特点之一是具有这种能力:可以指定一个密码或密钥,并用它来加密明文,不同的密码或密钥产生不同的密文。这又分为两种方式:对称密钥算法和非对称密钥算法。所谓对称密钥算法就是加密解密都使用相同的密钥,非对称密钥算法就是加密解密使用不同的密钥。非常著名的pgp公钥加密以及rsa加密方法都是非对称加密算法。加密密钥,即公钥,与解密密钥,即私钥,是非常的不同的。从数学理论上讲,几乎没有真正不可逆的算法存在。例如,对于一个输入‘a’执行一个操作得到结果‘b’,那么我们可以基于‘b’,做一个相对应的操作,导出输入‘a’。在一些情况下,对于每一种操作,我们可以得到一个确定的值,或者该操作没有定义(比如,除数为0)。对于一个没有定义的操作来讲,基于加密算法,可以成功地防止把一个公钥变换成为私钥。因此,要想破译非对称加密算法,找到那个唯一的密钥,唯一的方法只能是反复的试验,而这需要大量的处理时间。

rsa加密算法使用了两个非常大的素数来产生公钥和私钥。即使从一个公钥中通过因数分解可以得到私钥,但这个运算所包含的计算量是非常巨大的,以至于在现实上是不可行的。加密算法本身也是很慢的,这使得使用rsa算法加密大量的数据变的有些不可行。这就使得一些现实中加密算法都基于rsa加密算法。pgp算法(以及大多数基于rsa算法的加密方法)使用公钥来加密一个对称加密算法的密钥,然后再利用一个快速的对称加密算法来加密数据。这个对称算法的密钥是随机产生的,是保密的,因此,得到这个密钥的唯一方法就是使用私钥来解密。

我们举一个例子:假定现在要加密一些数据使用密钥‘12345’。利用rsa公钥,使用rsa算法加密这个密钥‘12345’,并把它放在要加密的数据的前面(可能后面跟着一个分割符或文件长度,以区分数据和密钥),然后,使用对称加密算法加密正文,使用的密钥就是‘12345’。当对方收到时,解密程序找到加密过的密钥,并利用rsa私钥解密出来,然后再确定出数据的开始位置,利用密钥‘12345’来解密数据。这样就使得一个可靠的经过高效加密的数据安全地传输和解密。

一些简单的基于rsa算法的加密算法可在下面的站点找到:

ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa

三.一个崭新的多步加密算法

现在又出现了一种新的加密算法,据说是几乎不可能被破译的。这个算法在1998年6月1日才正式公布的。下面详细的介绍这个算法:

使用一系列的数字(比如说128位密钥),来产生一个可重复的但高度随机化的伪随机的数字的序列。一次使用256个表项,使用随机数序列来产生密码转表,如下所示:

把256个随机数放在一个距阵中,然后对他们进行排序,使用这样一种方式(我们要记住最初的位置)使用最初的位置来产生一个表,随意排序的表,表中的数字在0到255之间。如果不是很明白如何来做,就可以不管它。但是,下面也提供了一些原码(在下面)是我们明白是如何来做的。现在,产生了一个具体的256字节的表。让这个随机数产生器接着来产生这个表中的其余的数,以至于每个表是不同的。下一步,使用"shotguntechnique"技术来产生解码表。基本上说,如果a映射到b,那么b一定可以映射到a,所以b[a[n]]=n.(n是一个在0到255之间的数)。在一个循环中赋值,使用一个256字节的解码表它对应于我们刚才在上一步产生的256字节的加密表。

使用这个方法,已经可以产生这样的一个表,表的顺序是随机,所以产生这256个字节的随机数使用的是二次伪随机,使用了两个额外的16位的密码.现在,已经有了两张转换表,基本的加密解密是如下这样工作的。前一个字节密文是这个256字节的表的索引。或者,为了提高加密效果,可以使用多余8位的值,甚至使用校验和或者crc算法来产生索引字节。假定这个表是256*256的数组,将会是下面的样子:

crypto1=a[crypto0][value]

变量''''crypto1''''是加密后的数据,''''crypto0''''是前一个加密数据(或着是前面几个加密数据的一个函数值)。很自然的,第一个数据需要一个“种子”,这个“种子”是我们必须记住的。如果使用256*256的表,这样做将会增加密文的长度。或者,可以使用你产生出随机数序列所用的密码,也可能是它的crc校验和。顺便提及的是曾作过这样一个测试:使用16个字节来产生表的索引,以128位的密钥作为这16个字节的初始的"种子"。然后,在产生出这些随机数的表之后,就可以用来加密数据,速度达到每秒钟100k个字节。一定要保证在加密与解密时都使用加密的值作为表的索引,而且这两次一定要匹配。

加密时所产生的伪随机序列是很随意的,可以设计成想要的任何序列。没有关于这个随机序列的详细的信息,解密密文是不现实的。例如:一些ascii码的序列,如“eeeeeeee"可能被转化成一些随机的没有任何意义的乱码,每一个字节都依赖于其前一个字节的密文,而不是实际的值。对于任一个单个的字符的这种变换来说,隐藏了加密数据的有效的真正的长度。

如果确实不理解如何来产生一个随机数序列,就考虑fibbonacci数列,使用2个双字(64位)的数作为产生随机数的种子,再加上第三个双字来做xor操作。这个算法产生了一系列的随机数。算法如下:

unsignedlongdw1,dw2,dw3,dwmask;

inti1;

unsignedlongarandom[256];

dw1={seed#1};

dw2={seed#2};

dwmask={seed#3};

//thisgivesyou332-bit"seeds",or96bitstotal

for(i1=0;i1<256;i1++)

{

dw3=(dw1+dw2)^dwmask;

arandom[i1]=dw3;

dw1=dw2;

dw2=dw3;

}

如果想产生一系列的随机数字,比如说,在0和列表中所有的随机数之间的一些数,就可以使用下面的方法:

int__cdeclmysortproc(void*p1,void*p2)

{

unsignedlong**pp1=(unsignedlong**)p1;

unsignedlong**pp2=(unsignedlong**)p2;

if(**pp1<**pp2)

return(-1);

elseif(**pp1>*pp2)

return(1);

return(0);

}

...

inti1;

unsignedlong*aprandom[256];

unsignedlongarandom[256];//samearrayasbefore,inthiscase

intaresult[256];//resultsgohere

for(i1=0;i1<256;i1++)

{

aprandom[i1]=arandom+i1;

}

//nowsortit

qsort(aprandom,256,sizeof(*aprandom),mysortproc);

//finalstep-offsetsforpointersareplacedintooutputarray

for(i1=0;i1<256;i1++)

{

aresult[i1]=(int)(aprandom[i1]-arandom);

}

...

变量''''aresult''''中的值应该是一个排过序的唯一的一系列的整数的数组,整数的值的范围均在0到255之间。这样一个数组是非常有用的,例如:对一个字节对字节的转换表,就可以很容易并且非常可靠的来产生一个短的密钥(经常作为一些随机数的种子)。这样一个表还有其他的用处,比如说:来产生一个随机的字符,计算机游戏中一个物体的随机的位置等等。上面的例子就其本身而言并没有构成一个加密算法,只是加密算法一个组成部分。

作为一个测试,开发了一个应用程序来测试上面所描述的加密算法。程序本身都经过了几次的优化和修改,来提高随机数的真正的随机性和防止会产生一些短的可重复的用于加密的随机数。用这个程序来加密一个文件,破解这个文件可能会需要非常巨大的时间以至于在现实上是不可能的。

四.结论:

由于在现实生活中,我们要确保一些敏感的数据只能被有相应权限的人看到,要确保信息在传输的过程中不会被篡改,截取,这就需要很多的安全系统大量的应用于政府、大公司以及个人系统。数据加密是肯定可以被破解的,但我们所想要的是一个特定时期的安全,也就是说,密文的破解应该是足够的困难,在现实上是不可能的,尤其是短时间内。

参考文献:

1.pgp!/

cyberknights(newlink)/cyberkt/

(oldlink:/~merlin/knights/)

2.cryptochamberjyu.fi/~paasivir/crypt/

3.sshcryptographa-z(includesinfoonsslandhttps)ssh.fi/tech/crypto/

4.funet''''cryptologyftp(yetanotherfinlandresource)ftp://ftp.funet.fi/pub/crypt/

agreatenigmaarticle,howthecodewasbrokenbypolishscientists

/nbrass/1enigma.htm

5.ftpsiteinukftp://sable.ox.ac.uk/pub/crypto/

6.australianftpsiteftp://ftp.psy.uq.oz.au/pub/

7.replayassociatesftparchiveftp://utopia.hacktic.nl/pub/replay/pub/crypto/

8.rsadatasecurity(whynotincludethemtoo!)/

篇2

信息安全论文3900字(一):探究计算机网络信息安全中的数据加密技术论文

【摘要】随着近几年网络信息技术的发展,社会生产和生活对网络数据的依赖程度越来越越高,人们对网络信息安全重视程度也随之提升。对于網络信息而言,信息数据安全非常重要,一旦发生数据泄露或丢失,不仅会影响人们正常生活和财产安全,甚至还会影响社会稳定和安全。在此基础上,本文将分析计算机网络信息安全管理现状,探索有效的数据加密技术,为网络环境安全和质量提供保障。

【关键词】计算机;网络信息安全;数据加密技术

引言:信息技术的普及为人们生活带来了许多便利和帮助,但是由于信息安全风险问题,人们的隐私数据安全也受到了威胁。但是,目前计算机网络环境下,数据泄露、信息被窃取问题非常常见,所以计算机网络信息安全保护必须重视这些问题,利用数据加密技术解决此难题,才能维护网络用户的信息安全。因此,如何优化数据加密技术,如何提升网络信息保护质量,成为计算机网络发展的关键。

1.计算机网络安全的基本概述

所谓计算机网络安全就是网络信息储存和传递的安全性。技术问题和管理问题是影响计算机网络安全的主要因素,所以想要提升网络信息安全性能,必须优化信息加密技术和加强信息管理控制,才能为计算机网络安全提供保障。将数据加密技术应用于计算机网络安全管理中,不仅可以提升数据保护权限,限制数据信息的可读性,确保数据储存和运输过程不会被恶意篡改和盗取,还会提高网络数据的保密性,营造良好的网络运行环境。因此,在计算机网络快速发展的环境下,重视网络信息安全管理工作,不断优化数据加密技术,对维护用户信息安全、保护社会稳定非常有利。

2.计算机网络信息安全现状问题

2.1网络信息安全问题的缘由

根据网络信息发展现状,信息安全面临的风险多种多样,大体可分为人文因素和客观因素。首先:网络信息安全的客观因素。在计算机网络运行中,病毒危害更新换代很快,其攻击能力也在不断提升,如果计算机防御系统没有及时更新优化,很容易遭受新病毒的攻击。例如,部分计算机由于系统长时间没有升级,无法识别新木马病毒,这样便已遗留下一些安全漏洞,增加了信息安全风险。同时,部分计算机防火墙技术局限,必须安装外部防护软件,才能提升计算机网络防护能力。其次:网络信息安全的人文因素。所谓人为因素,就是工作人员在操作计算机时,缺乏安全防护意识,计算机操作行为不当,如:随意更改权限、私自读取外部设备、随意下载上传文件等等,严重影响了计算机网络数据的安全性,涉密数据安全也得不到保障。例如,在连接外部设备时,忽视设备安全检查工作,随意插入电脑外部接口,容易导致计算机感染设备病毒,导致计算机网络信息安全受到威胁。

2.2计算机网络信息安全技术有待提升

信息安全是计算机网络通信的重要内容,也是计算机网络通信发展必须攻击的难题。随着信息技术的发展,我国计算机信息安全防御技术也在不断创新升级,能够有效应对病毒冲击危害,但是相比先进国家而言,我国计算机信息技术起步较晚,网络信息安全技术也有待提升。例如,根据我国计算机网络信息安全现状,对新病毒的辨识能力和清除能力较弱,无法有效控制病毒侵害,这对信息安全保护和系统运行都非常不利。因此,技术人员可以借鉴他国安全技术经验,构建出针对性的信息安全防护技术,优化计算机系统安全性能,才能为网络信息安全传输提供保障,避免造成严重的安全事故。

3.数据加密技术分析

3.1对称加密技术

所谓对称机密技术,就是指网络信息传输中所采用的密钥功能,利用加密和解密的方式,提升传输数据的安全性,常常被应用于电子邮件传输中。同时,对称加密技术具有加密和解密密钥相同的特征,所以密钥内容可以通过其中一方进行推算,具备较强的可应用性。例如,在利用电子邮件传输信息时,传输者可以采用加密算法将邮件内容转化为不可直接阅读的密文,待邮件接收者收到数据信息文件后,再采用解密算法将密文还原可读文字,既可以实现数据传输加密的目的,又能确保交流沟通的安全性。从应用角度来讲,对称加密技术操作简捷方便,并且具备较高的安全度,可以广泛应用于信息传输中。但是,对称加密技术欠缺邮件传输者和接收者的身份验证,邮件传输双方密钥有效的获取途径,所以也存在一定的安全风险。

3.2公私钥加密技术

相对于对称加密技术而言,公私钥加密技术在进行信息加密时,加密密钥和解密密钥不具备一致性,密钥安全性更佳。在公私钥加密技术中,信息数据被设置了双层密码,即私有密码和公开密码,其中公开密码实现了信息数据加密工作,并采用某种非公开途径告知他人密钥信息,而私有密码是由专业人员保管,信息保密程度高。因此,在采用公私钥加密技术时,需要先对文件进行公开密钥加密,然后才能发送给接收者,而文件接收者需要采用私有密钥进行解密,才能获取文件信息。在这样的加密模式下,网络数据信息安全度提升,密码破解难度也进一步加大,但是这种加密方式程序较为复杂,加密速度慢,无法实现高效率传播,加密效率相对较低,不适用于日常信息交流传输。

3.3传输加密和储存加密技术

在计算机网络信息安全保护中,数据传输加密、储存加密是重点保护内容,也是信息数据保护的重要手段,其主要目的是避免在数据传输过程中被窃取和篡改风险问题。线路加密和端对端加密是两种主要的传输加密方式,实现了传输端和传输过程的信息安全保护工作。例如,传输加密是对网络信息传输过程中的安全保护,通过加密传输数据线路,实现信息传输过程保护,如果想要停止加密保护,必须输入正确的密钥,才能更改数据加密保护的状态。端对端加密技术是在信息发送阶段,对数据信息实施自动加密操作,让数据信息在传递过程中呈现出不可读的状态,直到数据信息到达接收端,加密密码会自动解除,将数据信息转变为可读性的明文。此外,存取控制和密文储存是储存加密的两种形式。在存取控制模式中,信息数据读取需要审核用户的身份和权限,这样既可以避免非法用户访问数据的问题,又能限制合法用户的访问权限,实现了数据信息安全等级分层保护。

4.计算机网络信息安全中数据加密技术的合理应用

4.1数据隐藏技术

在网络信息数据加密保护中,将数据信息属性转变为隐藏性,可以提升数据信息的可读权限,提升信息安全度。因此,将信息隐藏技术应用于网络信息加密工程中,利用隐蔽算法结构,将数据信息传输隐蔽载体中,可以将明文数据转变为密文数据,在确保信息安全到达传输目的地时,再采用密钥和隐蔽技术对数据信息进行还原,将密文数据还原成明文数据。例如,在企业内部区域网络信息传输时,便可以采用数据隐蔽技术控制读取权限,提升网络信息传递的安全性。因为在企业运行模式下,一些企业信息只限于部分员工可读取,尤其是一些涉及企业内部机密、财务经济等数据,所以需要采用隐蔽载体技术,通过密钥将隐藏的提取数据信息。在这样的加密模式下,企業数据信息安全性得到保障,不仅可以实现信息数据高效率传播,还降低了二次加密造成的安全隐患,控制了员工读取权限,对企业稳定发展非常有利。

4.2数字签名技术

相比公私钥加密技术而言,数字签名技术更加快捷便利,是公私钥加密技术的发展和衍生。将数字签名技术应用于网络信息安全中,在数据传输之前,传输者需要先将数据文件进行私有密钥加密,加密方式则是数字签名信息,而数据文件接收者在收到文件信息后,要使用公共密钥解密文件。由此可见,数字签名技术在公私钥加密技术的基础上,增加了权限身份的审核程序,即利用数字签名的方式,检查数据文件传输者的权限和身份,进一步提升了网络信息传输的安全性。同时,在计算机网络信息安全管理中,根据信息数据管理要求,灵活运用对称加密技术、公私钥加密技术和数字签名技术,充分发挥各项加密技术的优势作用,落实数据传输和存储加密工作。例如,针对保密程度较低的数据信息而言,可采用灵活便利的对称加密技术,而对于保密级别较高的数据而言,即可采用数字签名技术进行加密。通过这样的方式,不仅可以保障网络信息传输效率,优化信息传输的安全性能,还可以提升数据加密技术水平,为网络信息安全提供保障。

4.3量子加密技术

随着计算机信息技术的发展,数据加密技术也在不断创新和优化,信息安全保护质量也随之提升。相比以往的数据加密技术而言,量子加密技术的安全性更好,对数据安全控制效果更佳。将量子力学与加密技术进行有效融合,既可以实现数据传输时的加密操作,又能同时传递解密信息,节省了单独的密钥传输操作,加密方式也更加智能化。例如,在网络信息传输中,一旦发现数据传输存在被窃取和被篡改的风险,量子加密技术会及时作出反应,转变数据传输状态,而数据传输者和接收者也能及时了解数据传输状况。这种数据加密方式一旦发生状态转变是不可复原的,虽然有效避免的数据泄漏风险,但可能会造成数据自毁和破坏问题。同时,由于量子加密技术专业性强,并且仍处于开发试用状态,应用范围和领域比较局限,无法实现大范围应用。

5.结束语

总而言之,为了提升计算机网络信息的安全性,落实各项数据加密技术应用工作非常必要。根据网络信息安全现状问题,分析了对称加密、公私钥加密、数据隐蔽等技术的应用优势和弊端,指出其合理的应用领域。通过合理运用这些数据加密技术,不仅强化了数据传输、存储的安全性,营造了良好的网络信息环境,还有利于提升用户的数据加密意识,促进数据加密技术优化发展。

信息安全毕业论文范文模板(二):大数据时代计算机网络信息安全与防护研究论文

摘要:大数据技术的快速发展和广泛应用为计算机网络提供了重要的技术支持,有效提高了社会经济建设的发展水平。计算机网络的开放性和虚拟性特征决定了技术的应用必须考虑信息安全与防护的相关问题。本文介绍了大数据时代计算机网络安全的特征和问题,研究了如何保证网络信息安全,提出了3点防护策略。

关键词:大数据时代;计算机网络;信息安全与防护

进入信息时代,计算机网络技术已经逐步成为人们的日常工作、学习和生活必备的工具,如电子商务、网络办公、社交媒体等。计算机网络相关技术的发展也在不断改变人类社会的生产模式和工作效率,实现全球各地区人们的无障碍沟通。但在网络世界中,信息的传播和交流是开放和虚拟的,并没有防止信息泄露和被非法利用的有效途径,这就需要从技术层面上考虑如何提高计算机网络信息安全。特别是近年来大数据技术的高速发展,海量数据在网络中传播,如何保证这些数据的可靠性和安全性,是目前网络信息安全研究的一个重要方向。

1大数据时代计算机网络信息安全的特征

大数据是指信息时代产生的海量数据,对这些数据的描述和定义并加以利用和创新是目前大数据技术发展的主要方向。大数据的产生是伴随着全球信息化网络的发展而出现的,在这个背景下诞生了大量的商业企业和技术组织,也为各行各业提高生产力水平和改变生产模式提供了有效帮助。大数据时代的网络特征首先是非结构化的海量数据,传统意义上的海量数据是相关业务信息,而大数据时代由于社交网络、移动互联和传感器等新技术与工具快速发展产生了大量非结构化的数据,这些数据本身是没有关联性的,必须通过大数据的挖掘和分析才能产生社会价值;其次,大数据时代的网络信息种类和格式繁多,包括文字、图片、视频、声音、日志等等,数据格式的复杂性使得数据处理的难度加大;再次,有用信息的比例较低,由于是非结构化的海量数据,数据价值的提炼要经过挖掘、分析、统计和提炼才能产生,这个周期还不宜过长否则会失去时效性,数据的技术和密度都会加大数据挖掘的难度;最后,大数据时代的信息安全问题更加突出,被非法利用、泄露和盗取的数据信息往往会给国家和人民群众造成较大的经济社会损失。传统计算机网络的信息安全防护主要是利用网络管理制度和监控技术手段来提高信息存储、传输、解析和加密的保密性来实现的。在大数据时代背景下,网络信息的规模、密度、传播渠道都是非常多样化的和海量的,网络信息安全防护的措施也需要不断补充和发展。目前网络信息安全的主要问题可以概括为:一是网络的自由特征会对全球网络信息安全提出较大的挑战;二是海量数据的防护需要更高的软硬件设备和更有效的网络管理制度才能实现;三是网络中的各类软件工具自身的缺陷和病毒感染都会影响信息的可靠性;第四是各国各地区的法律、社会制度、宗教信仰不同,部分法律和管理漏洞会被非法之徒利用来获取非法利益。

2大数据时代背景下計算机网络安全防护措施

2.1防范非法用户获取网络信息

利用黑客技术和相关软件入侵他人计算机或网络账户谋取不法利益的行为称为黑客攻击,黑客攻击是目前网络信息安全防护体系中比较常见的一类防护对象。目前针对这部分网络信息安全隐患问题一般是从如下几个方面进行设计的:首先是完善当地的法律法规,从法律层面对非法用户进行约束,让他们明白必须在各国法律的范畴内进行网络活动,否则会受到法律的制裁;其次是构建功能完善的网络信息安全防护管理系统,从技术层面提高数据的可靠性;再次是利用物理隔离和防火墙,将关键数据进行隔离使用,如银行、证券机构、政府部门都要与外部网络隔离;最后是对数据进行不可逆的加密处理,使得非法用户即使获取了信息也无法解析进而谋利。

2.2提高信息安全防护技术研究的效率

大数据技术的发展是非常迅速的,这对信息安全防护技术的研究和发展提出了更高的要求。要针对网络中的病毒、木马和其他非法软件进行有效识别和防护,这都需要国家和相关企业投入更多的人力物力成本才能实现。目前信息安全防护技术可以概括为物理安全和逻辑安全两个方面,其中物理安全是保证网路系统中的通信、计算、存储、防护和传输设备不受到外部干扰;逻辑安全则是要保障数据完整性、保密性和可靠性。目前主要的研究方向是信息的逻辑安全技术,包括安全监测、数据评估、拨号控制、身份识别等。这些技术研究的效率直接影响着网络信息安全,必须组织科研人员深入研究,各级监管部门也要积极参与到网络管理制度的建立和完善工作中来,从技术和制度两个方面来提高信息防护技术的研究效率。

2.3提高社会大众的信息安全防护意识

目前各国都对利用网络进行诈骗、信息盗取等行为进行法律约束,也利用报纸、电视、广播和网络等途径进行信息安全防护的宣传教育。社会大众要认识到信息安全的重要性,在使用网络时才能有效杜绝信息的泄露和盗用,如提高个人电脑防护措施、提高密码强度等。各级教育部门也要在日常的教学活动中对网络信息安全的相关事宜进行宣传和教育,提高未成年人的安全意识,这都是有效提高信息安全防护能力的有效途径。

篇3

关键词:计算机网络;数据加密技术;数据恢复技术

中图分类号:TP393.0

1 计算机网络数据加密技术

1.1 数据加密的基本概念。计算机网络中的数据加密技术是对数据信息进行加密处理的过程,通过数据加密可以将原文信息变为一串不可直接读取的密文,接收方在接收到密文信息后,利用自己拥有的密钥对密文信息进行解密,接收方才能显示并读取原文信息。数据加密技术中需要按照一定的算法作为支撑才能进行。数据加密过程是指将原数据信息变为密文信息,而数据解密过程是指将密文信息转化为原数据信息,两者是密切结合在一起存在的,缺一不可。

通过对数据信息进行加密处理,可以将数据信息隐藏起来,避免非法用户截取、阅读、篡改原始数据信息,从而达到保护数据安全、维护计算机网络安全的目的。

1.2 数据加密技术。数据加密技术包括对称加密技术、非对称加密技术、混合密钥加密技术,对称加密技术和非对称加密技术的区别在于加密和解密过程中使用的密钥是否一致,而混合密钥是将对称加密技术和非对称加密技术的优点结合到一起进行利用的。下文将对三种数据加密技术进行介绍。

(1)对称加密技术。由于对称加密技术简单、容易实现的特点,使得对称加密技术得到了较为广泛的应用。对称加密技术中的对称是指加密和解密是使用相同的密钥,密钥是对称存在的,以此称之为对称加密技术。通信双方在通信时,发送方首先将密钥发送给接收方,发送方对通信数据信息进行加密后,将密文信息传送给接收方,接收方利用自己持有的密钥进行数据解密,从而读取数据信息。对称加密技术能提高网络安全性的前提是密钥没有被恶意窃取,同时也没有被泄露。

对称加密技术中涉及到的算法包括DES算法、IDEA算法、AES算法。DES算法利用置换技术、代替等多种密码技术,将数据信息划分为64位大小的块,其中8位作为奇偶校验,56位作为密钥。IDEA算法按标准为64位的组进行划分,并对密钥的程度进行规定,即为128位。AES算法是区块加密标准,是一个迭代的算法,该算法中规定的区块长度为固定的128位,而密钥长度可以有所不同。

对称加密技术的主要优点是加密速度快、保密性高,也有一定的缺点,在加解密的过程中,必须确保密钥的安全,如果密钥发生了泄露,获得密钥的人就可以对截获的数据信息进行阅读、修改等操作,因此,为了提高密钥的安全性,保证密钥安全的发送,就需要付出高代价进行完善。

(2)非对称加密技术。我们平时常说的公开密钥加密技术就是非对称解密技术,在使用非对称加密技术时,加密密钥和解密密钥是不同的两个密钥,加密密钥即公钥,解密密钥即私钥,这两个密钥需要配对使用。公钥是对外公布的密钥,用于加密;私钥则由私人拥有,用于解密。通信双方在发送数据信息时,发送方用接收方已经公布的公钥对数据信息进行加密,然后进行数据传输,接收方接收到数据后,用私钥解密,将密文信息进行还原。对于对称加密技术来说,在网络传输过程中将密钥进行传递,很可能被恶意窃取,使数据信息的安全受到威胁。而对于非对称加密技术来说,公钥是公开的,私钥不需要进行传输,这就避免了密钥传输过程中存在的安全问题。

非对称加密算法中RSA加密算法应用范围广,该算法的优点是操作简单、实现方便,同时能够用于数据加密和数字签名等维护计算机网络的安全性能中。RSA加密算法属于支持可变长密钥的算法,主要以大数难以被质因数分解假设为基础。RSA算法的优点为密钥少便于管理;公钥分配过程简单,易于实现;私钥不需要传递,提高了私钥的安全性。而RSA算法的缺点为产生密钥过程复杂;加解密速度慢,运算代价高。

(3)混合密钥加密技术。由于对称加密技术和非对称加密技术都有其各自的优缺点和适应范围,所以将两者的特点进行结合,即混合密钥加密技术,以此来对计算机网络中的数据进行加密,提高数据传输中的安全性。在混合密钥加密技术中,首先通信双方中的发送方利用对称加密技术对通信数据信息进行加密,然后将对称密钥通过非对称加密技术进行加密并传输,接收方接收到密文后,用私钥对对称密钥进行解密,从而获得解码密文的密钥,并利用该密钥对密文进行解码,以此来读取原数据信息。这种混合密钥加密的方法,结合了对称和非对称加密技术的优点,提高了加解密的速度,同时也提高了数据信息的安全性。

2 数据备份与恢复技术

利用数据加密技术可以提高数据在传输过程中的安全性,然而由于计算机本身的硬件故障、病毒破坏、非正常操作等都可以造成计算机内数据信息的丢失,为数据的安全带来问题。为了减少计算机的数据损失,提高计算机内数据的安全性和完整性,要定期或不定期的对数据信息进行备份,当计算机中的数据出现问题时,可以利用数据备份信息对计算机内的数据进行恢复。

2.1 利用专业软件进行数据备份和恢复。利用专业软件来恢复数据是一种非常重要的方法。常用的软件有Easy Recovery、Final Data、Norton Ghost等。Easy Recovery的功能很强大,通过对硬盘的扫描,可以恢复由误操作(误删除、误格式化)、重新分区造成的数据损失,如果分区表受损,可以使用该软件进行恢复,然而该软件不能完全恢复包含多个簇的文件。Final Data的优点是有较快的数据恢复速度,并且可以扫描计算机的逻辑硬盘和物理硬盘,根据扫描的结果来队服计算机的数据。Norton Ghost可以对一个或者多个分区盘进行备份,并将备份文件保存在安全的存储介质中,如保存到光盘中。当计算机受到损坏时,专业数据恢复软件可以快速的找回丢失的信息,并进行系统重建工作。

2.2 在BIOS中建数据防护。在BIOS中建数据防护主要是以BIOS中内嵌的硬盘工具为基础进行数据恢复,此技术通过主要是对硬盘的数据进行完整的备份,并存储在一定的介质中,而这个存储介质仅要求是硬盘。该技术是对数据进行完整备份,因此利用该技术进行数据备份与恢复会耗费很长的时间。镜像文件以隐藏的形式存储杂硬盘中,因此不存在误删除的现象,加强了数据信息的安全性。

2.3 网络备份存储管理系统。网络备份存储管理系统主要是以存储设备和硬件设施为基础,加上存储管理软件的应用,来统一管理数据备份信息,由于相关软件的应用,系统可以根据备份文件进行数据恢复。网络备份存储管理系统是需要备份管理软件作为支撑,以此来完成系统的功能,并能够根据备份数据来处理数据恢复的过程,从而很好的实现计算机网络数据备份与恢复的智能化管理和高效。

3 结束语

由于计算机网络的广泛应用,计算机网络的安全影响着社会生活的方法面面,维护计算机网络的安全是我们必须要义不容辞的责任。计算机网络安全技术很多,如数据加密技术、数据恢复技术,然而单纯的一种技术对于计算机网络的安全性来说是远远不够的,必须要结合多种技术,从不同的角度进行努力,来提高网络的安全性能。

参考文献:

[1]徐雁萍.数据加密技术的研究[C].中国气象学会2008年年会第二届研究生年会分会场论文集,2008(11):151-158.

[2]黄志清.网络安全中的数据加密技术研究[J].微型电脑应用,2000(05):20-21.

[3]王栋松.计算机网络数据加密技术探讨[J].文教资料:信息技术,2006(01):139-140.

[4]王.浅谈计算机数据备份和数据恢复技术[J].科技资讯:信息技术,2009(01):26.

篇4

经过多方联系,笔者获悉,深圳市科创电子有限公司与北京中文之星数码科技有限公司联合推出了一款安全加密钥匙盘。据从技术上了解,这种加密技术与一般的本地加密 技术不同,它采用深科创自主开发的“四层交互式自反馈网络动态认证加密技术”,通过ID号,利用动态的算法,计算出一个结果到服务器上针对算法来验证这个ID,每次在线加密认证过程中,服务器会将新的加密结果写入密钥盘,同时在三套加密算法中有两套是可以升级的,在一个时间段就算破解其中一支,但是服务器可以随时监控到数据的异常而进行屏蔽,这种加密技术可以说是一个技术上革命性的做法,理论上无人能破。

据了解,目前基于该加密技术的软件有:北京中文之星以全新架构最新开发的智能狂拼III.3专业版,及《中国实用工具书集成》OEM版。据悉,深科创将继续整合推出涵盖20万册以客户命名的网上个人图书馆;超多更新更全的电影、MP3个性影音库;大学院校各学科论文库;VOIP电话等等。这些经过密钥盘加密后的软件程序可以随便在网上下载,用户下载这些程序后,插上密钥盘就可以使用了,密钥盘将做为软件产品的“通用钥匙盘”。凭借密钥盘就可以自由进入这些经密钥技术加密的网上数据库。

“智能狂拼III.3”专业版被称为目前超强大的中文输入法,期整句输入准确率达到97%以上,增加了语境学习功能,精心筛选包含电子、法律、金融、医学等20多个行业专业词库;补充商务、信件、法律、合同、管理模板库;对输入字句及指定资料自动记忆学习,学习过的词库与文章其整句输入准确率达100%。支持选择习惯输入法键盘方案;拼音、五笔、手写板三种模式;单键简、繁、英、数混编输入;字词句联想、同义反义修辞造句联想辅助写作功能;根据输入中文字词句同步联想英文词句(逐步增加语种:韩文、德文、法文、俄文、日文等)和地方方言(逐步增加方言:四川、上海、粤语、湖南等);支持专业术语整句首拼输入,提供终生免费升级。市场定价为180元。

《中国实用工具书集成》OEM版经正版授权,包涵《中国大百科辞典》《英汉百科翻译大词典》《学生辞海》《中国历代名诗名词鉴赏辞典》《家庭实用百科全书》《中国南北名菜谱》《科学育儿自助手册》《家庭法律实用指南》《美容自助手册》等九十余册百科实用工具电子书,自由缩放视图,多形式全文检索功能 。电子版仅售680元/套,是平面版的十分之一。

篇5

论文摘要:同络是计算机技术和通信技术的产物,在国防电信,银行,广播等方面都有广泛的应用。其安全性是不可忽视的,网络安全主要是由于tcp/ip协议的脆弱。网络结构的不安全.易被窃听和缺乏安全意识等原因造成的,网络入侵者主要通过破译口令,ip欺骗和dns欺骗等途径攻击网络。防范措施主要通过防火墙技术和数据加密技术来完成。

1近年来网络威胁发展趋势

由于黑客发动攻击的目的和组织化的转变,近年发生大规模的网络安全事件的可能性比较小,以僵尸网络、间谍软件、身份窃取为代表的恶意代码,以及网络仿冒网址嫁接/劫持类安全事件将会继续增加,对新流行的网络应用的安全事件将会发生,这些问题将导致事件数量整体仍呈上升趋势,同时也提醒网络安全管理员尽可能的保护好企业的内部数据。

常见的危害安全有:外部攻击;内部威胁;网络儒虫;垃圾邮件;w eb服务器;僵死网络l网络钓鱼;arp欺骗。薄弱的信息安全意识可能造成重大的经济损失或严重的法律后果。网络飞速的发展,网络安全往往很容易忽视。但是带来网络安全的原因有很多。

2网络安全概述

2.1网络安全的定义

网络安全的具体含义会随着“角度”的变化而变化。从社会教育和意识形态角度来讲,网络上不健康的内容,会对社会的稳定和人类的发展造成阻碍,必须对其进行控制。总之,几是涉及到网络上信息的保密性、完整性、可用性、真实性和可控性的相关技术和理论都是网络安全所要研究的领域。

2.2行系统安全

行系统安全:即保证信息处理和传输系统的安全。

它侧重于保证系统正常运行,避免因为系统的崩溃和损坏而对系统存贮、处理和传输的信息造成破坏和损失,避免由于电磁泄漏,产生信息泄露,干扰他人,受他人干扰。网络上系统信息的安全:包括用户口令鉴别,用户存取权限控制,数据存取权限、方式控制,安全审计,安全问题跟踪,计算机病毒防治,数据加密。

2.3网络中的安全缺陷及产生的原因

(1)tcp/ip的脆弱性。因特网的基石是tcp/ip协议。该协议对于网络的安全性考虑得并不多,并且由于tcp/ip协议是公布于众的,如果人们对tcp/ip~e熟悉,就可以利用它的安全缺陷来实施网络攻击。

(2)络结构的不安全性。因特网是一种网间网技术。它是由无数个局域网所连成的一个巨大网络。

(3)易被窃听。由于因特网上大多数数据流都没有加密,因此人们利用网上免费提供的工具就很容易对网上的电子邮件、口令和传输的文件进行窃听。

(4)缺乏安全意识。虽然网络中设置了许多安全保护屏障,但人们普遍缺乏安全意识,从而使这些保护措施形同虚设。如人们为了避开防火墙服务器的额外认证,进行直接的ppp连接从而避开了防火墙的保护。

3网络攻击和入侵的主要途径

网络入侵是指网络攻击者通过非法的手段(如破译口令、电子欺骗等)获得非法的权限,并通过使用这些非法的权限使网络攻击者能对被攻击的主机进行非授权的操作。网络入侵的主要途径有:破译口令、ip欺骗和dns欺骗。口令是计算机系统抵御人侵者的一种重要手段,所谓口令入侵是指使用某些合法用户的帐号和口令登录到目的主机,然后再实施攻击活动。

4网络安全的防范措施

4.1防火墙技术

网络防火墙技术是一种用来加强网络之间访问控制,防止外部网络用户以非法手段通过外部网络进入内部网络,访问内部网络资源,保护内部网络操作环境的特殊网络互联设备。

防火墙系统是由两个基本部件包过滤路由器(packetfilteringr0uter)、应用层网关(application gateway)构成的,防火墙处于5层网络安全体系中的最底层,作为内部网络与外部公共网络之间的第一道屏障,防火墙是最先受到人们重视的网络安全产品之一。另外还有多种防火墙产品正朝着数据安全与用户认证、防止病毒与黑客侵入等方向发展。

4.2数据加密技术

数据加密技术是最基本的网络安全技术,被誉为信息安全的核心,最初主要用于保证数据在存储和传输过程中的保密性。加密技术通常分为两大类:“对称式”和“非对称式”。对称式加密就是加密和解密使用同一个密钥,通常称之为“sessionkey”这种加密技术目前被广泛采用,如美国政府所采用的des]jij密标准就是-一种典型的“对称式”加密法,它的session key长度为56bits。而非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。

4.3身份的验证

身份的验证指使用网络资源时需要提交一一定的信息,表示申请者具备的身份。验证有很多种方式,人们最熟悉的就是用户名加密码的方式了,虽然在实践中,密码方式并不是一种非常安全的身份验证方式。

4.4授权

授权和身份验证不同,身份验证控制能否访问网络。而授权则是控制能够访问那些资源和可以如何访问这些资源。授权包括两种,一种是行为的授权。另外一种是范围的授权。

4.5审核

通过审核,网络管理员可以了解攻击着的主攻方向,了解所不知道的网络薄弱环节,攻击者通常是从网络的薄弱环节攻入的。

4.6公共密匙加密和数字签名

在数据加密中,密匙非常重要,但加密解密的双方又需要同样的密匙,密匙就需要采用某种传送方式,这样密匙就变成了网络安全的主要攻击目标。

4.7数据包过滤

比身份验证和授权更进一步,数据包过滤能够接受或拒绝特定特点的数据包,能够防止非授权的使用、破坏网络资源、禁止、拒绝服务攻击。

篇6

论文关键词:电子商务;安全;安全技术

2、电子商务安全的主要要求

2. 1. 机密性

电子商务作为贸易的一种手段,其信息直接代表着个人、企业或国家的商业机密。传统的纸面贸易都是通过邮寄封装的信件或通过可靠的通信渠道发送商业报文来达到保守机密的目的。电子商务是建立在一个开放的网络环境上的,维护商业机密是电子商务全面推广应用的重要保障。

2.2. 完整性

电子商务简化了贸易过程,减少了人为的干预,同时也带来维护贸易各方商业信息的完整、统一的问题。由于数据输入时的意外差错或欺诈行为,可能导致贸易各方信息的差异。此外,数据传输过程中信息的丢失、信息重复或信息传送的次序差异也会导致贸易各方信息的不同。要预防对信息的随意生成、修改和删除,同时要防止数据传送过程中信息的丢失和重复并保证信息传送次序的统一。

2.3. 可靠性

在传统的纸面贸易中,贸 易双方通过在交易合同、契约或贸易单据等书面文件上手写签名或印章来鉴别贸易伙伴,确定合同、契约、单据的可靠性并预防抵赖行为的发生。这也就是人们常说的“白纸黑字”。在无纸化的电子商务方式下,通过手写签名和印章进行贸易方的鉴别已不可能,因此,要在交易信息的传输过程中为参与交易的个人、企业或国家提供可靠的标识。

2.4 有效性

电子商务以电子形式取代了纸张,那么如何保证这种电子形式贸易信息的有效性则是开展电子商务的前提。

2.5 可靠性

传统的交易是面对面的,比较容易保证建立交易双方的信任关系和交易过程的安全性。而电子商务活动中的交易行为是通过网络进行的,买卖双方互不见面,因而缺乏传统交易中的信任感和安全感。美国密执安大学一个调查机构通过对23000名因特网用户的调查显示,超过60%的人由于电子商务的安全问题而不愿进行网上购物。任何个人、企业或商业机构以及银行都不会通过一个不安全的网络进行商务交易,这样会导致商业机密信息或个人隐私的泄露,从而导致巨大的利益损失。根据中国互联网络信息中心(CNNIC)的“中国互联网络发展状况统计报告”,在电子商务方面,52.26%的用户最关心的是交易的安全可靠性。由此可见,电子商务中的网络安全和交易安全问题是实现电子商务的关键之所在。

3、引起电子商务的不安全因素

商务信息的存储依靠计算机的数据库技术来实现,信息传输的主要途径是互联网。所以,电子商务的不安全因素也正是以计算机的数据库技术和网络通信技术的安全漏洞为主要目标,构成了威胁电子商务活动的主要原因,成为不法分子入侵的主要途径。

3.1. 数据库面临的安全问题

实现电子商务的企业,大都建立用来存储和管理各种业务数据的核心数据库。对于大多合法用户来说,这个核心数据库是存储关键信息的一种非常便捷的方式,而从攻击者的角度来看,直接破解这个数据库所带来的利益要比在网络中嗅探数据带来的利益打得多。通过破解数据库,就可以只在一个点上访问到准确的数据信息。攻击者一旦窃取到数据库的访问权,就可以通过数据库的查询命令方便的获取想要的信息,如信用卡号、客户资料、报价单、价目表等机密商业信息。电子商务在数据库中所面临的安全问题表现在非法入侵者对数据库的攻击,电子的交易信息在网络上传输的过程中,可能被他人非法的修改,删除或重放(指只能使用一次的信息被多次使用),从而使信息失去了真实性和完整性。

3.2. 网络通信面临的安全问题

电子商务在网络通信中所面临的安全问题主要体现在以下几个方面:交易的内容被第三方窃取;电子交易信息在网上传输过程中,可能被他人非法修改、删除或重放。网络传输的可靠性受硬件设备或软件的缺陷的限制,使信息传输过程得不到保障;信息的存储和传输受到恶意破坏的威胁(如病毒威胁),信息破坏。包括网络硬件和软件的问题而导致信息传递的丢失与谬误;以及一些恶意程序的破坏而导致电子商务信息遭到破坏。

4、电子商务中的安全防范技术

为了满足电子商务的安全要求,电子商务系统必须利用安全技术为电子商务活动参与者提供可靠的安全服务,具体可采用的技术如下:

4.1. 数字签名技术

“数字签名”是通过密码技术实现电子交易安全的形象说法,是电子签名的主要实现形式。它力图解决互联网交易面临的几个根本问题:数据保密、数据不被篡改、交易方能互相验证身份、交易发起方对自己的数据不能否认。“数字签名”是目前电子商务、电子政务中应用最普遍、技术最成熟、可操作性最强的一种电子签名方法。它采用了规范化的程序和科学化的方法,用于鉴定签名人的身份以及对一项电子数据内容的认可。它还能验证出文件的原文在传输过程中有无变动,确保传输电子文件的完整性、真实性和不可抵赖性。

4.2. 防火墙技术

防火墙是近期发展起来的一种保护计算机网络安全的技术性措施,它是一个用以阻止网络中的黑客访问某个机构网络的屏障,也可称之为控制进/出两个方向通信的门槛。在网络边界上通过建立起来的相应网络通信监控系统来隔离内部和外部网络,以阻档外部网络的侵入。目前的防火墙主要有以下三种类型:包过滤防火墙、防火墙、双穴主机防火墙。

4.3. 入侵检测系统

入侵检测系统能够监视和跟踪系统、事件、安全记录和系统日志,以及网络中的数据包,识别出任何不希望有的活动,在入侵者对系统发生危害前,检测到入侵攻击,并利用报警与防护系统进行报警、阻断等响应。

4.4. 信息加密技术

信息加密的目的是保护网内的数据、文件、口令和控制信息,保护网上传输的数据。网络加密常用的方法有链路加密、端点加密和节点加密三种。链路加密的目的是保护网络节点之间的链路信息安全;端-端加密的目的是对源端用户到目的端用户的数据提供保护;节点加密的目的是对源节点到目的节点之间的传输链路提供保护。用户可根据网络情况酌情选择上述加密方式。

4.5 安全认证技术

安全认证的主要作用是进行信息认证,信息认证的目的就是要确认信息发送者的身份,验证信息的完整性,即确认信息在传送或存储过程中未被篡改过。

4.6 防病毒系统

病毒在网络中存储、传播、感染的途径多、速度快、方式各异,对网站的危害较大。因此,应利用全方位防病毒产品,实施“层层设防、集中控制、以防为主、防杀结合”的防病毒策略,构建全面的防病毒体系。

5.主要的安全技术

5.1虚拟专用网(VPN)

这是用于Internet交易的一种专用网络,它可以在两个系统之间建立安全的信道(或隧道),用于电子数据交换(EDI)。它与信用卡交易和客户发送订单交易不同,因为在VPN中,双方的数据通信量要大得多,而且通信的双方彼此都很熟悉。这意味着可以使用复杂的专用加密和认证技术,只要通信的双方默认即可,没有必要为所有的VPN进行统一的加密和认证。现有的或正在开发的数据隧道系统可以进一步增加VPN的安全性,因而能够保证数据的保密性和可用性。

5.2数字认证

数字认证可用电子方式证明信息发送者和接收者的身份、文件的完整性(如一个发票未被修改过),甚至数据媒体的有效性(如录音、照片等)。随着商家在电子商务中越来越多地使用加密技术,人们都希望有一个可信的第三方,以便对有关数据进行数字认证。

目前,数字认证一般都通过单向Hash函数来实现,它可以验证交易双方数据的完整性,Java JDK1.1也能够支持几种单向Hash算法。另外,S/MIME协议已经有了很大的进展,可以被集成到产品中,以便用户能够对通过Email发送的信息进行签名和认证。同时,商家也可以使用PGP(Pretty Good Privacy)技术,它允许利用可信的第三方对密钥进行控制。可见,数字认证技术将具有广阔的应用前景,它将直接影响电子商务的发展。

5.3加密技术

保证电子商务安全的最重要的一点就是使用加密技术对敏感的信息进行加密。现在,一些专用密钥加密(如3DES、IDEA、RC4和RC5)和公钥加密(如RSA、SEEK、PGP和EU)可用来保证电子商务的保密性、完整性、真实性和非否认服务。然而,这些技术的广泛使用却不是一件容易的事情。密码学界有一句名言:加密技术本身都很优秀,但是它们实现起来却往往很不理想。现在虽然有多种加密标准,但人们真正需要的是针对企业环境开发的标准加密系统。加密技术的多样化为人们提供了更多的选择余地,但也同时带来了一个兼容性问题,不同的商家可能会采用不同的标准。另外,加密技术向来是由国家控制的,例如SSL的出口受到美国国家安全局(NSA)的限制。目前,美国的商家一般都可以使用128位的SSL,但美国只允许加密密钥为40位以下的算法出口。虽然40位的SSL也具有一定的加密强度,但它的安全系数显然比128位的SSL要低得多。据报载,最近美国加州已经有人成功地破译了 40位的SSL,这已引起了人们的广泛关注。美国以外的国家很难真正在电子商务中充分利用SSL,这不能不说是一种遗憾。上海市电子商务安全证书管理中心推出128 位 SSL的算法,弥补国内的空缺,并采用数字签名等技术确保电子商务的安全。

6、展望

安全是电子商务生存和发展的命脉,随着网络信息技术的发展,安全技术平台和安全管理策略将不断发展和改进提高。电子商务网站的设计人员必须在精心的安全分析、风险评估、商业需求分析和网站运行效率分析的基础上,才能制定出整体的安全解决方案。

篇7

论文摘要:随着当代信息技术的发展,互联网的共享性、开放性以及互联程度也在不断扩大。internet的广泛普及,商业数字货币、网络银行等一部分网络新业务的迅速兴起,使得计算机网络的安全问题越来越显得重要,通过归纳总结,提出网络信息中的一些安全防护策略。

1.引言

网络环境的复杂性、多变性以及信息系统的脆弱性,决定了网络安全威胁的客观存在。当前,随着计算机技术的飞速发展,利用因特网高科技手段进行经济商业犯罪的现象已经屡见不鲜了,因此,如何采用更加安全的数据保护及加密技术,成为当前计算机工作者的研究热点与重点。网络安全技术,尤其是网络信息的安全,关系到网民、企业甚至是国家的信息安全。因此,发展更加安全的网络安全技术,是关系到社会经济稳定繁荣发展的关键,成为当前计算机安全工作的重点。

2.网络信息安全的风险来源

影响计算机网络安全的因索很多,既有自然因素,也有人为因素,其中人为因素危害较大,归结起来丰要以下几个方面:

(1)病毒感染

从“蠕虫”病毒开始到cih、爱虫病毒,病毒一直是计算机系统安全最直接的威胁。病毒依靠网络迅速传播,它很容易地通过服务器以软件下载、邮件接收等方式进入网络,窃取网络信息,造成很人的损失。

(2)来自网络外部的攻击

这是指来自局域网外部的恶意攻击,例如:有选择地破坏网络信息的有效性和完整性;伪装为合法用户进入网络并占用大量资源;修改网络数据、窃取、破译机密信息、破坏软件执行;在中间站点拦截和读取绝密信息等。

(3)来自网络内部的攻击

在局域网内部,一些非法用户冒用合法用户的口令以合法身份登陆网站后。窃取机密信息,破坏信息内容,造成应用系统无法运行。

(4)系统的漏洞及“后门”

操作系统及网络软件不可能是百分之百的无缺陷、无漏洞的。编程人员有时会在软件中留有漏洞。一旦这个疏漏被不法分子所知,就会借这个薄弱环节对整个网络系统进行攻击,大部分的黑客入侵网络事件就是由系统的“漏洞” 和“后门”所造成的。

3.网络信息安全的防护策略

现在网络信息安全的防护措施必不可少。从技术上来说,计算机网络安全主要由防病毒、入侵检测等多个安全组件组成,就此对我们常用的几项防护技术分别进行分析。

3.1防火墙技术

防火墙(ifrewal1)是指设置在不同网络或网络安全域之间的系列部件的组合,它越来越多地应用于专用网络与公用网络的互联环境之中,尤其以接入internet网络为甚。不同网络或网络安拿域之间信息都会经过它的过滤,防火墙就会根据自身的安全政策控制(允许、拒绝、监测)出入网络的信息流,而且它本身也具有较强的抗攻击能力,不会被病毒控制。防火墙可以阻j网络中的黑客来访问你的机器,防止他们篡改、拷贝、毁坏你的重要信息。它为网络信息的安全提供了很好的服务,为我们更安全地使用网络提供了很好的保障。

“防火墙”技术是指假设被保护网络具有明确定义的边界和服务而采取的一种安全保障技术,它通过监测、限制和更改通过“防火墙”的数据流,一方面尽可能地对外部网络屏蔽被保护网络的信息、结构,实现对内部网络的保护,以防“人放火”;另一方面对内屏蔽外部某些危险站点,防止“引火烧身”。因而,比较适合于相对独立、与外部网络互联单一、明确并且网络服务种类相对集中的统一互联网络系统。防火墙可对网络存取和访问进行监控审计,如果所有的访问都经过防火墙,那么,防火墙就能记录下这些访问并做出日志记录,同时也能提供网络使用情况的统计数据。

通过利用防火墙对内部网络的划分,可实现内部网重点网段的隔离,从而限制了局部重点或敏感网络安全问题对全局网络造成的影响。除了安全作用,有的防火墙还支持具有internet服务特性的企业内部网络技术体系vpn。vpn,可以将分部在世界各地的lan或专用电子网有机地联成一个整体。这样一方面省去了专用通信线路,也达到了信息共享的目的。

3.2数据加密技术

数据加密技术是网络中最荩木的安伞技术,主要是通过对网络传输的信息进行数据加密来保障其安全性。加密是对网络上传输数据的访问权加强限制的一种技术。原始数据(也称为明文,plaintext)被加密设备(硬件或软件)和密钥加密而产生的经过编码的数据称为密文(ciphertext)。解密是加密的反向处理,是将密文还原为原始明文,但解秘者必须利用相同类型的加密设备和密钥,才能对密文进行解密。

3.3入侵检测技术

入侵检测系统(intrusiondetectionsystem,ids)是从多种计算机系统及网络系统中收集信息,再通过这些信息分析,对计算机和网络资源的恶意使用行为进行识别的网络信息安全系统。入侵检测系统具有多方面的功能:威慑、检测、响应、损失情况评估、攻击预测和起诉支持等。入侵检测技术是为保证计算机信息系统安全而设计与配置的一种能够及时发现并报告系统中朱授权或异常现象的技术,是一种用于检测计算机网络中违反安全策略行为的技术。

3.4病毒防护

可采用如下的方法或措施:

(1)合理设置杀毒软什,如果安装的杀毒软什具备扫描电邮件的功能,尽量将这些功能伞部打开;

(2)定期检查敏感文件;

(3)采取必要的病毒检测和监控措施;

(4)对新购的硬盘、软盘、软件等资源,使用前应先用病毒测试软件检查已知病毒,硬盘可以使用低级格式化(dos中的format格式化可以去抻软盘中的病毒,但不能清除硬盘引导的病毒);

(5)慎重对待邮件附件,如果收到邮件中有可执行文件(如.exe、.com等)或者带有“宏”的文杀一遍,确认没有病毒后再打开;

(6)及时升级邮件程序和操作系统,以修补所有已知的安全漏洞。

3.5身份认证技术

身份认证(authentication)是系统核查用户身份证明的过程,其实质是查明用户是否具仃它所请求资源的存储使用权。身份识别(identificaiion)是指用户向系统出示自己的身份证明的过程。这两项上作通常被称为身份认证。

身份认证至少应包括验证协议和授权协议。网络中的各种应用和计算机系统都需要通过身份认证来确认合法性,然后确定它的个人数据和特定权限。对于身份认证系统来说,合法用户的身份是否易于被别人冒充足它最重要的技术指标。用户身份被冒充不仪可能损害用户自身的利益,也可能损害其他用户的利益或整个系统。因此,身份认证是授权控制的基础。只有有效的身份认证,才能保证访问控制、安全审计、入侵防范等安全机制的有效实施。

安装必要的安全软件,杀毒软件和防火墙这些都是必备的,而且还要安装并使用必要的防黑软件。我们一定要把这些安全防护措施及时应在电脑中,在上网时一定要打开它们。最后要及时给系统打补丁,建议人家下载自己的操作系统对应的补丁程序,这是我们网络安全的恭础。

篇8

关键词:云计算;加密;隐私数字资源;属性基加密;权重属性

中图分类号:G250 文献标识码:A 文章编号:1009-3044(2016)32-0068-03

Encryption Policy for the Library Privacy Digital Resources in the Cloud Computing Environment

LI Zhi-ping

(Guangzhou University Sontan College, Guanzhou 511370, China)

Abstract: As for the safety of library privacy digital resources in the cloud computing environment, this paper outlines the data encryption, studies the algorithm implementation of the identity based symmetric encryption system and its advantages and disadvantages. Then it introduces the attribute-based encryption, probes into its composite structure access, and the main encryption algorithms. Since less attention has been paid to the current cipher text-policy attribute-based encryption (CP-ABE), it is quite necessary to use the weighed one.

Key words: cloud computing; encryption; Privacy Digital Resources; attribute-based encryption; weighted attribute

1 背景

在图书馆数字资源研究中发现,基本包括公开数字资源以及隐私数字资源,其中前者主要为电子图书、报刊以及书目信息等等,这些内容均可以公开;后者则主要包括有学位论文、学生信息以及财务数据等等,这些数据均不可以公开。在云计算发展应用下,数据提供者及其访问者不再是传统的一对一模式,数据提供者在进行数据提供的时候,需要将其存储在第三方云计算服务提供商数据库中,通过此才能够为广大数据访问者提供相应的服务,借助服务商的多种开发接口则可以享受到数据阅读及查询等服务。但是在此过程中,云服务端所存储的数据则可能会出现被非法窃取及篡改问题。在图书馆数字资源中的一些电子图书等公开信息,则不必对其实施保密处理,在云存储保存中也可以采用明文形式,只需对其进行完整性检测。但对于隐私数字资源,一些保密学生信息及学位论文等等,为防止云服务提供商私自使用数据,或第三方用户盗取数据,云计算都必须先进行加密处理。

2 基于身份的加密体制

2.1 数据加密技术原理

数据加密简而言之也就是采用某种算法实现之前明文文件或者数据的处理,将其转换成为一些不可读的代码,也就将其称为是“密文”。在阅读过程中只有应用相应密钥,才可以看到具体的文本内容,以此有效确保一些不可公开信息数据不受到非法窃取及阅读。将此过程逆向处理也就是解密过程,也就是将“密文”形式成功转化为之前数据形式的过程。其中图1则为典型数据加密模型。

2.2 云计算环境下数据资源的加密技术分析

在云计算环境中,基于密钥特点则可以将加密算法分成两种,其中一种为对称密码算法,另外一种则为非对称密码算法。前者也被称为传统密码算法,在其应用中需要确保数据拥有者和数据访问者协调确定出一组加解密密钥,之后借助于加密密钥实现相关数据的有效加密,数据访问者在进行数据访问的时候,则可以通过数据拥有者或者密钥管理中心到相应的解密密钥。其特点是在加密与解密过程中使用相同的密钥,并且在实际应用中安全性比较高,加密速度较快,在实际数据加密中也比较常用,最常见的主要有DES、AES、IDEA 等。

而与之相对应的是非对称密码算法,简而言之也就是加密密钥和解密密钥不一致,其中加密密钥也被称之为公钥,可以公开;解密密钥则被称之为私钥,不可以公开。这一加密算法也被称为公钥密码算法,最常见则主要有RSA、ECC等,属于是在实际应用中最为广泛的公算法,也是一种分组加密算法,算法原理简单、易于使用。

但是在云计算技术不断发展进程中,互联网中的数据共享也逐渐广泛,在新的网络环境下如果依旧采用传统的数据加密方式,则无法有效满足实际网络应用需求。对于云计算数据资源安全加密技术也提出了新的要求,在云计算加密技术研究中也成为新的方向。基于身份的加密、属性基加密、引入权重的属性基加密等各种加密算法都不断地被提出、论证、实施及改进。

2.3 基于身份的对称加密体制

在图书馆数据资源管理过程中,数据量非常大,在数据加密中如果还是单纯采用非对称密码体制,无法有效提高其应用效率,因此则可以采用对称密码体制实施数据加密,操作如下:

第一 步:应用对称密码算法实现图书馆数据信息[F]的加密处理,之后即为加密文件[S]。

第二 步:将[S]分成[n]个数据块[s1,s2,…,sn]

第 三步:对每个密文件块[Si]签名,假设签名序列为[σ1,σ2,…,σn],数据块[Si]的签名为[σi=μH(Si)α]。[H]在密码学中属于是[hash]函数,不同长度的0,1字符串均可以将其在群[G]上映射成为元素,在群[G]中[μ]则属于是生成元,[α]也就是图书馆数据中的私钥。

第四 步:在云存储数据库中保存图书馆密文数据库以及相关签名。

第 五步:检测文件[F]过程中,图书馆则需要生成挑战[chal=i,vi],并发送给云存储然后等候应答。其中[i,vi]为挑战对,用来对第[i]个数据块进行检测,[vi]是为数据块[i]选取的随机数。

第 六步:基于挑战[chal=i,vi]结果,云存储系统则需要对[μ,σ]实施返回应答。[μ]则需要实现图书馆挑战随机数乘以云存储数据块,乘出来的结果相加也就是[μ=i=1nviHSi];[σ]则是在计算过不同数据块签名及挑战随机数之后,进一步实施结果相乘所得,也就是[σ=i=1nσivi]。

第 七步:在进行方程[e(σ,g)=e(μμ,v)]成立判别中,也就可以分析图书馆的数据完整性。其中[e]也就是密码学的双线性映射结果,本身属于是函数运算;在群[G]中[g]属于是生成元,在进行图书馆公钥[v]生成过程中需要用到,也就是[v=gα]。

在身份加密体制实施加密处理,公钥也就可以应用用户身份信息,从而避免了任务设立CA中心的负担,但这一加密体制在应用中依旧存在多种问题,比如说数据拥有者如果想要实现数据共享,同时实现多个授权用户访问,那么在进行公钥设置过程中,则可以分别将访问用户身份信息作为公约实现机密,随着用户量的加大,需要实施协商的密钥数量也会有所增长;同时如果网络环境本身安全性不够,关于密钥的协商及分发安全渠道问题则需要进一步探索。

3 基于属性基的加密体制设计

访问用户身份信息具有唯一性,然而在其属性研究中则非常可能具有共性特点,因此在研究过程中则提出了基于属性基加密的概念。这一方式和之前应用用户唯一身份信息作为加密数据公钥具有一定差异,基于属性加密体制在设计过程中,数据加密公约则是用户属性集合,只有用户属性集合和密文属性集合共有属性数量,能够和门限要求有效满足的时候,一个访问用户才能够解密一个密文。也就是将属性划分为普通属性和许可属性两类,用户只有在其持有的属性,并且也能够对密文访问结果以及许可属性条件有效满足的时候,才能够有效实现数据的成功解密。

3.1 傩曰加密体制的复合访问结构

假设用[TA]表示普通属性结构树,[TB]表示许可属性结构树,则基于属性基加密体制的访问结构[T]由[TA]及[TB]用“与”门操作实现,子树[TA]包含的普通属性集管理者则属于授权中心,子树[TB]则主要为属性集,管理者为数据属性。解密密文的获得必须要确保用户持有属性和[TA]和[TB]同时满足,同时也能够“与”门根节点[T],所得到才是正确的解密密文。

3.2 主要加密方案

1)密钥第一部分生成算法:将用户[u]的属性集[U]作为输入,选择随机元素[ti∈Z*p]、选择随机数[r1∈Z*p],计算[d1=gα1-r1],再为[U]中的每个属性[αj∈U]随机选择[rj∈Z*p],计算[dj=grtj-1]。最终输出用户私钥第一部分为 [SK1=(d1=gα1-r1,?j∈Au:dj=grtj-1)]。

2)密钥第二部分生成算法:将用户身份[bk]作为输入,选择随机元素[ti∈Z*p]、选择随机数[r2∈Z*p],计算[d2=gα2-r2],再为用户身份[bk]随机选择[rk∈Z*p],计算[dk=grtn+k-1]。最终输出用户私钥第二部分为[SK2=(d2=gα2-r2,dk=grtn+k-1)]。

在执行完这两部分算法后,用户[u]的一个完整私钥[SKU=(SK1,SK2)]就能够成功生成。

3)复合访问结构[T]生成算法:随机选取[s1,s2∈Zp]中的两个随机数,并且将其一一对应作为子树[TA]和[TB]的根节点,采用递归方式将共享秘密分配在[TA]中每个非叶节点。

4)密文主体部分生成算法:

分别计算 [c1=gs1],[c2=gs2],[c*=Me(g,g)α1s1e(g,g)α2s2],

最终输出密文为

[ct=(T,c*,c1,c2,?αj,i∈TA:cj,i,?tj,i∈TB:kj,i)]。

基于属性基加密方案的应用特点主要有:不管是加密还是解密方案均具有一定动态性,并且可以灵活应用,在用户解密能力以及保护密文中,可以显著实现细粒度控制。但其不足之处是没有考虑到每个属性值的地位和重要性都不尽相同,属性加密方案中对这方面的差异性未作区别对待,这不符合客观实际应用环境。

4 引入权重的属性基加密体制

基于实际应用环境的综合考虑,关于属性值地位则可有一定差异,在属性基加密过程中则可以加大权重的引入及应用。在图书馆数据系统中,用户属性不同则权值也具有差异,在解密过程中,只有确保密钥属性能够对密文访问结构有效满足的时候,才能够实现正确解密。实际应用中为减少计算量,属性的权重值可以分别取为不同的自然数,具体算法实现如下:

1)属性集转化算法([Γ]):将系统全体属性输入其中,属性不同权值也具有差异。对于全体属性集[Γ=λ1,λ2,…,λr]中的每一个属性[λi],分配属性[λi]允许在系统中的最大权值为整数[θi=ω(λi)]。可信中心依据属性在系统中重要程度的不同,对系统中的每一个属性都分配一个系统允许的最大权值。将属性集[Γ]中的每一个属性[λi],依据权重进行分割,将其分割后的最小份额设定为1,分割之后的属性[λi]所对应的则分别是[(λi,1),(λi,2),…,(λi,θi)],组成的集合也就被称为是全体属性权重的分割集[Γ?]。

2)系统建立[(1λ,Γ?)]算法:选择素数阶[ρ] 的群[G],记[u=iθi]。系统随机选择[h1,…,hu∈G],此外随机地选定指数[α],[α∈Zρ],可信中心根据安全参数[1λ]与全体属性权重分割集[Γ?] 运行系统,也即将全w属性权重的分割集[Γ?] 输入到系统。在以上计算过程中则可以生成公钥为[PK=g,e(g,g)α,gα,h1,…,hu],主密钥为[QK=gα]。

3)加密算法[(PK,m,A)]:输入参数则分别为公钥参数[PK]、访问结构[A]以及消息[m], [A]则属于是矩阵访问结构[(Q,f)],函数[f] 则能够有效实现属性权重最小份额和[Q]的有效对应。属性[λe]的第[θt]个权重分割位置则需要和矩阵第[i]个位置相对应,也就是确保[f(i)(λe,θt)]。[Q] 则可以作为是[l×n]的矩阵,在计算过程中需要先在[Znp]上确定出一组随机行向量[v=(s,y2,y3,…,yn)],则可以在加密元素[s]分享中应用。如果[i=1,2,…,l],则可以计算得出[γi=v?Qi],[Qi]则和[Q] 的第[i]行相对应。

加密算法公布密文则为

[CT=C=me(g,g)αs,C*=gs,C1=gαγ1h-sf(1),…,Cl=gαγlh-sf(l)]

4)密钥生成算法[(Qk,S*)]:在密钥算法过程中,则需要首先将主密钥[Qk]和用户对应属性分割集[S*]分别进行输入,随机确定[t∈Zp],将分割集[S*]生成为属性对应的私钥[SK]。以上计算过程中所得私钥为[SK=K=gαgαt,L=gt,?x∈S*:Kx=htx]。

5)解密算法[(PK,CT,SK)]:数据接受者在得到相应密文自后,在解密算法中一一输入公钥参数[PK]、私钥[SK]以及密文[CT],如果在私钥中的属性分割集[S*] 能够对密文访问结构[A]有效满足,也就能够成功解密,并有效恢复出消息[m]。

引入权重的属性基加密体制的优点体现在该方案不但支持细粒度的访问控制,也区别对待了不同属性的不同重要性,更加贴近于实际应用环境,近年来引起较多学者的重视。

5 结束语

图书馆隐私数字资源属于是自身特有的宝贵资源,在其应用中安全性非常重要。加密处理则是有效提高数据安全的一个重要措施。在云计算技术发展进程中,网络环境下的数据机密技术要求也随之加大,不断有新的加密算法提出、应用以及否定、改进等等,任何一种加密算法均具有自身的应用优势,因此在未来数据加密中,将实现不同加密体制的共同发展。由于算法原理简单、易于使用,同时在实际应用中安全性高以及加密速度快,对称加密技术的应用最为广泛,其中基于属性加密算法能够有效将传统的身份控制及认证,扩展成为用户属性集合认证,能够进一步实现其控制手段的丰富性。基于与门、或门等控制单元,能够设计出和不同情况相其和的访问控制结构,其在理论设计上的复杂性,近年得到广泛的关注。但是在当前应用过程中,基于属性加密算法和相关方案还存在一定不足,而属性权重的引入就是一种尝试。

参考文献:

[1] 杨D, 胡予濮, 张乐友, 等. 标准模型下可证明安全的分级身份签名方案[J]. 西安交通大学学报, 2011, 45(2): 27-33.

[2] 刘西蒙, 马建峰, 熊金波, 等. 密文策略的权重属性基加密方案[J]. 西安交通大学学报, 2013, 47(8): 44-48.

[3] 苏金树, 曹丹, 王小峰. 属性基加密机制[J]. 软件学报, 2011, 22(6): 1299-1315.

[4] 刘帆, 杨明. 一种用于云存储的密文策略属性基加密方案[J]. 计算机应用研究, 2012, 29(4): 1452-1456.

篇9

    论文摘要:随着计算机信息化建设的飞速发展,计算机已普遍应用到日常工作、生活的每一个领域,比如政府机关、学校、医院、社区及家庭等。但随之而来的是,计算机网络安全也受到全所未有的威胁,计算机病毒无处不在,黑客的猖獗, 都防不胜防。  

    计算机网络安全是指利用网络管理控制和技术措施,保证在一个网络环境里,数据的保密性、完整性及可使用性受到保护。从技术上来说, 计算机网络安全主要由防病毒、防火墙等多个安全组件组成,一个单独的组件无法确保网络信息的安全性。目前广泛运用和比较成熟的网络安全技术主要有:防火墙技术、数据加密技术、PKI技术等。 

    一、计算机网络安全技术 

    (一)防火墙技术。防火墙是指一个由软件或硬件设备组合而成,处于企业或网络群体计算机与外界通道之间,限制外界用户对内部网络访问及管理内部用户访问外界网络的权限。防火墙是网络安全的屏障,配置防火墙是实现网络安全最基本、最经济、最有效的安全措施之一。当一个网络接上Internet之后,系统的安全除了考虑计算机病毒、系统的健壮性之外,更主要的是防止非法用户的入侵,而目前防止的措施主要是靠防火墙技术完成。防火墙能极大地提高一个内部网络的安全性,并通过过滤不安全的服务而降低风险。通过以防火墙为中心的安全方案配置,能将所有安全软件配置在防火墙上。其次对网络存取和访问进行监控审计。如果所有的访问都经过防火墙,那么,防火墙就能记录下这些访问并做出日志记录,同时也能提供网络使用情况的统计数据。当发生可疑动作时,防火墙能进行适当的报警,并提供网络是否受到监测和攻击的详细信息。再次防止内部信息的外泄。利用防火墙对内部网络的划分,可实现内部网重点网段的隔离,从而降低了局部重点或敏感网络安全问题对全局网络造成的影响。 

    (二)数据加密技术。与防火墙相比,数据加密技术比较灵活,更加适用于开放的网络。数据加密主要用于对动态信息的保护,对动态数据的攻击分为主动攻击和被动攻击。对于主动攻击,虽无法避免,但却可以有效地检测;而对于被动攻击,虽无法检测,但却可以避免,实现这一切的基础就是数据加密。数据加密技术分为两类:即对称加密和非对称加密。 

    1.对称加密技术。对称加密是常规的以口令为基础的技术,加密密钥与解密密钥是相同的,或者可以由其中一个推知另一个,这种加密方法可简化加密处理过程,信息交换双方都不必彼此研究和交换专用的加密算法。如果在交换阶段私有密钥未曾泄露,那么机密性和报文完整性就可以得以保证。目前,广为采用的一种对称加密方式是数据加密标准DES,DES的成功应用是在银行业中的电子资金转账(EFT)领域中。2.非对称加密。在非对称加密体系中,密钥被分解为一对(即公开密钥和私有密钥)。这对密钥中任何一把都可以作为公开密钥通过非保密方式向他人公开,而另一把作为私有密钥加以保存。公开密钥用于加密,私有密钥用于解密,私有密钥只能有生成密钥的交换方掌握,公开密钥可广泛公布,但它只对应于生成密钥的交换方。非对称加密方式可以使通信双方无须事先交换密钥就可以建立安全通信,广泛应用于身份认证、数字签名等信息交换领域。 

    (三)PKI技术。PKI技术就是利用公钥理论和技术建立的提供安全服务的基础设施。PKI技术是信息安全技术的核心,也是电子商务的关键和基础技术。由于通过网络进行的电子商务、电子政务、电子事务等活动缺少物理接触,因此使得用电子方式验证信任关系变得至关重要。而PKI技术作为一种相对安全的技术,恰恰成为了电子商务、电子政务、电子事务的密码技术的首要选择,在实际的操作过程中他能够有效地解决电子商务应用中的机密性、真实性、完整性、不可否认性和存取控制等安全问题,而进一步保护客户的资料安全。

    二、计算机网络安全存在的问题 

    (一)互联网络的不安全性。1.1网络的开放性,由于现代网络技术是全开放的,所以在一定程度上导致了网络面临着来自多方面的攻击。这其中可能存在来自物理传输线路的攻击,也有肯那个来自对网络通信协议的攻击,也包括来自于本地网络的用户,还可以是互联网上其他国家的黑客等等。1.2网络的自由性,大多数的网络对用户的使用没有技术上的约束,用户可以自由的上网,和获取各类信息。 这也为了影响网络安全的一个主要因素。 

    (二)操作系统存在的安全问题。操作系统作为一个支撑软件,使得你的程序或别的运用系统在上面正常运行的一个环境。操作系统提供了很多的管理功能,主要是管理系统的软件资源和硬件资源。操作系统软件自身的不安全性,系统开发设计的不周而留下的破绽,都给网络安全留下隐患。 

    1.操作系统结构体系的缺陷。操作系统本身有内存管理、CPU管理、外设的管理,每个管理都涉及到一些模块或程序,如果在这些程序里面存在问题,比如内存管理的问题,外部网络的一个连接过来,刚好连接一个有缺陷的模块,可能出现的情况是,计算机系统会因此崩溃。所以,有些黑客往往是针对操作系统的不完善进行攻击,使计算机系统,特别是服务器系统立刻瘫痪。2.操作系统支持在网络上传送文件、加载或安装程序,包括可执行文件,这些功能也会带来不安全因素。网络很重要的一个功能就是文件传输功能,比如FTP,这些安装程序经常会带一些可执行文件,这些可执行文件都是人为编写的程序,如果某个地方出现漏洞,那么系统可能就会造成崩溃。3.操作系统不安全的一个原因在于它可以创建进程,支持进程的远程创建和激活,支持被创建的进程继承创建的权利,这些机制提供了在远端服务器上安装“间谍”软件的条件。若将间谍软件以打补丁的方式“打”在一个合法用户上,特别是“打”在一个特权用户上,黑客或间谍软件就可以使系统进程与作业的监视程序监测不到它的存在。 

    (三)防火墙的局限性。防火墙指的是一个由软件和硬件设备组合而成、在内部网和外部网之间、专用网与公共网之间的界面上构造的保护屏障.它是一种计算机硬件和软件的结合,使内部网与外部网之间建立起一个安全网关(Security Gateway),从而保护内部网免受非法用户的侵入。 

    三、结束语 

    计算机网络安全是一项复杂的系统工程,涉及技术、设备、管理和制度等多方面的因素,安全解决方案的制定需要从整体上进行把握。网络安全解决方案是综合各种计算机网络信息系统安全技术,将安全操作系统技术、防火墙技术、病毒防护技术、入侵检测技术、安全扫描技术等综合起来,形成一套完整的、协调一致的网络安全防护体系。我们必须做到管理和技术并重,安全技术必须结合安全措施,并加强计算机立法和执法的力度,建立备份和恢复机制,制定相应的安全标准。此外,由于计算机病毒、计算机犯罪等技术是不分国界的,因此必须进行充分的国际合作,来共同对付日益猖獗的计算机犯罪和计算机病毒等问题。 

    参考文献: 

篇10

关键词:数字签名;加密技术;数字证书;电子文档;安全问题

Abstract:Today’sapprovalofnewdrugsintheinternationalcommunityneedstocarryouttherawdatatransmission.Thetraditionalwayofexaminationandapprovalredtapeandinefficiency,andtheuseoftheInternettotransmitelectronictextcankeepdatasafeandreliable,butalsogreatlysavemanpower,materialandfinancialresources,andsoon.Inthispaper,encryptionanddigitalsignaturealgorithmofthebasicprinciples,combinedwithhisownideas,givenmedicalapprovalintheelectronictransmissionofthetextofthesecuritysolution.

Keywords:digitalsignature;encryptiontechnology;digitalcertificate;electronicdocuments;securityissues

1引言

随着我国医药事业的发展,研制新药,抢占国内市场已越演越烈。以前一些医药都是靠进口,不仅成本高,而且容易形成壁垒。目前,我国的医药研究人员经过不懈的努力,开始研制出同类同效的药物,然而这些药物在走向市场前,必须经过国际权威医疗机构的审批,传统方式是药物分析的原始数据都是采用纸张方式,不仅数量多的吓人,而且一旦有一点差错就需从头做起,浪费大量的人力、物力、财力。随着INTERNET的发展和普及,人们开始考虑是否能用互联网来解决数据传输问题。他们希望自己的仪器所做的结果能通过网络安全传输、并得到接收方认证。目前国外针对这一情况已⒘四承┤砑欢捎诩鄹癜汗螅际醪皇呛艹墒欤勾τ谘橹そ锥危媸被嵘兜脑颍诤苌偈褂谩U饩透谝揭┭蟹⑹乱敌纬闪思际跗烤保绾慰⒊鍪视榈南嘤θ砑创俳夜揭┥笈ぷ鞯姆⒄咕统闪斯诘那把亓煊颍胰涨肮谡夥矫娴难芯坎皇呛芏唷?lt;/DIV>

本文阐述的思想:基本上是参考国际国内现有的算法和体制及一些相关的应用实例,并结合个人的思想提出了一套基于公钥密码体制和对称加密技术的解决方案,以确保医药审批中电子文本安全传输和防止窜改,不可否认等。

2算法设计

2.1AES算法的介绍[1]

高级加密标准(AdvancedEncryptionStandard)美国国家技术标准委员会(NIST)在2000年10月选定了比利时的研究成果"Rijndael"作为AES的基础。"Rijndael"是经过三年漫长的过程,最终从进入候选的五种方案中挑选出来的。

AES内部有更简洁精确的数学算法,而加密数据只需一次通过。AES被设计成高速,坚固的安全性能,而且能够支持各种小型设备。

AES和DES的性能比较:

(1)DES算法的56位密钥长度太短;

(2)S盒中可能有不安全的因素;

(3)AES算法设计简单,密钥安装快、需要的内存空间少,在所有平台上运行良好,支持并行处理,还可抵抗所有已知攻击;

(4)AES很可能取代DES成为新的国际加密标准。

总之,AES比DES支持更长的密钥,比DES具有更强的安全性和更高的效率,比较一下,AES的128bit密钥比DES的56bit密钥强1021倍。随着信息安全技术的发展,已经发现DES很多不足之处,对DES的破解方法也日趋有效。AES会代替DES成为21世纪流行的对称加密算法。

2.2椭圆曲线算法简介[2]

2.2.1椭圆曲线定义及加密原理[2]

所谓椭圆曲线指的是由韦尔斯特拉斯(Weierstrass)方程y2+a1xy+a3y=x3+a2x2+a4x+a6(1)所确定的平面曲线。若F是一个域,ai∈F,i=1,2,…,6。满足式1的数偶(x,y)称为F域上的椭圆曲线E的点。F域可以式有理数域,还可以式有限域GF(Pr)。椭圆曲线通常用E表示。除了曲线E的所有点外,尚需加上一个叫做无穷远点的特殊O。

在椭圆曲线加密(ECC)中,利用了某种特殊形式的椭圆曲线,即定义在有限域上的椭圆曲线。其方程如下:

y2=x3+ax+b(modp)(2)

这里p是素数,a和b为两个小于p的非负整数,它们满足:

4a3+27b2(modp)≠0其中,x,y,a,b∈Fp,则满足式(2)的点(x,y)和一个无穷点O就组成了椭圆曲线E。

椭圆曲线离散对数问题ECDLP定义如下:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q的情况下求出小于p的正整数k。可以证明,已知k和P计算Q比较容易,而由Q和P计算k则比较困难,至今没有有效的方法来解决这个问题,这就是椭圆曲线加密算法原理之所在。

2.2.2椭圆曲线算法与RSA算法的比较

椭圆曲线公钥系统是代替RSA的强有力的竞争者。椭圆曲线加密方法与RSA方法相比,有以下的优点:

(1)安全性能更高如160位ECC与1024位RSA、DSA有相同的安全强度。

(2)计算量小,处理速度快在私钥的处理速度上(解密和签名),ECC远比RSA、DSA快得多。

(3)存储空间占用小ECC的密钥尺寸和系统参数与RSA、DSA相比要小得多,所以占用的存储空间小得多。

(4)带宽要求低使得ECC具有广泛得应用前景。

ECC的这些特点使它必将取代RSA,成为通用的公钥加密算法。比如SET协议的制定者已把它作为下一代SET协议中缺省的公钥密码算法。

2.3安全散列函数(SHA)介绍

安全散列算法SHA(SecureHashAlgorithm,SHA)[1]是美国国家标准和技术局的国家标准FIPSPUB180-1,一般称为SHA-1。其对长度不超过264二进制位的消息产生160位的消息摘要输出。

SHA是一种数据加密算法,该算法经过加密专家多年来的发展和改进已日益完善,现在已成为公认的最安全的散列算法之一,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。散列函数值可以说时对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。

3数字签名

“数字签名”用来保证信息传输过程中信息的完整和提供信息发送者的身份认证和不可抵赖性。数字签名技术的实现基础是公开密钥加密技术,是用某人的私钥加密的消息摘要用于确认消息的来源和内容。公钥算法的执行速度一般比较慢,把Hash函数和公钥算法结合起来,所以在数字签名时,首先用hash函数(消息摘要函数)将消息转变为消息摘要,然后对这个摘

要签名。目前比较流行的消息摘要算法是MD4,MD5算法,但是随着计算能力和散列密码分析的发展,这两种算法的安全性及受欢迎程度有所下降。本文采用一种比较新的散列算法――SHA算法。

4解决方案:

下面是医药审批系统中各个物理组成部分及其相互之间的逻辑关系图:

要签名。目前比较流行的消息摘要算法是MD4,MD5算法,但是随着计算能力和散列密码分析的发展,这两种算法的安全性及受欢迎程度有所下降。本文采用一种比较新的散列算法――SHA算法。

4解决方案:

下面是医药审批系统中各个物理组成部分及其相互之间的逻辑关系图:

图示:电子文本传输加密、签名过程

下面是将医药审批过程中的电子文本安全传输的解决方案:

具体过程如下:

(1)发送方A将发送原文用SHA函数编码,产生一段固定长度的数字摘要。

(2)发送方A用自己的私钥(keyA私)对摘要加密,形成数字签名,附在发送信息原文后面。

(3)发送方A产生通信密钥(AES对称密钥),用它对带有数字签名的原文进行加密,传送到接收方B。这里使用对称加密算法AES的优势是它的加解密的速度快。

(4)发送方A用接收方B的公钥(keyB公)对自己的通信密钥进行加密后,传到接收方B。这一步利用了数字信封的作用,。

(5)接收方B收到加密后的通信密钥,用自己的私钥对其解密,得到发送方A的通信密钥。

(6)接收方B用发送方A的通信密钥对收到的经加密的签名原文解密,得数字签名和原文。

(7)接收方B用发送方A公钥对数字签名解密,得到摘要;同时将原文用SHA-1函数编码,产生另一个摘要。

(8)接收方B将两摘要比较,若一致说明信息没有被破坏或篡改。否则丢弃该文档。

这个过程满足5个方面的安全性要求:(1)原文的完整性和签名的快速性:利用单向散列函数SHA-1先将原文换算成摘要,相当原文的指纹特征,任何对原文的修改都可以被接收方B检测出来,从而满足了完整性的要求;再用发送方公钥算法(ECC)的私钥加密摘要形成签名,这样就克服了公钥算法直接加密原文速度慢的缺点。(2)加解密的快速性:用对称加密算法AES加密原文和数字签名,充分利用了它的这一优点。(3)更高的安全性:第四步中利用数字信封的原理,用接收方B的公钥加密发送方A的对称密钥,这样就解决了对称密钥传输困难的不足。这种技术的安全性相当高。结合对称加密技术(AES)和公开密钥技术(ECC)的优点,使用两个层次的加密来获得公开密钥技术的灵活性和对称密钥技术的高效性。(4)保密性:第五步中,发送方A的对称密钥是用接收方B的公钥加密并传给自己的,由于没有别人知道B的私钥,所以只有B能够对这份加密文件解密,从而又满足保密性要求。(5)认证性和抗否认性:在最后三步中,接收方B用发送方A的公钥解密数字签名,同时就认证了该签名的文档是发送A传递过来的;由于没有别人拥有发送方A的私钥,只有发送方A能够生成可以用自己的公钥解密的签名,所以发送方A不能否认曾经对该文档进进行过签名。

5方案评价与结论

为了解决传统的新药审批中的繁琐程序及其必有的缺点,本文提出利用基于公钥算法的数字签名对文档进行电子签名,从而大大增强了文档在不安全网络环境下传递的安全性。

本方案在选择加密和数字签名算法上都是经过精心的比较,并且结合现有的相关应用实例情况,提出医药审批过程的解决方案,其优越性是:将对称密钥AES算法的快速、低成本和非对称密钥ECC算法的有效性以及比较新的算列算法SHA完美地结合在一起,从而提供了完整的安全服务,包括身份认证、保密性、完整性检查、抗否认等。

参考文献:

1.李永新.数字签名技术的研究与探讨。绍兴文理学院学报。第23卷第7期2003年3月,P47~49.

2.康丽军。数字签名技术及应用,太原重型机械学院学报。第24卷第1期2003年3月P31~34.

3.胡炎,董名垂。用数字签名解决电力系统敏感文档签名问题。电力系统自动化。第26卷第1期2002年1月P58~61。

4.LeungKRPH,HuiL,CK.HandingSignaturePurposesinWorkflowSystems.JournalofSystems.JournalofSystemsandSoftware,2001,55(3),P245~259.

5.WrightMA,workSecurity,1998(2)P10~13.

6.BruceSchneier.应用密码学---协议、算法与C源程序(吴世终,祝世雄,张文政,等).北京:机械工业出版社,2001。

7.贾晶,陈元,王丽娜,信息系统的安全与保密[M],北京:清华大学出版社,1999

8.陈彦学.信息安全理论与实务【M】。北京:中国铁道出版社,2000p167~178.

9.顾婷婷,《AES和椭圆曲线密码算法的研究》。四川大学硕士学位论文,【馆藏号】Y4625892002。

下面是将医药审批过程中的电子文本安全传输的解决方案:

具体过程如下:

(1)发送方A将发送原文用SHA函数编码,产生一段固定长度的数字摘要。

(2)发送方A用自己的私钥(keyA私)对摘要加密,形成数字签名,附在发送信息原文后面。

(3)发送方A产生通信密钥(AES对称密钥),用它对带有数字签名的原文进行加密,传送到接收方B。这里使用对称加密算法AES的优势是它的加解密的速度快。

(4)发送方A用接收方B的公钥(keyB公)对自己的通信密钥进行加密后,传到接收方B。这一步利用了数字信封的作用,。

(5)接收方B收到加密后的通信密钥,用自己的私钥对其解密,得到发送方A的通信密钥。

(6)接收方B用发送方A的通信密钥对收到的经加密的签名原文解密,得数字签名和原文。

(7)接收方B用发送方A公钥对数字签名解密,得到摘要;同时将原文用SHA-1函数编码,产生另一个摘要。

(8)接收方B将两摘要比较,若一致说明信息没有被破坏或篡改。否则丢弃该文档。

这个过程满足5个方面的安全性要求:(1)原文的完整性和签名的快速性:利用单向散列函数SHA-1先将原文换算成摘要,相当原文的指纹特征,任何对原文的修改都可以被接收方B检测出来,从而满足了完整性的要求;再用发送方公钥算法(ECC)的私钥加密摘要形成签名,这样就克服了公钥算法直接加密原文速度慢的缺点。(2)加解密的快速性:用对称加密算法AES加密原文和数字签名,充分利用了它的这一优点。(3)更高的安全性:第四步中利用数字信封的原理,用接收方B的公钥加密发送方A的对称密钥,这样就解决了对称密钥传输困难的不足。这种技术的安全性相当高。结合对称加密技术(AES)和公开密钥技术(ECC)的优点,使用两个层次的加密来获得公开密钥技术的灵活性和对称密钥技术的高效性。(4)保密性:第五步中,发送方A的对称密钥是用接收方B的公钥加密并传给自己的,由于没有别人知道B的私钥,所以只有B能够对这份加密文件解密,从而又满足保密性要求。(5)认证性和抗否认性:在最后三步中,接收方B用发送方A的公钥解密数字签名,同时就认证了该签名的文档是发送A传递过来的;由于没有别人拥有发送方A的私钥,只有发送方A能够生成可以用自己的公钥解密的签名,所以发送方A不能否认曾经对该文档进进行过签名。

5方案评价与结论

为了解决传统的新药审批中的繁琐程序及其必有的缺点,本文提出利用基于公钥算法的数字签名对文档进行电子签名,从而大大增强了文档在不安全网络环境下传递的安全性。

本方案在选择加密和数字签名算法上都是经过精心的比较,并且结合现有的相关应用实例情况,提出医药审批过程的解决方案,其优越性是:将对称密钥AES算法的快速、低成本和非对称密钥ECC算法的有效性以及比较新的算列算法SHA完美地结合在一起,从而提供了完整的安全服务,包括身份认证、保密性、完整性检查、抗否认等。

参考文献:

1.李永新.数字签名技术的研究与探讨。绍兴文理学院学报。第23卷第7期2003年3月,P47~49.

2.康丽军。数字签名技术及应用,太原重型机械学院学报。第24卷第1期2003年3月P31~34.

3.胡炎,董名垂。用数字签名解决电力系统敏感文档签名问题。电力系统自动化。第26卷第1期2002年1月P58~61。

4.LeungKRPH,HuiL,CK.HandingSignaturePurposesinWorkflowSystems.JournalofSystems.JournalofSystemsandSoftware,2001,55(3),P245~259.

5.WrightMA,workSecurity,1998(2)P10~13.

6.BruceSchneier.应用密码学---协议、算法与C源程序(吴世终,祝世雄,张文政,等).北京:机械工业出版社,2001。

7.贾晶,陈元,王丽娜,信息系统的安全与保密[M],北京:清华大学出版社,1999