混凝土结构设计论文范文

时间:2023-03-24 16:47:11

导语:如何才能写好一篇混凝土结构设计论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

混凝土结构设计论文

篇1

关键词:混凝土结构设计建筑结构

前言

1在设计方法上的差别

在建筑结构专业的《混凝土结构设计规范》GBJ10-89中(以下简称GBJ10-89),采用的是近似概率极限状态设计方法。以概率理论为基础,较完整的统计资料为依据,用结构可靠度来衡量结构的可靠性,按可靠度指标来确定荷载分项系数与材料分项系数,使设计出来的不同结构,只要重要性相同,结构的可靠度是相同的。

在公路桥梁专业的《公路钢筋混凝土及预应力混凝土桥涵设计规范》TJT023-85中(以下简称TJT023-85),采用的是半概率半经验的极限状态设计方法。虽然也采用概率理论及结构可靠度理论,但在设计公式中是用三个经验系数来反映结构的安全性,即荷载安全系数、材料安全系数、结构工作条件系数。

在设计中,对这种系数的差别要注意区别,不能混淆。

2材料强度取值上的差别

2.1混凝土的强度

混凝土立方体抗压强度是混凝土的基本强度指标,是用标准试块在标准养护条件下养护后用标准试验方法测得的强度指标。两规范中所采用的试块尺寸是不同的。GBJ10-89中采用150mm立方体试块,TJT023-85中用200mm的立方体试块。GBJ10-89中,根据测得的具有95%保证率的立方体抗压极限值来确定混凝土的强度等级,一共分为十级,即C10,C15,C20,C25,C30,C35,C40,C45,C50,C60。

TJT023-85中,根据测得到具有84.13%保证率的立方体抗压极限值来确定混凝土的强度等级,用混凝土标号表示,一共分为七级,即15号、20号、25号、30号、40号、50号、60号。由于所采用的试块尺寸不同,两规范中相同数值等级的混凝土强度值是不同的,GBJ10-89的值大。如C15混凝土与15号混凝土,尽管都表示强度等级为15Mpa的混凝土,但实际强度C15混凝土比15号混凝土大。混凝土强度取值不同,这一点在设计中是要注意的。

2.2钢筋的强度

两规范中,钢筋的标准强度取值是一样的,都采用钢材的废品限制值作为取值依据。但钢筋的设计强度取值不一样,GBJ10-89中以标准强度值除以材料分项系数作为取值依据,而TJT023-85中设计强度取值与标准强度取值是一样的。这样,相同的钢筋等级,TJT023-85中钢筋的设计强度取值大。

3荷载取值的差别

两规范中荷载分类与取值都有明确的规定,不容易混淆。在荷载效应组合中有一点差别,应注意。GBJ10-89中,荷载效应组合时,既有荷载分项系数,又有荷载组合系数,要区别开来。TJT023-85中只有荷载分项系数。

4构件计算的差别

两规范中在构件计算上,尽管依据的原理、计算假定、计算模型基本一致,但计算公式、计算结果是有较大差别的。构件计算是关系到设计结果的最重要的一环,值得重视。限于篇幅,只以正截面受弯和斜截面受剪强度计算为例看计算上的差别。

4.1正截面受弯强度计算

两规范在计算假定上就有差别。混凝土极限压应变取值,TJT023-85中为εu=0.003GBJ10-89中εu=0.0033。在等效矩形应力图形中,TJT023-85取γσ=Raβx=0.9x。GBJ10-89中取γσ=1.1fcβx=0.8x。由于εu取值不同,两规范中混凝土界限受压区高度有些差别。从混凝土极限压应变、等效矩形应力图形的差别上可以看出,两规范中安全储备是不同的。TJT023-85的安全储备大。

下面用算例来说明这一问题。

有矩形截面梁,截面尺寸为250mm×500mm20号混凝土,Ⅱ级钢筋。计算截面处计算弯矩为Mj=15KN.m试进行配筋计算。

4.1.1先按TJT023-85计算。

已知20号混凝土抗压强度设计值Ra=11MpaII级钢筋抗拉强度设计值Rg=340Mpa混凝土相对界限受压区高度ξjg=0.55,材料安全系数γc=γs=1.25。

(1)求混凝土受压区高度x

先假定钢筋按一排布置,钢筋重心到混凝土受拉边缘的距离a=40mm,则有效高度h0=(500-40)mm=460mm由

解得X=133mm<ξjgh0=0.55×460=253mm。

(2)求所需钢筋数量Ag,由RgAg=Ra·bx,得

Ag===1076mm2

(3)验算最小配筋率μ===1%>μmin=

0.1%,满足规范要求。

4.1.2按GBJ10-89计算

C20混凝土,弯曲抗压强度设计值fcm=11Mpa,钢筋抗拉强度设计值fy=310Mpa混凝土相对界限受压区高度ξb=0.544

(1)求X有Mj=fcmb×(h0-)得115×106=11×250×(460-),解得x=(1-1-)h0=102.3mm<ξbh0=0.544×460=250.2mm满足要求

(2)求As由Asfy=fcmbx得As=fcmbx/fy=(11x250×102.3)/310=907.5mm2>μminbh0=0.15%×250×460=172.5mm2

如果扣除由于20号混凝土与C20混凝土之间强度取值的差别,20号混凝土按GBJ10-89,fcm=11×0.95=10.45MPa则x=(1-1-)×460=108.5mm,As=(10.45x250x108.5)/310=914.4mm2

从上述计算中看出,按TJT023-85比按GBJ10-89钢筋用量多17.7%。

4.1.3受弯构件斜截面强度计算

在斜截面强度计算中,两规范都是根据斜截面发生剪压破坏时的受力特征和试验资料所制定的。但两规范在计算公式表述上及计算结果上都有较大的差别。

TJT023-85中,斜截面强度计算公式为:Qj≤Qu=Qhk+QW,其中Qhk=0.0349bh0(2+p)RμkRgk,Qw=0.06RgwΣAwsinα,式中Qj:根据荷载组合得出的通过斜截面顶端正截面内的最大剪力,即计算剪力,单位为KN;Qhk:混凝土和箍筋的综合抗剪承载力(KN);Qw:弯起钢筋承受的剪力(KN);b:通过斜截面受压区顶端截面上的腹板厚度(cm);h0:通过斜截面受压区顶端截面上的有效高度,自纵向受拉钢筋合力点至受压边缘的距离(cm);μk:箍筋配筋率μk=nk·ak/(b·s);Rgk:箍筋的抗拉设计强度(Mpa),设计时不得采用大于340Mpa:R:混凝土标号(Mpa);p斜截面内纵向受拉主筋的配筋率,p=100μ,μ=Ag/bh0当p>3.5时,取p=3.5;Rgw:弯起钢筋的抗拉设计强度(Mpa);Aw在一个弯起钢筋平面内的弯起钢筋纵截面面积(cm2);α:弯起钢筋与构件纵向轴线的夹角。

上式中工作条件系数、安全系数均已记入。公式的适用条件采用上限值和下限值来保证。上限值要求截面最小尺寸满足Qj≤0.051Rh0(KN)。满足下限值,Qj≤0.038R1bh0(KN)可按构造要求配置箍筋,式中R1:混凝土抗拉设计强度(Mpa)。GBJ10-89中,斜截面承载力的计算公式为V≤Vu=Vcs+Vsb其中Vcs=0.07fcbh0+1.5fyv(Asv/S)h0Vsb=0.8fyAsbsinαs当为承受集中荷载的矩形独立梁,Vcs=0.2/(λ+1.5)fcbh0+1.25fyvh0,式中V:构件截面上的最大剪力设计值(N);Vcs:混凝土与箍筋的综合抗剪承载力(N);Vsb:弯起钢筋所承受的剪力(N);b:矩形截面的宽度,T形截面或I形截面的腹板宽度(mm);h0:通过斜截面受压区顶端截面上的有效高度,自纵向受拉钢筋合力点至受压边缘的距离(mm);fc:混凝土的抗压强度设计值(Mpa);fyv:箍筋的抗拉强度设计值(Mpa);S:沿构件长度箍筋间距(mm);fy:弯起钢筋的抗拉强度设计值(Mpa);Asb:在一个弯起钢筋平面内的弯起钢筋纵截面面积(mm2);αs:弯起钢筋与构件纵向轴线的夹角。

公式的适用条件也是采用上限值和下限值来保证。上限值要求截面最小尺寸满足V≤0.25fcbh0当为薄腹梁,V≤0.2fcbh0。满足下限值V=0.07fbh0,可按构造要求配置箍筋。从上述公式中,可以看出,公式的表达形式不同,各物理量的单位也不同。

下面以实际例子看看计算结果上的差别。

已知T形截面简支梁,25号混凝土,纵筋采用II级钢筋,箍筋采用I级钢筋,计算截面的计算剪力为416.27KN受拉区有2Φ32的纵筋,保护层厚30mm。进行腹筋设计。

下表是根据两规范进行的计算比较。

TJT023-85中,对斜截面抗剪计算,要求弯起钢筋承担40%的计算剪力,混凝土与箍筋共同承担60%的计算剪力。另根据规范对计算剪力的定义,TJT023-85中的计算剪力与GBJ10-89中的设计剪力是一致的。所以在GBJ10-89计算中,也按4:6比例分担剪力。

篇2

关键词:高层建筑;预应力;混凝土板式;转换层结构;设计

现代社会经济不断发展进步,社会群体对高层建筑工程的设计效果以及建设质量也提出了更高的要求,预应力混凝土板式转换层结构作为高层建筑中的重要组成部分,受到社会的高度重视。为进一步满足用户的多元需求,促进高层建筑实际功能的有效发挥,应当充分做好预应力混凝土板式转换层结构设计工作,以保证建筑的整体性,进一步改善高层建筑整体设计效果。

1预应力混凝土板式转换层结构的优点

一是预应力混凝土板式转换层结构能够在一定程度上改善建筑整体结构抗裂性能,提高高层建筑整体质量。通过研究可知,在采用预应力混凝土板式转换层结构后,高层建筑转换层结构的抗裂性得到明显改善,裂缝发生的几率明显降低,为高层建筑质量控制打下良好的基础。二是预应力混凝土板式转换层结构能有效改善转换层结构的抗冲切能力,且便于施工操作,一定程度上降低了施工难度。三是预应力混凝土板式转换层结构能够促进混凝土板中内部压力均匀分布,便于高层建筑建设过程中对不同体积的混凝土内部收缩拉力进行科学化控制,减少混凝土内部裂缝发生几率,切实提高了混凝土浇筑质量,提高转换层抗震性能,确保高层建筑的使用功能得到最大程度的发挥。

2预应力混凝土板式转换层结构的设计原则与设计方法

2.1设计原则

在高层建筑预应力混凝土板式转换层结构设计过程中,应当充分考虑高层建筑功能需求,对混凝土板式转换层结构进行灵活布置,调整好上下剪切刚度,确保其满足设计要求,对转换层结构设计质量进行科学化控制。在基础上应当依照建筑物高度方向设置转换层结构,将其分为三种布置形式,分别是分段布置、间隔布置以及在建筑物顶部设置。在预应力混凝土板式转换层结构设计过程中,应当结合工程项目的实际情况在上述布置方式中加以合理选取,依据实际情况进行合理选择,最大程度上避免高层建筑物出现整体刚度不足而影响转换层结构稳定性的情况。在设计中应当遵循一定设计原则,确保转换层与加强层和设备层共同设置,从而全面提高预应力混凝土板式转换层结构设计水平。

2.2设计方法

2.2.1设计计算。首先对预应力混凝土板式转换层结构参数进行计算分析,根据计算结果,适宜将其设置在转换层的下面,同时可以采用等效交叉梁系方法计算实体厚板,一般情况下等效交叉梁单侧宽度小于板厚,一般为两个支承距离的一半。其次应对厚板的具体荷载进行计算,按照实际柱、墙,将支座的各项参数输入即可。再次由于三维单元计算方法精度较高,时间相对较短,所以采用此种方式对厚板的局部参数进行计算,在计算过程中,其主要形式为直角合格,所以还需要绘制网格,绘制过程中,应保证网格的长、宽、高的量级相同,并对尺寸相近的单元进行模式划分。

2.2.2结构平面布置。转换层结构形式有很多种,包括板式转换层、梁式转换层、箱式转换层以及桁架式转换层等等,在结构平面布置过程中,应根据建筑工程的实际情况,合理选择转换层结构形式。在所有转换层结构中,板式结构层具有结构布置简单、灵活等,缺点在于板的自重较大、材料消耗大;梁式转换层有点在于施工简单、传力明显,缺点在于空间受力复杂、高度受到限制等;箱式转换层的优点在于刚度大、整体工作效果好,缺点在于施工较为复杂、施工成本较高;桁架式转换层弯矩、剪力相对较小,缺点在于施工复杂。因此通过对不同转换层结构形式的分析,结合工程实际情况,采取板式转换层结构形式。

2.2.3结构竖向布置。对于结构竖向布置,关键在于控制好建筑的侧向刚度,应遵循下大上小的原则,并严格控制转换层上下等效侧向刚度比。在设计过程中,应对转换层的上部和下部分别进行强化和弱化,为达到这一目的,其具体做法如下:对于转换层下部结构,如剪力墙、核心筒部分,应增加其厚度,同时在条件允许的情况下,应使其底部剪力墙不开洞;采取有效措施,提高底部柱的强度等级,与此同时剪力墙的强度也应有所提高。

3高层建筑预应力混凝土板式转换层结构设计的要点

3.1转换层下部区域结构的刚度分布。在预应力混凝土板式转换层结构设计过程中,下部区域结构的刚度分布是转换层结构设计中的重点内容,一旦设计刚度较大,会导致地震反应发生,结构竖向刚度急速膨胀,使得转换层上下受力不均衡,严重影响转换层结构稳定性与经济性。一旦刚度过小,在沉降差作用下会产生次应力,导致配筋增加。此种情况下,为切实提高高层建筑预应力混凝土板式转换层结构设计要点,应当充分做好转换层下部区域结构的刚度分布,充分考虑竖向刚度变化情况,并全面衡量抗震设计相关内容,确保转换层主体结构剪切刚度满足高层建筑相关技术标准,通过提高混凝土强度或增加剪力墙等方式来保证刚度分布的均匀性。应当注意的是,在转换层下部区域结构刚度分布中,应当高度重视筒体安全设计等相关工作,切实提高高层建筑的抗震性能。尤其是剪力墙的运用应当保证刚度均衡,最大程度上避免建筑物变形而影响高层建筑结构稳定性。3.2剪力墙作用于结构上下部分的刚度传输。在预应力混凝土板式转换层结构设计中,为促进不同结构之间内力的有序传递,应当在结构上部对刚度分布进行科学化控制,通过减少剪力墙的方式缩短墙肢,从而促进刚度顺利传输。与此同时,应当适度增大下部刚度,在确定剪力墙数量后对其进行优化布置,保证对称分布,从而促进刚度传输的均匀性和有效性。3.3合理确定转换层结构的刚度值。在进行转换层结构设计的时候,一个重要的值就是转换层结构的刚度值。一旦出现刚度超标的现象,地震反应就会出现,竖向刚度会急剧增大,使得上下层不利于受力和均衡性,另外,材料的需要增加,经济上比较不合理。如果转换层的刚度较小,那么竖向构件之间会出现沉降差,在结构与构件之间形成次应力。此时,就要选择合适的次梁截面尺寸,保证其刚度达标。

总而言之,预应力混凝土板式转换层结构在高层建筑设计中的合理应用,能够在一定程度上改善结构性能,从整体上提高高层建筑设计效果。为保证预应力混凝土板式转换层结构设计的合理性,应当结合高层建筑工程项目的实际特点开展综合分析,掌握好设计要点,对转换层相关参数进行合理计算,全面提高高层建筑预应力混凝土板式转换层结构设计水平,推动高层建筑行业的稳定健康发展。

作者:张晓妍 单位:大庆市规划建筑设计研究院

参考文献

篇3

关键词:钢筋混凝土高层结构;结构设计;剪力墙

中图分类号:tu37 文献标识码:a

随着改革开放以来我国国民经济整体的迅速发展,国内各个行业都得到了巨大的发展,整体的行业水平稳步提高,其中,建筑行业的提升水平是比较快的,建筑行业的发展带来了建筑形式,建筑技术,建筑材料等的多元化变革,其中钢筋混凝土因为安全系数高,抗震性能好等诸多优点而使用广泛,其中高层建筑发展更为迅速,设计思想也在不断更新,结构体系日趋多样化,建筑平面布置与竖向体型也越来越复杂,这就给高层建筑结构分析和设计提出了更高的要求。如何高效、准确地对高层结构体系进行内力分析,是结构工程师设计高层建筑结构时需要解决的重要课题。本文通过对高层建筑结构设计过程中经常遇到的问题进行分析,为高层建筑结构设计提供计算方法及理论依据。

1 建筑设计

建筑不同于普通商品,尤其是高层建筑,很多因为是地理标志性建筑。什么是高层建筑呢?10层及10层以上或房屋高度大于28m的住宅建筑和房屋高度大于24m的其他高层民用建筑。在建筑外观上,我们应该多选择一些新颖的建筑样式,同时又要注意其抗震设计、抗风设计等基础要素。但是建筑也不能盲目的标新立异,结构上应该选择规则性强一些的,不论是平面或者立体都应该尽量遵循这个原则。而且建筑在弹性设计上,尽量要满足延展性的需求。这种概念设计的强调是对建筑师的必须要求,建筑设计师一定要重视各种规范规定,千万不要陷入只管设计不管计算的误区。

2 结构设计

2.1 剪力墙底部加强部位墙厚的确定

抗震设计时,剪力墙的底部加强部位包括底部塑性铰范围及其上部的一定范围,其目的是在此范围内采取增加边缘构件箍筋和墙体横向钢筋等必要的抗震加强措施避免脆性的剪切破坏,改善整个结构的抗震性能。《高建筑混凝土结构技术规程》jgj3-2010(下简称《高规》)7.1.4条规定,抗震设计时,一般剪力墙结构底部加强部位的高度可取墙肢总高度的1/10和底部两层二者的较大值。部分框支剪力墙结构底部加强部位的高度应符合《高规》10.2.2条的规定,底部加强部位的高度应从地下室顶板算起,当结构计算嵌固端位于地下一层底板或以下时,底部加强部位宜延伸到计算嵌固端。《建筑抗震规范》gb50011(以下简称<抗规》)及《高规》规定了剪力墙底部加强部位墙厚的取值。其中,考虑到高层建筑结构的重要性,《高规》对墙厚的取值规定得更为严格。一般情况下,高层建筑结构底部加强部位的剪力墙截面厚度k取法如下:一、二级抗震等级时取层高或剪力墙无支长度的1/16,并且满足bw≥200mm;三、四级抗震等级时,k取层高或剪力墙无支长度的1/20,并且满足k≥160mm。但对于墙底轴力较小且结构层高相对较高的剪力墙而言。其截面厚度按上述方法取值则显得不是很经济合理。因此具体工程设计时,剪力墙截面厚度bw可适当减小但必须按下式计算墙体的稳定性。

公式中:q为作用于墙顶组合的等效竖向均布荷载设计值;ec为剪力墙混凝土弹性模量;t为剪力墙墙肢截面厚度;lo墙肢计算长度。

2.2 结构的超高问题

在抗震规范与高规中,建筑物的高度控制是非常严格的,而在新规范中这一点重新进行了界定,除了将原来的限制高度设定为a级高度的建筑外,增加了b级高度的建筑。因此,所以在进行设计的时候一定不可以超越其应属范围,b级建筑物就应该控制在b级规定范围之内,一旦超过了,那么无论是设计还是施工都要全部进行重新设定。在现实情况中这类问题曾经出现过,结果导致审查时难以通过。

2.3 短肢剪力墙的设置问题

短肢剪力墙使用虽然具有一定的的作用,但是在使用数量上一定要严格参照规范,《高规》7.1.8规定抗震设计时,高层建筑结构不应全部采用短肢剪力墙,b级高度高层建筑以及抗震设防度为9度的a级高度层建筑,不宜布置短

肢剪力墙,不应采用具有较多短肢剪力墙的剪力墙结构。当采用具有较多短肢剪力墙的剪力墙结构时,应符合下列规定:(1)在规定的水平地震作用下,短肢剪力墙承担的底部倾覆力矩不宜大于结构底部总地震倾覆力矩的50%;(2)房屋适用高度应比本规程表3.3.1-1规定的剪力墙结构的最大适用高度适当降低,7度、8度(0.2g)和8度(0.3g)时分别不应大于100m,80m和60m。短肢剪力墙是指截面厚度不大于300mm、各肢截面高度与厚度之比的最大值大于4但不大于8的剪力墙。

2.4 基础设计

在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广,地质条件相当复杂,作为国家标准,仅仅一本《地基基础设计规范》无法对全国各地的地基基础都进行详细的描述和规定。因此,作为建立在国家标准之下的地方标准,地方性的“地基基础设计规范”能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确。所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。

3 计算与分析

3.1 计算模型的选取

对于常规结构,可采用楼板整体平面内无限刚假定模型;对于多塔或错层结构,可采用楼板分块平面内无限刚模型;对于楼板局部开大洞、塔与塔之间上部相连的多塔结构等可采用楼板分块平面内无限刚,并带弹性连接板带模型;而对于楼板开大洞有中庭等共享空间的特殊楼板结构或要求分析精度高的高层结构则可采用弹性楼板模型。

3.2 抗震等级的确定

对常规高层建筑,与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;对于地下室部分,当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可逐层降低一级,但不低于四级,地下室中超出上部主楼相关范围且无上部结构的部分,其抗震等级可根据具体情况采用三级或四级。

结语

钢筋混凝土高层结构作为现代化城市发展的一种客观成果,引领着我国建筑行业整体的发展水平。在设计方面,钢筋混凝土高层结构一定要充分考虑到各种潜在的因素,既要让建筑漂亮美观大方,也要注意建筑的安全性能,毕竟后者是所有建筑的立足之本。在做好相关工作的基础上,希望我国的建筑水平能迎来更好的发展。

参考文献

[1]jgj3-2010,高层建筑混凝土结构技术规程[s].

篇4

关键词:混凝土结构;教学方法;课程

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2013)05-0105-02 混凝土结构使用至今已经有160年的历史,与钢、木和砌体结构相比,因其在物理力学性能及材料来源等方面的诸多优点,同时结合高强度结构钢材很好的受拉性能、延性以及与混凝土间良好的粘结性能等优点,目前已发展出了钢筋混凝土结构、预应力混凝土结构、钢骨混凝土结构、钢管混凝土组合结构、纤维混凝土结构等诸多结构形式,发展速度快,应用范围也非常广泛。混凝土结构是我国高等院校土木工程专业本科培养计划中一门重要的专业学位课,一般而言的混凝土结构是《混凝土结构设计原理》和《混凝土结构与砌体结构设计》两门课的总称,以下简称“混凝土结构”课程。作为土建类专业本科生必修的一门重要的专业课程,近年来关于混凝土结构的教科书、专著和论文很多,但有关其教学方法研究方面的论文却很少,基于这一点,本文从土木工程专业本科教学的角度出发,对混凝土结构的教学方法进行探讨。

一、《混凝土结构》课程的特点

《混凝土结构》课程包括基本(构件)理论和结构设计两大部分内容。第一部分为基本(构件)理论,主要探讨钢筋混凝土基本构件——受弯构件、轴心受拉、受压构件、偏心受拉、受压构件以及受扭构件等,在单一的拉、压、弯、剪、扭应力状态及几种复合应力状态共同作用下的受力性能分析方法、设计计算和构造配筋等方面内容。在教学计划上,这部分内容属于专业基础课,重点在于让学生掌握钢筋混凝土各种构件受力性能的分析和设计计算[1]。第二部分为结构设计部分,主要探讨楼盖结构、单层厂房结构和高层建筑结构的设计,在教学计划上,这部分内容属于专业课,重点在于让学生掌握结构设计的总体思路、设计步骤及具体施工图的绘制,培养学生解决实际问题的综合能力。

由于在第一部分基本(构件)理论中,概念多、公式多、符号多、配筋构造多、计算过程繁琐,使得初学者往往抓不住重点;而在结构设计部分中,需要当把各种单个构件组合成整体结构进行设计时,就更难弄清楚了。因此在讲授本课程时,必须首先了解本课程的特点。

1.混凝土结构涉及的问题往往都是工程上的一些实际问题,很少有孤立存在的,学生在学习本课程之前一般都缺少工程概念,有一些构件是怎么连接的根本不清楚,就更谈不上清楚构件间受力的传递路径是怎样的了,因此在开始学习本课程时必然感到不适应。

2.钢筋混凝土结构是由钢筋和混凝土两种力学性能完全不同的材料组成的,根本不属于理想变形体,因此不能采用以往在材料力学和结构力学课程中学习的杆件或结构的一些力学公式进行计算分析。因此,混凝土结构中各种构件的承载力计算公式,一般都是以室内模型实验分析数据为依据,再基于某些基本假定,得到截面破坏时的应力图形,利用分析截面应力平衡条件建立平衡方程,进而得到各种构件承载力计算的基本公式。

3.混凝土结构构件承载力极限状态设计主要包括:材料选择、截面预估和配筋计算三部分。在这三部分中,“材料选择”是根据工程特点和设计经验确定的,“截面预估”是根据构造要求和工程上常用尺寸确定的,只有“配筋计算”是根据承载力计算公式计算出来的。可以说,我们在进行结构构件设计时,是“由未知求未知”的过程,解答必然也是多种多样的,因此如何合理的选择设计参数并优选出最佳的配筋结果,这是学生在以往课程中所没有遇到的。

二、教学方法分析

根据《混凝土结构》课程的特点,总结出如下几条教学经验,以提高本课程的教学效果,加强学生综合能力的培养。

(一)从全局建立结构系统概念

为了使学生了解和掌握结构系统概念,了解本课程的主要层次关系,从全局把握学习重点,理清学习思路。我们首先以一个学生比较熟知的、具体的结构(如教学楼)为例,从全局上介绍结构—构件—截面—材料体系,讲清结构设计程序是从结构构件截面,同时构件的受力性能又取决于材料,而课程的教学程序则与设计程序相反,是从材料截面构件结构,通过这样讲授,使学生一开始就建立结构整体系统的概念,理清了各部分的关系,为课程学习建立了一个总体框架,更重要的是使学生明白了所应解决的问题[1,2]。

(二)强调实践性教学环节

实践性教学环节包括:到施工现场参观的认识实习、课程设计及综合技能训练等。在《混凝土结构》课程开课之前,安排学生到一些建筑工地去参观正在施工中的混凝土结构工程,观察结构形式、分析梁、板、柱的受力和传力关系,了解各种构件的配筋特点及主要的构造措施,使学生对梁、板、柱等常见的混凝土基本构件和框架结构、剪力墙结构等常见的混凝土结构形式有一些初步的感性认识,并借以引发和提高学生学习《混凝土结构》课程的兴趣。在《混凝土结构》课程后期安排的混凝土楼盖结构设计、混凝土单层厂房结构设计等课程设计,使学生有机会完成混凝土结构设计的完整过程,诸如确定结构方案、建立结构计算简图、结构受力分析、结构配筋计算、结构施工图绘制等各个环节的训练,使学生全面消化、吸收和运用在课堂教学中已经学到的理论知识,培养学生综合分析和处理实际工程问题的能力。

(三)注重采用对比联系的方法介绍问题

由于混凝土材料物理力学性能的复杂性,使得混凝土结构构件在许多情况下的受力分析也变得十分复杂,因此,在课堂授课过程中要尽量采用对比、分析因果关系和联系的方法进行讲解,使学生对所研究问题的思路更加清晰,理解也更加深刻。

例如我们在讲解梁的正截面受弯及偏心受压柱的实验研究时[3,4],可将三种破坏类型采用如表1、表2所示的对比方法讲述,这样把引起三种破坏形式的原因就清晰直观的表达了出来。

另外,我们在讲解问题时还应注重各章之间的联系,使知识融会贯通,形成一个网络,例如,“受弯构件”和“受压构件”是两个完全不同的章节,也是两个不同的结构构件,但它们之间却存在着一定的联系,如在讲解“矩形截面偏心受压构件”时,可以指出“矩形截面偏心受压构件的受力模式,就是受弯构件竖立起来再施加轴力的模式”,由于学生之前已经学过了“受弯构件”,所以在学习这一知识点时就不会感觉到新内容的负担。这样不仅学习起来比较轻松,而且容易将前后知识点联系起来,加深印象,提高学习效果。

(四)重视构造措施

结构和构件设计时,必须经过计算和构造设计两部分才能完成。由于强度和变形计算并非考虑了结构上的所有作用,因此除了利用承载力公式计算配筋外,还必须用构造设计来补充。构造措施是人们在长期实践经验的基础上总结出来的,可防止因计算中没有考虑的影响因素而使结构构件开裂和破坏,同时也是为了结构构件在使用和施工上的需要而采用的。

构造措施是《混凝土结构》课程学习中既简单又难于掌握的一部分知识,简单在于规范规定很明确,而且表达形式简单;难于掌握在于内容多且零散,系统性和逻辑性较差。但构造措施在混凝土结构设计中又是非常重要的,大多数抗震设计的相关问题都是通过构造措施来保证的,所以在给学生授课时一定要重视构造措施的讲解。仔细分析不难发现,混凝土结构的构造措施主要包括三个方面:关于构件截面尺寸的要求、纵筋(主筋)的要求以及箍筋的要求,对于这些规定性的内容,只有将其进行适当的分类和文字上的加工,使其变为条理化和简单化的形式,才能产生良好的理解和记忆效果。

(五)重视现行设计规范与书本内容的结合

我们培养的土木工程专业学生毕业后有一部分要到设计单位工作,从事与钢筋混凝土结构设计有关的工作,因此必须熟悉、掌握和应用国家颁布的有关结构设计计算和构造要求的技术规定和标准,如《建筑结构荷载规范》(GB50009-2001)、《混凝土结构设计规范》(GB50010-2010)、《建筑抗震设计规范》(GB50011-2010)等。它是工程技术人员进行设计时必须遵守的法规,因此我们在讲课过程中,应该紧密结合现行规范,分析工程设计实例,对教材的内容加以拓宽,使学生认识到:作为实际工程结构设计,既要满足理论分析计算,还要符合现行规范规定的要求。

综上所述,《混凝土结构》是一门理论与实践紧密联系的课程,具有很强的工程概念,教授这门课时,应紧紧把握住《混凝土结构》课程的特点,从全局建立结构系统概念,以力学知识为基础,合理的安排教学次序,加强理论与实际的联系、章节之间的联系,同时结合设计规范,通过多种考核方式使学生真正的掌握这门课程,为土木工程专业的学生毕业后成为一名合格的工程师打下坚实的基础。

参考文献:

[1]喻萍,罗志坚.混凝土结构教学方法初探[J].昆明大学学报,2004,(1):73-74.

[2]刘雁,李琪,徐宜和.混凝土结构教学改革尝试[J].扬州大学学报,1997,(4):49-51.

[3]王秋萍,李宏伟.混凝土结构课程的教学方法初探[J].高等建筑教育,2005,14(1):59-61.

篇5

论文摘要:针对高层框架结构设计和施工中存在的混凝土强度等级不同、混凝土保护层厚度、梁柱节点箍筋施工等问题进行了分析,并提 出了相应的处理措施,以有效解决高层建筑工程中存在的问题,提高和保证主体结构的施工质量。

随着经济的高速发展,我国高层建筑发展迅速,设计思想在不断更新,建筑平面布置与竖向体形也越来越复杂,这就给高层结构设计和施工提出更高的要求。采用框架结构形式,可形成内部大空问,能进行灵活的建筑平面布置,因此,框架结构体系在结构设计中应用甚广,特别是在高度不超过 60 m的高层建筑中,其优势更为明显、突出。与此同时,对于高层建筑钢筋混凝土框架结构设计和施工中的现实问题却往往被忽视,给工程质量留下隐患。现结合自己多年的经验,对工程施工的实际情况和现行有关规范进行讨论。

1 现实问题

1.1 混凝土强度等级不同的问题

1.1.1 产生原因

为了满足柱轴压比的要求,同时又要满足控制柱截面的要求,柱子采用较高强度等级的混凝土则成为一种必然。而对于以受弯为主的楼层梁板,过高的混凝土强度等级却不必要且不适宜。首先,高强度等级混凝土对其抗弯承载力贡献不明显;其次,高强度等级混凝土对构件承受非荷载应力(混凝土收缩应力、温度应力等)不利,正因为如此,才有“现浇框架的混凝土强度等级不宜高于C40”的规定。事实上,在实际工程设计中合适的楼盖混凝土强度等级通常采用 C20~C35。由此可见,高层建筑混凝土框架结构的柱混凝土设计强度高于梁板的设计强度必然存在,而且随着建筑物高度的增大,两者的设计强度差距会越大,此外,需特别说明的是,这种情况主要存在于高层建筑的下部。

目前 ,混凝土的浇筑施工几乎都是用商品混凝土泵送工艺,而且习惯上,各施工单位通常将竖向构件与水平构件分批集中浇筑(即节点区采用楼盖混凝土强度等级浇筑)。如果要求对其中的梁柱节点进行单独浇筑,那么将导致两方面的问题,首先是供应量及浇筑时间不易控制而导致质量事故,其次是节点区与梁板之间的分隔存在难度,故施工单位不希望大面积采用此方法。

1.1.2 处理措施

JGJ 3-2002高层建筑混凝土结构技术规程第 13.5.7条规定 :当柱混凝土设计强度高于梁、楼板的设计强度时,应对梁柱节点混凝土施工采取有效措施。可从以下两个方面着手解决 :

1)在结构设计方面:对高层建筑混凝土结构的竖向和水平构件的混凝土强度要进行合理取值。a.整个工程的竖向构件混凝土强度等级种类不应过多,且与竖向构件截面的变化要错层 同步;b.水平构件的混凝土强度等级取值要符合规范要求,尽可能与竖向构件相匹配,使实际施工简单化,尽量减少梁柱节点单独浇筑混凝土。2)在现场施工方面:当梁板比柱的混凝土强度等级低 5 MPa时,节点区可用楼盖混凝土强度等级浇筑,其节点核心区截面承载力一般仍能满足要求;当梁板比柱的混凝土强度等级低 10 MPa及 10 MPa以上而仍用梁混凝土浇筑节点区时,则必须对节点区采取措施。处理措施可分两种 :a.当梁板比柱的混凝土强度等级分别低 10 MPa和 15 MPa时,节点区需增设竖向短筋,其数量分别为柱主筋配筋量的 50%和 100%;b.当梁板比柱的混凝土强度等级低20 MPa及20 MPa以上时,再靠增设节点区短筋来提高承载力已不可行,其原因一方面是无法布筋,另一方面是短筋数量太大。因此节点区需采用与柱同等级混凝土单独浇筑,为防止交接面形成施工冷缝,建议施工时节点区混凝土采用塔吊用漏斗浇筑,梁板混凝土则采用泵送同时浇筑。

1.2 混凝土保护层厚度问题

1.2.1 施工中存在的问题

GB 50204—1992混凝土结构工程施工及验收规范第 3.5.8条规定:受力钢筋保护层厚度梁柱允许偏差为 ±5 rflrfl。但是框架结构施工中,当梁边与柱边平齐时,柱的纵筋必须包梁的纵筋 ,即梁的纵筋要在柱纵筋的内侧,此时,平齐的梁侧往往容易开裂;另外高层框架结构的顶层角节点处,由于钢筋实际加工的原因,一般会出现角节点外侧钢筋保护层过厚的情况,此处亦往往出现裂缝。

1.2.2 防裂措施

GB 50010—2002混凝土结构设计规范第 9.2.4条规定:当梁、柱中纵向受力钢筋的保护层厚度大于 4 cm时,应对保护层采取有效的防裂构造措施。1)梁边与柱边平齐时梁侧的防裂措施:在粱纵筋弯折处加设 附加钢筋 41o(见 图 1)。2)框 架角节点处 的防裂措施:加设钢筋网片,以提高角节点处的抗裂性(见图2)。

1.3 梁柱节点箍筋施工问题

1.3.1 一般施工做法的弊病

梁柱节点施工的复杂性主要表现为:节点构造复杂,钢筋分布密集,施工难度大,特别是中间柱子钢筋纵横交错,箍筋绑扎不便,采用整体沉梁时节点区下部箍筋无法绑扎,致使梁柱节点部位不放或少放柱子箍筋,留下严重后患。

1.3.2 改进 的措施

柱子节点区箍筋现场焊接在纵向短筋上形成整体骨架,再将整体骨架套入柱纵筋并搁置在楼板模板面上,穿梁钢筋并绑扎。为防止附加短筋位置与柱纵筋冲突而造成套箍困难,附加纵向短筋应偏离箍筋角部约 5 cm(见图3)。

2 结语

对于高层建筑钢筋混凝土框架结构的施工,有关规范虽已有详细规定 ,但仍有若干问题没有明确具体做法,通过以上几种节点处理方法,解决梁柱节点处的施工问题,有利于提高和保证主体结构的施工质量。

参考文献 :

[1] JGJ 3—2002,高层建筑混凝土结构技术规程[s].

[2] GB 50204—1992,混凝土结构工程施工及验收规范[S].

篇6

关键词:钢筋砼结构;最小配筋率;受弯构件;带肋钢筋

现行的国家规范“砼结构设计规范”(gb50010-2002) 中把hrb400钢筋确定为钢筋砼结构的主导用筋。其后冶金企业研制开发的符合国情标准“钢筋砼用热轧带肋钢筋”(gb1499-1998) 的新型号筋。hrb500钢筋具有强度高、延性好、耐高低温、耐疲劳和可加工性能好的优点,符合砼结构对建筑用筋性能指标的主要内容要求。hrb500钢筋在建筑行业中己得到广泛使用,会促进其它相关建筑材料的发展提高,因此而带来可观的社会及经济效益,促进建筑业健康有序的发展具有重要意义。

钢筋砼梁的主筋纵向筋配筋率是保证安全使用影响承载力的主要因素,配筋率的变化不仅使梁的受弯承载力产生变化,而且会使梁的受力性能和破坏特征发生质的变化。当纵向主筋配筋率少到一定值后,梁的受力性能会产生大的变化,同无筋素砼梁没有什么差别。当这种梁一旦在受拉区的砼出现开裂,裂缝截面的拉力会很快超过屈服强度而进入强化阶段,造成整根梁发生撕裂,甚至使整个钢筋被拉断,这种破坏现象没有明显的预兆,属于脆性破坏。为了防止这种脆断的产生,钢筋砼结构设计规范明确规定:钢筋砼受弯构件的纵向受力主筋的配筋率不能低于某一限定值,该值即为受控钢筋的最小配筋率。hrb500钢筋作为一种新型的高强钢筋,已经在工程实践应用范围较广,必须合理确定其作为受拉钢筋的最小配筋率。在实践应用中探讨对hrb500钢筋作为受弯构件纵向主受拉的最小配筋率作浅要分析。

1最小配筋率确定的一般原则

钢筋砼受弯构件的最小配筋率是一个比较复杂的技术问题。试验和理论分析均表明,构件的最小配筋不仅与受力形态、表面尺寸及形式、材料强度有关,而且与受荷时间的长短、温度变化的大小、收缩及徐变的程度有关。目前世界一些国家对钢筋砼受弯构件的受拉钢筋最小配筋率的取值方法基本上有两种:即模型法和经验法。模型法是以截面受拉区砼开裂后,受拉钢筋由于配置过少而立即屈服进入强化阶段,此时的受拉钢筋配筋的最小配筋率。经验法是指直接给出最小配筋率的的取值,而没有受完整的受力模型作为取值准则,但其中也从不同角度考虑了一些因素对最小钢筋率取值的影响,所考虑的这些因素的影响规律与模型方案的趋势有一定的近似性。

而国内现行的《混凝土结构设计规范》对钢筋砼受弯构件的最小配筋率的确定原则是:截面开裂后,构件不会立即失效(裂而不断),即在最小配筋率的条件下,构件的抗弯承载力不低于同截面素混凝土构件的开裂弯矩,即:

mey≤mu ①

现以单筋矩形截面承受纯弯矩作用为例探讨钢筋砼受弯构件的纵向主受拉钢筋的最小配筋率问题。首先要计算钢筋砼梁的开裂弯矩。由于钢筋砼梁开裂时,钢筋的应力很低,因此计算钢筋砼梁开裂弯矩时,可以忽略钢筋的作用,即钢筋砼梁的开裂弯矩等于素砼的开裂弯矩。根据文献对素砼梁的开裂弯矩的推导计算,无筋素砼梁的开裂弯矩为:

 mey =0.256fftbh2 ②

试中: ft-为混凝土轴心抗拉强度设计值。

根据钢筋砼梁的受力进行过程, 按照现行砼设计规范关于正截面承载力计算的基本假定“不考虑砼的抗拉强度”,假定钢筋砼梁达到极限承载力状态时的截面力臂为yho,其中y为内力臂长度系数,则钢筋砼梁的极限弯矩为:

mu = yhoòyas

此时òy= fyas =pmin bho y=1

mu = ho fypmin bho③

将式②、式③ 带入式① 以后,求出:

pmin=0.256ft / fy[h/ho]2 ④

2国内不同时期砼结构设计规范对最小配筋率的规定

根据介绍对世界各有关国家砼结构设计规范,对钢筋砼受弯构件规定的最小配筋率进行了简单比较,见表1。为转化为国内材料强度后各有关国家砼结构设计规范,对钢筋砼受弯构件规定的最小配筋率表达式。

表1不同国家对钢筋砼构件最小配筋率计算要求

我国的设计规范对于钢筋砼受弯构件,确定的最小配筋率的规定基本上是沿用前苏联20世纪五、六十年代的规定,数值明显偏低。随着我国国力的增强,结构设计的安全度增大以及结构耐久性设计概念的应用,钢材供应状况及水平的偏高,每次规范修订均适当提高了受力钢筋的最小配筋率,而且使其更为合理。a.在原《钢筋混凝土结构设计规范》tj10-74中规定受弯构件最小配筋百分率:当砼强度标号为200号及以下时为0.

1;当砼强度标号为250-400号时为0.15。b.在进行了修改后的《混凝土结构设计规范》gbj10-1989中规定受弯构件最小配筋百分率:当砼强度等级为c35时为0.15;当砼强度等级为c40-c60时为0.2。c.在现行的《混凝土结构设计规范》gb50010-2002中规定受弯构件最小配筋百分率为0.2和45 ft / fy中的较大值。

从国各内各个阶段设计规范对最小配筋率规定的变化可以看出:随着我国改革开放的进一步推进,国民经济收入稳步的提高,对结构安全度的要求逐渐提高,综合考虑各种因素,构件的最小配筋率均有提高,而且考虑了材料强度的影响,有利于促进高强材料在工程中的大量应用。

3hrb500钢筋砼受弯构件的最小配筋率的应用

根据我国现行的《钢筋砼用热扎带肋钢筋》gb1499-1998中规定:hrb 335的屈服强度为335 mpa,hrb 400的屈服强度为400 mpa,hrb 500的屈服强度为500 mpa。我国现行的《混凝土结构设计规范》规定:hrb 335的屈服强度设计值为300 mpa,hrb 400的屈服强度设计值为360 mpa,不同种类钢筋材料分项系数ys均为1.10,因此hrb500钢筋的屈服强度设计值应取为450mpa。根据资料介绍的试验结果并考虑到裂缝宽度的影响,对hrb500钢筋的屈服强度设计值建议为420mpa,材料分项系数ys为1.19。根据我国现行的《混凝土结构设计规范》gb50010-2002中规定受弯构件最小配筋率百分率公式45 ft / fy,分别计算出各种钢筋的最小配筋率。详见表2。

表2钢筋混凝土受弯构件配筋率要求

根据表2可以看出,钢筋砼构件的最小配筋率的确定,不完全是技术问题,还反映了某一地区当时的经济建设发展水平,具有一定的社会性和政策性。因此,考虑将hrb 500钢筋砼受弯构件的最小配筋率百分率(%)为:当混凝土强度等级不大于c30时为0.15,当砼强度等级为c30以上时为0.2和45ft / fy 中的较大值为宜。根据上述浅要分析,国家推广应用hrb500钢筋不仅可以满足建筑行业科技飞速发展的需用,还具有明显的经济效益和社会效益。为了在工程实践中大力推广hrb500钢筋,考虑到我国实际国情,要采用hrb 500钢筋砼受弯构件的最小百分率(%)为:当砼强度等级不大于c30时为0.15,当砼强度等级为c30以上时为0.2和45ft / fy,中的较大值安全。

参考文献

1徐有邻等.混凝土结构设计规范理解与应用.中国建筑工业出版社, 2002

篇7

【关键词】水电站工程主厂房设计排架结构设计 水电站设计结构设计

中图分类号:K826.16 文献标识码:A 文章编号:

一.引言。

我国是世界上河流资源众多的国家之一,有着较为丰富的内河、内江资源。随着经济的快速发展,在河流和江河上开展的水利工程建设也越来越多。水利工程中的水电站建设一直是工程施工的重点控制内容,由于水电站主厂房需要放置发电机、水轮机等发电相关设备,同时,主厂房结构又多为单层建筑结构,在进行结构设计时多采用排架结构。排架结构在自身的平面内具有较强的承载能力和较好的钢度,但由于各排架间的承载能力较为软弱,在水利工程中,无论是在设计阶段还是施工阶段,都要引起高度重视。

二.水电站主厂房的结构布置设计。

1.水电站厂房的结构组成以及相关用途。

(1)水电站主厂房的上部结构:屋顶、排架柱、吊车梁、发电机层和安装间楼板、围护结构等,通常为钢筋混凝土结构。

屋顶部分有层面板和屋架或是屋面大梁组成,屋面板的作用为遮风避雨,隔热隔阳,屋面层部分包括隔热层、防水层、保护层以及预制钢筋混凝土大型屋面板。

排架柱是用来承受屋架、吊车梁、屋面大梁和外墙所传递的荷载,以及排架柱本身的重量,同时这些荷载通过排架柱传给房下部结构中的大体积混凝土。

吊车梁是起吊部件在制动过程中操作的移动集中垂直荷载,或者是承载吊车荷载,在吊车起重部件的时候,将启动和制动过程中产生的横向和纵向水平荷载,传给排架柱。

发电机层楼板需要承载自重、人的活荷载、机电设备静荷载;安装间的楼板承受安装机组或机组检修时的荷载和自重。

由外墙、抗风柱、圈梁以及联系梁等组成的围护结构,能承受风荷载,同时承载梁上砖墙传下的自重和荷载,将荷载传给壁柱或排架柱。

(2)水电厂主厂房的下部结构。

水电站主厂房的下部结构包括:发电机机墩、蜗壳及固定导叶、尾水管等,下部结构一般为大体积水工钢筋混凝土结构。

发电机机墩承载着发电机的自重、水轮机轴向水压力和机墩自身重量,并将自重力量传递给蜗壳混凝土和座环。

蜗壳和固定导叶是将机墩传递下来的荷载传到尾水管上。尾水管将水轮机座环传递过来的荷载,通过尾水管的框架结构传到基础上。

三.水电站的主厂房架构设计。

1.选择立柱截面形式。

在水电站的主厂房中,其结构立柱一般都是采用矩形截面,尤其是在吊车的起重能力超过10吨以上时,下柱的截面高度不应小于下柱高度的1/12,截面的宽度应不小于下柱高度的1/25。立柱高度根据厂房顶梁定的高程与发电机层地面的高程差来确定。在一般情况下,水电站的主厂房排架柱的截面尺寸基本上都比较大,这是为了满足强度和稳定的要求。柱截面的选择要能满足顶端的横向位移的控制要求。

2.厂房屋面板荷载计算以及型号选择。

发电站的主厂房一般选择安全等级为二级以上的大型屋面板,屋面板无悬挂荷载,其抗震设计的强度为6度。由于屋面的活荷载与雪荷载部同时都存在,屋面具有较大的活荷载,因此要根据实际屋面的荷载设计,布置屋架的上、下弦支撑。

3.吊车梁设计。

设计吊车梁的截面时,由于T形截面具有较大的钢度,同时具有较好的抗扭性能,在固定轨道时较为方便,在进行检查时拥有较宽的走道,比较适合大、中型的吊车梁,因此一般在选择吊车梁的截面时多采用T形截面。

4.确定控制截面和荷载作用中的内力组合。

根据排架柱受力的特点,分别取牛腿处截面、上柱底面和下柱底面(采用室内厂房地面的下0.5米处为下柱的柱底),为排架柱配筋计算的控制截面。在厂房横向跨度较小、吊车的荷载受力不大时,也可以将柱底截面作为控制下柱的配筋,并且把柱底面的截面内力值作为柱基设计的依据。如果水电站处于地震带上,要在内力计算和组合中,包含地震作用下的控制截面内力。

5.排架内力计算。

排架的内力计算和内力的组合采用手算极为复杂,因此在条件允许的情况下,尽量多采用电算方法。采用电算方法时,可使用由我国建筑科学研究院研发的CAD系统PMCBC平面结构或PKPM结构设计软件,根据水电站的实际情况,结合在施工地区的地震作用的内力计算和组合,编制计算程序。同时,依据各个截面的内力,通过系统计算,确定柱的配筋。设置配筋时,为避免其他不确定因素造成影响,设计中尽量采用对称配筋设计。

进行排架设计时,要根据下部柱子的高度和牛腿的尺寸作为参考,来计算柱截面的尺寸。根据屋面的防水层、砂浆找平层、加气混凝土、预应力混凝土屋面板以及风荷载、雪荷载等因素的标准值计算屋面的恒荷载,了解屋面结构承载能力。由于排架承载的荷载包括屋盖的自重、屋面的雪荷载、活荷载、吊车的荷载、横向风荷载等,在进行计算时要采用各项荷载的标准值,在此基础之上,才能进行内力组合。

6.排架结构注意事项。

(1)水电站采用钢筋混凝土的单层排架结构,一般不适合采用砖山墙承重,而应该在厂房的两端位置设置端排架。要在屋架和山墙顶部相对应的高度位置上设置钢筋混凝土卧梁,并要和屋架端头上部高度处的圈梁保持连续的封闭。

(2)水电站的主厂房中设置有吊车时,排架柱的预埋件通常都较多,因此在进行排架结构设计时,要将各个位置、尺寸、数目进行仔细核对,避免在施工中由于位置错误或尺寸偏差,造成屋面梁构件、吊车梁等无法准确安装。

(3)在排架结构设计时,为了提高结构的抗震能力,加强结构的整体性,要在柱外侧沿着竖向位置每隔500mm的位置上留出2∮6钢筋和外墙体的拉结。同时在外墙的圈梁上的对应位置上,设置不超过∮12的拉结筋。在主厂房的电气设计中,为保证生产照明,在柱上要设置照明灯具,灯具设置高度要以具体情况而定,以符合安全生产要求为度。在进行柱的预制时,要做好电线管的预埋,以便于后期的电线施工。

(4)水电站的主厂房设计时,考虑在地震的作用下,厂房的角柱柱头处于双向地震的作用,同时抗震强度为角柱较强,而中间排架较弱,同时受到侧向的变形约束和纵向压弯作用,为了避免施工后由于地震作用,发生角柱顶部的开裂,造成端屋架塌落和柱头折断,在进行结构设计时,要提高主厂房中的角柱柱头密箍筋的直径。

(5)为了提高水电站单层厂房的抗震验算,要进行横向和纵向两个方面的验算。一般来讲,在设计结构能满足规范和要求的条件下,七度时的一类、二类场地,在柱的高度低于10米,而且排架结构的两端具有墙支撑的单跨度厂房中,可以不进行横向和纵向截面的抗震验算。但为了提高水电站在施工完成后的服务年限,保障水电站的正常生产,进行结构设计时,尽可能要考虑抗震作用,有条件的尽量进行横向和纵向的抗震验算。

四.结束语

水电站的排架柱承载着结构中的荷载,其控制截面的内力和组合较难控制。本文就排架结构的设计进行了简单分析,提出了一定的解决方法。由于水电站主厂房的排架结构设计、施工、管理和控制都需要严谨的科学态度和专业的操作技能,因此,加强水电站施工建设,完善厂房的排架柱设计,有待大家的共同努力。

参考文献:

[1] 刘少红 水电站工程主厂房排架结构设计 [期刊论文] 《科技资讯》2009年12期

[2] 巴哈尔古丽·里瓦依丁Bahaerguli · Liwayiding吉林台一级水电站工程主厂房排架结构设计 [期刊论文] 《西北水力发电》2007年2期

[3] 刘益民 宝鸡峡林家村水电站主厂房排架柱加固设计与施工 [期刊论文] 《陕西水利》2009年6期

[4] 覃丽钠 李明卫 矩形钢管混凝土柱在水电站厂房中的应用 [期刊论文] 《贵州水力发电》2011年6期

篇8

【关键词】高层建筑;结构设计;问题

高层建筑是社会生产的发展和人类物质生活需要的产物,是现代社会工业化、商业化和城市化的必然结果。科学技术的进步、经济的发展则为高层建筑的发展提供了坚实的物质基础。地下室的结构设计过程错综复杂我们应以遵循安全、适用和合理的原则,及合理的设计为前提,进行全面考虑,把问题减小至最低或消除,以使建筑地下室结构设计工作发挥其最大的经济作用和社会效益、战备效益,最后达成设计要求。

一、地下室的抗裂问题

地下室的抗裂措施由于地下室的混凝土体量较大,而有些地下室长度超过了结构伸缩缝的最大间距,混凝土的干缩和施工期间的水泥水化热将会导致墙体及楼板的裂缝。设计过程中一般可采用以下措施:

(1)设置施工后浇带后浇带作为混凝土早期释放约束力的措施已得到广泛应用。

(2)采用补偿收缩混凝土在混凝土中掺入UEA等微膨胀剂,以混凝土的膨胀值抵消其收缩值,从而达到控制裂缝的目的。

(3)提高构件的抗拉性能增加外墙水平分布钢筋的配筋率,减小钢筋间距。

二、地下室外墙的结构设计问题

地下室结构设计的重中之重是地下室外墙的设置,设计时以下几个问题需特别注意。①静止土压力系数。根据试验确定静止土压力,当无法进行试验时,粘性土可取 0.5~0.7,砂土可取0.34~0.45。②荷载。地下室外墙的荷载包括两部分,一部分是水平荷载;一部分是竖向荷载。水平荷载一般是效静荷载主要包括:侧向土压力、地面荷载和人防等。竖向荷载则由地下室本身的重量及楼层的传重。在实际应用中,竖向载荷和风载荷以及地震产生的力是难以控制的。墙体配筋则是由垂直于墙面的水平载荷形成的弯矩决定的,并且竖向载荷的压弯作用一般不予考虑。③地下室外墙的配筋计算。实际设计应用时,在带扶壁柱的外墙配筋计算方法是按双向板计算配筋,而不是根据扶壁柱的尺寸大小来计算。

而扶壁柱不是按外墙双向板传递荷载算其配筋,而是根据地下室结构的整体电算分析结果来配筋。这样设计会使外墙竖向受力筋配筋偏少、扶壁柱配筋不足,而外墙的水平分布筋过多。在计算地下室外墙的配筋时,除了垂直于外墙方向部分有钢筋混凝土的,内隔墙之间有相连的外墙板块或者扶壁柱横截面积较大的外墙板块需要用双向板计算之外,其他形式的外墙通常都按竖向单向板计算配筋。竖向载荷小的外墙扶壁柱,无论是外墙转角处还是内外侧的主筋部分都需做适当的加强。扶壁墙的截面积的大小则是界定外墙水平分布筋的依据。在计算地下室外墙时底部支座应固定,并且它的厚度要和配筋量匹配。侧壁的抗弯能力比底板的大,而弯矩则和底板相等。

三、混凝土浇注问题

墙板混凝土浇注一般采用赶浆法,混凝土的流向是不可控制的,可能在这里施工时,混凝土已经流到十几米之远,特别是顶板和墙板同时浇注,此现象更为严重,等浇注到那儿,可能已经初凝已过;还有顶板和墙板一起浇注,必须先浇注墙板,等墙板混凝土全部完成后,再进行顶板浇注,应该没有多大的问题。

浇筑混凝土应合理安排施工计划及工序,合理留置施工缝,浇捣混凝土应连续进行,当必须间隙时应缩短时间,并应在前层混凝土凝结前将上层混凝土浇捣完毕。混凝土运输、浇筑和间歇允许时间如下:混凝土强度等级

另外,混凝土一次下料不能过厚、不均匀、不对称。混凝土下料不均匀、不对称,影响混凝土的振捣顺序,尤其是混凝土墙板的门洞口处,如果下料不对称,混凝土的侧压力不均匀,容易将内模挤压偏位,同时混凝土一次下料过多,浇筑层过厚,振捣作用长度、半径不够,混凝土容易漏振、不密实,产生蜂窝、孔洞。

四、 地下室抗震设计问题

高层建筑的抗震性能好坏与否与地下室的设计关系重大。提高高层建筑的抗震要求,地下室与地上部分的筑墙必须相一致。而且地下室的埋深也有要求,地下室的埋深要大于地上部分的高度时,其层数可不予考虑,这时算高度时才可从上部地面开始算。为了提高抗震性能,顶板必须要求可作为上部结构的嵌固部位。若地下室顶板为无梁楼盖和顶板内外板标高超过梁高变化引起错层这两种情况时,必须进行一定的处理使其能够作为上部结构的嵌固部位。

五、抗浮、抗渗及控制问题

地下室结构设计中尤其需注意只有地下室部分和地面上楼层较少时的抗浮计算,采用桩基时需计算桩的抗拔承载力。根据《荷载规范》相关规定计算强度和计算抗浮是荷载分项系数的取值是不一样的,计算强度时取1.0,计算抗浮时去0.9。地下室抗浮设计影响的因素很多,主要依据是地下水位及其变幅,并且实际设计中往往只考虑其极限状态,而施工过程中出现抗浮不够导致局部破坏,往往是对施工过程及洪水期不够重视引起的。

对于那些地下空间很大的高层建筑而言,塔楼部分的抗浮一般不会有问题,出问题的往往是其裙房和纯地下室部分。针对这种情况,通常有以下解决措施:①确定科学合理的抗浮设防水位;②通过某些方法间接降低抗浮设防水位,如尽量提高基坑坑底的实际标高;③设置一些抗浮桩;④尽可能增加地下室的本身的重量。

地下室设计是一项复杂的工程,除了满足受力要求外,抗渗技术也是一个非常重要的要点,如若设置不当,可能造成地下室成。由于钢筋混凝土结构不是致密的往往外有裂缝,抗渗效果不是很理想,要想完成抗渗的目的,通常还需采取以下措施:①设置膨胀带。混凝土中本身具有膨胀剂,但其早期变形收缩仅靠其本身的膨胀剂变形不能达到理想效果,通常大于60m时就需设置一定长度的膨胀带来补偿,才可达到混凝土的无缝施工;②加强钢筋混凝土的抗拉能力。在浇筑混凝土时要使用抗变形的钢筋。由于侧壁受底板和顶板约束,上下部所承受的力不一样,使得混凝土上下膨胀收缩不一致,为了抵消这部分差异,要在侧壁增加水平温度筋强化混凝土面层,或者墙的中央设置一道暗梁增加其抗拉能力。除了这些措施之外,对混凝土的养护也格外重要;③设置后浇带。混凝土早期膨胀收缩时需释放约束力,后浇带技术很好的解决了这个问题。同时后浇带技术也已经可以很好的解决长久性的变形缝,并且已经得到了广泛的应用。

六、结语

总之,建筑地下室的设计是一项专业性极强的工作,涉及到的工序和领域较多,具有复杂性。因此,设计要坚持在满足基本功能的基础上,做到安全稳定,经济合理。既可以满足高层建筑地基深埋的要求,也可以防止地下室的渗漏,有助于地下室功能的更好发挥。

参考文献:

[1] 董萌,秦忠尧. 浅谈对规范中对地下室部分的理解及设计中所出现的问题[J]. 科技信息(科学教研). 2008(01)

篇9

关键词:高层建筑;混凝土;抗震结构;设计

中图分类号:S611文献标识码: A

引言

地震影响因素十分复杂,是一种不能预见的外部作用,目前的计算方法依旧处于半经验半理论的方法,在实际工作当中,想要对于建筑的抗震性进行精确的计算有很大的难度,因此,建筑设计师在进行高层建筑时,应重返考虑高层建筑的抗震问题,采取相应的安全防患措施,做到真正的防患于未然。

1、高层建筑混凝土结构的特征

混凝土结构建筑的楼层在10层或10层以上,或者建筑高度超过28m,定义为高层建筑。从定义中可看出高层建筑的特点体现在层数和高度上,而高层建筑更本质的特点是水平荷载设计起到关键作用。在高层建筑中研究建筑的抗侧力能力是抗震设计的重点,地震荷载和风荷载主要作用于建筑的水平力,其中地震荷载起控制的作用。破坏时间短,无规律的作用强度大,水平方向上的振动加以扭转振动是地震力对建筑的破坏特点。在设计过程完全应用弹性理论来设计以提高建筑的抗震性能是不可行的。因为会增加抗侧构件的数量,使结构的自重增加,导致在地震中,由于建筑自身的惯性力过大,使抗震性能降低。

2、建筑抗震级别

我国房屋建筑工程可以分为以下四个抗震设防类别

2.1、特殊设防类

指使用上有特殊设施,涉及国家公共安全的重大建筑工程和地震时可能发生严重次生灾害等特别重大灾害后果,需要进行特殊设防的建筑。简称甲类。

2.2、重点设防类

指地震时使用功能不能中断或需尽快恢复的生命线相关建筑,以及地震时可能导致大量人员伤亡等重大灾害后果,需要提高设防标准的建筑。简称乙类。

2.3、标准设防类

指大量的除1、2、4款以外按标准要求进行设防的建筑。简称丙类。

2.4、适度设防类

指使用上人员稀少且震损不致产生次生灾害,允许在一定条件下适度降低要求的建筑。简称丁类。

3、高层混凝土建筑抗震结构设计原则

3.1、结构布置

平面布置是指在建筑设计的平面图上,将柱和墙的位置以及对楼盖具有的传力作用进行合理的设置。依据建筑的抗震性能来看,最关键的是尽量将建筑结构平面的刚度中心与质量中心相靠近或相重合,以降低地震力对建筑的破坏力。为了减轻建筑自身的重量,在设计时应以结构的平面规则、对称为宜。结构的刚度在竖向上应保持均匀,可尽量较为规则的设计竖向结构,少做平面上的变化。在安全规定内设计结构的高度和宽度,并且需限制两者的比值,以使结构有较好的整体刚度和稳定性。

3.2、防震缝设置

建筑平面结构复杂时,可通过使用防震缝,将复杂面划分为简单且规则的平面,但是在高层建筑中,不宜使用防震缝。如果无法避免设缝,那么应根据不同的结构,按照需要较宽的规定来设置宽度。建筑的高度不超过15m,其防震宽度宜采用70mm;高度大于15m,应根据不同的度数相应的增加高度和防震缝宽度。

4、高层建筑混凝土抗震结构设计分析

4.1、选择场地地基

选择场地地基首先要依据实际工程需求,同时还要考虑地震活动情况。分析天然地基时的抗震承载力要按照不同的场地来进行,此外,根据不同场地来分析地震所导致的危害度。如果有必要,可使用规范的地基来进行处理。可根据地震强度、场地土的厚度、断裂的地质历史来明确避让距离,从而对场地范围内的地震断裂的确定有利。一定要保证避开对不利的建筑地段来进行场地地基的选择,如果依法避开,可以运用合适的抗震措施来进行。

4.2、增加抗弯结构宽度

增加抗弯结构体系的有效宽度,在高层建筑钢筋混凝土结构抗震设计中能提高建筑的抗倾覆力矩,并且侧移三次方的比例能得到减小,利用结构力学中的弯矩平衡法进行计算可更好的理解这一设计方式。在实际的建筑工程的设计中,竖向构件在结构体系中的良好连接是必须要做到的。在框架结构设计中,设计构件应遵循强压弱拉、强柱弱梁、强节点弱杆件和强剪弱弯的原则。在实际当中,为实现框架与剪力墙的协同一致需控制各层楼板的变形量。剪力墙的主要受力是弯曲变形,结构的主要受力是剪切变形,将两者进行有效协调变位,能实现框架抗震。

4.3、设计构件布置方式

结构设计中的抗力构件的布置应发挥最有效的作用,以提高结构的整体协调力,例如斜撑、水平撑及桁架体系等。在实际的设计中,不宜忽略其在结构中的作用,应根据具体受力状态,发挥杆件的抗拉和抗压能力。交叉撑或斜撑是最有效抗衡抗侧力的钢骨混凝土构件,其构件可完全适应受拉或受压的状态,且可充分是钢材抗拉能力和混凝土构件的抗压能力得到发挥的同时,又可在水平方向上增大架构的抗侧移刚度,以增强高层建筑缓凝土结构抗震作用。

4.4、高层混凝土建筑各层结构参数设置

通过在模拟地震中对设施的分析,我们能够根据得到的数据对各层的参数进行设置。例如高层混凝土结构建筑中的墙体承载能力等方面。在预处理阶段,应在充分了解羡慕的地形条件、质量检测等多个方面的基础上,建立设计的框架,应用设计理念做出说明,完成高层混凝土结构建筑的设计工作。在高层混凝土结构设计工作中,最好能够建立设计信息库,便于工程师用查找案例并总结的方法来展开工作。在研究结构综合受理情况时,应选出相应的模型,并以此对建筑结构的合理性进行判断。要对计算机运算结构展开研究,为以后的计算机运算提供一句。高层混凝土建筑要处理包括站东周期、扭转角度等多种参数,因此,对于高结构的设计应经过反复推敲,确保其具有良好的抗震能力。

4.5、重视结构的规则性

在进行高层混凝土结构建筑设计时,应重视高层结构的规则性,对于严重不规则的设计方案买,不能进入选择的行列。合理的布置能够对结构的抗震起到有效的提升,在设计中应提倡平、立面的对称。经过对震害的研究我们呢可以发现,对称建筑在地震中受到的伤害最低,对于采取抗争措施和处理都较为便利。

4.6、增加承受荷载的构件截面

在实际结构的设计中对承受地震力的构件应增大构件的最大部分截面,主要表现为在底部中应用加强层。通常情况下在剪力墙底部的加强层,其高度应设计与底部两层的较大值,或1/8的墙肢总高度相接近。高度大于150m的剪力墙,墙肢总高度的1/10是其底部加强部位的高度。为保证结构的延性需要对截面的尺寸进行限制,以防止产生脆性破坏,尤其对于抗震结构的截面限制条件更为严格,将x设为混凝土受压区域梁端截面构建的高度,考虑钢筋的受力情况,计算结果应符合以下条件;一级,x≤0.25h0;二、三级,x≤0.35h0,H0表示为截面的有效高度。

4.7、发挥楼盖的水平隔板作用

在建筑结构设计中将竖向的受力构件,也设计为是受弯构件,主要抗倾覆构件能在压力作用下,保持整体结构的稳定性。同时能减少增加的构件数量,减轻结构自重,降低工程造价。在高层建筑中,实际楼盖发挥的隔板作用应符合计算假定:假定全部楼层采用刚性楼板。这主要因为结构楼板的刚度足够,楼板有一定的厚度并配有钢筋,且在平面内的开洞进行了限制。如果假定不符合,在地震力的作用下楼板会成为薄弱层,结构会在层高处竖向构件发生破坏,导致结构整体发生垮塌。

4.8、对结构体系要合理的选择

抗震设计要考虑的关键问题就是抗震结构体系,建筑是否安全和经济取决于结构方案是否合理。

4.8.1、在对建筑结构体系进行合理选择时,要考虑到地震作用有合理的传递途径以及计算简图要十分明确,除此以外,受力以及传力路线等都要符合抗震分析。

4.8.2、在选择建筑结构体系时,要考虑到赘余度功能和内力重分配功能,这两个功能是进行抗震概念设计时的重要原则。

4.9、结构构件的延性要得到提高

对各个构件延性水平的提高是抗震概念设计在建筑结构设计中应用的关键问题。抗震措施主要有:采用竖向和水平向的混凝土构件,从而对砌体结构加强约束。这样一来,配筋砌体在地震中产生裂缝后也不会倒塌,让建筑物在地震中不会完全丧失重力荷载的承载能力。

5、结语

对于高层建筑来说,抗震设计是非常重要的,一个优良的建筑抗震设计,必须是在建筑设计和结构设计相互配合协作共同考虑抗震的设计基础上完成。随着社会经济的发展,很多新型的结构、新的技术不断出现,设计人员要不断利用这些新结构和新技术进行抗震结构设计,从而为人们的生命财产安全做好保障。

参考文献

[1]陈天华.高层混凝土建筑抗震结构设计探析[J].中国科技信息,2011,16:42.

[2]柏芸.试论高层混凝土建筑抗震结构设计[J].门窗,2013,06:201-202.

篇10

论文摘要:结构设计简而言之就是用结构语言来表达建筑师及其它专业工程师所要实现的东西。

1结构设计的概念及内容

结构设计简而言之就是用结构语言来表达建筑师及其它专业工程师所要实现的东西。结构语言就是结构师从建筑及其它专业图纸中所提炼简化出来的结构元素。包括基础,墙,柱,梁,板,楼梯,大样细部等等。然后用这些结构元素来构成建筑物或构筑物的结构体系。把各种情况产生的荷载以最简洁的方式传递至基础。结构设计的内容可分为:基础的设计,上部结构的设计和细部设计。

2结构设计的阶段

结构设计的阶段大体可以分为三个阶段,结构方案阶段,结构计算阶段和施工图设计阶段。方案阶段的内容为:根据建筑的重要性,建筑所在地的抗震设防烈度,工程地质勘查报告,建筑场地的类别及建筑的高度和层数来确定建筑的结构形式(例如,砖混结构,框架结构,框剪结构,剪力墙结构,筒体结构,混合结构等等以及由这些结构来组合而成的结构形式)。确定了结构的形式之后就要根据不同结构形式的特点和要求来布置结构的承重体系和受力构件。

结构计算阶段的内容为:2.1荷载的计算。荷载包括外部荷载(例如,风荷载,雪荷载,施工荷载,地下水的荷载,地震荷载,人防荷载等等)和内部荷载(例如,结构的自重荷载,使用荷载,装修荷载等等)上述荷载的计算要根据荷载规范的要求和规定采用不同的组合值系数和准永久值系数等来进行不同工况下的组合计算。2.2构件的试算。根据计算出的荷载值,构造措施要求,使用要求及各种计算手册上推荐的试算方法来初步确定构件的截面。2.3内力的计算。根据确定的构件截面和荷载值来进行内力的计算,包括弯矩,剪力,扭矩,轴心压力及拉力等等。2.4构件的计算。根据计算出的结构内力及规范对构件的要求和限制(比如,轴压比,剪跨比,跨高比,裂缝和挠度等等)来复核结构试算的构件是否符合规范规定和要求。如不满足要求则要调整构件的截面或布置直到满足要求为止。

施工图设计阶段的内容为:根据上述计算结果,来最终确定构件布置和构件配筋以及根据规范的要求来确定结构构件的构造措施。

3各设计阶段的基本方法

根据方案阶段的主要内容,其基本方法就是根据各种结构形式的适用范围和特点来确定结构应该使用的最佳结构形式,这要看规范中对于各种结构形式的界定和工程的具体情况而定,关键是清楚各种结构形式的极限适用范围。还要考虑合理性和经济性。

在结构计算阶段,就是根据方案阶段确定的结构形式和体系,依据规范上规定的具体的计算方法来进行详细的结构计算,规范上的方法有多种,关键是结合工程的实际情况来选择合适的计算方法,以楼板为例,就有弹性计算法,塑性计算法及弹塑性计算法。所以选择符合工程实际的计算方法是合理的结构设计的前提,是十分重要的。

在施工图设计阶段,就是根据结构计算的结果来用结构语言表达在图纸上。首先表达的东西要符合结构计算的要求,同时还要符合规范中的构造要求,最后还要考虑施工的可操作性。这就要求结构设计人员对规范要很好的理解和把握。另外还要对施工的工艺和流程有一定的了解。这样设计出的结构,才会是合理的结构。

4规范、手册及标准图集和计算机在具体工作中的应用

结构设计的准则和依据就是各种规范和标准图集。在进行不同结构形式的设计时必须要紧扣不同的规范,但这些规范又都是相互联系密不可分的。在不同的工程中往往会使用多种规范,在一个工程确定了结构形式后,首先要根据《建筑结构可靠度设计统一标准》来确定建筑的可靠度和重要性;然后再根据《中国地震动参数区划图》,《建筑抗震设防分类标准》《建筑抗震设计规范》确定建筑在抗震设防方面的规定和要求,在荷载的取值时要按照《建筑结构荷载规范》来确定,这是建筑总体需要运用的规范。在工程的具体设计方面,涉及到砌体部分的要遵循《砌体结构设计规范》的规定;涉及到混凝土部分的要遵循《混凝土结构设计规范》的规定;涉及到钢筋部分的要遵循《钢筋焊接及验收规程》和《钢筋机械连接通用技术规程》的规定;在基础部分的设计时需要遵循的是《建筑地基基础设计规范》的规定。最后在结构绘图时则要符合《建筑结构制图标准》的要求。

在各种结构设计手册中,给出了该结构形式设计的原理,方法,一般规定和计算的算例以及用来直接选用的各种表格。这对于深刻理解和具体设计各种结构形式具有良好的指导作用。推荐最好能参照设计手册来手算典型的结构形式。

标准图集是依据规范来制定的国家和省市地方统一的设计标准和施工做法构造。不同的结构形式有不同的标准图集。设计中常用的有,结构绘图时采用:平法制图(03G101-1),砌体中的钢筋混凝土过梁采用:过梁(L03G303),砖混结构抗震构造详图采用:L03G313,钢筋混凝土结构抗震构造详图采用:L03G323,地沟及盖板采用:02J331。需要说明的是,在选用标准图集时一定要根据具体工程的实际情况来酌情选用,必要时应说明选用的页号和图集号,不可盲目采用。