虚拟装配技术论文范文

时间:2023-03-26 21:49:00

导语:如何才能写好一篇虚拟装配技术论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

虚拟装配技术论文

篇1

关键词:计算机应用;装配规划;综述;虚拟现实;软计算;协同装配

装配是产品生命周期的重要环节,是实现产品功能的主要过程。写作毕业论文装配成本占产品制造成本40%~50%,装配自动化一直是制造自动化中的瓶颈问题。装配规划是在给定产品与相关制造资源的完整描述前提下,得到产品详细的装配方案的过程,对指导产品可装配性设计、提高产品装配质量和降低装配成本具有重要意义。产品的装配规划通常需要得到零部件的装配序列、装配路径、使用的工装夹具和装配时间等内容[1]~[3]。

较早的传统装配规划采用人工方式,工艺人员根据设计图纸和技术文档,通过分析产品装配图中零件的几何形状和位置关系,必要时再和设计人员进行讨论,进一步明确设计者的真正意图,利用自己的经验和知识规划出产品的装配方案。这种方法工作量大、效率低,且难于保证装配方案的经济性。

随着计算机集成制造CIMS和并行工程CE技术的发展和应用,一方面对装配相关的设计技术提出了计算机化的要求,以提高和产品开发过程中其他环节的集成化程度。另一方面要求装配方案的优化以降低成本和缩短规划时间以加快产品开发进程。受“需求牵引”和“技术推动”两方面的影响,80年代初,出现了对计算机辅助装配规划(ComputerAidedAssemblyPlanning,CAAP)技术的研究。到目前为止,CAAP经历了几个不同的发展阶段,出现了4种代表性的方法,按照出现的时间顺序及方法的特点,笔者将其归结为经典装配规划方法、虚拟装配规划方法、装配规划软计算方法和协同装配规划方法。

1经典装配规划方法

早期CAAP的研究侧重于装配序列的规划,以产品CAD装配模型为基础,写作硕士论文一般采用几何推理的方法,通过产品装配建模、装配序列推理和表达以及装配序列评价和选择为产品面向装配的设计和装配工艺规划提供指导和支持,其过程通常如图1所示。

1.1产品装配建模

产品装配模型是装配规划的基础,为装配规划提供装配体和零部件的相关信息。常用的装配信息表达模型可分为图模型和矩阵模型。法国学者Bourjauct提出了联系图模型[4],将零件之间的物理接触关系定义为联系即装配关系,图中的节点对应零件,边表示所连接的零件间至少有一种装配关系。关系模型[5]进一步区分了零件之间的接触关系和联接关系,图中包含3种实体类型:零件、接触和联接,边表达了实体间的关系。产品等级装配模型[6]将装配体看成具有层次结构性,即装配体可以分解为子装配体,子装配体又可分解为下级子装配体和零件的集合,以此表达产品的装配组成。

矩阵比图易于计算机表达和实现。Dini和Santochi[7]利用干涉矩阵、接触矩阵和连接矩阵表达产品,干涉矩阵描述了零部件间沿坐标轴方向装配时相互间的干涉情况,接触矩阵描述了零部件间的物理接触状态,连接矩阵描述了零部件间的连接类型。为减少矩阵的数量,Huang[8]等把6个干涉矩阵合并为一个拆卸矩阵,集成的表达零部件间沿坐标轴方向的干涉情况。

1.2装配序列推理和表达

基于联系图模型,Bourjauct采用人机交互“问答式”方法获取装配优先约束关系[4],写作医学论文随后DeFazio和Whitney[9],Baldwin[10]等人的工作进一步较少了需要由用户回答问题的数量,然后通过对装配优约束关系进行推理得到联络建立优先关系的层次模型表达产品的装配序列。

“割集”法是基于拆卸策略的装配规划中通常采用的图论算法。HomemdeMell和Sanderson[5]通过对产品联接图进行缩并,利用“割集”算法对联接图进行循环分解,生成所有可能的子装配体,直到不可再分。并提出了装配序列的AND/OR图表达方法,图中的节点对应装配过程中的子装配体或零件,超弧表达将子装配体或零件联接在一起形成更大子装配体的装配操作。因为“割集”算法的计算复杂性为O(3N)(N为零件个数),因此,对于复杂产品的装配顺序规划存在指数爆炸问题,这是难以让人接受的。

1.3装配序列评价和选择

装配序列的选择对装配线设计、装配成本、装配设备选择有很大影响,写作职称论文而评价是选择的基础。装配序列的评价可分为定性和定量两方面因素[11]~[13],定性因素主要考虑的有装配方向换向的频度、子装配体的稳定性和安全性、装配操作任务间的并行性、子装配体的结合性和模块性、紧固件的装配、零件的聚合等。定量因素主要考虑的有整个装配时间(包括子装配体的操作时间、运输时间等)、整个装配成本(包括劳动成本、夹紧和加工成本)、产品在装配中再定位的次数、夹具的数目、操作者的数目、机器人手爪的数目、工作台的数目等。

更多的经典装配规划方法研究文献可以参见TexasA&M大学Wolter教授的“AssemblyPlanningBibliography”[14],其中收集了自1980年起近15年经典装配规划方法的相关研究。经典方法一般表达出全部的序列解空间,这使它可能从中找出最优的装配序列,但随着产品中零件数量的增加,解空间的组合爆炸给序列的存储、选优带来极大困难;且序列的几何推理方法不易融入人类的装配知识,难免产生众多几何可行但工艺不可行的序列结果。

2虚拟装配规划方法

虚拟现实技术为装配规划的“人-机”协同工作提供了契机。虚拟装配是指由操作者通过数据手套和三维立体显示设备直接三维操作虚拟零部件来模拟装配/拆卸过程,无需产品或支撑过程的物理实现,通过分析、先验模型、可视化和数据表达等手段,利用计算机工具来安排或辅助与装配有关的工程决策[15]。虚拟装配过程中,人机可以充分发挥各自的优势,即人通过直觉/装配经验和知识决定产品的装配过程,但不能精确地判断当前所有可能装配的零件,也不太可能准确判定装配某一零件后装配体的稳定性等因素,而通过一定算法和规则实现的机器智能刚好弥补人的不足。虚拟装配方法得到的不仅仅是零件的顺序,还可以包括零件路径、装配工具、夹具和工作台等信息。图2为虚拟装配规划的工作步骤。

国外虚拟装配规划的研究以沉浸式虚拟装配环境VADE[16],[17](VirtualAssemblyDesignEnvironment)为代表,写作英语论文通过建立一个装配规划和评价的虚拟环境来探索运用虚拟现实技术进行设计、制造的潜在技术可能性,为机械系统装配体的规划、评价和验证提供支持。在虚拟环境中,利用提取并导入的CAD系统产生的装配约束信息引导装配过程;通过引入了质量、惯性和加速度等物理属性,基于物理特性进行装配建模,逼真地模拟真实装配环境;支持双手的灵活装配和操作;记录虚拟装配过程中产生的扫体积和路径信息并可进行编辑;建立了工具/零件/人相互作用模型,支持装配工具在虚拟装配环境中的运用。

国内管强等[18]将虚拟现实技术与面向装配设计的理论相结合,建立了一个虚拟环境下的面

向装配设计系统(VirDFA)。万华根等[19]建立了一个具有多通道界面的虚拟设计与虚拟装配系统(VDVAS),通过直接三维操作和语音命令方便地对零件进行交互拆装以建立零件的装配顺序和装配路径等装配信息。在面向过程与历史的虚拟设计与装配环境(VIRDAS)中,张树有等[20]通过识别装配关系进行装配运动的导航,实现虚拟拆卸/装配顺序规划、虚拟装配分析。从集成的观点出发,姚珺等[21]提出面向产品设计全过程的虚拟装配体系结构,从方案设计、结构设计和装配工艺设计3个层次上分阶段地对产品可装配性进行分析与评价。田丰等[22]提出一个面向虚拟装配的三维交互平台(VAT),简化了虚拟装配应用系统的构造,便于应用的快速生成。

应用虚拟现实环境开展装配规划,提供了一种新的思路和工具。但是,虚拟环境的构建需要较大资金的软硬件投入,另外,虚拟现实技术本身(如图形的高速刷新)及其相关硬件技术(如力触觉设备)的不成熟使得虚拟装配的研究仍处于探索阶段。

3装配规划软计算方法

1994年,Zadeh教授将模糊逻辑与智能技术结合起来,提出了软计算方法(softcomputing)[23]。软计算以模糊逻辑、神经网络和概率推理为基础,不追求问题的精确解,以近似性和不确定性为主要特征,所得到的是精确或不精确问题的近似解。为避免组合爆炸同时又能得到较优的装配规划方案,近来,基于建模、表达和寻优一体化的装配规划软计算方法得到广泛关注。

3.1装配规划神经网络方法

神经网络是模拟人类形象思维的一种人工智能方法,它是由大量神经元广泛互连而成的复杂网络系统,写作留学生论文单一神经元可以有许多输入、输出,神经元之间的相互作用通过连接的权值体现,神经元的输出是其输入的函数。若将优化计算问题的目标函数与网络某种状态函数(通常称网络能量函数)对应起来,网络动态向能量函数极小值方向移动的过程就可视作优化问题的求解过程,稳态点则是优化问题的局部或全局最优解。

Hong和Cho[24]用于机器人装配顺序优化的Hopfiled神经网络中,考虑装配约束、子装配体稳定性和装配方向改变等因素建立网络的能量方程,基于优先约束推理和专家系统提供的装配成本驱动网络的进化方程得到优化的序列。但由于神经网络缺乏全局搜索能力,计算结果显示,该方法容易产生不优化的装配顺序,且常常只能得到一个局部最优的装配序列。另外,参数选择和初始条件对网络的灵敏度影响大;神经网络在应用前须进行训练,而训练时要由专家提供较多可行的顺序作为样本。而样本可能是针对某种类型的产品,对其它类型的产品则不一定适用,该方法的应用范围窄。

3.2装配规划模拟退火算法

模拟退火算法源于固体退火思想,将一个优化问题比拟成一个热力学系统,将目标函数比拟为系统的能量,将优化求解过程比拟成系统逐步降温以达到最低能量状态的退火过程,通过模拟固体的退火过程获得优化问题的全局最优解。

Saeid等[25]利用模拟退火算法进行装配序列规划时,根据产品装配模型获得装配优先关系,将装配过程总装配时间和重定向次数运用多属性应用理论组合成单一目标函数,作为装配序列优化的评价函数。Hong和Cho[26]将装配约束和装配过程的成本映射为装配序列能量函数,利用模拟退火算法使装配序列能量函数扰动地逐步减小,经过多次迭代,直到能量函数不再变化为止,最后得到具有最小装配成本的装配序列。作者将该方法应用到一个电子继电器装配体上,并将其性能与利用神经网络[24]的装配规划方法进行了比较,结果显示基于模拟退火的装配序列优化方法可以产生较好的装配序列并且在运算时间上优于人工神经网络方法。

模拟退火算法具有较强的局部搜索能力,并能使搜索过程避免陷入局部最优,但模拟退火算法对整个搜索空间的状况了解不多,不能使搜索过程进入最有希望的搜索区域,从而使得算法的运算效率不高。

3.3装配规划遗传算法

在众多软计算方法中,遗传算法得到了众多研究者的重视。写作工作总结遗传算法是模仿生物自然选择和遗传机制的随机搜索算法,它将问题的可能解组成种群,将每一个可能的解看作种群的个体,从一组随机给定的初始种群开始,持续在整个种群空间内随机搜索,按照一定的评估策略即适应度函数对每一个体进行评价,不断通过复制、交叉、变异等遗传算子的作用,使种群在适应度函数的约束下不断进化,算法终止时得到最优/次最优的问题解。图3为装配规划遗传算法的一般流程。

装配规划遗传算法的研究重点集中于设计装配序列的基因编码方式以包含更多的装配过程信息、设计基因操作的形式和改进遗传算法的局部搜索能力上。Lazzerini等[27]的分段编码遗传算法中,将染色体分为3段编码,第1段表示参与装配的零件编号,第2段表示零件的可行装配方向,第3段表示装配工具,从而使染色体包含了部分工艺信息。为了提高算法的性能,文中将装配体分解为子装配体进行装配,减少了参加装配序列规划的零件数目;Guan等[28]采用基因团编码方式,一个基因团表达一个零件的装配操作,由被装配零件号装配元、装配工具装配元、装配方向装配元和装配类型装配元组成。在扩大采样空间选择下一代种群的基础上,通过交叉和多层次变异实现装配序列并行优化。廖小云和陈湘凤[29]在装配序列规划遗传算法中设计了复制、交叉、变异、剪贴和断连5种遗传算子寻找装配序列优化解。在Smith等[30]的增强型遗传算法中,选择下一代个体并不完全依靠适应度,而是先把一定数量较优的个体复制到下一代,将适应度低但几何可行的序列用于继续产生序列,直到满足下一代种群中序列个数的需求,从而使算法能跳出局部最优点,在全局范围内搜索最优解。

理论上,找到全局最优装配序列要求参加演化计算的种群规模要足够大,迭代次数要无限

多,但在计算资源和时间限制下是达不到要求的。因此,遗传算法求解装配规划问题的效率和结果依赖于初始种群规模及其质量、遗传算子及其操作概率等因素。

4协同装配规划方法

装配体作为实现产品功能的载体,零部件可能由不同的企业设计,零部件和产品可能在不同的装配工厂完成装配过程,因此需要设计团队的协同工作和决策以保证装配质量和降低装配成本。计算机和网络技术的快速发展缩短了异地人员在时间和空间上的距离,为实时的“人-机-人”协同装配工作提供了可能。

Wisconsin-Madison大学[31]提出网络环境下的电子化装配(e-Assembly),探讨在Internet/Intranet上利用3D模型进行协同虚拟装配和拆卸的方法论和工具,拟实现的关键技术包括3D交互可视化、协同装配/拆卸/维护/回收等。目前已开发了Motive3D系统,利用Synthesizer模块可以交互/自动进行产品的装配建模和规划,Visualizer模块为用户在Web平台上提供装配序列规划结果的可视化仿真,但缺少交互修改、调整功能。在ATS项目[32]实施中,为了向异地的开发人员展示装配设计和装配规划结果,尝试利用VRML作为可视化工具,一方面供设计团队浏览零部件设计,另外将装配模型用文本编辑软件进行编辑,生成装配序列的VRML仿真文件,供异地的设计团队实时进行评价和提出修改意见。但手工编辑文件不但花费的时间长达一周,而且每次设计修改后都必须重新编辑;同时,仿真文件仅具有浏览功能,不能进行交互修改。

Web环境下的协同装配规划方法[33]采用协同工作环境下的装配建模、装配规划任务分配和装配序列合成等技术,通过对复杂产品装配规划问题的分解,即降低了单机规划工作模式的复杂度,又便于集中不同地域多专家的装配知识和经验进行装配规划方案的协同决策。面向协同广义装配[34]通过确定装配子任务编码方法、装配人员评价指数和制定协同装配协议,以VRML为产品模型载体实现协同装配系统。在装配知识和规则的支撑下,支持局域网内多用户实施产品预装配、验证零部件可装配性,相关的装配人员能够协同讨论装配方案。Web环境下3D交互装配可视化仿真结构是一个符合开放技术标准的可视化装配系统[35],它基于VRML-Java实现装配场景的动态生成、装配控制、碰撞检测以及装配过程的动画回放等功能,目前完成了基于“堆叠”思路的装配验证方式。但该系统属于单用户系统,不能支持多用户的实时协同装配工作。

5结论与展望

CAAP的研究在理论上取得了一定的成果,在工业界也得到了一定的应用,但相对而言还很少,这说明该技术距离工业实用还存在较大差距。装配规划是一个经验和知识密集型的工作,同时又与具体行业和产品有紧密的关系。经典装配规划方法的精确推理在保证序列的几何可行性方面具有优势,而软计算技术能够将人的模糊知识融入规划过程中,使得结果具有更好的工艺可行性,两者的适当结合将有利于模仿人类装配专家的实际装配规划过程,从而得到合理的装配方案。

跨地域、跨国家的网络化、协同化产品设计和制造新模式的形成使产品装配成为一个需要协同工作和决策的问题。随着虚拟现实技术和网络技术的进一步发展,建立基于网络的协同装配决策平台和虚拟环境,支持异地多人员协同装配方案决策将是新形势下装配规划研究的新趋势。

参考文献

[1]苏强,林志航.计算机辅助装配顺序规划研究综述[J].机械科学与技术,1999,18(6):1006~1012.

[2]石淼,唐朔飞,李明树.装配序列规划研究综述[J].计算机研究与发展,1994,31(6):30~34.

[3]牛新文,丁汉,熊有伦.计算机辅助装配顺序规划研究综述[J].中国机械工程,2001,12(12):1440~1443.

篇2

关 键 词:榫卯结构 数字化仿真 有束腰凳

一、前言

传统榫卯工艺是传统文化中的瑰宝[1],在现代家具设计中迫切需要对其进行深入学习与研究。但是由于榫卯工艺结构复杂,在教学中此类物理教具制作困难,不能进行批量的机械化生产。并且内部榫卯结构不能通过物理教具直接观察到,学习者不能直观的理解其结构,这造成学习榫卯结构的过程非常困难[2]。针对榫卯工艺在研究过程中存在的此类问题,本文提出引入数字化设计中的新方法、新技术,将数字化仿真设计与榫卯工艺相结合,以“有束腰方凳”为例,进行虚拟仿真设计。利用仿真技术对榫卯结构进行数字化模型的构建,并利用虚拟装配技术对其进行装配和构建。这样避免了物理教具的批量制造,降低教学成本,提升了教学效率,为榫卯结构的教学研究提供了一条新的思路,本文主要研究的是通过仿真模拟技术对传统榫卯工艺进行研究及其数据库的建立。

二、数字化仿真构建方法

1、数字化仿真技术含义

数字化仿真技术是以虚拟现实和仿真技术为基础,对产品的设计过程统一建模,在计算机上实现产品从设计、加工和装配、检验、整个生命周期的模拟和仿真。这样可以在产品的设计阶段就模拟出产品及其性能和制造过程,以此来优化产品的设计质量和制造过程。与传统的工业设计相比,数字化设计技术在设计方法、设计过程、设计质量和效率等各方面都发生了质的变化,数字化工业设计将主要包括数字化建模,数字化装配,数字化评价,数字化制造,以及数字化信息交换等几方面。

2、数字化仿真设计流程

在现实家具榫卯工艺研究的方法是:把已有的家具进行拆解,对拆解后的榫卯结构进行测量、记录与学习。而在Pro/E系统中,学习研究榫卯结构的方法是:首先通过对榫卯家具进行拆解,并对其结构进行精细测量;然后通过数字化设计技术,并采用数字化样机来代替原来的物理原型,在数字状态下进行仿真分析,对原设计进行装配重组。这样不需要实物原型,就可以让更多的设计人员在不同时间不同的地点在计算机上进行榫卯结构的学习和研究。

三、数字化仿真实例

首先是建模平台的选取,考虑到数据格式的通用性、三维模型建设的便捷性,以及数据管理方式的先进性,最终选用了软件Pro/E作为三维建模平台。对结构件和零件用软件Pro/E进行建模来更直观的展示传统结构,以此来系统阐述榫卯结构制图和模型制作的现代工艺流程。由于凳子是明清家具中最基本的单品,其结构也是桌、案、几等家具的本源。本文将具有榫卯结构的束腰凳进行拆解,并对拆解后的结构进行仿真模拟。

1、定义初步产品结构

在进行详细设计之前要对产品进行初步结构分析:首先采用自顶向下设计方法规划出束腰凳的整体造型结构关系,即产品结构包含了一系列的子装配件,以及它们所继承的设计意图。产品结构由各层次装配和元件清单组成,在定义设计意图时,有许多子装配是预先确定下来的:比如对本例束腰凳进行结构分析,可以看到本例凳子一共使用了攒边打槽装板、抱肩榫、格肩榫这三种榫卯装配结构。

2、数字化样机详细设计

在明确了设计意图并定义了“有束腰凳”产品基本结构和框架前提下,将围绕设计意图和基本框架展开零件和子装配的详细设计。首先是子装配件的确定,通过对基本框架的研究分析得出产品共分为三个子装配体:攒边打槽装板结构子装配体、抱肩榫结构子装配体、格肩榫子装配体。当子装配体确定下来,设计基准传递下去之后,可以进行单个的零件设计。

2.1凳面榫卯结构仿真

从拆解图二可以看出,凳面采用的是攒边打槽装板连接方式。我们将攒边打槽装板连接方式定义为子装配件,在子装配件下进行板心及边框的详细设计。趱边打槽装板的装配结构是首先将板心装纳在四根边框之中,然后将装板的边框装配起来[3]。这种装配结构的优点在于边框伸缩性不大,使得整个家具的结构不至由于面板的胀缩而受影响,起到了稳定坚实的作用。

趱边打槽装板装配结构定义完之后开始进行零部件的详细设计,由图四可以看出此装配零部件由凳面的带榫头的两根大边和两条带榫眼的抹头组成。这四根木框两根长而出榫的叫“大边”,两根短而凿眼的叫“抹头”。经过以上分析,在Pro/E环境中建立这四根带有榫卯结构的木框零部件。

2.2腿足的抱肩榫结构仿真

从图三可以看出,凳面与腿足及其束腰采用的是抱肩榫连接方式,将抱肩榫连接方式定义为子装配件,抱肩榫是束腰家具的腿足与束腰、牙条相结合时使用的榫卯结构。首先通过测绘获得各种数据为基础,在获得详细的数据基础上,通过三维仿真建模技术,对抱肩榫结构进行子装配件的建立。之后在子装配件下进行牙条与腿足的详细设计。通过对三维仿真模型的拆解可以看出来,抱肩榫子装配件的详细结构是在腿足上挖出肩,将牙条插挂在上面来固定四方的框架。同时挂销进一步定位横材和竖材,将面受到的压力均匀传递到四足上,腿足上端的长短榫通过抹头的插接固定了承重面。

2.3.脚档的格肩榫模型仿真

通过下图对束腰凳的拆解可以看出,数字化模型中脚档与腿足的连接方式为格肩榫,将格肩榫装配方式定义为子装配体,然后分析其详细零部件。本实例束腰凳的腿足是方形竖材,此家具用的是大格肩榫结构,肩部为尖角,格肩部分和长方形的阳榫贴实在一起的,为不带夹皮的格肩榫,又叫“实肩”。详细零部件构成为:格肩榫榫头在中间,两边为榫肩,格肩部分和长方形的阳榫贴实在一起的,为不带夹皮的格肩榫,又叫“实肩”。 齐头碰在形式上有透榫。

3、数字化样机虚拟装配

假如在榫卯结构的物理教具装配演示过程中,需要将装配的各个零部件拿到装配现场进行装配[4]。而在Pro/E虚拟系统中,只需要在计算机屏幕上装配零部件,查看和分析零件的配合情况,这样可减少对物理样机的依赖。

具体的虚拟装配的方法是:首先是装配建模体系结构的建立,根据有束腰凳装配给定的功能要求和设计约束,先确定产品的大致组成和形状,确定各组成零部件之间的装配关系和约束关系。然后再把束腰凳分解成若干个零部件,在总体装配关系的约束下,同步根据装配关系对这些零部件进行设计。

其次是装配体层次关系的定义,束腰凳的装配体分解成不同层次的子装配体,子装配体又可分解成若干子装配体和各个零件。通常将零件、子装配体、装配体之间的这种层次关系直观地表示成装配树,树的根节点是装配体,子节点是组成装配体的各个零件,中间节点则是子装配体。装配树的的关系体现了实际形成装配体的装配顺序,同时也表达了装配体、子装配体及零件之间的父、子从属关系。图6是有束腰凳的仿真装配结果。

四、 结语

传统榫卯结构是我国宝贵的传统工艺非物质文化遗产,同时明式家具榫卯结构工艺也是当今学习榫卯结构的难点,所以有必要对传统榫卯结构进行三维数字模型的仿真研究,使学习和掌握榫卯结构的过程更快捷。通过三维模型的仿真研究和实践,探索出一套学习榫卯工艺的学习方法,为当今家具设计提供有益的参考,同时也促进了明式家具的深入研究,有助于传统文化的广泛传播和发展。

本文为天津市高等学校人文社会科学研究一般项目资助 课题号:20112303

参考文献

[1] 胡中艳,曹阳.中国古代家具设计的继承与发展[J].包装工程,2009,30(1)158-160

[2] 杨静,余隋怀,杨刚俊.明式家具榫卯结构的参数化设计系统构建与应用[J].西北林业学院学报,2009,24(3):163-166

篇3

关键词:虚拟制造技术;现代机械工程设计;机械制造;机械产品;机械设计

文献标识码:A中图分类号:TH166文章编号:1009-2374(2016)05-0073-02

作者简介:伊纪斌(1994-),男,山东淄博人,山东理工大学国防教育学院学生,研究方向:机械设计

随着知识经济和工业制造的快速发展,现代化的市场要求产品生产厂商要以最快的速度、最优的品质、最短的研发时间、最低的成本消耗和最佳的服务来满足顾客的需求。传统设计一般是在图纸结合产品的特性和设计的具体要求进行的,在机械设计的过程中需要提前对设计中的设备装配的干扰因素的不确定进行考虑,但是产品在装配中的缺陷只有在产品开发的后期才能暴露出来或者在产品的试制阶段和装配中显现出来。如果设计的零件已经开始投入生产了,那么损失就更加严重了。产品的质量在传统的设计和制造方式上不能得到很好的保证,并且传统设计的工艺比较粗糙、开发的效率低、花费时间比较长、耗费的资金比较大。在变化速度快、持续性发展和不可预测性市场中难以适应。因此,企业的生产活动需要具备高度的柔性和快速的反应,与此同时信息技术的飞速发展保证了机械制造的先进性,信息化的使用对于现代机械工程设计十分重要。

1虚拟机械制造技术

以往传统的机械设计技术的设备条件比较差,设计技术性不强,传统的设计观念比较保守,设计的手段主要依靠的是粗略的计算和估算,主要是在较多的简化和静止化假设中完成机械工程的设计,传统设计具有较大的随意性,并且设计的关键过程还对设计者的经验和设计习惯具有很大的依赖性。设计的过程很难实现合理、高效和准确。但是在现代化虚拟设计的相关技术可以很好地实现设计经验依赖性强、设计过程静态性和设计理念随意性向现代化设计精确性、以数据知识工程和专家系统为保证的设计方式的发展,虚拟计算机技术需要对必要的信息进行检索、分析和收集。最终找出最优的设计方案和数值运算的方式,当然也会对CAD技术和人工智能技术、数据库技术等进行大量的应用。虚拟机械制造技术主要是在虚拟环境下对计算机的模型进行虚拟分析的一种计算机设计技术。该技术集成并综合应用了综合性的机械制造环境,主要包括了各种仿真、分析、应用等工具以及信息模型和控制工具等。虚拟制造需要经历的主要阶段有装配产品的概念设计、动态仿真、回收利用。依靠虚拟制造技术,机械设计人员不需要将所有的零件设备生产制造出来,可以通过对零件模型的建立,随后对零件进行虚拟装配,并对各零件部位之间的装配间隙进行干涉、对装配的状态实现检查,对零件设计中的错误及时发现,如果零件不符合设计要求,可以依靠计算机技术方便及时更改模型,最后形成新的零部件设计图和装配图,达到设计、装配和制造检验的协调。

2虚拟制造技术的关键

虚拟制造技术包含了许多方面,主要有设计技术的提出、产品制造过程的抽取、原模型的建立、集成基础结构、建模仿真等。下面就对虚拟制造技术中的关键技术进行详细的介绍:

2.1虚拟技术中的建模技术

虚拟指的是在系统中将现实制造系统映射到虚拟环境下,主要涉及了RMS的模型化、形式化、计算机化的抽象描述和表示。VMS建模的主要内容有生产模型建立、产品模型建立、工艺模型建立的信息化体系结构的建立。生产模型中有静态描述和动态描述两种。静态描述主要是关于对系统生产能力和生产特性。动态描述是在已经被得知的系统状态和需求的性质上对产品的整个过程进行全面的预测。在制造过程中我们将种种实体对象总的称之为产品模型。在产品的模型建立中需要对产品的明细、形状特征等方面进行描述。对于VMS而言,要实现产品实施过程的全部继承必须具备完整的产品模型。因此在虚拟制造中的产品模型不再是单一和静止的,它可以运用抽象的技术实现各种模型面貌的提取。工艺模型主要指的是在制造过程中对产品的工艺参数和关于产品功能的各种因素进行联系,最终实现对产品模型和生产模型之间相互作用的反映。

2.2虚拟制造技术中的仿真技术

仿真指的是通过计算机实现复杂现实系统的抽象化和简洁化最终形成的系统模型,并且在仿真的基础上对模型进行应用,最终得到相应的系统性性能分析。仿真主要以系统模型为主体的研究方法,它对实际的生产系统没有直接的干扰作用,并且仿真系统可以对计算机的计算能力进行应用,实现在短时间内完成在实际工作中需要很长时间的工作,有效缩短了生产决策的时间,最大化地避免了对人力、物力和资金的投入以及浪费。计算机技术还有很好的仿真修复功能,最大化地保证了方案的最优。仿真技术过程的主要步骤有系统研究、数据收集、系统模型建立、仿真算法的确定、仿真模型的计算、仿真模型的运行、结果的输出和分析。仿真在产品的制造过程主要被分为制造的仿真和加工的仿真。在系统产品的开发中主要涉及的是产品建模、设计交互行为仿真等。方便对设计结果的评价,及时进行反馈,降低产品设计中的错误。加工过程的仿真主要有切削、装配、检验及焊接、压力加工和铸造等。以上两种仿真过程是相对独立的,两者不能实现集成,而VM中应建立全面过程的统一仿真。

2.3虚拟制造中的虚拟现实技术

虚拟现实技术的目的是改善计算机的交互方式,提高计算机的可操作性,它是在对计算机图形系统和多种显示以及控制等接口设备的基础上,以交互的三维环境为人提供沉浸体验的技术。虚拟现实技术主要由图形系统和多种接口设备组成,使人在虚拟环境中感受到真实的沉浸感觉,交互性计算机系统是虚拟现实系统的基础。虚拟现实系统中有操作者、机器和人机接口。它帮助提升人和计算机间的和谐度,同时也是最有力的仿真工具。在VRS的作用下实现对真实世界的模拟。在用户交互输入以及输出修改虚拟环境的条件下,使人达到身临其境的沉浸感觉。VM的关键技术之一就是虚拟现实技术。

3机械虚拟样机技术介绍

虚拟样机技术在机械工程设计中被称作机械系统动态仿真技术,它是20世纪80年代在计算机技术的快速发展中发展起来的一种计算机辅助技术。在计算机建立样机模型后,对模型的多种动态性能进行具体的分析,最后对样机方案实现改进。用数字化模型代替物理性的样机。通过虚拟样机技术的作用,简化了机械产品的设计开发过程,有效缩短产品开发的时间,最大程度降低产品的开发成本和费用,实现产品质量和系统性能的提升,使设计产品实现最优化和最具创新性。综合以上优势,该技术一经出现就受到了众多工业发达和高等院校及设计和生产企业的重视,许多著名的产品开发设计者都对该技术进行了引入并运用在自身产品的开发中,并且取得了极好的经济和生产效益。在机械工程设计

中应用仿真技术对零件进行设计、生产工序等方面的选用以及工艺参数、加工工艺、装配工艺等构件的运动性等均可以实现建模仿真。

4虚拟制造技术在机械工程中发挥的优势

4.1强大的通用性和分析处理复杂问题的能力

虚拟样机技术建立和发展的基础是分析力学和多体运动力学,该技术的关键是对复杂机械系统进行自动建模。因此,大多数的虚拟样机技术软件主要运用的是带约束乘子的微分代数混合方程。令每个构件都有六个自由度是它的核心,还要要求其对多余的自由度进行限制,实现其具有良好的通用性,达到适用性强的目的。与此同时,虚拟样机技术还对机械系统的详细环节进行考虑,具体指弹性、接触和摩擦等因素。

4.2为机械系统建模带来便利

传统的机械系统建模中要先建立运动分析,随后在运动分析的基础上进行动力分析,这中间需要许多的图形分析和公式推导。但是图形的分析和公式的推导过程往往比较复杂,并且错误率高。同样的建模过程中设计人员只需要将机械的构成方式和连接方法以及相应的物理参数实施输入,其后的建模和求解只需要计算来完成就可以了,极大地帮助设计人员承担了许多的设计难度。

4.3强大的后期处理能力

在传统的分析方法上通常得出的是大量的数据,数据的理解还要依靠丰富的经验和理论。但是运用虚拟样机计算软件为复杂性的数据提供了可视化技术,使得设计人员直观地看到机械设计的性能和运动效果。

5结语

虚拟制造技术实现了现代工程机械工程设计领域中的设计、试制等一系列过程的直观性。实现了在产品真正制造出来前,可以在虚拟的制造环境中生成产品的原型,更好地替代现实中的硬件产品,更方便地对设计产品的性能和可生产性进行评估,极大地缩短了产品的设计和生产周期,最大化地节约了产品开发的成本,保证产品的开发和设计可以适应市场的灵活性的变化。虚拟制造技术是现实技术和计算机仿真技术在机械制造中的综合应用。在现代化计算机虚拟设计技术的帮助下实现对众多产品的开发和设计,不仅不会造成实际物质的浪费,并且还能更直观地了解产品生产的具体情况,打开了机械制造和设计的全新局面。

参考文献

[1]李锐.虚拟制造技术在现代机械工程设计领域中的应用[J].河南科技,2013,(13).

[2]刘玲娣.浅谈虚拟制造技术在农机设计制造中的应用[J].河北农机,2013,(2).

[3]孙福臻,阎勤劳,单忠德,等.机械虚拟现实技术的应用与发展[J].机械设计与制造,2010,(5).

[4]郝虎.虚拟样机技术在采煤机械设计中的应用[J].城市建设理论研究(电子版),2011,(25).

[5]陶表达,姚桂玲.虚拟技术在现代机械产品研发中的应用[J].湖北第二师范学院学报,2010,(2).

篇4

关键词:玉米青贮机;三维模型;失效分析;改进设计

引言

随着现代畜牧业的发展,我国青贮饲收获机械的研发与设计不断涌现,而关键技术及零部件的研发起步较晚,国内的玉米收获机研发处于初级阶段,本文针对设计样机在试验过程中割台传动系统出现的花键轴扭曲故障而导致整机运行试验失败提出的问题。(如图1)

1.模型的构建

利用三维建模软件UG建立玉米青贮机割台转动系统简化模型(如图2、3)。

上图中的花键轴(如图4)的动力是由万向节传递的,正是此矩形花键轴发生过载扭曲现象,造成试验过程失败。

2.机构的数据模型建立

为了计算锯盘所受载荷的大小及分布的原理,试验过程中,测量出玉米种植的行距及株距。实测以种植的平均株距为160mm,行距为720mm计。根据玉米青贮机的基本参数可知,在运行过程中理想状态下可对5行植株进行收获(如图5、6)。

根据图6知,锯盘的受力为脉冲型的,假定玉米收获机的工作行走速度为V0,则植株1的沿着搅龙的速度可分解为竖直向下的速度VY,和水平向左的速度VX,则根据力的合成与分解原理即:

分析可得到,植株1、3、5同时到达直至秸秆被割断,植株2、4同时被切割,则锯盘的受到两个脉冲力的作用。假设玉米秸秆被锯盘截断需要随锯盘运动的位移为S,由余玄定理 :

:为刀盘转过的角度

W:为刀盘的角速度

R:为刀盘的半径

查阅资料知玉米秸秆的茎叶连接力、叶鞘的抗拉特性和茎秆、叶鞘的抗冲击特性结果,得到了玉米秸秆的固有力学特性:茎叶连接力为0.7~16N,叶鞘抗拉力为3~21N,茎秆抗冲击能量为20.3~42.8J。根据实际工作情况,取转速n=2400rad/s,工作行走速度V=2m/s,相对截断位移S=100mm进行比对。

若取茎秆的平均抗冲击能量为30J,则单个植株脉冲力可得:

脉冲力 = (其中锯盘的半径R>>S,则此时运动弧长L≈S)

由于波轮工作的复杂性,如图7所示,当波轮过载荷时齿轮与上下摩擦片打滑时传动轴承受的是最大扭矩,且其是根据碟簧上螺母的拧紧程度所决定的,故设波轮所受的最大静载荷为 。

代入工作参数可得:

脉冲的周期

脉冲间隔

脉冲力持续时间

可知脉冲力时间间隔、脉冲力持续时间都较短,由刀盘及波轮转速之比为30,可得波轮旋转一圈需0.075s,且随着工作行走速度的增加,会发生脉冲力的叠加。UG加载的函数中能确切表达的公式为:

F(t)= +

其中V0是工作行走速度,F为单个植株脉冲力300N,F0为波轮打滑的最大载荷,(由螺母决定,假定F0=1000N)。可将脉冲分段函数近视看作正弦函数图(如图8、9)。

3.关键部件的力学分析及仿真结果

在UG系统中动力学仿真模块定义连杆机构,选择有相对运动的部件,运动的部件整体定义为一个连杆,定义杆件间的运动副,并为其赋齿轮副的参数(如图10)。

由上图可知,随着玉米青贮饲料收获机工作行走速度的增大,单位时间内的脉冲次数也随之增加,且脉冲力也随之增加。

当玉米青贮饲料收获机工作行走速度为8m/s时,利用Ansys对矩形花键轴加载荷,得到切应力的云图及花键轴的总变形云图(如图14、15)。

由上图可以看出,矩形花键轴的最大变形量为2.2024mm,花键轴的最大扭转切应力分布在齿根的附近,这是由于矩形花键的侧面的应力集中所致,与实际工作中的过载情况符合,得到割台部件载荷过大,矩形花键轴发生扭转变形。

4.改进后的力学分析

试验中增加调节安全离合器,设置调节安全离合器的最大扭矩防止传动轴过载荷,根据玉米青贮饲料收获机的工作最大行走速度V=8m/s,将花键轴所受的最大载荷力矩1425500N・mm为安全离合器的最大离合扭矩,利用Ansys给矩形花键轴加载荷,得到切应力的云图及花键轴的应变云图(如图16、17)。

由上图可见,花键轴承受的最大切应力为834.36MPa,最大扭转距离为0.079286mm。安全离合器动作足以保证传动轴过载荷。

5.结束语

本文利用UG软件的model模块获得三维模型数据;并通过基于VR技术的虚拟装配平台对其模型的可装配性加以验证,得到精确合理的零部件三维模型。

进而简化割台部件传动系统的模型,应用理论力学、物理知识计算分析了刀盘所受的力可近视看作为正弦脉冲力并得出随时间变化的等效载荷公式;得出花键轴所需承受的最大载荷与玉米青贮收获机工作行走速度间的关系,分别得出不同速度花键轴所需承受的最大载荷图。

根据材料力学及花键轴的尺寸参数计算出花键轴的屈服强度,进行结果比较。最后,得出花键轴较容易过载的结论,并提出了加装超越离合器的方案,加以分析得到花键轴接近最大载荷时超越离合器的扭矩值。

加以验证,符合实际工作情况,解决了传动系统中的薄弱环节。

参考文献:

[1]Qing-Hui Wang, Jing-Rong Li Interactive visualization of complex dynamic virtual environments for industrial assemblies Computers in Industry, Volume 57, Issue 4,May 2006,Pages 366-377

[2]肖燕子.天然牧草青贮品质调控研究.《内蒙古农业大学硕士论文》,2012.05.01

[3]S系列多用途青(黄)贮饲草料收获设备.《农机具之友》,2004.12.28

[4]耿瑞韩,盘根.加大科技研发力度促进农作物秸秆综合利用―河南省驻马店市农作物秸秆综合利用调研报告.《中国农村科技》,2012.03.05第4卷第4期

篇5

随着电子、机械等工业技术的飞速发展和生产商对加工精度要求的不断提高,产品的固有可靠性逐步提高。然而,无论产品的固有可靠性提高到哪种程度,都不可能达到百分之百,随着贮存、运输和使用等时间上的积累,产品总会有发生故障的时候。一旦产品发生故障,必须有方便快捷、经济实惠的维修手段以恢复产品的性能。因此,维修是否快速有效将直接关系到使用者的经济利益。产品的维修可达性将直接影响维修活动工作量的大小,改善产品的维修可达性将极大的提高产品的系统效能,同时节省产品的寿命周期费用。由于产品的维修可达性是产品本身固有的质量特性,因此解决维修可达性问题必须从设计人手。

随着计算机信息科学的飞速发展,尤其是本世纪在计算机图形学技术、高性能图形系统和虚拟现实方面的诞生了不少的研究成果,维修过程在获得实物样机或原型机之前就可以开始进行。产品设计和开发的模式也随之发生了变化。DELMIA、Jack等计算机辅助设计软件和技术的广泛应用,可以辅助设计人员完成包含数字样机、虚拟维修人员和虚拟维修工具的虚拟维修操作流程仿真。在设计阶段即开展对设计方案和设计布局的数字仿真,可以避免实物原型的制作,节约了从设计到定型的时间,提高了设计效率,从而降低了开发成本;前期开展的虚拟维修工程评价工作,在一定程度上优化了设计方案和设计布局,因此可以避免不合理的设计,减少给后续维修工作造成的不便。

维修操作空间定量评价方法

维修是一种需要人参与的活动,适当的维修空间将提高维修效率和维修人员的舒适程度。这一节的主要内容是确定适当的维修操作空间的大小。

在设计产品时,适当的操作空间的具体尺寸需要依据维修人员的身体尺寸和操作姿态来确定。因此维修操作空间应考虑维修人员的影响因素,如实体可达性。人的上肢可以接触到的空间范围分为最佳范围、正常范围和最大范围。人体上肢的作业范围是一个三维空间,维修人员的最大操作空间和舒适度随着操作高度、手臂延伸线与人体中线的夹角角度的改变而发生变化。为了便于分析人体上肢的操作范围,建立数学模型描述人体各部分的尺寸和相对位置。

软件工具设计和案例探究

CATIA是法达索公司(Dassault Systemes)与IBM公司(International Business Machines Corporation国际商业机器公司)联合开发的一款CAD/CAE/CAM软件,主要为客户提品外形设计、机械零件设计、配合结构设计、组装、数控加工等功能,并提供大量的标准尺寸零件模型,使得企业可以缩短开发周期,快速迭代设计方案,对市场需求做出敏捷的反应。CATIA是目前应用最广泛数字样机设计开发软件之一,应用范围涵盖等航空航天、建筑、船舶、汽车、铁路等多个领域。DELMIA(Digital Enterprise Lean Manufacturing Interaction Application)是法国达索(Dassault Systemes)公司生产的一款数字化企业的互动制造应用软件,是PLM(Product Life Management)系列产品之一。该软件与CATIA互为补充,呈现上下游关系,共同贯穿产品的设计周期。利用CATIA制作数字样机后,可在DELMIA中进行物流过程分析、维修、装配、工艺规划、与机器人配合等多种功能的虚拟演示和模拟,是一个面向设计、制造、维护、人机过程的“数字化工厂”仿真平台。便于用户检查设计方案的缺陷和漏洞,及时更改设计方案,降低研发成本,缩短研发时间,实现快速上市的目的。DELMIA中含有一个Human Task Simulation模块,包含虚拟人模型、人体动作模型、维修工具等内容,用于模拟人机交互过程,实现虚拟维修、虚拟拆卸、虚拟装配等功能,也是本研究中重点使用的模块,包含本研究中所需要的大部分数据。本研究基于CATIA与DELMIA现有的软件功能和数据库进行二次开发,研究目标是在客户已经完成产品设计和数字样机的制作的情况下,根据已制作好的虚拟维修仿真动画,针对产品的维修操作空间的完成定量评估。

软件的二次开发是在现有软件产品的基础上,对软件功能进行延伸和扩展,或实现和其他软件的对接并实现数据的交换和传输。二次开发一般针对某一类特定的用户,通过添加更个性化、专业化的功能和模块,使得软件功能更具有针对性,用户的需求得以实现,工作效率得以提高。DELMIA为不开源的软件,为实现二次开发必须利用软件开发商为用户专门准备的二次开发接口。为灵活地满足不同客户的需要,DELMIA提供了多种二次开发的接口:一是CAD格式接口,方便客户加载在CAD环境下设计的数字样机,实现模型结构、尺寸、颜色渲染等数据的导入导出;二是知识工程,这是DELMIA的一个专门模块,知识工程利用参数化定义的方法对人体模型和基础动作单元进行了建模,建立一个标准模型库,用户可以通过关键参数调用标准模型库中的模块,从而实现快速建模,完成设计任务;三是采用自动化对象编程的接口Automation API(Application Programming Interface),能够实现宏指令的编写,或利用宏与VB开发语言(Visual Basic)相结合编写简易程序;四是开放的基于构件的应用编程接口CAA(Component Application Architecture,应用组件架构),这是DELMIA的一套C++函数库,这一接口主要用于与C++开发语言链接,方便客户使用C++编写所需程序,用户可通过快速应用研发环境RADE(Rapid Application Development Environment)和不同的API(Application Programming Interface)接口完成从DELMIA数据库中调取数据到C++程序中的过程。

该案例为针对拆卸某型号大型客机APU上六角螺母的维修空间定量评估。目的是利用所提出的方法和开发的软件工具,对维修操作空间进行定量评价,以展示方法的灵活性和有效性以及软件的可用性和可靠性。该大型客机APU的虚拟维修操作动画截图如图1所示。该大型客机APU上有12颗六角螺母,选取123号螺母作为典型案例,三颗螺母的位置如图2所示。

这三颗螺母中,显然3号周围的障碍物少,对扳手的使用影响较少,同时位置较低,距离肩膀较近,手臂只需微微向上伸出即可接触到,因而上肢舒适度较高。该螺母周围的空间无需定量评估,定性评估即可确定等级为优秀。1号螺母虽然位置很高,但是周围的障碍物少,手部可达到1200旋转。2号螺母位置较高且周围障碍物较多,维修人员手部只能达到600旋转。本案例中选取2号螺母进行分析。

第一步打开程序,连接虚拟环境,选定虚拟人并连接。第二步选定关键帧,抓取扳手之后,选取手部携工具接近、旋转卸下六角螺母、手部携工具离开这三帧内容。第三步系统提示选取第一帧的维修活动单元类型,为平移,此时软件自动计算第一帧的扫掠舒适度PV、上肢舒适度r和该帧总舒适度s,x=0,y=0,z=1,但不在界面中显示。第四步系统提示选取第二帧的维修活动单元类型,为旋转,如图3所示,此后软件自动计算第一帧的扫掠舒适度Pv、上肢舒适度r和该帧总舒适度s,x=0,y=1,z=1,但不在界面中显示。第五步系统提示选取第三帧的维修活动单元类型,为平移,此时软件自动计算第三帧的扫掠舒适度Pv、上肢舒适度r和该帧总舒适度s,x=0,y=1,z=2,但不在界面中显示。第六步系统自动根据已有的x、y、z,计算s的评价标准,(0.8x+0.75y+0.9z)为优秀阈值,(0 5x+0.25y+0.7z)为差阈值,该部分不在界面中显示。第七步系统输出三帧中每一帧的s值,并与s的优秀阈值和差阈值比较,给出空间评价结论。该案例中具体数据截图如图4所示。得出结论该部分操作空间维修性差,必须加以改进。

本文以维修操作空间为研究对象,在前人基于扫掠体积的维修操作空间的定量评价方法的理论基础上,对与维修操作空间相近的概念进行学习和研究,参考作业空间的评价方法,在维修操作空间的定量评估中加入针对上肢舒适度的评判标准。在熟练掌握DELMIA使用方法的基础上,对其进行二次开发,基于前述原理完成软件工具设计,并取得了现。利用某型号大型客机APU对该原理及软件工具进行了实例验证,证实了该方法的可行性和该软件的实用性。