天线技术论文范文

时间:2023-04-06 08:07:17

导语:如何才能写好一篇天线技术论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

天线技术论文

篇1

第四代移动通信技术中采用了智能天线技术,智能天线一般是指安装在基站的天线,主要是通过能够编程的电子相位关系来确定方向性。智能天线技术采用的是SDMA,而SDMA是卫星通信方式的一种,主要是利用天线的方向性来确定范围,也就是频域,从而减少了成本,增加了收益。SDMA是利用空间分割来划分信道,采用智能天线技术可以改善信号质量,4G移动通信技术广泛采用这一能够降低建设成本的技术。另外,为了提高移动通信系统的性能,4G移动移动技术还采用了无线链路增强技术,像分集技术和多输入多输出(MIMO)技术,为数据的高速传输提供了技术支持。

2、4G移动通信技术的安全缺陷继解决措施

病毒,一般来说,是有些计算机操作人员恶意制造的一些计算机操作指令,载入在一些人们常用的软件和网页当中传播,破坏计算机的信息安全。病毒对网络通信的破坏是猝不及防的,而且其传播速度很快,在很短的时间内能让成千上万的文件或者程序受到攻击。而且病毒自身繁殖性也很强,一旦遭到病毒侵害的程序就会自身复制,能够像生物病毒一样繁殖下去,对通信安全将造成巨大的危害。黑客,一般都拥有大量的计算机相关的技能,能够轻易侵入别人的电脑或者拿别人的电脑当跳板再入侵其他的电脑来窃取用户信息,或者破坏通信信息安全。黑客非法地对国家政府、军事情报机关的网络、军事指挥系统、公司企业的计算机系统进行窃听、篡改,以达到危害国家安全,破坏社会稳定,致使企业造成损失,这将对用户的通信安全产生巨大的威胁。网络服务器或者浏览器本身存在的安全缺陷,极易被一些恶意软件携带的病毒攻击,而这些病毒经常不容易被发现,最终对通信和信息交换造成破坏。科技不断地发展,我们有信心解决以上提出的安全问题,为了有效地解决,我们在4G移动通信技术研究和开发的过程中一定要严密把控各方面的环节,确保第四代移动通信技术对于用户数据的信息安全。采取增加网络防火墙,使用更加复杂的秘钥等措施,提高系统的抗攻击能力,在不影响数据安全和完整性的前提下,同时提高系统的恢复能力。同时,各国政府也要成立专门的机构,出台相关的法律法规,增加对网络安全管理人员的培养,普及安全知识,同时加大对安全保护措施的投资力度,对危害通信安全和网络安全的不法分子严惩不贷。

3、结语

篇2

1.1传输通道抗衰落油田数据传输系统中的移动台与通信基站之间的传输主要依靠无线电磁波,在传输过程中,周围电力线发射的电磁波会干扰信号强度。移动台发射无线电磁波的衰减率为N=V/(λ/2),其中V为数据信息在传输信道内的速率,λ为外界电磁波的波长。如果增大电磁波波长便能有效地控制抗衰减系数,一般采取增大信源设备发射功率的方法来提高传输速率[4]。在传输系统一级电路信号功率放大过程中,数据信号容易在通信线路中发生全反射现象,使数据信号的码片呈现离散状态。在距终端处理器3/4位置处,继续进行二级数据信号功率的放大,使传输线路中产生电磁波的强度高于外界干扰电磁波的强度,让传输信道内的电磁波与电磁波相互抵消,可降低其电磁波的强度。并且电磁波在相互抵消过程中,也进行了一部分的叠加,从而增强了通信信号强度。

1.2编码调制油田数据传输系统编码调制分为二进制编码调制、十进制编码调制以及十六进制编码调制。十进制编码调制的输入端有10个数据连接点,每个数据点代表不同的数据值。输出部分的连接点共有4个,形成为8421十进制编码。该数据连接点的排布从左向右为I0~I9,当编码的数字首位为0,其他数字为1时,输出端编出的码型序列为0;当编码的数字第二位为0,其他数字为1时,输出端编出的码型序列为1;当编码的数字第三位为0,其他数字为1时,输出端编出的码型序列为2,以此类推,即为十进制编码转换原则。十进制编码比二进制编码过程复杂,但保密性能比二进制好。十六进制编码与十进制编码过程相类似,但是对9以后的数字编码要用ABCDEFG进行编制,当编制的数据信息为103131156时,那么接收到的编码序列即为A3D1F6。数据传输系统中二进制编码技术通常应用于传输话音信号,其优势为编码技术简化,占用的信道宽;十进制编码和十六进制编码技术应用于传输视频信息与数据信息,这两种编码技术保密性能佳,并且在传输数据信息中添加了冗余码与纠错码,可保证传输信息的有效性。

1.3移动天线射频移动天线射频技术中的设备根据俯仰角度不同,分为全向天线与定向天线两种类型。全向天线由于覆盖范围大,发射功率低,所以容易受到大气层中电磁波的干扰,使传输的数据信号失真,这种设备多用于油田空旷地区。定向天线覆盖范围小,传输距离远,但是发射的功率信号只能朝一个传播方向,如果在大型油田建筑群体设立单独的定向天线,发射的信号就会被障碍物吸收,因此每个建筑通常设立3个天线,每个定向天线覆盖的范围为120°,组成一个全向覆盖范围区域。每个定向天线的俯仰角度控制在15°范围内,定向发射的频率为8000Hz。在发射射频功率过程中,发挥主要功能的设备为耦合器,其结构组成为直流耦合端、输入端、隔离端及耦合输出端。

2TD—LTE技术的应用

2.1数据传输信道TD—LTE无线通信系统的传输信道分成等间隔的32个信道,其中上行信道16个,下行信道16个。上行信道负责数据的编码,下行信道负责数据的传输。上行信道具有数据信息编码和译码功能,可以在数据编码过程中添加冗余码和纠错码。在数据字符串间添加冗余码的过程中,上行信道会根据冗余码的排列顺序进行翻译,若对等的字符串没有得到有效的翻译,编码器便会重新接收冗余码,再一次进行翻译表达,直到油田数据终端设备接收到的数据信息与信源设备输出的信息一致,才会完成对数据信息的译码。

2.2油田数据传输系统无线局域网无线局域网的组建要根据不同的IP地址进行划分,以达到共享石油专网内的数据资源的目的。IP地址段分为4个区域段,A类IP地址段为0~127,B类IP地址段为128~191,C类IP地址段为192~223,D类IP地址段为224~239,每个区域段之间的主机设备都能够实现远端控制功能。

3结语

篇3

【关键词】 TD-LTE 多天线技术 2/8天线 性能对比

引言

多天线技术(MIMO)是LTE系统的关键技术之一,通过与OFDM及技术结合应用,能够对空、时、频多维信号进行很好的联合处理和调度,使系统的灵活性和传输效率大幅度提升。TD-LTE系统集成了TDD的固有特点和优势,能够很好的满足非对称移动互联网业务应用的需求。随着LTE上涌进程的不断推进,全球各大电信运营商已经大面积部署LTE网络,大部分FDD运营商采取了将LTE和3G系统共同部署的策略,基站主要采用2天线,而TDD运营商为了将TDD技术的优势充分发挥出来,其基站主要采用4天线和8天线技术,因此,需要充分了解不同天线技术各自的特点,从而为TD-LTE的实际部署和后续发展提供依据。

一、多天线技术

多天线技术是一种统称,根据实现方式的不同可以分为天线分集、波束赋形以及空分复用三种[1]。从LTE的发展过程来看,最基本的LTE MIMO形式采用了两端口的2×2形式。因此,多天线技术在TD-LTE系统中的发展及应用对于TDLTE的发展发挥着非常重要的作用。最优的MIMO算法对于不同的天线属配置来说存在一定的差异。

在TD-LTE系统中,常用传输方式主要包括TM2、TM3、TM4、TM7以及TM8,其中2天线主要采用的传输模式包括TM2、TM3和TM4;8天线除了支持2天线支持的传输模式之外,还支持TM7和TM8,其中TM8模式为R9支持技术[2]。表1给出了2天线和8天线的上下行对天线模式的支持能力。从表1来看,在上行上都是采用MIMO的分集模式,下行由于采用了模式间的自适应技术,当信道条件较好时会采用双流技术,而当信道条件较差时,则采用了单流技术。

二、2/8天线性能对比

2.1 2/8天线下行信道性能对比

表2给出了2/8天线SU-MIMO的系统性能对比数据,基于3GPP Casel-3D场景进行仿真,2天线采用TM4模式,8天线采用TM8模式,均支持单双流自适应。

从表2中的数据来看,8天线相对于2天线来说,平均频谱效率的增益达到了19%,边缘频谱效率的增益达到了22%。8天线的性能增益主要是由于其本身的空间自由度更高,能够形成更窄、指向性更强的波束,使有用信号提高,干扰也大幅降低。同时2天线通过终端反馈码本的方式存在码本量化损失,而8天线通过信道互易性得到的信道进行矩阵分解,可以得到更加准确的预编码向量。

由于8天线相对于2天线来说具有更大的空间自由度,因此8天线能够对MU-MIMO进行更好的支持。表3给出了8天线的SU-MIMO和MU-MIMO的性能对比,其中SUMIMO采用了单双流自适应技术,MU-MIMO则采用了2用户配对的单流技术。从表中的数据能够看出,MU-MIMO相对于SU-MIMO的平均频谱效率和边缘频谱效率均有15%左右的提升。8天线MU-MIMO模式下,用户配对准则以及用户之间的干扰消除的预编码算法会在较大程度上影响传输性能。

2.2 2/8天线上行信道性能对比

从上行链路的性能来看,8天线相对于2天线具有更大的接收分集增益。同时,8天线的空间自由度优势方便基站通过更具优势的接收算法来提升处理增益。表5给出了2/8天线系统上行仿真性能对比,仿真基于理想的信道估计。

接收端通过采用8天线和基于MMSE的干扰消除接收算法,8天线在平均频谱效率以及边缘频谱效率均有50%以上的增益效果,尤其是边缘频谱效率的增益接近80%左右。因为8天线具有很好的干扰消除性能,因此8天线的基站上行引入MU-MIMO技术能够进一步提升系统性能增益。

三、8天线在产品实现中的挑战

从前文的分析来看,基于8天线和2天线在物理实现、器件性能方面基本保持一致[3]。但是在实际产品实现方面,两者之间存在一定的差异,比如天线增益,这些对会对网络的实际上下行性能产生不同程度的影响。TD-LTE基于信道互易的8天线技术方案存在一定的问题。基于用户反馈码本的多天线方案,需要对上行容量进行充分的考虑,因此,一般会选择较粗的时频颗粒度进行反馈。但是在TDD系统中,基站能够通过上下行信道互易性获取上下行信道信息。因此,在预编码计算的过程中不会受到码本量化带来的影响。当硬件处理能力较高时,甚至能够实现所有物理资源块的波束赋型矩阵的计算,这能够使得波束赋型与信道条件之间的匹配程度进一步提高,从而促进波束赋型技术性能的进一步提升。

四、结语

TD-LTE继承了TDD的优势和特点,具有较高的灵活性和性能。通过论文的分析可以看出,8天线相对于2天线在平均频谱效率和边缘频谱效率具有更好的性能,同时8天线的MU-MIMO比SU-MIMO在平均频谱效率和边缘频谱效率具有更好的性能。因此,8天线能够更好的发挥空间和复用和干扰抑制方面的优势,能够进一步提升TD-LTE系统的性能。

参 考 文 献

[1]毕奇.LTE多天线技术发展趋势[J].电信科学,2014(10):1-7.

篇4

关键词:卡塞格伦光学天线 光束 热变形

中图分类号:TN820 文献标识码:A 文章编号:1674-098X(2014)05(c)-0028-02

空间光通信的快速发展,带动了光学天线系统设计技术的进步。光学天线系统作为空间光通信设备,具有自身的优势:体积小,重量轻、功耗低、频带宽、通信容量大,等等。卡塞格伦光学天线作为光学发射和接收天线,其突出的优点有[1]:(1)口径可以做得较大,不产生色差且可用波段范围较宽;(2)采用非球面镜后,有较大的消像差能力;(3)可以做到收发合一。但环境的变化对天线系统的性能会产生较大的影响。本文对一种典型的卡塞格伦光学天线的镜体进行了热变形仿真,并利用了光学仿真软件CODE-V分析了热变形对传输光束传输质量的影响。

1 天线镜体的热变形对光束传输的影响

1.1 镜体的热变形分析

我们知道,当镜子的表面和内部存在温差时,由于玻璃的导热率低,内外部温差产生的应力能使镜体变形并改变其表面的曲率半径,尤其是靠近外部的区域,会出现所谓的“塌边”或“翘边”的现象,这一温度效应称为“边缘效应”[2]。根据热弹性力学理论,镜体由于温度的改变而产生的形变,主要由三部分组成:镜体材料温度升高而产生的自由热膨胀、边界固定后不能自由膨胀而引起的和材料的泊松比有关的形变、热应力而产生的形变[3]。

为了形象地描述镜体的热形变,该文利用ANSYS软件仿真图[4],以常温(20 oC)为起始温度、压圈法固定镜体为例,分析了镜体随温度的升高而发生的形变。图1、图2、图3分别表示温度为100 oC时镜体在X、Y、Z方向的位移。从图中可以看出,升温时,天线系统的反射镜面向外鼓起。镜体在轴向方向(Z方向)的变化,对光束的传输影响最大,当温度变化为100 oC时,轴向方向(Z方向)的变形量为0.6 ?m。而当温度降低时,天线系统的反射镜面向内凹陷。由此表明,温度的变化对镜体的形变影响还是比较大的。

1.2 镜体的热变形对传输光束的影响

图4,图5分别描述了镜体变形前后天线的点扩散函数图。图6、图7分别描述了镜体变形前后天线系统的MTF图。图4、图5表明镜体变形前,光束通过设计的卡塞格伦光学天线,光束能量集中,发射光束发散角小,光线分布均匀,实现了卡塞格伦光学天线收发合一的功能。图6、图7表明,镜体变形后,光束在卡塞格伦光学天线中传输时,天线系统的传输特性变差。相应地,卡塞格伦光学天线的效率发生了明显的变化,光束的传输达不到镜体温度变化前的理想值。这种反射镜面的热变形对传输光束会产生偏转、传输光束中心移位及光束发散等影响[5]。在空间光通信中,传输光束的偏转、中心移位及光束发散会造成目标图像畸变、存在严重的像差以及图像不清晰等等。本文设计的卡塞格伦光学天线采用了大量的反射镜面,所以镜面的热变形对光束的传输影响很大。由此可见,在实际应用时,要在镜面材料选择、镜体应力释放方式、镜体大小选择等方面进行合理设计,尽量减小由于温度变化对镜体产生的应力,以避免出现像差增大和天线镜面破裂等现象。

2 结语

该论文研究了卡塞格伦光学天线镜体的热变形对传输光束传输质量的影响。光学天线的设计是空间光通信的重要发展部分,光学天线传输的质量高低直接影响到信号传输的准确性,所以在系统设计过程中,应该考虑环境变化对系统的影响。

参考文献

[1] Cho Y M,Kong H J and Lee S S.OPTICAL ENGINEERING[M]. Bellingham,1994:33-100.

[2] 冯树龙,张新,翁志成,等.温度对大口径主镜面形变形的影响分析[J].光学技术,2005,31(1):41.

[3] 彭玉峰,程祖海.热变形谐振腔的激光模式理论分析[J].强激光与粒子束,2000(B11).

篇5

【关键词】 广播电视发射天线 发射天线原理 技术特征 应用

广播电视信号的传播,主要是将发射机所发出的中波和短波转为电磁波,在电磁波发射出去之后,由广播电视天线接收。但是天线并不需要与发射机连接,而是通过网络就可以将经过技术转换后的视听信号传播到广播、电视接收台。随着高端科技因子逐渐地融入到广播电视发射天线技术当中,使得该门技术不断升级。

一、广播电视发射天线基本结构

广播电视发射天线是在传输信号和接收信号的过程中,运用天线完成信号的传输和接收过程。广播电视发射天线的基本结构是垂直的天线铁塔、调配箱将馈线连接到圆盘系统,圆盘系统可以连接多根导线。天线铁塔为单桅杆拉线铁塔,在铁塔的底部架设有地网线。发射机将信号发出后,以高频电流的形式存在,经过信号转换之后,被传输到地网中,被广播、电视所接收。在整个的广播、电视信号传输和接收的过程中,周围地区一定范围内会被信号所覆盖。

本论文所研究的广播电视发射天线为并馈式自立铁塔中波天线,其基本结构是垂直结构的天线自立铁塔。塔体形式可以根据需要进行设计,可以是正方形的、三角形的,也可以是正多边形的。如果是普通的铁塔,所布设的导线有限,并馈式自立铁塔则有所不同,可以布设多根导线[1]。在并馈式自立铁塔的平台上连接导线的上端,下端汇集在铁塔底部的中心处。在并馈式自立铁塔的的底部架设有地网线。(并馈式自立铁塔结构图见图1)

与通常使用的广播电视发射天线相比,并馈式自立铁塔中波天线没有绝缘底座和绝缘拉索设计,不仅降低了工程施工量,而且还节约了成本。并馈式自立铁塔采用直流接地设计,具有良好的雷电导流系统,可以避免天线遭到雷击。并馈式自立铁塔中波天线不仅可以承担超过1千瓦的功率,而且还可以多个广播、电视频道同时运行。即便是根据实际需要在铁塔安装不同类型的天线,也并不会影响天线的正常使用。

二、广播电视发射天线发射中所存在的问题

广播电视发射天线技术直接关乎到广播电视信号的接收效果。广播电视发射天线发射的过程中,会受到多种因素的影响而存在一些问题。这些问题可以通过检测发射天线信号而获得,经过参数计算之后,就可以针对问题做出判断。

2.1信号功率不够而影响广播电视的信号接收质量

广播电视所接受的信号不稳定,是信号的回拨损耗中一项重要因素。广播电视发射天线接收的过程中,在信号输入的端口处会存在阻抗。如果此时的阻抗比标准的阻抗高出很多,就会导致所发射的信号存在功率损失,这就是回波损耗。随着阻抗的增高,功率损失就会越大,回拨损耗就会越小[2]。要使天线能够接收到高质量的信号,就需要所接收到的信号强度足够大。传输信号的功率不够,就必然导致信号强度下降,因此而影响到信号传输的质量。

2.2驻波比值不稳定而影响广播电视的信号接收质量

广播电视发射天线信号发射质量会受到驻波比值的影响。驻波比是广播电视发射天线发射信号过程中所存在的最大电流和最小电流之比。驻波比与天线的信号传输质量存在正相关性。随着天线传输信号过程中所产生的电流驻波比值越大,天线的信号传输质量就会有所下降[3]。

三、广播电视发射天线发射问题的解决方案

3.1对广播电视发射天线做好维护工作

1.定期检测天线信号

广播电视发射天线的质量与广播电视接收信号的质量密切相关。需要定期检测天线信号稳定性,一旦发现存在异常,就需要查找问题原因并立即解决,以确保天线发射的信号具有高可靠性。

2.定期检测天线的硬件设施

广播电视发射天线的硬件是保证天线信号发射质量的关键。包括桅杆以及调节结构等等,在检查的过程中如果发现有问题存在,就要立即修复,或者更换硬件。

3.2对馈管做好维护工作

广播电视馈管与信号发射机之间是通过接口进行连接的。如果接口处接触不良,就会导致接口处出现大火。对接口处定期检查,可以避免这一故障发生。在此基础上,还要检查馈管与变阻器之间的接口连接是否可靠。如果发现有连接松动之处,就要对螺丝二次加固。检查馈管周围的防护装置是否密封,连接是否牢固,以避免馈管内部存在积水现象。当发现电缆有破损现象的时候,要立即采取措施处理,必要的时候要更换电缆。检查发射铁塔的接地是否可靠,电缆是否有松动现象,及电缆与各个部件的连接是否牢固等。这些检查维护工作都是确保广播电视发射信号质量的重点环节。

3.3常用的发射天线的应用

1. 正交振子天线的应用

正交振子天线的构成上,是两个形式相同的对称振子相交而构成。正交振子天线所在平面上,法线方向圆极化,辐射场则是线极化的。对称振子的覆盖面比较大,可以使广播、电视的信号传递达到良好的效果,就需要处于水平位置。在正交振子天线使用的过程中,注意不可以使用介质绝缘子,否则,会影响到天线信号传递的稳定性。

2. 缝隙天线的应用

缝隙天线是半个个波长的长条形天线,导体面上有开缝。对信号的传输,所采用的是跨接的方式。缝隙天线的电子对抗性较强,可以用于各种通信设备和导航设备。由于其设计结构简单,且口径场的分布能够得到很好地控制,用于广播、电视信号的传输,可以提高信号质量。

四、广播电视发射天线技术的未来发展前景

从广播电视发射天线技术的未来发展情况来看,目前国外已经广泛地应用并馈式自立中波天线,而且应用技术比较成熟。中国在广播电视发射天线技术中,馈式自立中波天线也进入到应用领域,并发挥着重要的作用。广播电视台可以根据自己的需要选择天线基本结构,其对其他天线的兼容性是非常好的。比如,中国洛阳广播电台就采用了三角形并馈式自立中波天线,多年来运行良好,不仅信号稳定,而且使用过程中安全可靠性极高,信号范围很大,信号强度很高,且具有良好的防雷保护设施,降低了信号传播中的干扰率。

处于新媒体时代的今天,广播电视发射天线技术也在不断升级。特别是网络媒体的发展,使得广播电视技术正快速迈入到高科技轨道。广播电视发射天线技术取缔了传统的微波中继传输的天线技术,并根据广播电视业的需要而不断进行技术升级,使得信号传输中的噪声得以消除。特别是馈式自立中波天线,以其技术优势将成为行业市场中的主导。此外,针对电磁波辐射的问题,还要保护好发射天线场区,以避免危害到周围居民的身体健康。

五、结论

综上所述,传媒业的快速发展,广播电视发射天线技术所发挥的作用是需要被重视的。随着广播、电视领域对信号传输质量要求越来越高,广播电视发射天线技术也在不断升级。对该门技术的应用情况进行研究,分析技术应用中所存在的不足,对提高发射天线设计技术水平具有参考价值,也有助于推动广播电视业更好地发展。

参 考 文 献

[1]刘养荣.如何做好广播电视发射天线技术的维保[J].科技创新与应用,2015(14):78-78.

篇6

1改革的重点与具体措施

1.1教学方法三维可视化为了解决大学生在学习过程中理解困难和前沿性的科研促教中缺乏实验条件验证的教学问题[3],教学团队将物理建模思想应用于教学实践中,通过三维可视化仿真,使复杂、抽象、烦琐的理论模型变得直观、具体、明了.例如:针对“空间光通信创新实验”课程中的光学天线设计及光传输、激光雷达成像和光子晶体光纤光传输等进行了三维动态可视化仿真.在对前沿性的科研促教中缺乏实验条件验证的情况下,拟采用理论建模与仿真验证方法来实现.

1.2创新实践自主化为了解决自主创新实践能力训练不足的教学问题[4],教学团队将光通信、微波光子学等交叉学科前沿技术与创新实践相结合,构建了“空间光通信”开放式创新实践平台,建设了综合型、设计型、创新型的开放式专业实验室.依托开放式创新实践平台,开展了大学生自主研究型学习,着力加强大学生自主创新实践能力的培养[5,6].加强科研促教,拓展创新思维,在“985高校”大学生创新训练计划支持下,实施了创新设计项目40余项.依托科研项目把学生带到学术前沿,进行了形式多样的学术研讨:教授、副教授、博士、硕士、本科生分别定期做主题报告、分组讨论、网上论坛、参加国际国内会议和暑期夏令营等方式促进学术交流,形成良好的学术氛围.学生在开放式专业实验室里自主进行理论建模、仿真设计与实验验证,在规定时间内撰写学术论文等,开展了大学生自主创新能力的培养模式.

1.3多元化的教学评价体系为了解决传统评价方式缺乏对创新实践、仿真设计与课程论文等环节的评价的教学问题[7,8],教学团队将理论考试和平时成绩相结合,实验操作与自主创新实践相结合,理论建模仿真与课程论文相结合,构成了多元化的评价体系.例如:把理论考试成绩所占的比例下调到60%,而课程论文的比例上升到40%,通过创新项目和课程论文等方式评价学生的学习;通过课程论文答辩方式,依据“假设的合理性、建模的创新性、结果的准确性、表达的清晰性”进行综合评定,实现从应试教育到素质教育的观念性转变.引领学生朝着有利于自身全面发展的方向努力.

1.5开放式教学资源建设为了解决传统教学资源不足的问题,教学团队加强了师资队伍的建设,进行了广泛的国际、国内教学研讨和学术交流.重点建设了丰富的数字化网络资源平台网络课程含教学录相、典型实例、创新设计系列实验教案、经典物理问题、及在线实践编程等模块;适时引入在线答疑、网络论坛及现场演示与讨论等交互式教学形式,形成了模块化、交互式、开放式教学资源平台.

2改革与实践的探索

实例1大学生在牛顿式光学天线系统测试平台(图1)上做的部分实验内容:图2为接收光斑实验测试,图3为利用光束质量诊断仪器测试光斑.通过三维可视化仿真,使复杂、抽象、烦琐的空间光通信系统中的激光传输理论模型变得直观、具体、明了,解决大学生在学习过程中理解困难的教学问题(大学生创新实验设计项目)。例如:老师们课堂上在讲解光子晶体的应用———布拉格光纤光传输特性时,就采用了仿真验证手段.通过详细举例以此来鼓励学生启迪思维、大胆创新设计、勇于实践.以下是学生们根据题目的要求,在老师的指导下做的部分仿真结果图.实例2等周期结构的布拉格光纤仿真(见图4—图6).实例3空间光通信系统激光传输特性仿真(见图7—图8).实例4波动方程的(动态)三维可视化(见图9).图9波动方程(动态)三维可视化图形实例5平面波用柱面波形式展开(见图10).图10平面波展开为柱面波仿真结果图形以上是具有代表性的大学生创新实验设计.“缺陷的光子晶体在偏振分束器等光学器件中的应用”(大学生参与者:黄鹤、刘天骄、陈逸舟)被学校推荐为2010年国家级大学生创新性实验计划项目;“推帚式激光雷达三维成像创新设计”(大学生参与者:谢国洋、顾大超、童磊)被学校推荐为2011年国家级大学生创新性实验计划项目.通过这种创新事例,能很好地锻炼和培养大学生的创造能力,大大激发了学生的创新欲望和学习兴趣.

3改革的实施成果

该课程未实行教学改革以前,我们实行的是传统教学模式(理论教学+笔试成绩+实验成绩),教学成果不理想.自从2009年本教学团队开展了对“空间光通信创新实验”课程教学研究型改革与实践的探索以来,特别是加强了针对“空间光通信创新实验”课程中的创新实践平台及《数学物理方法与仿真》、《光学天线设计》、《空间光通信创新设计实验》3本教材的重点建设.建立了1个基于大学生创新基地的空间光通信工程技术研究中心;并依托这个创新实践平台,开展了一系列的教学和科研项目.1)研发了十余个综合创新设计实验,例如:“卡塞格伦光学天线系统的光传输特性分析实验”、“光纤损耗与光纤耦合实验”、“激光准直与多波长光学天线传输实验”、“无线激光大气通信实验”等;2)2012年数学物理方法、三维可视化仿真及创新实践的“三位一体”教学模式改革获电子科技大学教学改革成果一等奖;3)教改项目:2009年“数学物理方法”教学研究与精品课程建设”,2010年“数学物理方法精品课程教学团队建设与改革”;4)团队教师指导大学生创新基金项目40余项,指导大学生40余篇(SCI收录6篇);5)开展了一系列高水平的科研项目,获得了国家自然科学基金项目2项,国家自然科学青年基金项目3项以及横向建设项目等;6)2011年建设了电子科技大学第一座2.0kW单晶硅太阳能发电站,并实现并网发电,以作为大学生新能源创新课题教学示范所用.7)发表教研论文20余篇、科研论文100余篇.取得了显著的教学成果,形成了交叉性学科前沿与创新实践相结合的人才培养模式.(教改前后对比情况见表1).

4结论

篇7

在分析研究智能天线技术理论的同时,国内外一些大学、公司和研究所分别建立了试验平台,用实验的方法来验证理论研究的成果,得出相应的结论。

(1)在美国

在智能天线技术方面,美国较其它国家要成熟的多,并已开始投入实用。美国ArrayComm公司将智能天线技术应用于无线本地环路(WLL)系统。ArrayComm方案采用可变阵元配置,有12阵元、8阵元环形自适应阵列可供不同环境选用,现场实验表明在PHS基站采用该技术可以使系统容量提高4倍。

(2)在欧洲

欧洲通信委员会(CEC)在RACE(ResearchintoAdvancedCommunicationinEurope)计划中实施了第一阶段智能天线技术研究,称为TSUNAMI(TheTechnologyinSmartAntennasforUniver-salAdvancedMobileInfrastructure),由德国、英国、丹麦和西班牙合作完成。该项目是在DECT基站上构造智能天线试验模型,于1995年初开始现场试验,天线阵列由8个阵元组成,射频工作频率为1.89GHz,阵元间距可调,阵元分布有直线型、圆环型和平面型三种形式。试验模型用数字波束成形的方法实现智能天线,采用ERA技术有限公司的专用ASIC芯片BDF1108完成波束形成,使用TMS320C40芯片作为中央控制。

(3)在日本

ATR光电通信研究所研制了基于波束空间处理方式的多波束智能天线。天线阵元布局为间距半波长的16阵元平面方阵,射频工作频率是1.545GHz。阵元组件接收信号在模数变换后,进行快速付氏变换(FFT)处理,形成正交波束后,分别采用恒模(CMA)算法或最大比值合并分集算法,数字信号处理部分由10片FPGA完成,整块电路板大小为23.3cm×34.0cm。ATR研究人员提出了智能天线的软件天线的概念。

我国目前有部分单位也正进行相关的研究。信威公司将智能天线应用于TDD(时分双工)方式的WLL系统中,信威公司智能天线采用8阵元环形自适应阵列,射频工作于1785~1805MHz,采用TDD双工方式,收发间隔10ms,接收机灵敏度最大可提高9dB。

3智能天线的优势

智能天线是第三代移动通信不可缺少的空域信号处理技术,归纳起来,智能天线具有以下几个突出的优点。

(1)具有测向和自适应调零功能,能把主波束对准入射信号并适应实时跟踪信号,同时还能把零响点对准干扰信号。

(2)提高输入信号的信干噪比。显然,采用多天线阵列将截获更多的空间信号,也即是获得阵列增益。

(3)能识别不同入射方向的直射波和反射波,具有较强的抗多径衰落和同信道干扰的能力。能减小普通均衡技术很难处理的快衰落对系统性能的影响。

(4)增强系统抗频率选择性衰落的能力,因为天线阵列本质上具有空间分集的能力。

(5)可以利用智能天线,实时监测电磁环境和用户情况来提高网络的管理能力。

(6)智能天线自适应调节天线增益,从而较好地解决远近效应问题。为移动台的进一步简化提供了条件。越区切换是根据基站接收的移动台功率的电平来判断的。由于阴影效应和多径衰落的影响常常导致错误的越区转接,从而增加了网络管理的负荷和用户的呼损率。在相邻小区应用的智能天线技术,可以实时地测量和记录移动台的位置和速度,为越区切换提供更可靠的依据。

4智能天线与若干空域处理技术的比较

为了进一步理解智能天线的概念,我们把智能天线和相关的传统空域处理技术加以比较。

(1)智能天线与自适应天线的比较

智能天线与自适应天线并没有本质上的区别,只是由于应用场合不同而具有显著的差异。自适应天线主要应用于雷达系统的干扰抵消,一般地,雷达接收到的干扰信号具有很强的功率电平,并且干扰源数目比天线阵列单元数少或相当。而在无线通信系统中,由于多径传播效应到达天线阵列的干扰数目远大于天线阵列单元数,入射角呈现随机分布,功率电平也有很大的动态变化范围,此时的天线叫智能天线。对自适应天线而言,只需对入射干扰信号进行抵消以获得信干噪比(SINR,SignaltoInterferenceplusNoiseRatio)的最大化。对智能天线而言,由于到达阵列的多径信号的入射角和功率电平均数是随机变化的,所以获得的是统计意义上的信干噪比(SINR)的最大化。

(2)智能天线与空间分集技术的比较

空间分集是无线通信系统中常用的抗多径衰落方案。M单元智能天线也可等效为由M个空间耦合器按优化合并准则构成的空间分集阵列。因此可以认为智能天线是传统分集接收的进一步发展。

但是智能天线与空间分集技术却是有显著的差别的。首先空间分集利用了阵列天线中不同阵元耦合得到的空间信号的弱相关性,也即是不同路径的多径信号的弱相关性。而智能天线则是对所有阵元接收的信号进行加权合并来形成空间滤波。一个根本性的区别:智能天线阵列结构的间距小于一个波长(一般取λ/2),而空间分集阵列的间距可以为数个波长。

(3)智能天线与小区扇区化的比较

小区的扇区化可以认为是一种简化的、固定的预分配智能天线系统。智能天线则是动态地、自适应优化的扇区化技术。现在,我们来讨论一个颇有争议的问题。根据IS-95建议,当采用120°扇区时系统容量将增加3倍。由此是否可以得到结论,扇区化波束越窄系统容量提高越大?考虑到实际的电磁环境,我们认为对这一问题的回答是否定的。这是因为窄波束接收到的信号往往是由许多相关性较强的多径信号构成的。一般情况下,各径信号的时延扩展小于一个chip周期。这时信号波形易于产生畸变从而降低信号的质量达不到增加系统容量的目的。同时如果采用过窄的波束接收信号,一旦该径信号受到严重的衰落,则将直接导致通信的中断。另外,过窄的接收波束在工程上是难以实现的,并将成倍地增加设备的复杂度。

5智能天线的未来展望

(1)目前还没有一个完整的通信理论能够较全面地将智能天线的所有课题有机地联系起来,故需要建立一套较完整的智能天线理论;另一方面,高效、快速的智能算法也将是智能天线走向实用的关键。

(2)采用高速DSP技术,将原先的射频信号转移到基带进行处理。基带处理过程是数字算法的硬件实现过程。

(3)由于圆形布阵和二维任意布阵比等间隔线阵优越,同时阵列天线的数字合成算法能够用于任意形式阵列天线而形成任意图案的方向图,因而可考虑在CDMA基站中采用二维任意布阵的智能天线。

(4)在移动台中(如手机)采用智能天线技术。

(5)采用智能天线技术来改善移动通信信道中上下链路不能使用同一套权值的问题,以改善上下链路的性能。

(6)目前,智能天线技术的研究已不是单一地研究智能天线本身,应与CDMA的一些关键技术(如多用户检测技术、多用户接收技术、功率控制等)结合在一起研究。

6结束语

智能天线是一门综合性很强的学科。它涉及到天线技术、无线电传播技术、信号检测与处理等多学科。智能天线已从单一的军事应用步入民用通信领域。由于CDMA移动通信系统技术相对于FDMA、TDMA系统具有较大的容量,且由于智能天线可以降低多径干扰、多址干扰等因素,这使得智能天线技术成为当前移动通信的研究热点。

篇8

【关键词】 预编码 多输入多输出 正交幅度调制 误比特率

一、引言

在移动通信系统中,可以通过高阶信号调制技术和多输入多输出(MIMO)技术来提高系统的频谱效率,但是,在一个噪声信道环境下,传输数据速率的提高会带来误码率的提升。为了提高频谱效率,长期演进(LTE)移动通信系统中采用了链路自适应技术,根据信道条件的变化,系统动态地采用不同的调制和编码、MIMO传输模式[1]、预编码和发射功率等技术,以期在保证信号质量的情况下取得最大的传输效率。

LTE移动通信系统采用了正交频分多址(OFDMA)、多输入多输出(MIMO)[2]等关键技术,以此来克服多径信道的频率选择性衰落和提高系统的传输速度。本文对LTE移动通信系统中预编码算法进行了研究,并根据信道条件的变化,对链路自适应调制与编码技术下的预编码算法进行了性能仿真,分析了不同调制与编码下系统的传输速率与误码率的曲线变化。

二、基于信道矩阵奇异值分解的预编码算法

多输入多输出(MIMO)技术将连续的信号比特流拆分成多个信号子流,再将各信号子流通过不同的天线发射出去,传输各信号子流的多个发射天线与接收天线构成了空间信道矩阵。在空间信道矩阵构成的各子信道不相互独立的情况下,各子信道将相互干扰,从而影响信号接收质量。在LTE系统中,预编码技术被看作是解决空间各子信道相互干扰最有效的方法[3]。最优的预编码矩阵是基于信道矩阵奇异值分解的矩阵。

首先假设在一个子帧持续时间内,信道矩阵H不变,假设系统有NT根发射天线,MR根接收天线,发射符号分为L层,每个层有T个符号,第i层由符号[xi,1,xi,2,...,xi,T]组成。对信道矩阵H进行奇异值分解:

式中,n为高斯白噪声。在实际的应用中,由于反馈资源的限制,系统首先须在预先给定好的码本里选择一个码本作为预编码矩阵,也就是利用某种准则得到码本索引。

三、预编码矩阵下的MIMO接收机算法

LTE系统中的预编码矩阵指示(PMI)反馈都是基于协议配置码本,主要有两种准则:一种是基于系统容量最大化,另一种是基于最小误码率(BER)[4]。本论文采用基于最小误码率的MMSE准则,减小发射信号和接收信号之间的误差信号功率值,并以此自适应选择不同的调制方式和编码,以便保证系统取得最大的传输容量。假设均衡后的信号为X?,最初的发射信号为X,假定最优均衡器变换系数为G,MIMO信道矩阵为H,那么误差信号可以表示为:

四、自适应调制与编码技术下的预编码算法仿真实验

为了对算法性能作对比,在预编码算法基础上,自适应调制方式分别在QPSK、16QAM、64QAM三种方式进行选择,接收端用MMSE准则的均衡器,将发射信号功率值与均衡后的误差信号功率值的比值作为自适应调节参数,选择相应的调制方式与编码率,当误差信号功率值较大时,此时误码率较大,选择低阶调制方式,以保证信号传输质量,当误差信号功率值较小时,选择高阶调制方式,以提高信号的传输速率,以期在满足信号质量要求的情况下达到最高的传输效率。

仿真实验在多输入多输出MIMO的情况下展开,信号经过衰落噪声信道,信噪比SNR取值在0dB到21dB之间,信噪比与误比特率和数据传输速率仿真结果分如图1、2所示。

从图1可以看出,随着SNR的值增大,误比特变小,采用固定调制的阶数越高,误码率越大。在信噪比的值为0dB到12dB之间时,固定64QAM、16QAM高阶调制的误码率都较高,但是,在自适应调制和编码方式下,误码率却随着信噪比变大很快变低,因为链路根据误差信号功率情况自适应地选择了恰当的调制方式和编码率。从图2可以看出,在其他参数不变的情况下,采用固定调制方式和编码率时,数据的传输速率是一个定值,调制阶数越高,数据传输速率越大。但在自适应调制和编码方式下,链路根据信噪比情况,灵活改变了数据传输速率,信噪比的值越小,误比特率就变高,此时数据传输速率减小,信噪比的值越高,误比特率就变小,此时数据传输速率增大,在满足信号质量要求的情况下达到了非常高的传输效率。

五、结论

论文对链路自适应调制与编码技术下的预编码算法进行了研究,在LTE系统中,预编码技术被看作是解决空间各子信道相互干扰最有效的方法。论文采用基于信道矩阵奇异值分解的方法得到最优的预编码矩阵,信号经过噪声信道后,在接收端,采用基于最小误码率的MIMO接收机算法,减小发射信号和接收信号之间的误差信号功率值,以此自适应选择不同的调制方式和编码,以便保证系统取得最大的传输容量。通过仿真验证,在预编码算法基础上,采用自适应的调制和编码方式能根据信噪比大小变化,灵活改变数据传输速率,在满足信号质量要求的情况下达到了非常高的传输效率。

参 考 文 献

[1] V Stankovic, M Haardt, Generalized Design of Multi-User MIMO Precoding Matrices [J].Wireless Communications, IEEE Transactions, 2008, 7(3):953-961.

[2] W. Peng and F. Adachi, “Single-carrier frequency domain adaptive antenna array for uplink multi-user MIMO transmission in a cellular system,” [J]. Physical Communication, Sep. 2013, vol. 8, pp. 22C30.

篇9

关键词:GPS建筑变形,监控

 

近年来,伴随着国民经济建设的高速发展,高层建筑在形体和结构上显得日益复杂,加之施工工艺不断改进,这就对建筑物的变形监测提出了很多新的要求。由于高层建筑物有很多不利的监测环境,而施工工艺的改进又对形变监测工作提出了快速、高精度的要求,这些都让传统监测方法工作时显得力不从心,所以利用新的技术手段和研究新的监测方法尤显重要。GPS系统由卫星星座、接受机和地面控制站三大部分组成。作为20世纪一项高新技术,它因速度快、全天候、自动化、测站间无需通视、可同时测定点的三维坐标及精度高等优点,而获得了广泛应用。

1 GPS与传统测定方法的比较

1.1传统方法测定高层建筑动态变形的特点

在测定高层建筑变形量时,传统的测定方法有加速度传感器法、激光铅直仪法、全站仪法、近景摄影测量技术等。论文写作,GPS建筑变形。

加速度传感器法所测得的位移误差较大。激光铅直仪法只能提供建筑物局部的、相对的变形信息,测量精度较低,易受气候、风等因素影响。对较低的建筑物较为适用,对于高大建筑物(高度300 m以上),精度会受到较大的影响。全站仪法测定的是建筑物的绝对变形信息,可用于各类建筑物,但在恶劣气候条件(如台风、大雨等)下,因激光跟踪目标困难,所以使用受到限制。近景摄影测量技术由于摄影距离不能过远,大多数的测量部门不具备摄影测量所需的仪器设备,因此,尚不能普及应用。

所以不难看出,加速度传感器法、激光铅直仪法、全站仪法、近景摄影测量技术等观测技术,在精确度、自动化程度等方面,已不能满足高层建筑的动态监测要求。

1.2 GPS测定高层建筑动态变形的优势

随着军用技术转民用的限制逐渐降低和高速发展的硬件和软件技术,GPS技术的优势已经越来越明显。

(1)可以全天候观测。实时动态(简称RTK)测量技术是以载波相位观测量为根据的实时差分GPS(RTD GPS)测量技术。可通过实时计算定位结果,便可监测基准站与用户站观测成果的质量和解算结果的收敛情况,从而可实时地判定解算结果是否成功。

(2)仪器精度高。GPS相对定位精度在50 km内达; 100~500 km达,1000km以上可达。且独立布点不会有误差积累,测量过程自动进行,不会有人为因素造成的错误,测量数据稳定可靠。

(3)自动化程度高。用GPS接收机进行测量时,仅需一人将天线准确地安置在测站上,量测天线高,接通电源,启动接收机,仪器即自动开始工作。在结束测量时,只需关闭电源,收起接收机,便完成野外数据采集。

(4)可减少误差。在变形监测中,只要天线在监测过程中能保持固定不动,接收机天线的对中误差、整平误差、定向误差、量取天线高的误差等并不会影响变形监测的结果。

(5) 操作方便。仪器体积小,重量轻,容易携带搬运,劳动强度小,外业工作量小。

(6)应用前景广。GPS技术具有全球、无误差积累等优点。使观测工作效率大大提高,同时也节省了大量的人力和物力。

2GPS变形监测技术

2.1 GPS变形监测模式

GPS用于变形监测的作业模式可概括为周期性和连续性两种。当变形体的变形速率相当缓慢,在局部时间域和空间域内可以认为稳定不动时,可利用GPS进行周期性变形监测,监测频率可为数月、一年或甚至更长时间。连续性变形监测采用固定监测仪器进行长时间的数据采集,获得变形数据系列,此时监测数据是连续的,具有较高的时间分辨率。周期性监测模式一般采用静态相对定位测量方法。论文写作,GPS建筑变形。连续性监测模式,适用于对自动化要求高,数据采集周期短的监测项目。在数据处理方法上,可选择静态相对定位和动态相对定位两种方法。在一些高层建筑物等工程的动态监测中,可运用GPS连续监测模式。论文写作,GPS建筑变形。该模式实现24小时的连续观测,使监测、监控、决策实现远距离控制,但该模式要求GPS接受设备必须永久固定在变形点上成本较高。

2.2 GPS在变形监测中的测量方法

按监测对象及要求不同,GPS在变形监测中可选择静态测量法,快速静态测量法和动态测量法三种。

1)静态测量法:静态测量法,就是把多于3台GPS接收机同时安置在观测点上同步观测一定时段,一般为1小时至2小时不等,用边连接方法构网,用后处理软件解算基线,经平差计算求定观测点三维坐标。这种方法定位精度高,适用于长边,测边相对精度可达。论文写作,GPS建筑变形。论文写作,GPS建筑变形。

2)快速静态测量法:这种方法尤其适用于对监测点的观测。其工作原理是:把两台GPS接收机安置在基准点上固定不动连续观测,另1~4台接收机在监测点上移动,每次观测5~10分钟(采样间隔为2秒),经事后处理,解算出各监测点的三维坐标。

3)动态测量法:该方法又分准动态测量方法和实时动态测量法。实时动态测量方法原理是:在基准站上安置一台GPS接收机,对所有可见GPS卫星进行连续观测,并将观测数据通过无线电传输设备,实时地发送给在各监测点上移动观测(1~3秒钟)的GPS接收机,移动GPS接收机在接收GPS信号的同时,通过无线电接收设备基准的观测数据,再根据差分定位原理,实时计算出监测点三维坐标及精度。

一般基准网应采用静态测量方法,当基准网的边长超过10 km,要考虑基准网的起算点与国际IGS站联测,基线向量解算时采用精密星历,保证基线解算的精度。对监测点进行测量时,可采用快速静态测量法。在桥梁监测时,可选择实时动态测量,如果距离近,基准点与监测点有5颗以上共视GPS卫星时,精度可达1~2 cm。

3 GPS测量数据处理

GPS数据处理过程可划分为基线解算和网平差两个阶段。

GPS基准网的基线解算,应采用GAMIT或Bernese软件和IGS精密星历。平差计算应采用PowerADJ科研办软件。对高精度GPS的数据处理分为两个主要方面:一是对GPS原始数据进行处理获得同步观测网的基线解;二是对各同步网进行整体平差和分析,获得GPS网的整体解。这些软件数据处理的重点都在于同步网的基线处理,而在网平差分析方面,特别是多个子网的系统误差分析、粗差分析及随机误差处理方面,暂无好的处理方法。

4 结语

GPS这种全新的定位手段,在工程实践中已逐步得到认同。目前,我国正处于经济发展的历史性的发展时期,各种基础设施的大量建设,各种新材料、新技术的采用,使建筑工程这一传统产业呈现勃勃生机。论文写作,GPS建筑变形。随着GPS技术的进一步开发,特别是有关高层建筑施工领域的应用技术包括基础理论的研究、实践方法的探索、信号接受手段的更新、信号处理方法和软件的开发等的发展,再加上若干工程的应用、积累和提高,GPS技术将成为在高层及超高层建筑方面广泛使用的方法。

参考文献

[1]刘大杰等.全球定位系统GPS的原理与数据处理[M].上海:同济大学出版社,2008:40-55.

[2]余绍铨等.GPS测量原理及应用[M].武汉:武汉测绘科技大学出版社,2007:60-65.

[3]罗志才等.GPS用于监测高层建筑物动态特征的模拟研究[J].武汉测绘科技大学学报,2007(8):20-22.

篇10

【关键词】 MIMO 无线通信 信道容量

多入多出(MIMO)技术是在通信系统收发的两端放多根天线的一种通信技术,成为近年来无线通信领域理论研究的一个重大的突破。该项技术能在不增加发射功率和系统带宽的前提下大大地改善系统的性能、增加系统的容量、提高系统频带利用率,成为了新一代多数据类型、高数据率无线通信系统的关键技术。

一、MIMO系统模型

MIMO系统是在天线空时处理技术和分集技术的基础上发展起来的,是发射端和接收端都使用天线阵列或多天线的通信系统。MIMO系统的结构如图1所示。在发射端,对信号进行空时编码,然后从多个天线通道使用同一频段发射出去,经过无线信道的散射传播,经过不同的路径到达接收端,在接收端使用多个天线通道接收,然后进行空时译码。

二、MIMO系统的信道模型种类

通常可以将信道建模方法分成两大类,分别是分析模型和物理模型。分析模型是在一定的天线和系统参数下,同时参考了天线的配置和物理电磁波的传播特性来说明收发天线之间的信道冲激响应。在这种模型之下,信道的系数在时间和空间上是相关的随机过程,然而这种相关性是通过计算来定义的。而物理模型主要用来描述收发天线之间电磁波的双向多径传播特性。因为物理信道模型是和特定地理位置密切相关的,所以可以准确地描述电磁波的多径分量、复振幅,到达角和离开角。同时物理模型独立于天线的系统带宽和具体的配置。

2.1 分析模型

分析模型主要通过数学分析的方法来描述收发天线间的信道冲激响应特性,而无需明确的电磁波传播的特性。单个冲激响应只包括一个MIMO信道矩阵,该方法的优势在于引入了信道矩阵,便于算法验证以及算法研究。分析模型还可以细分为:基于相关法的模型和传播驱动模型。基于相关法的模型特征为MIMO信道矩阵在统计上具有相关性,常用的基于相关法的信道模型有Weichselberger模型、独立同分布i.i.d模型和Kronecker模型。传播驱动模型则是通过传播的参数获得信道矩阵的,其中包括虚拟信道实现模型、有限散射体模型和最大熵模型。

2.2 物理模型

物理模型主要基于实际环境的测量而建立起来的信道模型。其需要获取详细的信道环境信息,例如自然界的物体和建筑物的精确分布、位置和大小等等。物理模型实现的方法主要有非几何的随机信道模型、确定性的信道模型和基于几何的随机信道模型。非几何的随机模型根据统计参数描述了电磁波从发射端至接收端的传播路径,而不用考虑几何的物理环境。确定性的模型基本思想则是若详细的传播环境的信息可以获取,这样的话,无线传播就可以看作一个确定的过程;它能确定空间任何一点的各种空时特性。这类的信道模型主要用于小区的规划。基于几何随机模型是根据散射体的具置而决定的,然而散射体具体的位置是由特定的概率分布函数随机产生的。

三、MIMO系统信道容量

3.1 信道容量的定义和含义

3.2 MlM0信道容量的一般性推导

根据信道统计特性,通常可将容量统计特性分为中断容量和遍历容量。

3.2.1 中断容量

3.2.2 遍历容量

四、MIMO应用及其前景

因为对MIMO所做的研究日益成熟,最近的许多研究成果表示MIMO技术具有较大的优势,在3GPP和ITU 论坛中已经开始对MIMO进行标准化。将几种技术和MIMO相结合,可进一步地改进系统的频谱效率、通过量和性能,这激发了人们极大的兴趣。

到目前看来,对于蜂窝系统,仍然没有在商用的系统中采,用MIM0技术,除了MISO发分集(较为简单)外,正在部署中的商用系统也没有。Lucent贝尔实验室在2002年12月研发成功了BIAST芯片,Iospan Wireless发明出了应用于固定的无线接入的Airburst系统。

对于3GPP,基于链路层的模拟,结合扩频码和VBLAST再用,已经拥有了一些MIMO技术方面的成果。吞吐量增益(MIMO所提供)是在理想的情况下所获得的,并且对于信道的条件很敏感。MIMO增益的代价就是增加手机和基站的接收机的复杂度,不同因素,例如错误的高多普勒频移、信道估计,天线的相关性等,都会对理想的系统性能造成影响。

五、总结

MIMO系统借助空间维度和散射环境,建立了多个并行的空间信道,在不需要增加发射功率和系统带宽的情况下,利用无线信道多径传播,获取分集增益与复用增益,从而明显地提高无线链路的质量和容量。MIMO作为新一代的宽带无线通信系统的框架技术,是实现充分地利用空间资源来提高频谱利用率的一个必经途径,具有巨大的发展前景。

参 考 文 献

[1] 樊昌信等. 通信原理. 北京:国防工业出版社,1995,56-60