人工智能课程论文范文

时间:2023-03-29 19:32:25

导语:如何才能写好一篇人工智能课程论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

人工智能课程论文

篇1

>> 研究生人工智能系列课程教学改革 研究生人工智能课程教学探索 研究生“人工智能”课程教学改革探索 人工智能实验课教学改革研究 人工智能课程全英文教学改革 创新型人工智能教学改革与实践 《人工智能》硕士课程教学改革的研究与实践 落实科学发展观,深化“人工智能”课程的教学改革 面向人工智能的信息管理与信息系统专业教学改革 人工智能课程教学方法研究 人工智能的应用研究 日本巨资扶持人工智能研究 人工智能系列课程研究 高中人工智能教学初探 《人工智能》双语教学初索 人工智能双语教学建设 人工智能实验教学探讨 “人工智能”之父 人工智能 AI人工智能 常见问题解答 当前所在位置:l(美国人工智能协会)、caiac.ca/(加拿大人工智能协会)等,它们包括了学科前沿动态、讨论交流及大量的代码资源等。通过使用这些资源,学员可及时了解人工智能最新发展动态,进行人工智能程序设计的交流及对一些问题进行较为深入的探讨。

2教学方法研究

研究生教学应更突出学生的主体地位,注重发挥其学习的主动性和自觉性,为此,课程组结合课程特点,在教学方法进行了如下探索。

2.1加强教学设计

教学设计就是对教学活动进行系统计划的过程, 是教什么(课程内容)及怎么教(组织、方法、策略、手段及其他传媒工具的使用等)的过程[2]。在教学过程中,每节课授课前,坚持集体备课的原则,由课程组集体讨论选定授课内容,补充阅读文献,根据授课对象与课程内容特点,确定课堂组织方式,采用的授课方式以研讨式教学为主,给合讲授、实验、自学等。

2.2抓好课堂教学环节

教学方法与教学手段是保证课堂教学效果的关键。本课程授课对象主要为硕士研究生,他们的接受能力较强,有一定的求知欲。由于学员人数较少,授课方式可灵活组织。教室有完备的多媒体设备,基本的软件实验环境,教学过程可采用灵活教学方法、多种教学手段,提高教学效率,保证授课质量。

1) 以研讨式为主的教学方式。研究生教学应坚持学术研究为导向,发挥学员在学习过程中的主动性和自觉性。由于研究生学员有一定的学习基础与自学能力,教员可以在课前给学员布置预习内容,学员通过查阅资料、分析整理进而形成自己的观点,使在课堂教学中师生互动交流成为可能,改变传统的教员讲,学员听的灌输式教学方式。研讨式教学也有力于培养学员积极思考、创新思维的习惯与能力。

2) 教学手段的信息化。人工智能原理教学一个突出矛盾是知识点多、内容抽象、理论性强,但学时较少,因此,必须发挥现代教学手段的作用,提高教学效率。为此,课程组对每节课都精心设计了教学课件,课堂教学中以课件为主,辅以板书,充分利用多媒体信息量大、直观等优点,改善教学效果;引入教学声像资料,便于学员课下学习;设计演示程序,使部分比较抽象、不易于理解的内容,如子句归结、搜索策略更形象直观,易于学习和掌握。

3注重培养学员学术研究能力

学术能力是指专门对某一学问进行系统的哲理或理论研究的能力,它不仅包括思辨的方面,还包括实践及感性的敏感力等方面。研究生阶段学习的一个突出特点是要求学习的主体――研究生必须具备研究的能力[3]。论文写作是培养、锻炼、提高研究生的学术能力的重要途径,在教学实施过程中,要求每个专题学习结束后,都要提交一份格式符合期刊发表要求的总结报告,题目可自行选定,也可由教员指定;内容既可以是人工智能该专题某一算法的实现,也可以是对某一问题的进一步研究,或者是对该专题最新研究进展的综述。教员重点在以下几个方面予以指导。

1) 选题准确。要求选题不能过于宏大,应以小题目反映大问题,具有一定的可研究性为宜。

2) 研究内容。研究目标明确,方法恰当,能够提出自己的见解,所提观点正确。

3) 论文结构。结构清晰、完整,论述严谨,表达规范。

4) 占有文献丰富。撰写过程中要有意识培养学员查阅科技文献的能力,要求查阅反映最新研究成果的权威文献。

4加强实验环节教学

人工智能教学在进行各种理论知识讲授的同时,还应重视实践教学,把抽象的知识转化为形象、直观的实验,让学员真正理解人工智能的概念、本质、研究目标,从而提高学员多角度思维的能力和逻辑推理能力,进一步了解信息技术、计算机技术发展的前沿,培养他们对人工智能研究的兴趣,激发对人工智能技术未来的追求。为此,课程组借鉴国内外知名大学人工智能实验教学经验,编写了《人工智能原理实验指导书》,围绕问题表示、经典逻辑推理、不确定推理、搜索策略及简单专家系统实现等教学内容提供了7组实验供学员选择。

例如,在状态空间搜索一节教学过程中,先完成理论部分的教学,使学员对状态空间基本概念、问题表示及求解方法有一个准确的认识,然后进行实验教学。由学员自主完成重排九宫问题求解的程序,初始状态和目标状态如图1所示,调整的规则是,每次只能将与空格(左、上、下、右)相邻的一个数字平移到空格中[4]。实验过程重点指导学员掌握状态空间进行问题求解的关键步骤:问题表示和搜索策略。问题表示就是要确定该问题的基本信息及程序实现的数据结构,基本信息有初始状态集合、操作符集合、目标检测及路径费用函数,数据结构可采用向量、链表等形式;搜索策略可分为盲目式搜索和启发式搜索,可按照先易后难的原则,先实现盲目搜索中的广度优先及深度优先搜索,在此基础上再定义估价函数实现启发式搜索。而在启发式搜索实现过程中,又可以通过定义不同的启发函数:如某状态格局与目标节点格局不相同的牌数、不在目标位置的牌距目标位置的距离之和等加以比较,准确理解启发函数的意义。通过实验,学员加深了对课堂讲授的理论知识的理解,能够熟练地将状态空间法运用于实际问题的求解,提高了工程实践能力。

实验教学组织方式可根据具体的实验内容特点,采用上机编程实验、演示程序验证、模拟平台开发、分组讨论等多种形式进行。

5适度开展双语教学

研究生的英语基础普遍较好,基本都通过了国家公共英语四级考试,部分学员通过了六级考试,加之在本科阶段还开设了专业英语课程,因此,在培养研究生人工智能知识的同时,我们要提高学员阅读原版英文资料、用英语进行简单科技写作及对外学术交流的能力,适度开展双语教学,对此,我们可采取以下基本方式。

1) 专业术语全部用英语表示。

在教学过程中用英语表达人工智能原理中的专业术语和主要概念,如Knowledge Representation(知识表示)、Depth-First Search(深度优先搜索)、Breadth- First Search(广度优先搜索)等。

2) 以英文原版教材为教学参考书。

选定机械工业出版社出版的《Artificial Intelligence Structures and Strategies for Complex Problem Solving》为参考书,该书“是人工智能课程的完美补充。它既能给读者以历史的观点,又给出所有技术的实用指南[5]。”

3) 加强英文文献的阅读。

在课程论文撰写时,要求阅读一定数量的外文文献;在讨论课中,鼓励学员使用英语进行讨论。

经过课程学习,学员都能准确掌握人工智能学科专业词汇,英文运用能力得到一定提高,能较自如地阅读原版英文专业资料,为进一步用英文进行学术交流及学术论文写作打下基础。

6考试与成绩评定改革

考核方式采用传统的试卷与课程论文、实践环节等三部分组成,全面考查学员对基础理论知识掌握情况以及理论联系实际的能力,其中试卷占70%,课程论文占10%,实践环节占20%。课程论文题目不作限制,由学员在课程学习阶段结合某一专题选定题目,课程论文以选题意义、研究内容、论文结构、参考文献及撰写规范等指标为评价依据;实验成绩采用实验过程考查、实验结果验收和实验报告评阅相结合的考核方法,综合评定。这样做不但考核了学员人工智能基本理论掌握情况,也反映了学员的学术研究能力和工程实践能力。同时,考核结合实际教学进程,改变了单一课终总结性考核的弊端。

7结语

经过课程组近两年的教学方法研究与教学实践,研究生人工智能原理课程教学收到较好的效果,但仍存在一些问题,如在课堂讨论环节,个别学员准备不充分、讨论不够深入;课程论文撰写选题随意,文献综述不够全面、准确,论文格式不够规范等。在今后的授课中,课程组将根据授课研究生人数较少的特点,采取明确每名学员预习重点、加强课程论文交流等方式予以改进,力求取得更好的教学效果。同时,进一步充分利用便利的校园网平台,开展“人工智能原理”网络课程建设,购买或自主开发网络教学资源,引导学员利用网络资源进行个性化自主学习,增强教学过程的信息化程度。

参考文献:

[1] 王永庆. 人工智能原理与方法[M]. 西安:西安交通大学出版社,2002:1.

[2] 李志厚. 国外教学设计研究现状与发展趋势[J]. 外国教育研究,1998(1):6-10.

[3] 肖川,胡乐乐. 论研究生学术能力的培养[J]. 学位与研究生教育,2006(9):1-5.

[4] 周金海. 人工智能学习辅导与实验指导[M]. 北京:清华大学出版社,2008:204.

[5] George F.Luger.Artificial Intelligence Structures and Strategies for Complex Problem Solving[M].北京:机械工业出版社,2009:754.

Reform on Postgradrates Artificial Intelligence Course Teaching

TAN Yuehui, QI Jianfeng, WANG Hongsheng, LI Xiongwei

(Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang 050003, China)

篇2

关键词:人工智能;教学改革;教学方法

引言

人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。

1、教学现状与问题

作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。

2、管理类人才的人工智能课程教学改进策略

课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。

2.1教学方法改进

教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。

2.2教学内容设置

世界一流大学在人工智能课程内容设置根据不同国家的教育体系设置,肯定会有不同,但颇有共通之处。本文借鉴世界顶尖大学经验,针对管理类专业人工智能课程教学内容进行研究,结合中国教育体系设置,认为应从以下几方面进行改进。(1)核心内容设置为避免学生因为知识点过多而出现杂而不精的问题,势必要精化教学内容。在互联网时代,我们可以使用云计算和其他方式来实现数据信息的传输、存储和处理,通过在线收集和整合网络课程相关数据,挖掘和丰富教学资源,并在整合课程资源的基础上,进行研究方法和前沿知识的扩展。在核心内容设置方面,可以通过收集到的数据资料,选择人工智能领域具有代表性且难易程度适中的知识作为重点,使学生能够在有限的学时内掌握人工智能的知识脉络。例如,编写针对管理类人才的人工智能教材,内容涉及绪论、知识表示与推理、常用算法、机器学习、神经网络等方面的同时,重点增加相应知识点在管理上的应用案例,加强学生对知识点的理解。同时,根据管理类专业偏向领域,开设关联程度较大、应用较广泛的人工智能选修课程,以便学生根据自己的兴趣与需求选修具体方向的课程。(2)注重学生的数理及编程基础良好的数理及编程基础是学习人工智能的前提。只有具备了这些基础,才能搞清楚人工智能模型的数量关系、空间形式和优化过程等,才能将数学语言转化为程序语言,并应用于实验。管理学院人才的数理及编程基础相对薄弱,因此,在安排学生学习人工智能课程之前,建议开设面向全体管理类专业学生的微积分、线性代数、概率论等专业基础数学课程以及C语言、python等编程基础课程,使学生具备数学分析的基础与一定编程基础,为学习人工智能课程打下坚实的基础。另外,可以推进MOOC平台建设,在平台上开设人工智能网络课程,帮助学生掌握人工智能知识基础及专业技能。(3)实验建设为了加强学生对于人工智能知识点间的关联性理解,可以基于不同的应用模块,设计具有前后铺垫、上下关联的综合性实验,设计不同层次的项目要求,同时基于相同的实验课题,让学生分组对实验课题进行攻克,并设置多元化的实验评价体系,通过实验教学过程中反映出的不同进度,让教师能对学生的学习水平做出准确评判,及时进行教学反思,以便更好地开展下一步工作。例如,针对人工智能课程应用中很广的遗传算法,在某一管理规划的具体应用上设置理解-实现-参数分析-具体应用-尝试改进-深度拓展的不同层次的项目要求,在这些项目层次中规定必做项与可选项,让学生基于同一实验课题进行合作学习,然后通过个人自我评价、小组成员互相评价以及教师评价的方式进行打分,对小组整体能力以及个人能力进行综合评估,以期培养学生的自主思考能力。

篇3

人工智能技术及其应用的发展历史虽然只有短短的50余年,但是它作为信息技术的前沿领域,对社会经济和发展的影响却越来越大。在基础教育课程改革的大潮中,许多国家意识到基础教育领域开展人工智能教育的必要性,努力把人工智能列入技术类教育的教学内容中。作为师范类院校,教授人工智能课是有必要的。? 

(1)为部分优秀的学生将来做更深入的研究打坚实的基础。在面向知识经济的今天,研究获取、表示和使用知识的人工智能学科越来越受到人们的重视。目前人工智能研究被列为中国高技术领域的重点之一。以专家系统为代表的智能化系统在信息技术中也占有重要地位。因此在高等教育中开展人工智能教育和智能化系统的研发,不仅是计算机科学的应用,也是促进各学科服务于国民经济发展的必然趋势。为使人工智能的理论、方法和技术的研究与应用普及和深入,教育重心必须要下移,即从研究生教育向本科教育普及。开展本科层次人工智能普及教育的有效途径之一是在本科高年级开设相关选修课。开展人工智能教育,不仅能够更好地发挥高等院校的育人和科学研究功能,而且能为学生拓宽专业路径,扩大自主学习空间和发展个性创造条件,同时也为营造一个使学生不仅有宽厚、扎实的理论基础,且具综合分析和解决问题能力的环境。? 

(2)为将来从教的学生积聚大量的知识。英国早在1999年,人工智能课程已经作为选修课出现在中学的信息与通讯技术(ICT)课程中。许多中小学还通过机器人竞赛活动来激发中小学生学习人工智能的兴趣,使学生不仅提高了用信息技术解决问题的能力,而且培养了多种思维方式,获得了更多的创新空间。美国现行的中学信息技术课程设置中,将人工智能的内容作为“媒体与技术”层面对12年级学生的要求。澳大利亚的部分中学开设的信息处理与技术课程,人工智能、信息系统、算法和程序设计、社会和伦理道德、计算机系统分别作为5个主题共同构成了该课程的教学内容。在该课程的大纲中规定,人工智能部分的教学内容在高中第3学期为12年级的学生开设,教学时间为10周。? 

在我国,多年以来中学奥林匹克信息学竞赛中一直包含有人工智能相关的题目,涉及启发式搜索、博弈、智能程序设计等问题。2003年4月,我国教育部正式颁布《普通高中技术课程标准(实验)》,首次在信息技术科目中设立了“人工智能初步”选修模块,标志着我国高中人工智能课程的正式起步。? 

我国的新课程标准颁布后,教育部评审并通过了分别由教育科学出版社、广东高教出版社、地图出版社、上海科技教育出版社和浙江教育出版社出版的5套高中《人工智能初步》教材,并开发了相应的教辅材料,包括教师用书和配套光盘等。为了配合中学人工智能课程的实施,国内也推出了一些适合中学生学习与体验的人工智能软件和网络资源。另一方面,一些高校的本科生、研究生也逐步关注中学人工智能教育的开展并将其作为毕业论文的研究选题。一些师范院校适应形势要求,已为师范生开设了与此相关的选修课程。? 

2 人工智能的教育及教学条件现状? 

通过对本人多年的教学过程进行总结,我校的《人工智能》课程教育现状可总结为如下几点:? 

(1)理论知识充裕。但与实践相脱节,特别是在智能科学技术的教育教学方面。尽管知识面相当广泛,而人工智能理论的普及教育以及智能技术的开发与应用仍然十分滞后。? 

(2)同其它普通高等院校一样,在本校,人工智能技术的研究与应用尚未普及,甚至比不上其它院校。这不利于培养学生的科研兴趣及创造精神。? 

(3)缺乏配套实验教材,实验教学内容缺乏,无法培养学生的研究能力和创新能力。只有开设实验项目,才能使人工智能的相关知识具有研究性和综合性。? 

(4)对中小学智能教育的深度及教学方式、教学特点缺乏研究。做为师范类院校,我认为在对学生进行基础知识教育的基础上,要紧抓中小学智能教育的特点对师范类学生进行相关的教育与培训。? 

相对于教育现状,我校的《人工智能》课程教学条件现状要稍好一些,其状态如下:? 

(1)教材使用国家级规划教材,此教材非常系统地介绍了人工智能的基本原理、方法和应用技术,适合本科及研究生使用。在我们的授课过程中,也会适当为学生提供相关的国内其他先进教材,如中南大学蔡自兴教授的《人工智能及其应用》等。? 

(2)为了促进学生自主学习,我们准备了多种类型的扩充性学习资料,加强学生主动学习的意识,包括:课程相关杂志和书籍目录,以及部分重要的参考文献,与人工智能相关的网络资源如优秀BBS、新闻组、网址等。 它们包括了大量的文献资料、本领域研究的前沿动态等。 使用表明,学生非常乐于查阅这些资源。 使学生能通过使用这些资源进行一些人工智能程序设计,探讨一些问题,在课堂讨论中展示他们的收获。? 

(3)校园网的普及与不断优化使本课程有优良的实践性教学环境,能充分满足教学需要。我们拥有较充足的多媒体教室和网络教室,为实现本课程教学提供了物质保障。在网络资源建设方面,全校办公室、教室、学生宿舍和教师宿舍都以宽带网相连,这些硬件设备对本课程教学发挥了重要作用,使本课程教学质量得以明显提高。? 

3 人工智能教学方法及手段的改革? 

针对我们现在所采取的教学方法,我认为存在许多不足,如教学方式比较单一,教学内容偏重理论讲解等,为此,提出以下教学方法的改革:? 

(1)通过多种途径激发学生的学习兴趣。课程的学习效果,直接受到学生兴趣和参与意识的影响。一般来讲,《人工智能》作为一门前沿课程,开始学生学习兴趣很大,当开始接触到抽象理论知识及部分算法时,学生往往感到不易接受。 我们通过各种途径和方法, 激发和培养学生的学习兴趣,包括鼓励学生参与某部分知识的扩充性资料查找,预留一定时间请学生负责对此内容进行讲解,布置学生对某个基本成型的实验进行纠错及验证,降低问题解决的难度。学生因此产生兴趣从而做更深度研究。? 

(2)进行启发式教学。 我们可以尝试在教学过程中不断提出问题请学生思考,启发学生求解这些问题,鼓励学生提出自己的猜想和解决方案,然后摆出教材中的解决方案,并与同学所提出的观点进行分析和比较,这足以加强学生学习的主动意识和参与意识,提高学生学习的积极性。? 

(3)课堂辩论与交互式教学。 组织课堂辩论,讨论的议题可定位为譬如人工智能是否能超过人类智能等有争议的问题。学生通过对这些问题展开激烈争论,激发了学习潜能,明确了学习目标。当然师生间的交流方式还有很多,如邮件互发、QQ留言等,也可在课程网站中的互动平台进行交流。? 

(4)分层次因材施教。 在授课过程中,通过对每个具体学生的学习进度、课堂作业情况进行及时评估,对学生提出进一步的学习建议和指导, 实现个性化的教学。 对优秀学生探讨,可以在教学设计和实验设计中要求其选作部分探索性、创新性的功课和实验,以发挥学生个性优势。对于有意于将来从事中小学教育的学生可以在机器人及人工智能技术发展现状等知识层面对其做问题讲解。而那些看似缺乏兴趣的学生,我们可以用多媒体手段如播放人工智能相关电影及科学小片引起其兴趣,实行逐步引导的教学过程。? 

另外,我们可以尝试双语教学。 采用中文教材和讲授的同时,注重在课程中的关键词同时用英文表示,并适当指定英文参考短文和英文参考书。使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。我们也可以在教学内容安排上,注重理论联系实际,将一些人工智能网络上的虚拟实验给学生进行课外上网练习,从而使学生了解算法的具体运行过程, 通过参与达到知识的理解,掌握基本方法和技术。? 

 

根据现有的条件,我们在教学中可以采用多媒体教学和网络课程教学相结合的方法,充分利用多媒体的丰富表现形式,利用网络课程的交互性、情景化等特点,构筑以学生为主体的《人工智能》课程现代教学模式。 对于抽象知识,可通过动画和视频演示,通过声音和图像展示人工智能的历史、人物和前景,做到学生直接而深刻地看到知识的内涵外延。网络课程能较好地实现交互并使学习过程情景化,通过网络课程的课堂练习和章节练习,教师可以评价学生的学习情况,并给学生提出学习建议,从而提高学生的研究力和创新力。我们也可以给学生播放中学《人工智能》课程课堂教学录像,以使学生看到初高中学生的知识范围及深度;同时给学生播放现有的《人工智能》科学成果,让学生看到理论背后的实践;也可以播放科幻片,激发学生想象的翅膀从而有兴趣把人工智能作为将来深造的方向。《人工智能》是一门较新的课程,改进教学方法和手段不仅要靠教师,也应增加硬件设备的投入。如果人工智能能采用智能辅助教学系统或机器人辅助教学过程逼真、形象,一目了然,这样可大大提高学生的学习效率,尤其是提高学生的观察判断能力、发现问题和解决问题的能力。? 

4 人工智能实践教学设计的探讨? 

我们可以在教学过程中,适量开设一些实验和设计,提高学生的动手能力,并加深他们对理论知识的理解,降低理论的抽象度,提升理论的实用性。在近两年的教学过程中,我们会适量加入一些人工智能语言的教学过程。例如,在讲解了“野人与传教士过河”等问题后,我们可以让学生使用Visual Prolog或者C ?++?对算法进行实现;在讲解 TSP 问题的遗传算法解决案例后,指出编码方案、初始种群大小、进化代数、交叉率变异率等因素对求解结果的影响,并要求学生通过实验的方式来分析、理解这些问题,并提出“寻找更有利的解决方案”等问题。把学生的兴趣激发后,为解决这些问题,学生会在课外主动查阅相关文献、相互讨论以实现他们所设计的方案,这样既培养了学生善于钻研和勇于创新的精神又提高了学生的实践与创新能力。? 

参考文献:? 

[1] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1).? 

[2] 何元烈,汪玲.“Visual C ?++?”在“人工智能”教学中的应用与探讨[J].广东工业大学学报:社会科学版,2008(8).? 

篇4

关键词:人工智能;研究生教学;教学方法

人工智能是一门研究机器智能的学科,是在研究人类智能行为规律的基础上,利用人工的方法和技术,研制智能机器或智能系统来模仿、延伸和扩展人的智能,实现智能行为。在知识经济向智能经济高度发展的今天,人工智能具有重要的理论意义和社会价值。人工智能理论已经渗透到各个领域,人工智能技术也得到广泛应用,许多研究成果已经进入人们的生活。

人工智能课程是一门多学科交叉的课程,具有很强前沿性,涉及哲学、认知科学、行为科学、脑科学、生理学、心理学、语言学、逻辑学、物理学、数学等众多领域;涉及面宽,内容广泛,更新快。人工智能课程的开设能够更好地培养学生的创新思维和技术创新能力,培养学生对计算机前沿技术的前瞻性,提高他们的科技素质和学术水平[1]。

人工智能课程内容的广泛性、前沿性和应用性特点决定了授课方法的多样性。与本科生相比,研究生在教育目标和身心特征方面都有较大的区别。笔者多年从事研究生人工智能课程教学工作,现总结多年教学经验如下。

1研究生培养目标及其教学特点

研究生教育阶段的教育目标是使研究生形成具有个性化的研究品格、研究定向和研究视野,以具有独立思考并获得独创研究成果的能力[2]。从这一意义上讲,个性化是研究生教育培养目标的构成主体。尤其随着我国经济持续高速增长,社会对知识创新、新经济生长点的期望值增大,这就要求我国研究生教育在其培养目标的定位上不仅要重视人才培养的高层次性,更要重视创新能力、实践能力和创业精神的培养。并且,研究生身心发展已较成熟,具有较稳定的个性特征,思维力强,具有较高的专业性思维意识和创造力,为独立地进行专业研究活动提供了心理上和智力上的保证。而且,研究生已具备了基础理论和专业知识,特别是有一定工作经历的研究生,他们不仅有本科教育阶段的知识积累,也有应用这些知识的经验,对于扩大其专业知识领域并进行研究有着积极主动的态度。总之,从年龄构成及身心特征上讲,研究生适应高层次、跨学科知识领域的学习和研究。

研究生的特征及其教育目标决定了研究生教学不应该是由教师讲授已定论的知识,而应是以教学为基本依托,通过教学提出具有研究性、探索性、未确定性甚至是尚存争议性的课题,激励研究生独立思考和质疑,让他们在思考和质疑的过程中提出问题,培育他们发现问题、提出质疑的科学批判精神,训练并提高其创新能力、实践能力和创新精神。创新精神和创新能力主要表现在具有健全的人格、强烈的责任感、开放的心态、团结合作的精神、严谨科学的思维能力和创新思维方式。

个性是创新的源泉,研究生课程体系的设置应该具有一定的灵活性,依据研究生不同的知识基础和研究定向,设置具有弹性化的课程,使研究生的个性化得以凸显。另外,为提高研究生专业研究和创新能力,在课程教学中,也应凸显教学的研究性和专业性,重视专业领域背景知识和研究方法的讲授,开展跨学科、非专业知识的教学,教学内容应涵盖专业领域的研究热点、难点、争议问题和最新研究动态,还应包括交叉学科、边缘学科的研究趋势,以扩展学生的视野[3]。也就是说,研究生教学既要凸显研究生的个性化特点,又要凸显内容的学术性和研究的指向性。

2人工智能课程的特点

2.1多学科交叉,具有很强的前沿性

人工智能是一门多学科交叉的课程。课程内容的理解需要运用多学科知识和较强的逻辑思维能力,多学科的知识相互联系、相互交叉,融合形成新的知识,成为新的思维方法和综合能力的萌发点。通过课程学习,学生可以通过不同学科知识的融合来达到对原有知识的超越,用一种全新的思维方法来思考所遇到的问题,提出新的解决办法。这也是创造力的迸发和智能的飞跃。具有了知识的广度和深度才具有融会贯通、创新的可能,人工智能课程的开设能够更好地培养学生的创新思维和技术创新能力,为学生提供一种新的思维方法和问题求解手段。

2.2涉及面宽,内容广泛,更新快

人工智能课程是一门知识点较多的课程,它以概率统计、离散数学、数据结构、计算机编程语言、数据库原理等课程为基础,涵盖了模式识别、机器学习、数据挖掘、计算智能、自然语言理解、专家系统等众多研究方向,内容涉及面广,概念抽象,不易理解。并且,人工智能课程内容更新快,近年来人工智能科学的快速发展,涌现出了大批新方法,研究热点问题也从符号计算发展到智能计算和Agent等。其中,计算智能主要涉及神经计算、模糊计算、进化计算和人工生命等领域,在模式识别、图像处理、自动控制、通信网络等很多领域都得到了成功应用;Agent最早来自分布式人工智能,随着并行计算和分布式处理等技术的发展而逐渐成为热点。

在互联网上有大量最新的与课程内容相关的研究论文,为学生提供了很好的查阅文献的环境,使学生能够根据所学习的内容和所在课题组的研究方向阅读相应文献,提高学生的学习兴趣和独立提出问题、解决问题的能力。

2.3应用性强

人工智能理论已经渗透到科学的各个领域,当前,几乎所有的科学与技术分支都在共享着人工智能领域所提供的理论和技术。例如,自第一个专家系统DENDRAL研制成功以来,专家系统已成功地应用于数学、物理、化学、医学、地质、气象、农业、法律、教育、交通运输、军事、经济等几乎所有领域;数据挖掘技术是以一种更自动化的方式对具有大量数据的商业活动进行分析和预测,在市场营销、银行、制造业、保险业、计算机安全、医药、交通、电信等领域已有许多案例;语义Web让Web上的信息能够被机器所理解,实现Web信息的自动处理,成功地将人工智能的研究成果应用到互联网。另外,在机器视觉、自然语言理解、智能控制与智能制造等方面,人工智能技术也得到广泛的应用,有许多研究成果已经进入人们的生活。目前,从理论到技术,从产品到工程,从家庭到社会,智能无处不在,人工智能广泛的应用性给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。

人工智能课程的多学科交叉性、内容广泛性、概念抽象、不易理解以及前沿性和应用性特点决定了在该课程的讲授过程中应该采用多种授课方法。多种授课方法的采用一方面便于授课内容的理解,另一方面也能够更好地培养学生的创新思维和技术创新能力,提高他们的科技素质和学术水平。

3人工智能课程教学方法

3.1基于问题的启发式教学法

苏霍姆林斯基说:“唤起人实行自我教育,乃是一种真正的教育。”基于问题的启发式教学法是教师在深入了解学生心理特点和学习规律的基础上,设计适合教学的启发式问题,并采取灵活多样、生动活泼的启发方式,充分调动学生的学习兴趣,激发、引导学生进行科学思维,培养学生独立思考问题、提出问题和解决问题的能力。该教学方法强调的是过程,教师的主要任务是提出问题,依据举一反三的思路引导学生展开逻辑推理,通过逐层分析深入思考问题,最后综合学生观点阐述相关理论。

在课程教学中,有许多内容适合于采用启发式教学方法。例如,在知识表示方法的学习过程中,教师首先提出问题:“你是怎样进行数学定理证明的?”并在学生的回答过程中,引导学生认识到知识及其表示的重要性;随后,提出问题:“在计算机中如何表示知识?”引导学生逐步总结出不同知识表示方法在知识表达能力、推理效率、可实现性、可组织性、可维护性方面的区别。另外,在确定性推理的教学过程中,教师可以利用“某处发生盗窃案,公安局派出5个侦查员去调查,研究案情时,5个侦查员各给出了一句可信的结论,据此判断谁是盗窃犯”的问题[4],让学生进行判断和讨论,引导学生认识到推理过程中可以使用多条规则进行推理,并且推理路线也可能存在多条,从而引出推理的两大基本问题:解决冲突消解等问题的推理策略,以及解决推理线路等问题的搜索策略。

启发式教学法的要点是设计适当的启发式问题和启发方式、安排能调动学生积极性的讨论环境、鼓励学生发表个性化观点。教师不仅用问题引发学生思考,更要鼓励学生让思维自由驰骋,主动提出问题,讨论问题,寻求问题解决方案。在探讨、研究问题中,不要以现有的结论和固定的程式束缚思想,鼓励学生的个性化观点。启发式教学是一种民主、科学的教学方法,其中包含诸多具体的教学方法,如激疑启发法、比喻启发法、类比启发法、联系启发法,等等。启发式教学在传授知识的同时,更注重的是对创新的孕育、萌芽、生成和壮大,它能促使学生自己获取知识、思考问题、提出问题、分析问题、解决问题,培养学生的自学能力。以问题为基础的启发式教学,利用问题引导学生学习,全方位深层次发展学生的创新思维和探究性学习能力。问题可以诱发出学生的求知欲,激发、唤醒了学生的主体意识;问题往往是面向生活世界的实践活动的,它使教学活动从以传授知识为中心转化为传授知识与培养能力并重,理论与实践相结合,提高了学生分析、综合、观察、想象等思维能力。

3.2基于案例的探究式教学法

基于案例的探究式教学法要求教师能够根据学生的认知水平和能力,创设引导学生进行探究活动的案例,以激发学生探究问题的兴趣,促进学生质疑、探求的创造性学习动机,通过选择与确定问题、讨论与提出设想、实践与寻求结果、验证与得出结论,发展学生的创造性思维,培养学生独立探究、研究能力和创新能力。探究式教学强调学生的积极参与,强调师生互动。对教师来说,必须转变传统的“传道”观念,以平等的心态与学生交流探讨。在课堂上,要努力营造民主、宽松、和谐的教学氛围,积极引导学生大胆设想,大胆探索。使学生树立研究型学习的观念,消除依附心理,养成勤于思考、善于思考的良好学习习惯,通过积极参与研讨培养学生自己获取新知、探求未知的能力,以及团队意识和合作精神。

我们在本课程神经网络部分的教学中,将基于BP神经网络的维吾尔文手写字母识别作为案例开展了探究式教学活动。在介绍了前馈多层感知器及标准BP算法之后,教师将科研项目中基于标准BP算法的维吾尔文手写字母识别实验及其结果详细地在课堂上进行演示,引导学生对实验提出质疑。在教学实践中,学生提出了大量问题,例如,输出层神经元个数如何确定,为什么输出层神经元个数对识别率会有影响?网络训练过程中出现震荡的原因是什么?如何解决?为什么有时误差较大,权值的调整量反而很小?等等。在教师事先准备好的实验演示的基础上,开展学生进行课堂讨论,让学生提出解决问题的各种方法,并现场通过实验进行验证,逐步让学生理解BP网络结构设计、输入输出数据的预处理、初始权值设计的必要性及其实现方法。课堂授课实践表明,这种方法极大地激发了学生的学习兴趣,使学生能够大胆设想,大胆探索,增加了学生的自信心和创新精神。本次课堂讨论结束后,教师根据学生的讨论以及实验结果演示,总结标准BP算法的局限性,例如,“易形成局部极小”,“训练次数多,学习效率低”,“训练时有学习新样本遗忘旧样本的趋势”等,并要求学生通过查资料、搜集必要的信息、积极地思索和实验验证提出解决上述问题的方法,将学生分组,让学生展开讨论,为下次讨论课作好准备。

传统教学方法是告诉学生怎么去做,在一定程度上损害了学生的积极性。而案例教学要求学生自己去思考、去创造,使得枯燥乏味的内容变得生动活泼,并且案例教学中,通过学生之间的交流既可以使学生取长补短、促进人际交流能力,也可以引导学生变注重知识为注重能力。

案例教学法的关键是案例的选择。案例是为教学目标服务的,因此它应该具有典型性,且应该与所对应的理论知识有直接的联系。案例最好是经过深入调查研究。来源于实践,不能只是一堆数据的罗列。教科书的编写应采用图片、表格、曲线等方式让学生看到算法的实验结果,启发学生思考。另外,案例应该只有情况没有结果,有激烈的矛盾冲突,没有处理办法和结论,由学生对案例提出质疑,从这个意义上讲,案例的情况越复杂,越多样性,越有价值。

案例教学法能够实现教学相长。教学中,教师不仅是教师而且也是学员。一方面,教师是整个教学的主导者,掌握着教学进程,引导学生思考、组织讨论研究,进行总结、归纳。另一方面,在教学中通过共同研讨,教师不但可以发现自己的弱点,而且从学生那里可以了解到大量感性材料。另外,案例教学法能够调动学生学习主动性。教学中,由于不断变换教学形式,学生大脑兴奋不断转移,注意力能够得到及时调节,有利于学生精神始终维持最佳状态。案例教学的最大特点是它的真实性。由于教学内容是具体的实例,加之采用是形象、直观、生动的形式,给人以身临其境之感,易于学习和理解。最后,案例教学法能够集思广益。教师在课堂上不是“独唱”,而是和大家一起讨论思考,学生在课堂上也不是忙于记笔记,而是共同探讨问题。由于调动集体的智慧和力量,容易开阔思路,收到良好的效果。

3.3加强研讨

鉴于研究生的培养目标和人工智能课程研究范畴的宽泛性、应用性、创新性和前沿性,根据我校计算机系硕士生指导教师的研究领域,我们在课堂教学中为计算智能、机器学习算法、机器视觉、自然语言理解部分增加了研讨会,要求学生上网进行文献检索、阅读和学术研讨,根据个人的研究兴趣和研究设想上台作报告。另外,我们还邀请相应专家和成果突出的各届研究生为学生做报告,介绍他们的研究实践、研究成果和心得体会。例如,在自然语言理解部分的课堂教学中,在介绍完自然语言理解的基本概念与原理之后,我们要求将来做这个领域的研究生在通过查资料了解所在研究小组工作的基础上,上台作报告。机器翻译研究组的同学在学习自然语言理解部分的内容之后,对其所在小组目前的工作及采用的技术、存在的问题做了分析,并通过阅读文献,提出了初步的解决问题的设想。与自己所在研究小组的科研相结合,开展文献检索和学术研讨,一方面让学生开阔了眼界,另一方面也提高了学生查阅文献、主动获取知识、独立思考的科研能力。

4结语

人工智能理论已经渗透到科学的各个领域,人工智能技术也得到了广泛的应用。人工智能课程具有多学科交叉、内容广泛、前沿性和应用性强等特点,课程开设能够很好地培养学生的创新思维和技术创新能力。教与学是教师与学生双方互动的过程,教学中要根据学生身心特征的实际情况采用相应的教学方法,并结合本校科研队伍的研究领域,不断地探索和提高,才能使教学工作更上一层楼,切实为国家、为社会培养具有创新能力、实践能力和创业精神的高层次人才。

参考文献:

[1] 陈白帆,蔡自兴,刘丽珏. 人工智能精品课程的创新性教学探索[J]. 计算机教育,2010(19):27-31.

[2] 谢安邦. 构建合理的研究生教育课程体系[J]. 高等教育研究,2003,24(5):68-72.

[3] 教育部研究生工作办公室,国务院学位委员会办公室. 高层次人才培养的研究与探索[M]. 北京:高等教育出版社,2000.

[4] 蔡自兴,徐光佑. 人工智能及其应用[M]. 4版. 北京:清华大学出版社,2010:113.

Exploration of Artificial Intelligence Course Teaching of Graduate Students

ZHAO Hui1, JIA Zhenhong1, WANG Weiqing2

(1.School of Information Engineering, Xinjiang University, Urumuchi 830046, China;

2.Graduate School, Xinjiang University, Urumuchi 830046, China)

篇5

关键词:中西合璧;人工智能;双语教学

双语教学是我国高等教育适应国际化趋势、培养富有创新精神和国际视野的复合型高素质人才的需要。作为一种全新的教学方式,它承接了中外文化的碰撞和融合[1]。各校在教学过程中都遇到了各种困难,也探索了不少经验。自2005年秋季,我校在人工智能课程中采用双语授课,在教学实践中摸索出一套中西合璧的双语教学模式,将中西方的优势有效结合起来,比较适用于工科专业课程的双语教学。

1中西合璧的双语教材

教材是体现教学内容的知识载体,是教师和学生进行教学活动的基本工具。我们重点调查了MIT、Stanford和CMU等国外高校,他们均选用了Stuart J. Russell和Peter Norvig合著的《Artificial Intelligence: A Modern Approach》,该教材几乎涵盖了CC2001关于人工智能课程的全部内容。该书网站(aima.cs. berkeley.edu/)的统计数据显示,目前已有100多个国家的1 100多所大学选用该书作为教材。我们对选用该教材的部分高校授课情况作了追踪调查,结果表明绝大部分人工智能课程的实际授课内容都与该教材内容基本一致。在国内,中南大学的人工智能课程是国家级精品课程,教材是课程负责人蔡自兴教授与徐光佑教授主编、清华大学出版社出版的《人工智能及其应用》(第三版)(该教材分本科生用书和研究生用书两种版本),与其课程内容设置完全配套。

我校选用了《Artificial Intelligence: A Modern Approach(2nd)》一书,清华大学出版社出版了影印版(人民邮电出版社出版了中译文版本),同时将Nils J. Nilsson著的《Artificial Intelligence: A New Synthesis》作为辅助教材,机械工业出版社出版了英文影印版及中译文版本。

人工智能这一学科诞生于西方,目前该领域的诸多成果和文献均以英文为语言载体。选用英文原版教材、推行双语教学,为学生的后续学习和研究深造奠定了良好基础。另外,与国内教材相比,国外教材更注重知识产生的过程、解决问题的思维方法,对提高学生的学习兴趣、培养学生的创新能力极其有益。另一方面,选用原版教材的问题也显而易见。一是原版教材内容过多,需要精心筛选、分清主次后才能使用;二是原版教材昂贵,增加了学生的经济负担,再购买配套中译文版,负担更重;三是学生英语水平参差不齐,双语授课的课程还不成体系,前后课程缺乏衔接性和延续性,学生直接使用原版教材有一定的语言障碍,即使有配套的中译文版,同时翻看两本书也不方便。

我们正在逐步消化吸收英文原版教材,在无损原版教材思想精髓的前提下,自主编写适用于双语教学的中西合璧讲义。双语教材以英文语言为主,以中文注释为辅,有效降低学生阅读的难度,更趋实用。

2中西合璧的授课语言

语言是信息传递的载体,是教学过程中必不可少的工具。双语教学涉及到这种信息传递载体的改变。

在双语教学中,外语的使用比例要求不低于50%,这是不够科学的。双语教学不是语言课,教学质量依然是核心,语言仅仅是载体,引入外语教学的目的无非是为了保证知识的“原汁原味”,同时训练学生的专业外语听说能力,但这一切都应以学生听懂课为前提。双语授课进度慢已是不争的事实,更有些双语教师,为了兼顾上述目的,先用外语讲一遍,再用汉语解释一遍,这种做法极不可取,也是紧张的课时限制所不允许的。双语课味同嚼蜡,引不起学生兴趣,也是普遍存在的现象。

我校人工智能课程的授课对象是计算机专业的四年级本科生,学生的英语水平很不均衡,如果不考虑实际情况,大比例地采用英语讲授,是难以保证教学效果的。我们把握的原则是:1)英语主要用于讲解专业性内容,如专业术语、技术原理、算法等,这样学生在学术交流中就不会对专业技术内容存在语言障碍;2)只用学生能听懂的语言讲授专业性内容,对过于生涩的专业技术内容,还要使用汉语讲解,这样学生就不会把专业技术内容学“夹生”了,在作研究时才不会有技术上的障碍;3)用母语调节课堂气氛,适当穿插的人工智能领域人物、故事及笑话以汉语为主,把学生发散的注意力快速集中起来,把学生的学习兴趣激发出来;4)中英文衔接,不重复表述,这样就不会额外占用课时。

例如,在讲解Agent技术时,对于Agent的定义、结构等核心内容,我们采用英语讲解;而对于Agent涉及到的心理学、逻辑学等方面的生涩理论,则用汉语给出扼要的说明;对于为阐释Agent的rationality概念而举的吸尘机器人、黑足泥蜂搬运食物的例子,则主要用汉语讲解,激发学生的兴趣,抓住学生的注意力。

3中西合璧的教学课件

作为一种新型的教学手段,多媒体以其鲜明的图像、生动的画面、灵活多变的动画及声音效果克服了传统教学模式的诸多不足,受到师生的认可与好评[2]。本文探讨的重点不是如何设计媒体的表现形式,而是如何利用课件更好地发挥双语教学的效果。很多双语教学任课教师只注重追求授课过程中外语的使用比例,课件全文用外语制作,在讲解过程中还要费尽周折地解释,收效甚微。我们在制作课件时,不单纯追求英语比例,而是想方设法让课件能更好地辅助学生理解,在关键处均用双语同步给出内容,或者以英文为主,给出扼要的中文注释。这样,学生能够通过视觉信息更好地理解授课内容,而教师也不必再用中英文重复叙述。

此外,在课件素材的选取上,也应注意国内外结合。比如,在讲解启发式搜索技术时,国外课件(包括教材)常用的素材是八皇后、八数码等问题,其中八皇后问题相对大多数同学来讲比较陌生,而国内的重排九宫(与八数码问题是一个问题)、华容道等问题对学生来讲则更熟悉。用国内的素材入门、用国外的素材拓宽视野,也是多媒体课件的中西合璧之道。

4中西合璧的文化熏陶

文化是生活在一定地域内的人们的思想、信念及生活与行为方式的总称。从人才培养的角度,我们一般将培养目标分为知识、能力和素质三个层面,文化属素质培养范畴。文化的熏陶和感染在育人中具有重要作用,这一点往往容易被工科专业课教师忽略。

从历史文化的角度看,中西方文化从萌芽、发展到现在的格局,无疑是各具特色的。双语教学提供了开放的空间,让学生在学习的同时广泛吸纳西方文化,但这也给中国传统文化造成了一定的冲击,如不注意调和,势必造成文化失衡,对培养学生的世界观、人生观、价值观都不利。尤其计算机类课程中的技术内容大部分诞生于西方,如果不在教学过程中进行一种文化平衡,往往会使学生产生一种我不如人的自卑心理或崇洋心理。

中西方文化对人与自然的基本观点是不同的。中国文化关注的对象是人,人与人的关系自先秦时期便成为中国文化的核心与基础问题。而西方文化较多关注的是自然,人与自然的关系是古希腊注重的中心问题,由此衍生出理智和科技。中国的哲学是一种人生哲学,在处理人与自然的关系上,中国文化讲究天人合一、顺天应物、道法自然。把自然人格化,追求人与自然和谐发展。从古希腊泰勒斯的自然哲学开始,探索自然奥秘,开发和利用自然资源为人类服务就成为了欧洲思想的主流。西方科学起源于对自然的探索和研究,很早就出现了毕达哥拉斯、阿基米得这样名垂千古的科学家。在人与自然的关系上,西方文化认为人与自然处于对立的斗争状态。西方人也讲人与人之间的关系,但首先关注的不是伦理而是竞争,因而出现了“优胜劣汰”的规律[3]。

在工科专业课堂上,涉及到文化要素的主要是两方面内容,一是与课程技术内容有关的哲学观点,二是本学科发展历程中的人物、事件和形成的学派等等。在教学过程中,教师要注意穿插上述内容,对学生进行文化熏陶,要注意中西合璧。比如,介绍人工智能发展过程中的重要人物时,必然提及Turing、McCarthy、Minsky、Shannoon、Simon、Newell、Feigenbaum、Hopfield、Brooks等西方学者,但同样也不能忽略国内的吴文俊、王守觉、蔡文等学者,他们近年分别在机器定理证明、仿生模式识别、可拓学等领域取得了开创性成果,而这些还没有来得及写进人工智能教科书。

5中西合璧的思维方式

对学生思维方式的培养也是教学任务之一。中西方文化的差异也将导致思维方式的不同。在技术思维方面,中国强调系统和整体,更具辩证性;而西方强调细节和局部,更注重逻辑性。西方人的思维方法更偏于二元对立,而中国文化环境则造就了中国人思维方式的连续统合特征[4]。外文教材的编写体例与中文教材有着明显的不同,这就是中西方思维方式不同的原因。教师首先要注意到这种思维方式的差异,并在教学活动中让学生也逐步意识到这种差异,并进一步接纳和学会西方的思维方式,将中西方的思维方式融于一身。举例来说,在讲解逻辑推理技术时,可以通过介绍逻辑学的三大起源(古希腊的形式逻辑、古印度的因明学、我国先秦时期的名辩学)向学生呈现这种思维方式的差异,在讲解演绎推理、模糊推理、云推理时,也要注意体现中西方思维方式中各自的特长,以利于学生吸纳。

6结语

自2005年开展双语教学以来,我们每年授课后都进行一次教学效果的问卷调查,“接受双语教学”的学生比例从2005年的37%逐年上升到2009年的89%,说明这套双语教学模式已经得到了绝大多数学生的认可。

中西合璧的双语教学模式是我们在人工智能教学过程中探索出来的,但是也可以推广到其他工科专业课中。双语教学中各种要素的中西合璧不是简单相加,而是要结合专业内容进行深度融合,这需要任课教师广泛涉猎、精心加工、用心引导。双语教学不能停留在语言形式和技术内容层面上,还要上升到文化和思维层面。

注:本论文受到哈尔滨工程大学教学改革工程项目支持。

参考文献:

[1] 施锦芳. 高校双语教学模式及方法的研究与实践[J]. 沈阳教育学院学报,2010,12(2):33-35.

[2] 周荃,胡奕. 多媒体教学:传统教学手段的历史性转型[J]. 广州市经济管理干部学院学报,2006,8(2):69-71.

[3] 邓绍建. 中西方文化差异研究[J]. 价值工程,2010(5):220-221.

[4] 马丽,滕修攀. 中西方思维方式的文化差异研究:二元对立与连续统合的视角[J]. 社会心理科学,2010,25(2):13-17.

Sino-west Style Bilingual Teaching Mode for Artificial Intelligence

LIU Hai-bo, SHEN Jing, ZHANG Guo-yin, LIU Jie

(College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China)

篇6

 

1 智能系·信科院

 

智能科技系是2002年9月初正式成立的,它完全根植于北人信息科学中心,末作增扩。后者的简称——“信息中心”——虽然易与“计算中心”或“情报资料中心”混淆,却是上世纪八十年代中期北大一些有识之士倡议建立的第一个多学科交叉研究中心。它以数学系、无线电f电子学)系和计算机系为主,联合心理学、中文、遥感等共十个系所而组成,宗旨是开展多学科交叉研究,充分发挥北大的综合优势。即使放在二十余年后的今天来看,这样的举措也是颇有前瞻性和魄力的。在此基础上,北大很快于1986年建立了第一个国家重点实验室。就是这样人数不多的一个机构,先后出过三名院士和一名北大常务副校长。以指纹识别为代表的研究成果进入国际先进行列,在国内得到广泛应用。

 

2003年9月10日,北京大学最大的学院——信息科学技术学院——成立。它包括计算机、电子学、微电子学和智能科学四个系,有十二个(研究)所和中心,两个国家重点实验室和若干部门实验室。系是教学单位,所和中心是研究实体。从此,智能科学系(暨信息中心、国家实验室三位一体)翻开了新的一页。

 

2 专业增列·学会指导

 

成立智能科学系除了要顺应北大“系并院”的潮流,也是完善作为学校基本建制单位所必备的。何新贵院士为系取了名称,如今许多学校也大都采用这样的称谓。查红彬教授担任系主任,笔者是主管学科建设和教学的副主任,具体参与负责各项相关工作。创办国内第一个智能科学与技术本科专业也是我们这一班人继承传统的首要任务。事实上,早在一年多前,大家就进行了酝酿,特别是中国人工智能学会教育工作委员会多次组织的相关研讨,成为重要的准备基础。

 

北大是一级学科下自主增设、增列学科专业的学校。系领导上任伊始第一件事就是要在当年申办智能本科专业,而且志在必得。为此,我们在前期制定了详细的步骤计划,进行了深入调研和各项准备工作。我们起草完成了所需的各项材料(人才需求论证、专业建设规划和适应培养目标的教学计划与课程设置方案、教师教辅队伍和基本办学条件说明以及国内外背景对比材料等),中国人工智能学会涂序彦等学者对此进行了专家论证,协助完成了论证报告。这些工作就绪后,我们在2003年10月下旬向学校主管副校长、教务部负责领导和学院领导做了汇报说明,并于10月30日正式提交申请材料。经学校的学部讨论通过,校教务部审核和校教学科研工作委员会论证(由于是国家公布专业目录外者),再经校学术委员会审议,报校长办公会批准,最后于12月15日前顺利完成了全部程序,报教育部备案。2004年初,教育部正式批复并公布了北京大学“智能科学与技术”新的本科招生专业。这个专业名称是查红彬教授建议的,日后成为教育部批复新申办学校的统一提法。

 

由于“智能科学与技术”未在国家公布的专业目录中,因此是增列而非设置,北京大学将其置于计算机科学与技术一级学科之下。由于北大历来严格控制招生规模,我们的30名招生计划是由信息学院其他三个系从原有计划分配名额中挤出来的。新专业的计划发展规模最终为50名。

 

3 教学计划·四校会议

 

智能科学系虽然成功地创建了国内第一个“智能科学技术本科”专业,但也面临着许多挑战。首先是缺乏本科教学的经验。尽管信息中心前身具有北大最早的硕士点、博士点和博士后流动站,研究生培养己历十余年,但一直实施科研主导体制,未曾从事过本科教学。师资队伍扩充快,新进年轻博士比例大,而真正有过本科教学经历者寥寥无几。此外,信息学院成立后开始调整教学计划,制定了一年级统一课程内容,新生是按学院统一招进来,第一年共同学习,后三年才分专业培养。我们虽然为申办专业制定了一套课程计划,但因不兼容学院的统一规划而未能第一次通过学院教学指导委员会的审核。为此,我们组织学院经验丰富的老教授,为本系青年教师进行教学培训,听取学院主管负责领导和几位多年从事本科教学管理的老系主任对教学计划的修订意见。

 

通过几个月的努力,我们完善了智能科学系的课程体系,并最终通过学院教学指导委员会的审核。这个教学计划具有几个特点:一个大基础——以学院的数、理和信息类为主,强调宽厚扎实;三个核心课程群作为专业理论基础,包括智能基础课程群(智能科学技术导论、人工智能、脑与认知科学、信息论、信号与系统)、机器感知课程群(生物信息处理、图像处理、数字信号处理、模式识别)和计算智能与知识发现课程群(智能信息处理、机器学习、数据挖掘、计算智能等),以及两门实验(机器感知和机器智能)和其他各种选修课。四年学分150分,其中必修88学分(包括全校公选26学分、大类平台20学分、学院要求的13学分、专业必修29学分),专业选修56学分(含专业课44学分、通选课12学分),毕业设计6学分。

 

为了更好地交流经验,扩大本专业的影响力,2005年5月,我们发起并与第二批获准的学校(南开、北邮、西电)在北大召开了四校研讨会,围绕各个学校在智能科学与技术本科专业的建设、招生、教学计划制定和未来发展设想等方面进行交流研讨,并建立了联系机制和网站。全国一些兄弟院校也纷纷来北大了解情况,开展座谈,我们则尽可能贡献自己的经验,给予支持。

 

4 招生·分流

 

从2004年开始,信息科学技术学院按学院大类招生,每年接收330~340名本科生,占全校的1/9左右。学生高考排名在全校属中上,但成绩分布差异较大。与学校的其他学院(多从一个系成长为一个学院,如数、理、化、生等)相比,信息学院是由四个不同的系合并而来的,专业跨度大,因此采用一年分流的模式(上述学院为二年分流),笔者被指定负责这项工作。我们提出自愿为主、计划为辅的方针,尽量满足同学们的兴趣志向。制定的分配计划是:电子学系120人、计算机系110人、微电子系70人、智能科学系30人,允许有10%的调整。分流工作在大一下学期(每年4月份)进行,包括全院动员、四个系专题介绍宣传、开放日参观咨询等几个步骤,可谓热闹非凡,同学们可以充分了解了四个系的专业特色。

 

为了克服盲目性引发的偏差,我们建立了一个网上分流系统,在正式填报专业前,增加了摸底预填报的环节,及时反馈群体意向的分布信息,指导学生们的选择,也便于学院掌握动向,调整措施。这种大类招生、进来一段时间后再分专业的举措体现了北大的人文关怀。智能专业初办,基础条件差,缺乏毕业生记录的宣传说明,与学院其他三个老牌系(电子学系50年历史、计算机和微电子系30年历史)相比较并无优势可言,但是我们通过扎扎实实的工作和细致有效的改进,使这个新方向日益显现出魅力。随着智能专业的成熟,特别是有了第一届毕业生后,就愈加受到更多学生的喜爱。

 

选择智能专业的人数逐年上升,2004级34人、2005级36人、2006级39人、2007级43人,目前正在进行的2008级分流达到45人。除了在信息学院内部的影响力不断扩大,北京大学其他学院的转系情况也开始有了可喜的变化。北大最好的元培计划实验班今年第一次有4名学生选择智能专业,医学部和光华管理学院也有申请者(本文成稿时这项工作还在进行),2008级学生肯定突破50名,我们在第五年就达到了创办智能科学专业的规划目标。

 

5 首届生·班主任

 

在新办专业中,有一项由教授担任智能本科专业班主任的举措。这是利用教授的学识、经验和责任心来更好地管理呵护自己的学生,避免了年轻教师因职称晋升等压力可能出现的疏漏。这一做法取得明显效果,不仅受到同学们的普遍欢迎,信息学院也开始考虑推行。笔者担任了智能专业的第一任班主任。首届学生(2004级)有34名,他们进入北大后毅然选择全新的智能专业是很有勇气的,全班有11名来自北京的学生,5名女同学,这个比例迥异于整个信息学院的总体分布。

 

该班学生的年龄恰与我自己的孩子相同,我天然地熟悉他们的一般特点,也理解家长们的想法。北大信息学院的淘汰率平均是7%,每年都有20多人退学。这班学生在大一时的成绩并不占优,其中有几人处在边缘位置,因此,我立下的最低目标就是确保所有同学不掉队。我首先通过全班民主选举任命了一个5人组成的班委会,这个5人机构在随后的几年中发挥了重要作用:其次走访宿舍,了解每个人的情况,为了消除代沟,我努力融入同学当中,学习熟悉他们的语境和思维想法。我同多数同学家长有过接触,从中更深入地掌握学生的性格特点,也包括寻求家长的必要配合。我与所有同学做过不止一次的个人交谈,经常是在晚间,很多时候是他们主动找我,谈遇到的各种困惑、自己的想法、志向等,我利用这些机会及时解决了具体问题。在学习上,我组织全班同学开展互帮互学,尤其对几门有难度的专业课程进行“联合攻关”。全班的“数据结构与算法”课程成绩甚至超过了计算机系。

 

几年来,全班团结互助,像一个大家庭,班委会也一再连任,得到全体拥护。到毕业时全部合格,实现了我的愿望。不仅如此,全班的学习成绩在学校的综合评估中优良率达93‰毕业设计都在良以上,有14人获优秀,更有三名同学的毕业论文被评为学院“十佳”论文。学院的第一、三名也都出自我班。34名同学中有22名继续保送本校读研(其中20人仍在本系),4名同学去了大的国企和知名外企工作,8名同学出国深造,在欧、美一些名校攻读博士,其中有一名学生同时拿到了包括哈佛、MIT、CMU、UCLA在内的著名大学的全额奖学金(最后选择MIT)。第一届智能专业学生的良好成绩极大鼓舞了我们,增强了我们办智能专业的信心,也为以后的几届同学做出榜样。

 

几年班主任的经历让我深深地体会到,进入二十一世纪的大学,教书、育人同等重要。要适应新时代年轻人的特点,保持我们民族的优良传统,把人格培养放在首位。能够进入北大的学生都是各地的尖子,当他们聚集在这所著名学府时,首先要调整原来俯视周围的习惯,学会平视甚至仰视其他同学,平和自己的心态,开阔胸怀,树立人生抱负和刻苦努力的决心,这样才能正确对待困难和挫折,才有所作为。班主任的工作往往细致入微,其实是把70%的精力用到30%的人上面。一些学生掉队是否可以避免,关键看班主任的工作是否到位。

 

6 培养体系·本研贯通

 

北大是(文)理科性质的学校,“智能科学与技术”专业也是按理学设置,尽管它更强调学科交叉。从智能科学的内涵来看,我们设立的培养方向更多地是继承自身传统和学校的综合优势,突出“以人为本”的脑认知和与心理生理结合,开展机器感知(视、听、触)和数据转换信息,进而发现知识的机器智能两个方面的研究。同时,我们配合学院的教学指导规划设置课程计划,除了全校的公共必修课程(外语、政治和体育),还有学院的公共平台课。第一年主要是夯实数学、物理和信息类的基础,后三年的专业课程安排是以必修的专业基础和机器感知与机器智能两个方向的专业核心课程为架构。为了强调学生的动手能力,还重点建设了两门实验课程。此外,还利用学校的各种本科科研基金项目(包括大学生创新基金、著政基金、泰兆基金、校长基金)和各个实验室承担的项目来吸引学生,培养他们思考问题的能力,提高他们的研究兴趣,为日后进一步深造打基础。由于绝大多数学生都将读研,这样的安排无疑起到了积极作用,并成为撰写毕业论文的基础。我们还打通了本科高年级与研究生一年级的课程,利用各种机会举办研究讲座,如龙星计划、专题报告、国际人工智能远程教学等活动,开阔学生的视野,引导研究方向,调动学生的潜质。从专业特点来看,我们的智能学科更偏向于“软”的一侧,因此也充分利用信息学院,特别是计算机系的各类教学资源来帮助扶持新办专业的成长。

 

我们原有的博士、硕士点是计算机应用技术和信号与信息处理两个方向,为了让我们的培养体系更加系统,我们进行了两年的精心准备。2007年底,我们正式向北大研究生院申请增列“智能科学与技术”硕士和博士点。经过必要的论证,最终获得批准,及时衔接第一届本科毕业生升研。至此,本、硕、博一以贯通,作为计算机科学与技术下的二级学科,一个完整的智能科学技术专业培养体系建立起来,从培养体制上保证了新兴智能专业的顺利发展。

 

7 特色专业·教学团队

 

五年来,北京大学智能科学技术本科专业从酝酿到创办,可谓初见成效,走过了颇具挑战的历程。除了确定具有特色的培养目标和方向外,还需要扎扎实实落实每一个环节,并在实践中检验。本科教学迥异于研究生培养,它的计划性、按部就班执行的严格性以及每堂课程的内容安排和效果评估必须一丝不苟。

 

信息学院秉承了北大的优良传统,对这个新办的专业给予了巨大支持和关怀,使我们能迅速成长起来。我们从一开始就有一套严格的课程设置审核程序、教案检查制度和新教师上岗准入的试讲考核手续。学院有一支由经验丰富的退休教师组成的督导组,随堂听课评估每一位教师的讲课内容、方式和教学效果,及时纠正问题。作业批改和试卷出题也都有严格规定。在课程体系的建设方面,信息学院打通了一年级的公共部分,深化和夯实了数理基础。

 

在专业课程上,智能科学系提炼了三个课程群,并组织教师进行重点建设。此外还加强对学生动手能力和独立思考解决问题能力的培养。

 

除了在专业上实施分流培养外,我们还针对北大学生的特点,在基础课采用实验班的A、B分级组合方式,满足不同专业对各自基础培养的要求。在专业课程群中,也允许不同兴趣的组合选择,充分发挥和提升学生的能力。为了更好地关怀学生顺利成长,我们除规定教授担任班主任外,还设立了本科生学术导师制,加强对学生的各种指导。智能科学系也注重师资队伍建设,引进了一大批(半数以上)优秀的年轻教师,其中信息学院中从国外回来的教师比例是最高的,为这一新兴学科注入了最具活力和新思想的力量。在招聘教师时,教学需求和能力成为评价的重要指标。

 

2007年,我们接受了教育部的学科评估,新办专业得到好评。学校开始关注我们的进步,在随后的一年中,我们一再从学校的竞争中脱颖而出,陆续获得了国家一类特色专业、北京市一类特色专业和北京市优秀教学团队等称号,2008年又获得国家级教学团队称号。我们的培养体系和人工智能双语教学也分获北京大学的教学一、二等奖。

 

8 结语·致谢

 

尽管北大年轻的“智能科学与技术”本科专业建设初见成效,但征程是漫长的,我们还会面临更多的挑战和问题。然而,智能科学这个本科专业方向是很有希望的,它不仅吸引了大学的新生,也在高考人群中产生着愈加重要的影响,它的健康发展需要大家共同的努力和精心培植。每所大学都有不同的特点,我们应该从学校、师资、方向、生源以及学科培养性质和目标等条件出发来建设新兴专业。以上是笔者对北京大学第一个“智能科学与技术”本科专业创建历程的回顾,希望与同行共享。

 

在专业建设过程中,许多人给予了热情帮助和支持。这里要特别感谢北大信息学院陈徐宗教授,感谢中国人工智能学会涂序彦和王万森教授。

 

最后引龚定庵一句名言:“但开风气不为师”。

 

9 总结与展望

 

本文介绍了厦门大学智能科学与技术系在学科发展、科学研究和人才培养方面的基本建设情况。我们希望这些初步的工作总结能对目前正积极筹办本专业的兄弟院校起到一定的借鉴作用。

 

“智能科学与技术”专业在我国的发展尚属初级阶段。尽管近几年得到了国内部分高校的重视,但其发展并不是很快,且进一步发展也存在一些障碍。比如,从专业配置来看,目前智能科学与技术并非一级学科,多数学校的“智能科学与技术”专业博士培养都是依附于其他相关专业。从长远来看,这并不利于整个学科的发展。希望通过各相关高校的广泛交流和积极配合,“智能科学与技术”专业在国内的发展能更上一层楼。

篇7

乌当区下坝中学座落在乌当区东北角的下坝乡下坝街上,学校占地面积6705 m2。现有在校生379名,教职工49名,专任教师43人,工勤人员3人,教辅人员3人。学校现有教学楼一栋,学生宿舍楼和综合楼各一幢。理化生教学实验仪器按国家一类标准配备,实验仪器设备值达到22.3万元。配有物理实验室、化学实验室、生物实验室各1间;物理仪器保管室各一间、化学仪器保管室、生物仪器保管室各1间。所有的实验室通水通电,并按照要求建立台帐管理,实验仪器入柜。图书室和阅览室各1间,生均图书52册,电脑87台,全部能上网。

二、学校开展科普活动遇到的困难

(一)教育评估体系对青少年科技创新教育评估的缺失

目前,农村中小学科技教育教师承担科技活动辅导任务未能被列入本人工作量,属“额外工作”;科技辅导教师在工作中取得的成绩和荣誉在晋级和评选先进时得不到教育行政部门的承认;其次,科技辅导教师在撰写科技活动学术论文,即使是参加全国或省级论文评审获奖,其论文在评定职称时,也得不到主管部门的承认等。上述问题的存在,难以调动科技辅导教师(特别是年轻教师)的工作积极性。

(二)农村中小学开展青少年科技教育工作经费不充分的矛盾,制约了科技创新活动的开展

多年来,学校的经费上只能维持正常的办公运转。搞科技创新的实践活动需要购买仪器、材料,培训教师等,每一项都需要一笔不菲的支出。这对于本来经费就捉襟见肘的农村学校来说是不堪重负的经济负担。因此,科技活动的开展也只能停留在“纸上谈兵”的层次,想在科技竞赛的活动获得科技创新大奖也只能是“望洋兴叹”了。

(三)农村教师的知识老化和自身动手能力不强

由于教师教学工作任务重、信息闭塞等多方面的原因,许多教师基本上无法了解学科发展的前沿信息,不能掌握必要的组织开展活动的理论和方法,科技辅导教师知识老化,学科单一的弱点,缺少综合驾驭各门学科知识的能力,迫切需要充实和更新。

三、我校近几年开展科普活动的探索

(一)领导高度重视,构筑青少年科技教育保障体系

学校领导要切实转变观念,像开展新课程改革和艺术教育一样重视青少年科技教育活动,在人力、财力上给予全力支持。为使科技教育活动落到实处,学校成立以校长为组长,科技辅导教师为成员的科技活动领导小组,形成一个领导总体抓、教导处具体抓、各科学任课老师重点抓的科技活动组织网络。学校还应该广泛宣传,使全体教师达成共识,形成全校师生共同参与科技活动的良好氛围。

(二)加大宣传力度,创设科普文化氛围

学校充分利用广播、墙报、黑板报等形式进行科普宣传,让学生感受科技的重要性,营造学科学、爱科学、讲科学、用科学的浓厚氛围,推动学习型学校建设,促进全体学生科学素质的提高,很受学生欢迎。为了让学生自始至终都带着一种高涨的,激动的情绪参加科普活动,在活动中感到自己的智慧和力量,体验到创造的欢乐,我们以专业为主线,挖掘各种蕴涵于专业教学、生活习惯养成教育中的宣传阵地,耳濡目染地渗透科普教育,使得科普教育看得见,摸得着,不仅具有雕塑的代表性而且更有实践功能。

(三)以少年宫建设为载体,推动学校科普活动健康有秩地发展

我校少年宫于筹建于2014年,共投入20万元,装备了可供培训和训练、活动功能室十几间。如何将我校科普活动的有秩开展与少年宫的资源相整会,从而解决科普活动所临的师资、课时和经费缺乏的困难?学校从以下几个方面,将两项活动的资源进行整合,确保科普活动在学校有秩的开展:

1.适当调整课程设置。

学校根据实际情况出发,每学期定期将七、八年级某个下午三节课程全部调整为:体育、美术、综合实践课程,此下午三节课都统称为活动兴趣课。学生根据自己个人的兴趣爱好选择参加不同的兴趣小组。经过近两年的探索,现我校兴趣小组共分为:舞蹈、合唱、美术、声乐、民族特长、信息技术、人工智能、科技、武术、篮球、国学、芦笙、唢呐。

其中,信息技术主要依据学校的电脑室,由信息技术教师负责开展,课程内容为电脑的一些常用软件的使用和后期电脑组装的实践;人工智能的教学内容为简单机器人的设计和实践,教师主要是聘请贵州师范大学人工智能社团的在校大学生担任;科技兴趣小组的教学内容为学校义务教育阶段各学科知识的外延,辅导老师为学校老师或贵州师范学院相关社团的在校学生担任。我校担任兴趣小组的辅导教师,其三节课时量计为教师的工作量,解决了科普活动辅导教师工作量的问题。

2.聘请贵州师范学院的社团担任我校兴趣小组的指导教师。

由于我校是一所农村寄宿制学校,师资力量不足和师资结构不配套等方面的影响,担任科普方面辅导的教师比较少,为解决此师资力量不足的问题,依靠贵州师范学院落户乌当区这一特殊优势,学样主动和师范学院团支部联系,聘请师范学院相关社团的在校生介入我校担任兴趣小组的辅导员。不仅解决了科普兴趣小组缺乏师资的困难,同时师范学生自己带来的相关教学硬件设备解决了我校无力购买硬件的困难。

3.将少年宫的活动经费用于科普活动的开展。

少年宫每年有一定的活动经费,而聘请贵州师范学院社团学生所需相关的经费学校又无力承担,如何解决此问题?将科普活动的开展纳入少年宫活动建设体系,弥补了科普活动开展经费不足的问题。

4.科普活动开展的延续性

篇8

【关键词】专家系统;专家系统外壳;认知教学;InterModeller

【中图分类号】G40-057 【文献标识码】A【论文编号】1009―8097 (2008) 08―0018―04

2003年教育部颁布的高中信息技术课程标准中把《人工智能初步》作为其中的选修模块,此模块主要包括了三部分内容:“知识及其表示”,“推理与专家系统”,“人工智能语言与问题求解”。考虑到高中生的认知风格认知水平,课标在“推理与专家系统”内容的教学要求是:学会使用一个简易的专家系统外壳并能用它开发简单的专家系统。

一 专家系统及其外壳

专家系统是一个智能计算机程序系统,其内部含有大量某个领域专家水平的知识与经验,模拟人类专家推理的过程来处理现实世界中需要专家做出解释的复杂问题。它一般由知识库、推理机、工作内存、解释器和人-机界面组成(如图1所示)。其中知识库包括规则库和数据库。规则库一般是以产生式表示的集合,里面存有大量的“ifthen”语句,这是专家系统的核心之一;数据库则是存放输入的事实、各种中间结果和最后结果的工作区,可以理解为陈述性知识。推理机是“控制协调规则库与数据库的运行”的程序,其任务是模拟领域专家的思维过程,控制并执行对问题的求解。它所包含的推理方式和控制策略实质上是属于产生式系统。[1] br>

图1 专家系统的典型结构

专家系统外壳是一类用于建造专家系统的特殊软件。通常是由一些已经成熟的专家系统抽去具体知识演化而来。和具体的专家系统相比,它保留了原系统的基本功能、骨架(知识库及推理机结构)、外壳,把领域专用的界面改成了通用界面。课标正是基于专家系统外壳操作简单、功能完善、通用性强的特点,提出了符合高中学生认知的教学目标,即要求学生利用专家系统外壳,通过构建相应的知识库来创建一个专家系统。

二 专家系统教学的认知教学理论基础

认知心理学关于人类认知过程尤其是高级思维过程的研究,为专家系统研究者编制体现人类思维的计算机程序提供了理论基础。同时,专家系统的研究在某种程度上又促进了认知心理学的研究。鉴于专家系统与认知心理学之间的关系以及认知心理学在当前教学中的作用,认知教学理论理所当然地成为专家系统教学的理论基础。[2]

认知教学理论指导下的教学过程主要包括:首先,教师通过一系列关于某种概念、定理、观念、定律等的描述,让学生知道“这是什么”;然后,通过一系列程序性知识的介绍,让学生懂得“是怎样的”即明确它的特点和特性;接着,教师再通过一系列启发性的介绍让学生知道这种概念、定理、观念、定律等是如何产生的,在何时、何地能够使用,并且让学生能够准确地在一些复杂的环境中对它们加以运用,使学生在大脑里对这些新输入的知识加以重新建构,从而培养起学生严密的逻辑思维能力和很强的认知能力。

结合“专家系统”内容的教学过程,可以发现认知教学理论中的知识(尤其是程序性知识)表征与习得、专家与新手的比较(认知学徒教学法)、问题解决与问题解决教学法等可以在专家系统教学中发挥重要的作用。

1 知识的表征与习得

根据知识的状态和表征方式,认知心理学将知识分为两类:陈述性知识和程序性知识。陈述性知识说明事物、情况是怎样的,是对事实、定义、规则、原理等的描述;程序性知识则是关于怎样完成某项活动的知识。推理、决策或者解决问题等活动都是典型的程序性知识。一般认为陈述性知识采用以语义网络为基础地表征,而程序性知识的表征形式为产生式系统,通常以“ifthen”形式表示条件这-关系,即先确认当前的情境和条件,然后产生相应的行动。所谓“产生式”,就是这样一些“前提-结论”的结合规则。它表明了所要进行的活动以及做出这种活动的条件,众多的产生式联系在一起,就构成了复杂的产生式系统。

高中《人工智能初步》课程的专家系统知识教学正是遵循了这一理论,教师首先是要求学生选择建立一个专家系统的主题内容,比如动物识别专家系统、疾病诊断专家系统等等。在选定主题后,学生的首要任务则是把收集来的各种知识表征为层级的命题网络结构的陈述性知识,便于理解与记忆。然后,按照一定的逻辑将陈述性知识转化为基于产生式的程序性知识,便于推理与编程。

实际上一个完整专家系统包含的知识库是很复杂的,包含了多条产生式。推理机所能推理的知识层级也不仅仅如图示的三层,而是可以推理到许多层。但在实际教学过程中,教师要引导学生选择那些贴进学生生活、易于理解的陈述性知识作为专家系统的内容,要始终把知识控制在学生的认知范围之内。设计的产生式系统开始时不应过于复杂,条目数应合理,在教学过程中可以先从一两条产生式开始,逐步递加,最终形成一个较完整的专家系统。

2 认知学徒教学法

高中阶段的专家系统学习主要是利用简易的专家系统外壳开发简单的专家系统来进行。学习者根据自身需要设计相应的知识库来开发不同的专家系统。学生利用专家系统外壳工具,通过了解由某一领域专家建构的专家系统,并在教师的指导下亲手开发简单的专家系统,来体验专家系统的开发过程,加深学习体验。在这一学习过程中,学生和专家系统构成了一种专家与新手的关系,刚开始学专家系统的学生(相对新手)、课程教师(相对于学生为专家)以及专家建构的专家系统(相对于教师为专家),如图2所示。学生开发专家系统的过程也即相对的新手向相对的专家转化过程中,对陈述性知识和程序性知识的依赖程度有显著的变化,不断的将内容的陈述性表征转变为体现产生式规则的程序性知识。

图2 专家系统教学过程中各角色之间的关系

基于“专家-新手”研究提出的“认知学徒教学法”可以在此提供很好的教学思路。它是一种通过允许学生获取、开发和利用真实领域中的活动工具支持学生在某一领域中学习的方法,这种方法在人工智能中通常称为“基于解释的学习”(explanation-based learning)。“学徒制”概念强调经验活动在学习中的重要性,并突出学习内在固有的依存于背景的、情境的和文化适应的本质。利用这一教学方法,可以使学生依据表面特征,以零散的、孤立的储存知识的方式向专家在任务情景和问题解决时使用“组块”的方式转变。

3 问题解决教学法

美国加州大学心理系主任梅耶教授提出的关于解决问题教学的三个标准:第一,当你选择好要求学生解决的问题后,就要把解决这个问题所涉及的内容表征和计划步骤分割为学生可以接受的较小的操作单元,教会他们全面地接受信息,并对信息进行编码;第二,解决问题时要集中注意于过程,而不是结果,应当让学生找出自己解决问题的过程与充满解决问题过程间的差距,分析矛盾之所在及产生矛盾冲突的原因;第三,针对特定问题,教给学生特定的问题解决的技巧,具体问题具体分析。在专家系统中采用问题解决教学,实质上是将学习内容转化为具体案例,在具体问题的解决过程中,培养学生的思维多样性和创造能力。

构建专家系统的最终目的是实现某一问题的最终解决,它具有强烈的目的指向性。同时,构建专家系统的过程本身又是一个问题解决过程,如图3所示例。学生将陈述性知识转换为程序性知识之后,在头脑中已初步形成了问题解决的方法与逻辑,接着就要将程序性知识转化为计算机可以识别的信息即编程过程。专家系统所要解决的问题大多是劣构或非结构化问题,涉及到的问题空间很大,问题状态很多。学生构建专家系统的过程,是一个搜索解决问题策略的过程,通过问题解决策略中的正向搜索策略和逆向搜索策略的使用,最终实现问题的解决。专家系统教学的重点就是陈述性知识向程序性知识转换,相对应的是分析问题和确定解决方案这一过程上,而利用专家系统外壳从而开发出一个简单的专家系统这一结果本身则相对是简单。

图3 专家系统教学的过程

三 专家系统的教学应用

在2003年“人工智能初步”纳入新课以后,我国先后出版了5套《人工智能初步》教材并通过了教育部组织的专家评审,供高中阶段的教学使用,这些教材中都介绍了专家系统外壳工具,如InterModeller[3],ESES,E2glite。这里以InterModeller一个具体的案例来阐述以认知教学理论为基础的专家系统知识教学的具体过程。

1 选择内容,确定开发工具

不同的专家系统用于处理不同领域的知识。在构建一个专家系统前,需要进行任务分析,根据不同的任务选择合适的专家系统外壳。根据现有专家系统外壳的功能及可获取性等因素考虑,在此我们以专家系统外壳InterModeller为例,给出用专家系统外壳来建立交通工具分类专家系统。

2 分析问题,转化知识

学生从日常生活经验可知交通工具的一些基本特征,如从车轮数目上看可为4轮车和2轮车,按所使用的燃料动力源不同又可分为汽油车和柴油车等。通过对众多知识的收集与整理,画出图4的知识语义图,为的是便于接下来知识库中规则的编写。

图4 交通工具分类语义网络

3 求解问题,构造知识库

根据已画出知识的语义图,在InterModeller专家系统外壳知识库中编写图5所示的产生式规则。

图5 交通工具分类的规则实例

上面构建的只是专家系统的原型,如果要构造一个完整的专家系统,就要不断的扩充知识,增加规则,将其完善。InterModeller知识库的规则编写方法并不局限于产生式规则一种,学生还可以通过画决策树来编写知识库。学生也可以在InterModeller的决策树模型中画出决策树结构图,即可实现知识库的构造。

4 问题解决,运行调试系统

学生根据所完成知识库的构造后,即可运行InterModeller专家系统。根据上述知识库所建立的专家系统如图6所示。

最后,学生和老师、其他同学以及领域专家讨论交流,对自己构建的专家系统不断的进行调试和修改,直到建立一个较为完善的专家系统为止。

图6 交通工具分类专家系统运行界面。

四 结语

在高中信息技术的《人工智能初步》选修模块教学中,开展“利用外壳开发专家系统”的教学,对于学生分析问题和解决问题能力的培养具有积极的意义。一方面,为了完成该任务, 学生需要编制规划、制定知识获取策略,并具体付诸实施, 这是一个不断深化的过程。学生还得明确与系统有关的所有变量或相关的因素, 并且将这些变量和因素转化为问题求解过程, 得出相应的结论。在进行一系列问题求解分析之后, 运用产生式规则来表示知识。 该过程中有助于提高他们的分析、思维与判断能力。另一方面,在专家系统运行时,学生可以向专家系统提出诸如“为什么(Why)”、“如何(How)”、“如果……会怎么样”等问题, 系统接受用户的问题指令后,可以根据推理的逻辑进程, 即时将答案呈现给用户,这个过程如同教师与学生在进行面对面的教学,学生还可以充分体验人类专家的求解思路和推理风格。完善的专家系统还可以让其他学生去运用和体验, 具有一定的实用价值。正如美国著名的学习论专家Jonassen所指出的:那些自行设计专家系统的学生将会在这种活动中受益匪浅, 因为这是一个对所学知识进行深度加工的过程。[4]

参考文献

[1] 张剑平.关于人工智能教育的思考[J].电化教育研究,2003,(1):24-28.

[2] 杨银辉.《专家系统及其设计》教学设计[J].中小学信息技术教育,2004,(1):27-34.

[3] 周跃良,张燕.人工智能教育的理论基础及教学组织[J].中小学信息技术教育,2003,(10):10-13.

篇9

关键词:智能控制;教学方法;教学改革

作者简介:李俊红(1980-),女,山东淄博人,南通大学电气工程学院,讲师;姜平(1962-),男,江苏南通人,南通大学电气工程学院,教授。(江苏 南通 226019)

基金项目:本文系南通大学教学改革研究项目(项目编号:2012B031)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)34-0088-02

“智能控制”课程是自动化学科各专业的一门专业课程,[1-3]是“自动控制原理”、“现代控制理论”等课程的后续课程。智能控制是控制理论发展的高级阶段,是自动控制、人工智能、运筹学等多种学科的交叉融合。[4,5]智能控制课程主要阐述控制理论的最新发展,主要内容一般为模糊控制、神经网络控制、专家控制、学习控制等。该课程中有些内容抽象,理论性较强,公式较多,学生容易觉得枯燥而不愿深入学习。如何提高学生对这门课程的学习兴趣,在有限的课时内让学生了解新的控制理论和方法,提高他们的创新能力,是这门课程改革的重要内容。在教学过程中,通过改进教学方法、考核方式等做法,促进了学生学习的积极性,收到了良好的效果。

一、教学方法的改革

深化教学方法的改革是教学改革的重点,也是笔者一直探索和深入思考的问题,因此在教学过程中采取了一些措施。

1.在教学过程中注意将科研引入教学

智能控制是很宽泛的一个名称,它是控制理论发展的高级阶段。而控制理论是在不断发展的,现有的教科书上虽然介绍了基本的智能控制算法,比如模糊控制、神经网络控制、专家控制等,但最新发展的研究方向和热点往往涉及不到。因此,在教学过程中将参加国际会议时了解到的控制理论的最新方向介绍给学生,让学生了解智能控制的前沿。如果学校邀请相关的专家来做相关讲座,通知学生尽量前去聆听。通过这样的训练,提高学生对控制学科的兴趣,拓宽学生各方面的视野,有助于他们创新思维模式的培养。比如邀请智能控制专家胡教授做智能机器人的讲座,学生倾听了之后反响很大,通过这样的方式大大拓宽了他们的知识面,让他们了解到智能控制确确实实是用于实际系统的,而不是停留在纯理论阶段。

2.在教学过程中倡导启发式、问题式教学

原有的教学过程一般采用灌输式,一堂课40分钟基本是老师在讲,学生很少参与,整个课堂死气沉沉,没有生机。教师应在讲课过程中设置一些小问题,引导学生积极参与进来。比如在讲模糊控制器的结构时,首先画出一维和二维模糊控制器的结构框图,介绍模糊控制器的输入和输出,然后让学生回顾PID控制算法的形式,回答一维和二维模糊控制器与PID控制器之间的联系和区别,加深对模糊控制算法的理解。在讲水箱液位系统模糊控制规则时,画出系统的输出响应曲线,让学生回答在不同的阶段控制规则应该怎样选取。

通过启发式教学、问题式教学,改变学生的被动地位,充分调动他们的积极性、主动性和创造性,让学生以积极的态度参与到课堂学习中去。

二、充分利用MATLAB软件

MATLAB是美国The MathWorks公司开发的一种语言,[6]在信号处理和通信、图像和视频处理、控制系统、测试和测量、计算金融学及计算生物学等众多应用领域具有广泛的应用。它将数值分析、信号处理、矩阵计算、图形功能和系统仿真融合为一体,用户可以在易学易用的环境中求解问题,避免了传统的复杂专业编程。MATLAB还有图形化开发环境SIMULIKINK,应用于系统模拟、动态/嵌入式系统开发等方面。

智能控制是在人工智能和自动控制等多门学科基础上发展起来的交叉学科,在课程内容上有自己的特点。有些算法,比如模糊控制、神经网络控制等很多章节,涉及到模糊数学、最优化算法等许多理论知识,相对其他课程来说理论性比较强。因此如何提高学生的学习兴趣让这门课生动起来,是值得探讨的问题。MATLAB给这门课程的学习提供了一个很好的载体和工具,智能控制中的典型控制算法,比如模糊控制(Fuzzy Control)、神经网络控制(Neural Network Control)等在MATLAB中都具有现成的工具箱。模糊逻辑工具箱(Fuzzy Logic Toolbox)提供了基于鼠标操作的图形用户界面,用户可以容易地完成模糊逻辑的设计过程。其包含5个图形编辑器,而且可以与Simulink无缝协同工作。

在讲课过程中,对于某些抽象内容可以随时使用MATLAB软件给学生做展示。比如在讲模糊隶属度函数内容时,通过以下命令可以建立一个高斯型隶属度函数:

>> x=0:0.1:10; y=gaussmf(x,[2 5]);

>>plot(x,y);

>>xlabel(‘gaussmf,p=[2 5]’)

运行一下之后,就可以得到隶属度函数图形,如图1所示:

通过这样的做法,这样让学生很直观的看到高斯型隶属度函数的形状,加深了印象。

除了在课堂上随时运用之外,在讲完模糊控制的基本思想之后,让学生去图书馆借阅相关的MATLAB书籍,设计一个实际系统的模糊控制器,掌握模糊控制算法的MATLAB设计方法。通过这样的做法,有助于学生对智能控制课程的理解和掌握,而且对于学生掌握和应用MATLAB也起到很好的效果。学完这门课程之后,他们在后续的课程设计和毕业设计中也能够得心应手地应用这个工具。

三、改进考核方式

很多课程往往采用的传统的考核方式,即学完这门课程后,根据讲课内容将重点要考查学生的内容以试卷的形式让学生在规定两个小时内完成,最终成绩以考试成绩和平时上课表现决定。这样的考核方式比较单一,而且试卷上往往反映的是学生对于理论知识掌握的情况,很难综合考查学生的知识运用能力和创新能力,而学校最终培养的应该是创新型人才,而不是高分低能、按部就班的学生。因此,笔者对这样的考核方式进行了改革,总结如下:

第一种考核方式是课程设计方式,即充分利用实验室的浙江中控DCS和齐鑫公司的锅炉水箱液位实验系统,实验对象的工艺流程图如图2所示。工艺流程是:水泵将水从储水箱中抽到高位水箱,经电动调节阀流入水箱,最后再流回储水箱,构成一个动态循环系统。被控对象是水箱,被控量是水箱液位,液位传感器采用差压变送器。由进水电动调节阀作为执行机构调节液位高度,将出水调节阀设置为手操器方式。

设计的要求是让学生在了解被控对象工艺流程的基础上,设计一个二维的模糊控制器,将模糊控制方法用于水箱液位系统的实际控制,并与传统的PID控制方法进行比较。学生在设计过程中要考虑很多因素,比如确定论域、量化因子的选取规则、隶属度函数的确定、模糊控制规则的选定、精确化计算等许多问题。通过这样的训练,可以让学生深刻理解课堂上所学的知识,并与实际结合起来,将抽象的理论用于实际对象的控制,同时还增强了学生的动手能力。

第二种考核方式是小论文方式,在学完模糊控制(Fuzzy Control)、神经网络控制(Neural Network Control)等几种智能控制方法之后,让学生搜集相关资料,总结智能控制方面的相关进展,以小论文的形式上交。通过这样的考核方式,可以锻炼学生查找文献和资料的能力。

四、小结

本课程组老师在“智能控制”课程教学过程中,注意改革传统的教学方法和教学理念,将科研引入教学,培养学生对智能控制最新理论的兴趣,培养他们的科研意识;讲课中改变灌输式为启发式、问题式教学,提高课堂效率;通过改进考核方式,提高学生的创新能力。以上这些做法在教学过程中都取得了较好的成效。

参考文献:

[1]吴建设,于昕,焦李成.“智能控制”教学方法探索与思考[J].计算机教育,2010,(19):93-95.

[2]李世华.智能控制概论课程的双语教学改革探讨[J].电气电子教学学报,2009,31(4):8-9.

[3]徐凯,王爱娟.电气类专业智能控制理论教学改革的探讨[J].实验室研究与探索,2011,30(3):130-133,144.

[4]袁宇浩,张广明.研究生“智能控制”课程教学探讨[J].中国电力教育,2010,(7):52-53.

篇10

关键词:专家系统;课程建设;教学改革;实验教学;CLIPS

“专家系统”课程是本科专业“智能科学与技术”的特色课程之一,该专业是由北京大学在2004年率先自主建立的[1]。此后,国内很多大学也都陆续基于各自的特色建设开设了该专业,如北京邮电大学、南开大学、首都师范大学、西安邮电大学、北京科技大学、厦门大学、中南大学等。基于一个新兴本科专业设立的专业基础特色课程,应该如何建设,实施教学与改革,突出专业特色?各类学校都在摸索中。中南大学的“专家系统”课程是国家级“智能科学基础系列课程教学团队”主干课程之一,它由国家级教学名师领衔,以双语建设为教学基本手段,以精品意识为指导[2],培养学生自主创新意识,发掘学生兴趣潜能,非常具有专业特色。

1课程建设情况

专家系统使用人类专家推理的计算机模型处理现实世界中需要专家做出解释的复杂问题,并得出与专家相同的结论[3]。其最大特点是不仅可以帮助人们处理信息,还能说明处理的方式和理由[4]。我们结合专家系统课程特色与学习认知过程特点,采取认知教学作为专家系统教学的理论基础[5-6],根据智能科学与技术系列课程教研经验,融合双语教学方式,初步提出课程定位和建设目标,给出了教学基本要求。

1.1课程定位与建设目标

在学习本课程之前,学生最好已经选修过离散数学、人工智能和面向对象的程序设计课程,本课程32个学时,2个学分,其中实验课6学时。此外,“专家系统”还可作为自动化、计算机科学与技术等相关专业有兴趣的学生的选修课程。可为学生提供一种新的手段和方法求解传统方法难解问题,也为学生们了解智能科学与技术领域知识提供良好的窗口。

专家系统成为智能科学与技术本科专业的专业基础课程,目的在于培养学生理解和掌握专家系统技术的基本观念、基本理论和智能科学方法;并灵活设计和构建不同领域的专家系统,解决实际问题,为学习后续课程奠定方法基础。通过教学过程,培养学生善于分析继承已有的科学进步成果、激励学生善于发现问题、分析问题和解决问题的自主科学创新精神。

1.2课程教材设计

本校专家系统课程选用了蔡自兴编写的《高级专家系统:原理、设计及应用》[3]一书,该教材包括专家系统的基本理论、技术方法和实际应用的诸多内容,知识点介绍全面详尽,同时列举了诸多实例,便于课堂分析与课后理解。

根据双语教学的要求,外文参考教材[7]选用了Expert Systems Principles and Programming (Third Edition)一书,该书对CLIPS语言分析透彻,有大量的课后习题与资料,适合学生作为主要参考书目进行课后学习。实验教材选用了电子工业出版社出版的《决策支持与专家系统实验教程》一书,主要利用了同时,根据双语教学的要求,外文参考教材选用了China Machine Press出版的Expert Systems Principles and Programming (Third Edition)一书,该书对CLIPS语言分析透彻,有大量的课后习题与资料,有利于学生作为主要参考书目进行课后学习。我校实验教材选用了电子工业出版社出版的《决策支持与专家系统实验教程》一书。主要利用了该书后半部分内容。目前,国内基于CLIPS的“专家系统”实验教学教材在国内几乎没有容,专家系统课程实验及其教材建设还需进一步改革与探索。

1.3教学要求与知识框架

通过学习,使学生了解和掌握专家系统的相关原理和方法,。要求学生掌握知识表示方法、搜索推理技术的相关内容,熟悉和了解常见的专家系统解释机制、开发工具和评估方法,学会基于规则专家系统、基于框架的专家系统、基于模型的专家系统和基于Web专家系统的结构建立和应用,掌握专家系统的常用编程语言――CLIPS,了解专家系统的发展趋势和研究课题。经过对专家系统课程知识内容进行分类,可分为以下6个模块,如表1所示。。

经过对专家系统课程知识内容进行分类,可分为以下6个模块,如表1所示。

模块一专家系统的定义、发展历史、研究内容、类型、结构和特点以及构建步骤;。

模块二熟悉专家系统时可能采用的人工智能的知识表示方法和搜索推理技术,结合传统人工智能方法和计算智能的一些方法;。

模块三了解专家系统的解释机制、开发工具和评估方法;。

模块四熟悉基于规则专家系统、基于框架的专家系统、基于模型的专家系统和基于Web专家系统的结构、推理技术、设计方法及应用示例;。

模块五掌握人工智能和专家系统的编程语言――CLIPS,了解其他LISP,PROLOG和关系数据操作语言等;。

模块六展望专家系统的发展趋势和研究课题,并了解新型专家系统的特征与示例。

从教学要求角度出发,模块一、模块三和模块六的教学要求相对一般,但却是学生涉及专家系统技术的必备知识模块。相对而言,模块五是基本教学条件要求中最高的一个模块,因为模块二与模块四的深刻理解与系统设计需通过模块五而实现的。

从教学内容的重难点角度出发,模块二是重点部分之一,但因有人工智能课程的基础,相对而言,教学实施过程中较为顺畅。模块四与模块五是专家系统课程重点阐述部分,其中模块五也是难点部分,在实验教学环节中,由于大部分学生初次接触推理性的编程语言,所以需要一定的入门时间和练习次数。

2专家系统课程教学改革实施

2.1基于多媒体的专家系统课程教学

教学应以学习者为中心,以先进教育技术为手段,相辅相成,促进教学效果。人类的感官功能中视觉与听觉器官起到了94%作用[78],而视听觉的协同作业能大大提高学习效率,而。多媒体教学就是一种集声、文、图、色于一体的教学手段之一,其实施。多媒体教学的关键实施内容就是教学设计,而教学设计的难点就是在不增加学生信息加工系统中工作记忆负荷的前提下,用促进生成的方式呈现学习材料,包括教材、课件、讲义、课堂讲解、课后习题等。

结合专家系统课程教学情况,教学设计分为以下3个方面进行详尽阐述:。

1) 把握好课堂教学知识量。

专家系统课程相对智能科学与技术专业第六期的学生而言是非常新颖的一门非常新颖的课程,学生们相对的学习热情比较高,但这里还需仍然需要对学生的先前知识结构和能力有个简单的估计。教师需考虑学生的工作记忆容量,并对学生的长期记忆有个估计,把握学习材料内在负荷。学习材料并非越多越好,关键在于精华,给学生留下深刻印象。“专家系统”课堂教授部分以原理性与推理性知识为主,应增加实践技术实例,这样让学生紧密联系实际应用进行学习,。多媒体视频就是一个很好的表现手段。将制作好的实例视频,向学生们展示,不但让课程氛围活跃,还激发学生对实践教学的兴趣;不但没有增加课堂的知识负荷,还可以留给学生课后对比学习。

2) 多元化课件制作呈现形式。

专家系统是一门推理性知识要求很强的课程,同时也需要掌握一门有利的开发工具方能使学生做到灵活应用。经过教学实践与课后调查发现,学生们对知识表述与相关画面共同呈现的形式比单一媒体呈现形式学习效果好,知识和画面也必须是关联的,呈现位置和各部分的比例也需考虑充分。为此,课件制作是一个“改无止境”的工程,因为每一届的学生具有自己的特点,且专家系统课程知识点的不断更新,每一年都要对课件进行大量的补充与改进。

3) 基于认知教学的课堂讲解过程。

认知教学模式中,是以学生为主体,教学教师起主导作用。课堂讲解是面对面教学活动中的重要环节,,它是多媒体中联系言语与画面的桥梁,是减少学生工作记忆负荷的有效手段。

专家系统课程知识可分为表示性知识与推理技术性知识,根据相关认知心理学理论,可将知识分为两类:陈述性知识和程序性知识[5]。其中在教育心理学中“陈述性知识”是指个人具有有意识的提取线索,能够直接加以回忆和陈述。其实就是关于“是什么”的知识,包括对事实,规则,事件等信息的表达。教育心理学中“程序性知识”是指个人没有有意识的提取线索,其存在只能借助某种作业形式简介推测的知识称为程序性知识,而现代认知心理学为程序性知识以产生式及产生式系统来表征的。所以可将陈述性知识采用“专家系统”中的语义网络形式为基础地表征,而程序性知识的表征形式可用“专家系统”中的产生式系统,以“ifthen”形式表示条件这一关系。众多形式的产生式规则相互联系就组成了复杂的产生式系统。基于认知理论的“专家系统”知识教学实施过程中,首先应选定系统设计内容,掌握开发系统时所需的知识与工具,;其次分析问题,并根据系统的具体特征转化知识。而后;接着对问题模型进行求解,建立和构造知识库,;最后,利用实现工具编写代码,系统联调。

2.2专家系统课程双语教学的实施

专家系统课程是信息学科新兴发展的一门课程,有许多关键性进展相关研究进展和成果的资料均源于英文文献,因而提高学生双语水平是一种大势所需,。同时,双语教学提高了对教师整体素质的要求,在双语教学过程中,有意识的增强教学互动,以问题启发式教学与课堂辩论形式教学,学生通过查阅主题文献进行针对性的演讲或讨论,教师对学生的表现加以评述,并进行补充。这种形式可扩大教师的知识面,使得任课老师了解前沿的研究成果。也可培养学生主动学习的积极性和创新能力,使得课程具有鲜活的生命力。双语教学对教师,特别是教师的其外语水平及其口语表达能力,,。促进了师资整体水平的提高。专家系统的双语教材已在1.2中介绍,但实验教材的设计与编写工作现仍处于空缺,这也是双语教学的需完善的内容工作之一。由于双语教学增加了授课难道难度,进而影响了授课的进度,应充分发挥多媒体先进教学手段对专业术语和难以理解的内容,进行注解,帮助于学生理解。在贯彻双语教学的过程中,除了指定适当英文参考短文或参考书,开发双语课件外,还应使学生接触国内外文献资料,开阔眼界,拓宽知识面,强化双语的意识,激发学生主观能动性,使学生找到课程学习的归属感。

2.3改革“专家系统”课程实时交互活动

专家系统课程是一门理论与实践关系密切的课程之一,课堂留下的作业大多需要计算机编程或计算机辅助教学方能较好的地完成。根据此特点,改革传统的作业形式与批审方法可节约反馈时间,同时可实现“低碳无纸化”办公。利用网络进行作业上交,教师批阅后通过网络及时返回给学生,不但能提高老师的办公效率,也使学生得到快速与准确的反馈。

针对多校区的现状,我们利用网络教学资源,采用了多种交互式策略,通过Email和群讨论组等方式进行在线交流,也可传递参考资料,交流课外成果,实现只要老师在实验室,学生在任何有网络终端PC机处,就能进行了实时交流或批改作业。避免了学生为了课后的困惑问题积压至下一堂课的矛盾,同时也节约了学生往返路程上耗费的时间。

为了进一步体现教学效果,我们下一步拟进行考试方式的变革,应综合考虑课堂出勤情况、平时正式作业成绩、课堂讨论情况和期末课程考试进行综合评分。还应考虑以双语形式进行笔试,当面交卷后进行双语发问。若有课程论文或创新作品表现突出者,可免参加最后的课程考试。使考试不再是学生的负担,而成为衡量与培养创新能力。和口试。

3基于CLIPS的专家系统实验教学

3.1专家系统与CLIPS语言

CLIPS(C Language Integrated Production system)是由美国航空航天局约翰逊空间中心(NASA’’s Johnson Space Center)开发的一种专家系统工具,由C语言编写而成。早期的专家系统工具大都用LISP、Prolog等编程语言开发,共同问题是运行速度慢,可移植性差,解决复杂问题的能力差。CLIPS是基于Rete算法的前向推理语言,其优点包括:①逻辑推理方面的强大功能强。②、可移植性好。③、可扩展性好。④、有利于和其他语言联合使用等。

3.1专家系统与CLIPS语言

专家系统与传统的计算机程序系统有着完全不同的体系结构,通常它由知识库、推理机、综合数据库、知识获取机制、解释机制和人机接口等几个基本的、独立的部分所组成,其中尤以知识库与推理机相互分离而别具特色。用clips语言能够更好地熟悉专家系统的整个组成。CLIPS可为基于规则、面向对象以及过程的编程提供支持(rule-based, object-oriented, and procedural programming)。

以基于规则的专家系统利用CLIPS工具编程作为实例阐述。在CLIPS中找到专家系统基础的组成部分――Fact List、Knowledge Base、Inference Engine。Fact List中存放用于推理的事实,而Knowledge Base包含所有的规则,Inference Engine控制所有的进程。图1所示为专家系统框架示意图。专家系统中最核心的就是知识库,知识库中包含了大量某个领域专家的知识。,为了使计算机能运用专家的领域知识,必须要采用一定的方式表示知识 。目前常用的知识表示方式有产生式规则、语义网络、框架、状态空间、逻辑模式、脚本、过程、面向对象等。基于规则的产生式系统是目前实现知识运用最基本的方法。

3.2专家系统实验教学内容

通过CLIPS软件环境提供了的验证性、设计性和开发性实验,帮助学生更好地熟悉和掌握专家系统的基本原理和方法;,通过实验提高学生总结实验结果的能力,使之对专家系统的相关理论有更深刻的认识。实验内容如表2所示:。

其中,实验1为实验2的基础,这两个实验应与讲授课程穿插,使得学生利用课堂学到的理论联系实际实验操作,通过这两个实验的学习能够掌握专家系统的开发过程、掌握用产生式规则绘制推理树的方法、掌握、编写CLIPS应用程序的方法以及程序运行环境的应用等。实验3是一个有难度的实验,需要大量的课余准备时间,所以在完成实验3的时候,必须预留3周的时间,提前布置给学生,让学生做好实验前的准备,这样方能取得较好的实验教学效果。这些被挑选出来的CLIPS专家系统的代码应是经典的学习内容,通过该实验培养学生独立分析与开发完整的专家系统的能力。

3.3实验教学实例分析

1) 实验目的:学习和理解CLIPS编程语言,通过分析用CLIPS编写的“野人过河”的程序,深入理解专家系统的编程技巧,加深对专家系统的认识和理解。

2) 实验说明:野人过河问题属于智能学科中的一个经典问题,问题描述如下:,有三3个牧师传教士和三3个野人过河,只有一条能装下两个人的船,在河的任何一方或者船上,如果野人的人数大于牧师的人数,那么牧师就会有危险。

假设问题的初始状态和目标状态,假设和分为1岸和2岸: 。

初始状态:1岸,3野人,3牧师;2岸,0野人,0牧师;船停在1岸,船上有0个人;。

目标状态:1岸,0野人,0牧师;2岸,3野人,3牧师;船停在2岸,船上有0个人;。

整个问题就抽象成了如何从初始状态经中间的一系列状态达到目标状态。问题状态的改变是通过划船渡河来引发的,所以合理的渡河操作就成了通常所说的(算符)就是问题求解的关键。,根据题目要求,可以得出以下5个算符:渡1野人、渡1牧师、渡1野人1牧师、渡2野人、渡2牧师,。根据渡船方向的不同,也可以理解为10个往还算符。定义算符知道以后,剩下的核心问题就是搜索方法了,。本程序采用深度优先搜索,通过不断扩展后继结点节点,逐步找出下一步可以进行的渡河操作,;如果没有找到则返回其父节点,看看是否有其它其他兄弟节点可以扩展。

搜索中采用的一些规则如下:

(1.) 渡船优先规则:1岸一次运走的人越多越好(即1岸运多人优先),同时野人优先运走;2岸一次运走的人越少越好(即2岸运少人优先),同时传教士优先运走;。

(2.) 不能重复上次渡船操作,避免进入死循环。;

(3.)任何时候 河两边两岸的野人和牧师数在任何时候均分别大于等于0且小于等于3;

(4.) 由于只是找出最优解,所以当找到某一算符(当前最优先的)满足操作条件后,不再搜索其兄弟节点,而是直接载入链表。

(5.) 若扩展某节点a的时候,没有找到合适子节点,则从链表中返回节点a的父节点b,从上次已经选择了的算符之后的算符中找最优先的算符继续扩展b。

通过实验教学过程中的专家系统开发实例分析,总结了出应用于在许多专家系统项目中的线性生命周期模型,如图32所示。这个模型包括从计划到系统评估的许多阶段,对系统开发的描述一直到功能评估这种程度上。之后,生命周期不断重复:从计划到系统评估,直到系统交付正常使用。

4结语

专家系统课程的发展开发过程是教学研究和教学改革实践相结合的过程,需要不断加强学习、总结经验。本文从总结了专家系统课程定位与、建设目标、教材的选用设计和课程知识框架等方面的总结了“专家系统”课程建设情况。在,并就教学改革过程中注重多媒体教学的效果、双语的实施和课程互动活动的改革等问题进行比较深入的介绍与探讨。通过CLIPS语言与专家系统实验的结合,阐述了实验教学的目的、CLIPS实验特色及和实验方法,体现了基于CLIPS实验教学的优势与特色。在未来的教育领域,专家系统技术将成为信息时代教育发展的新生力军,专家系统也将成为新世纪人类智能管理与决策的得力助手。

致谢注 :本文受国家级智能科学基础系列课程教学团队项目(2008)支持,感谢本文得到中南大学信息科学与工程学院智能所的大力支持,特别感谢蔡自兴教授的鼓励与帮助。

参考文献:

[1] 李蕾,王婵,王小捷,等..“机器智能”课程建设初探[J]. 计算机教育,2009(1):86-92.

[2] 陈爱斌.“人工智能”课程教学的实践与探索[J]. 株洲工学院学报,2006,20(6):137-139.

[3] 蔡自兴,Durkin,龚涛. 高级专家系统:原理设计及应用[M]. 北京:科学出版社,2005:1-2.

[4] 蔡自兴. 智能控制导论[M]. 北京:中国水利水电出版社,2007,:28-29.

[5] 杜海琼,张剑平..“专家系统”教学的认知教学理论基础及其教学实施[J]. 现代教育技术,2008,18(8):18-21.

[6] 杜海琼,张剑平. 认知学徒制在“推理与专家系统”教学中的应用[J]. 现代教育技术,2009,19(4):120-123.

[7] Joseph Giarratano, Gary Riley. Expert Systems Principles and Programming[M]. 3th ed. Boston:PWS Publishing Company,1998.

[78]肖桂清,李渺. 正确运用多媒体,促进认知学习的最优化[J]. 思茅师范高等专科学校学报,2002,18(4):55-57.

[8] 杜晖. 决策支持与专家系统[M]. 北京:电子工业出版社,2007:22-23.

Exploration in Course Construction and Teaching Reform of Expert System

YU Ling-li, WEI Shi-yong

(Institute of Information Science & and Engineering, Central South University, Changsha 410083, China)