仿真技术论文范文

时间:2023-04-06 00:01:52

导语:如何才能写好一篇仿真技术论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

仿真技术论文

篇1

(一)multisim13简介

multisim13是一款专用于电子线路仿真的软件,是计算机上虚拟出的一个电子工作平台。它拥有丰富的元件库和仪器库,采用直观的图形界面创建电路,按下仿真按钮就可仿真电路的运行状态。软件中的虚拟仪器控制面板外形、操作方式都与实物相似并可实时显示测量结果,元件库中的三维元件和实物相似,让使用者有身临其境的真实感受。

(二)multisim13引入教学的必要性

笔者认为,基于动手的学习是帮助学生巩固理论概念并让他们为开发未来工业应用或开展先进的科研项目做好准备的最佳方法。任何成功的职业道路或者人生决定往往是受到启发的,参与和准备就是将这种启发变成真正可实现的东西。启发孩子以职业运动员为梦想非常简单,只要打开电视或去看一场现场的专业体育赛事。这个道理同样适用于激励学生成为一个电子工程师。我们对未来科学家和工程师的教育方式往往只局限于与实践脱节的纯理论和公式,即使燃烧最旺盛的火苗也会被这种教育方式所熄灭。而让学生参与实际的开发,又受到现实条件的限制,multisim13恰恰提供了这样一个折中的方案:以课堂学习技能为主,一个与工业应用相衔接的平台为辅,两者结合可帮助学生为应对未来的重大挑战做好准备。multisim13是将工业标准的技术集成到一个专门针对教学而设计的平台中,学生可以结合基于工业技术的教学硬件平台和教学实验室虚拟仪器套件来学习基本的工程和系统设计概念。将multisim13引进课堂,可以将抽象的、空洞的理论教学变为动态的、可视的直观演示,这不但可以有效地增强学生对电路工作状态的感性认识,提高课堂教学效率,还可以激发学生的学习兴趣,克服学生的畏难情绪。学生自己可以在电子平台上按照自己的想法随意设计电路,仿真印证自己的设想,培养了学生设计电路的创新意识;在multisim13电子平台下,可以先观察实验现象,然后带着疑问、好奇探究现象背后的理论与规律。这样顺应认知规律,提高了学生学习兴趣和对知识的理解程度。

二、multisim13在教学中应用实例

(一)传统二极管结构和单向导电性讲授过程

利用PPT图片展示一个二极管结构示意图,语言表述“将PN结两端各引出一个电极,并加以封装就制成了一个二极管”;给出二极管的电路符号。二极管重要特性就是单向导电性,流过电流的方向就是符号箭头所指的方向,二极管的导通电压锗管0.3,硅管0.7V。

(二)采用

multisim13进行课堂教学过程在multisim13元件库中调出3D虚拟器件,如图2所示。“将PN结两端各引出一个电极,并加以封装就制成了二极管”。对于图中U4管,灰环的一侧是阴极,另外一侧是阳极;对于直插的发光二极管U5,长引脚的是正极,短的是阴极;也可以仔细观察管子内部的电极,较小的是阳极,大的类似于碗状的是阴极。在软件电子平台上调出电阻、二极管、开关和万用表搭成图3所示电路。故意将二极管接反向电压,双击两块万用表,弹出图示右侧的显示表盘,按下仿真按钮。这时提醒学生注意:电流表示数为0,说明电路没有通,“为什么”。吸引学生注意力的同时教师将二极管转向,阳极接电源正极,阴极接电源负极,按仿真按钮,电流表示数为2.429mA,电压表示数为581.428mV,说明二极管导通。这时点题:(1)这就是二极管单向导电性:只有阳极接电源正极(高电位)阴极接电源负极(低电位)才能够导通。(2)导通电压在0.7V左右。进一步提问,电阻起什么作用?不放电阻可以么?带着问题修改电路:二极管换成LED发光管,如图4所示,电阻选择4.7K,按下仿真按钮,LED灯根本没亮!但是电流值为2.139mA,压降是1.711V;将电阻换成1.0K,再一次仿真灯亮了!电流值为10.209mA、电压值为1.791V。

(三)两种教学方法的比较

通过对两种教学过程的对比发现,通过仿真平台进行课堂教学,学生可以获得更多的信息量,比如二极管的实物形态、二极管的导通电压并不一定是0.7V、发光二极管并不是导通就发光、二极管在电路中必须配合限流电阻来使用等。传统教学采用语言描述来传递知识,优点是讲课速度快,但是文字、语言信息很难在学生头脑中建立明确的形象概念,也缺乏学生的思考和参与。引入multisim13辅助教学,可通过multisim13组建电路进行仿真,让学生看到生动的现象,将枯燥的语言符号变成了鲜活的现象过程,在这个过程中学生需要观察、思考,需要参与。在这种以学生为主体、以问题为主线的教学模式下,学生的主动性、学习积极性更高,教学效果自然更好。引入multisim13软件辅助教学的突出特点是使学生置身于真实的工程环境,能增强学生对电路的感性认识,掌握各种仪器的基本使用和电路参数的测试方法。通过人机对话的方式,能使每个学生动手接触电路,进行元件接线,参数设定,通过调试和测量,把实验与理论有机地结合起来,加深对理论的理解,提高学生的工程实践能力和创新能力。

三、结束语

篇2

对于教学安全主要是针对实践操作部分,机床作为机械结构,一旦出现事故,轻则机器损坏,重则出现伤亡事件,这样的事件已经给了我们血的教训。例如,某高校机械专业学生在企业实习期间由于操作失误,直接导致手臂被机械结构严重损伤,最终不得不截肢。如何避免机械事故发生是学生在实践操作部分最需要注意的问题,因此很多学校非常强调安全问题。传统教学中,由于学生在上机床实际操作之前并没有对机床的运动情况有很清楚的了解,很容易导致事故的发生,因此很多院校在进行数控实训操作的时候,多是恐惧危险的发生而走走形式,真正实际进行操作,并能够加工出零件的比较少,除非是学校为了让学生参加比赛而培训数量比较少的学生,难以达到教学计划中关于实践教学部分的实际要求。而采用计算机仿真技术的数控教学,可以在实际操作之前充分了解数控机床面板的操作和数控机床的运动运行规律,某种意义上说就是真正的数控机床操作的演习,为实习实训部分做好充分的准备工作,即使在仿真中出现操作错误或者操作失误,既不会导致机床的损坏,更不会导致人员的伤亡。

二、教学效果和效率

数控程序编写是数控类课程的主要教学内容之一,如何正确地编写数控程序也是数控类课程的重要任务。在传统课堂上,教师主要利用PPT课间插入动画、图片、文字等内容进行讲解,虽然利用了一些多媒体资源,但是并没有充分发挥多媒体最大的功用。在讲解过程中往往比较枯燥乏味,难以更加形象具体地表述数控代码控制刀具、机床主轴的运动情况。特别是对于一些比较复杂的循环指令只是通过这样的讲解方式往往很难准确地表达。虽然目前有些教师可以采用一些三维软件、动画软件制作一些比较详细的动画,但是这种动画往往就是固定设置好的动作,缺乏参数的变化,不能通过修改参数来观察刀具运动的变化。目前大多数计算机数控仿真数控系统都是模拟实际的数控机床操作,几乎完全和实际的数控机床操作相同。教师在授课过程中可以编写实际的数控程序,再输入到数控仿真系统中进行验证,在验证的过程中,可以随时改变数控程序中的参数,来讲解数控指令中参数控制刀具的运动规律,也可以改变数控程序中的程序指令,来讲解不同指令刀具的运行轨迹;这样就可以更加清楚形象地讲解数控编程中的各种程序指令和指令中各个参数的含义。在斯沃数控仿真系统模拟加工零件过程中,在操作界面的左侧显示编写的数控程序,仿真操作过程中根据刀具的运行轨迹,自动跳转相应的程序段,帮助学生理解程序中控制对象的运行情况,并且利用不同的颜色来展示不同刀具的运动轨迹,在直观地展示运动轨迹的同时也可以随时更改数控程序或程序中的参数来获取不同的轨迹。

三、数控工艺部分体现

篇3

摘要:在研究生的计算机仿真技术课程教学中,针对机械工程类研究生的专业方向、课程体系的设置以及工科研究生自身特点,为培养研究生的自主学习能力、创新能力以及增强其工程应用意识,通过在计算机仿真技术课程教学的经验积累,逐步探索出以项目驱动为主要教学方法,通过实践应用,取得良好的教学效果。

关键词:项目教学法;计算机仿真;创新;实践

中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2017)24-0144-02

一、前言

研究生教学有其突出的特点,他们中多数人理论基础扎实,获取书本知识能力强。但同时也存在创新意识和创新能力不足、工程应用背景不够的缺点。本人通过十多年研究生教学的实践,结合本学院研究生专业方向、课程内容针对性强等特点,对如何在研究生教学改革中突出培养学生的自学能力、创新能力,增强学生的创新意识与工程应用能力等问题进行了一些改革创新。

二、课程定位及课程特点

随着现代工业的发展,科学研究的深入与计算机软、硬件的发展,计算机仿真技术已成为分析、综合各类系统,特别是大系统的一种有效研究方法和有力的研究工具,计算机仿真技术已经广泛应用在各技术领域、各学科内容和各工程部门。仿真技术已经在国防军事、国民经济、社会生活的众多领域发挥了重要的作用,国内外众多学者认为,仿真技术“正在成为与理论、实验并列的第三种认识和改造客观世界以及科学研究的手段”,因此仿真技术

被认为是“使能”技术。计算机仿真技术是仿真科学与技术涉及到的有关具体仿真技术中最为基础的部分,具有综合性、多学科交叉等特点。

为了拓宽机械工程专业基础,提高培养对象的整体素质,更好地适应社会对机械工程专业人才的需求,高校工科专业的研究生应掌握一定的计算机仿真知识与技能。计算机仿真技术课程是我校机械工程学院面向所有研究生各专业方向的研究生开设的一门专业基础课程,考虑专业应用需求并结合教学实践情况,课程目的是通过本课程的学习,要求学生掌握计算机仿真技术方面的基本理论,基本知识和基本技能,培养学生分析问题和解决问题的能力,为今后分析、综合各类工程系统或非工程系统提供一种有力的工具,以便能灵活应用所学的计算机仿真技术为本专业工作服务。

一方面,基于仿真技术课程的内容方法较多,实践性强的特点;另一方面,授课对象专业方向较多、授课学时有限等特点,如何解决在有限的教学课时内讲授内容繁多的仿真内容、对计算机仿真技术课程进行教学方法和手段的改革探索和实践,以达到计算机仿真技术教学目标。

三、教学内容的设置和教学方法的选择

课程开设初期,由于只是机械电子工程专业方向的同学选修,所以所讲内容基本针对该专业方向进行设置。随着选修人数的不断增加,以及选修学生所属专业方向的扩大,专业方向包括:机械制造及其自动化、机械电子工程、机械设计及理论、车辆工程、机械工程(专业学位)等,基本涵盖了机械工程学院的所有专业方向。

计算机仿真技术课程涉及多个交叉学科,紧密相关的课程包括数值计算方法、计算机编程、计算机图形学、高等数学、自动控制原理、现代控制理论、优化设计等课程。如何讲出本课程的特点,并充分结合相关课程内容,必须在教学内容的选排上下功夫。

项目教学法是一种以任务驱动、以项目为基本教学单元,将理论教学和实践教学有机融合在一起,强调综合能力的培养在研究生教育中的重要性,突出学生在整个教学过程中的主体地位。因此,为了满足各个专业方向学生的要求,使他们能够掌握一门工程分析技术,为后续的学术论文和硕士学位论文的撰写提供计算、分析和仿真手段,本人在讲授该门课程的过程中,逐年对教学内容、教学手段和教学考核方法等不断进行调整和完善。

1.采取项目专题方式进行教学内容的讲授,调整授课内容,采用专题教学方法使课程主题内容分明,有利于将仿真方法讲深、讲透。

2.扩展所授课程内容涵盖的范围,包括数值计算、优化设计、图形可视化、控制系统特性仿真、控制系统设计以及与外部软件的接口等内容,以满足各专业方向学生的需求。

3.增加与课程相结合的实验教学内容。计算机仿真技术本来是实践性很强的综合性技术,仿真技术本身是在对控制系统分析的过程中不断完善和发展起来的。因此并结合各个专业研究生的不同研究方向,灵活设计若干个专题实验,使学生学以致用,培养学生将该门课程应用于实际工程的能力。

4.采用多个工程应用实例进行教学,从系统应用、数学建模、仿真建模、模型求解以及特性分析等,使学生从生产实际认知的研究对象,提升到理论高度的学习,应用所学的各科理论知识和技术手段,进行数学建模、仿真建模的建立,并对模型求解以及特性进行分析,获得直观结果,提高学生学习兴趣,最终解决实际工程问题,培养学生解决工程实例问题的能力。

5.结合学科前沿,进行课堂讨论。研究生在初步掌握了对系统的模型、仿真算法设计、仿真及结果分析这一流程后,为强化计算机仿真在实际工程的应用概念,在此基础上,以项目形式,开展课程学科前沿以及⒏妹趴纬逃胂执技术融合等专题讨论。

6.增加实验环节,培养研究生工程实际应用能力。利用各种平台,扩充计算机仿真技术资料,提供最新的仿真案例,结合教学团队的科研课题,设计实验项目,培养研究生工程实际应用能力。

四、项目教学法的教学效果

基于项目教学法计算机仿真技术课程的教学方法改革与实践,满足机械工程学院各个专业方向研究生的需求,教学方法和手段的完善,使研究生自主学习能力、创新能力和工程应用能力等得到了进一步的提高。

计算机仿真技术作为工科研究生的必备研究手段和技术,使学生掌握一门工程分析技术,为后续的课题研究、学术论文和学位论文的撰写提供计算、分析和仿真手段。

近五年的每年30―40人研究生选课,工程硕士每年20人左右选课,课程得到了各专业方向研究生的普遍认同。本人指导的研究生,发表与该课程相关的学术论文近20篇,撰写的硕士论文均用到计算机仿真技术。

篇4

    【论文摘要将虚拟仿真技术引进教学领域后对传统教学手段产生了强烈冲击。本文针对航空电子装备教学中如何应用虚拟仿真技术给出了应用方法和心得。

    1.引言

    自 20世纪 9O年代以来,以计算机仿真技术 、多媒体技术和虚拟现实技术为特征的“虚拟仿真实验室”开始在世界各地出现,并逐步渗透到教学领域。作为一种新型的实验教学手段,虚拟仿真教学对传统的教学手段产生了强烈冲击,并引发了教学领域一系列深刻的变化。种种迹象表明,虚拟仿真教学将是今后实验教学改革的一个重要发展方向。本文结合多年来在航空电子装备教学中应用虚拟仿真技术的经验,探索在航空电子装备教学软件中应用虚拟仿真技术的方法和心得。

    2.虚拟仿真技术简介

    虚拟仿真技术是对虚拟现实技术和系统仿真技术的合称。

    2.1虚拟现实技术

    虚拟现实技术就是利用三维建模技术,构建一个和现实世界的物体和环境相同或相似的虚拟三维场景,并能响应用户的输进,根据用户的不同动作做出相应的反应。虚拟现实的关键技术主要有动态环境建模技术、实时三维图形 天生技术、立体显示和传感器技术等。虚拟现实技术主要侧重于对真实物体物理特征的仿真,也称为视景仿真,它主要用于产品设计和展示、贸易广告、游戏设计等。

    在航空电子装备教学中,大量用 到对装备的外观 、结构 、组成 、连接 、机安装位置的展示 ,传统教学大都采用实物展示 的方法 。近年来随着大量航空电子装备 的更新换代,因受经 费、场地及使用寿命等因素的限制 ,传统教学方法 已远远不能满足要求 ,而采 用虚拟现实技术的展示方法则 以其廉价 、无场地限制和效果 良好得以广泛应用。

    目前有大量成熟的软件平台可以进行视景仿 真的开发,主流平台Creator Vega Vega Prime VTree OPENGVS QUEST3D VRTOLLS EON、WEB3D、JAVA3D、GLStudio等。其中,MULTIGEN公司的虚拟现实数据库 OPENFLIGHT已经成为 了产业标准 ,在军事 、航空航天等领域应用都 比较成熟 。在航空 电子装备虚拟仿真软件的开发中我们采用r Vega Prime、GLStudio和 EON作为视景仿 真开发的技术平台 ,解决物理模型的创建、场景显示等新题目。该平台可以达到照片级 的视景仿真效果 .同时采用嵌进 OPENGL技术来解决物理模型 的交互新题目。

    2.2系统仿真技术

    系统仿真技术是伴随着计算机技术的发展而逐步形成的一门新兴学科 .它通过建立实际系统 的数学模 型 ,利用计算机运算来达到对被仿真系统的分析、探究、设计等目的。系统仿真技术主要侧重于对真实系统的内在机理、运动方式 的仿真,也称为行为仿真。系统仿真技术最初主要用于航空、航天、原子反应堆等价格昂贵、周期长、危险性大实际系统试验难以实现等少数领域,后来逐步发展到电力、石油、化工、冶金、机械等一些主要产业部分,并进一步扩大到社会系统、经济系统、交通运输系统、生态系统等一些非工程系统领域。 在航空电子装备教学中,对装备工作原理的讲解既是重点也是难点。传统教学方法主要通过教员的讲述,配合一些静态的图形帮助学员理解 .教学效果主要依靠于教员的授课水平和技巧 。近年来.我们尝试将系统仿 真技术应用到航空电子装备教学中,根据被仿真装备的工作原理,建立系统的数学模型,并根据装备的不同工作状态,对模型进行动态运行.结合虚拟现实技术实现的逼真场景.较好地模拟实际装备的工作情况。利用该技术开发、研制的教学软件不但可供教员教学使用.也可供学员自学,并达到了较好的教学效果。

    目前,有很多成熟的系统仿真开发平台软件.如 Simulink、SystemView等,这些软件以其功能强大和使用方便、易用性受到广大用户欢迎.但价格较为昂贵,且大多未提供对外的仿真数据接口.仿真系统应用的灵活性、扩展性和可变性受到很多限制。当然也可自行开发适用 的仿真开发平台软件。在航空电子装备虚拟仿真软件的开发中我们采用的是自行开发的系统仿真平台软件。

    3.虚拟仿真技术在航空电子装备教学中的应用方法和步骤

    3.1建立仿真模型

    这里所说的仿真模型既包括反映航空电子装备外观、结构的三维物理模型 ,也包括揭示其内在工作机理及行为的数 学模 型。对三维物理模型的建立,主要依据装备本身的物理状态,其原则就是在尽量减小面数的同时进步逼真度。对系统数学模型的建立,则需要视系统的复杂程度进行取舍和优化,本着够用为度的原则 ,以尽量减小运算量。建立数学模型时 ,还应考虑到系统运行时的参数调整。

    3.2创建仿真装备的虚拟场景并驱动

    对于虚拟场景的驱动,根据使用方式的不同采用了不同的方式假如进行的仅是装备外观、结构的展示,可使用EON进行动作的编辑和驱动;假如需要对装备进行虚拟操纵仿真,则使用 GLStudio软件先进行操纵面板、虚拟仪表的编辑和制作,然后再利用 Vega Prime驱动以实现更复杂的交互操纵。

    3.3系统集成

    系统集成就是将上述做好的模型、场景按照教学软件所需的形式将其有机的整合在一起,使之成为_个完整的 、规范的教学软件。系统集成可以使用目前常用的软件开发平台如 VB、vc++等。由于上述虚拟现实驱动软件如 EON、GLStudio及Vega Prime等均以ActiveX控件方式提供 了可用 于常用 软件开发平台的运行插件,因此,系统集成变得十分方便。编写程序时,只需考虑软件功能的布置,注重程序间的兼容性即可。

    系统集成时,还需要将系统行为仿真的结果通过视景仿真表现出来,即用行为仿真的数据来驱动三维物理模型的动作。由于系统行为仿真采用了专门的运行平台,和视景仿真处于不同的系统进程中.因此这种驱动是通过两进程间的实时通讯来完成的。这里还需要考虑进程间的同步新题目。

篇5

【关键词】水下机器人;视景仿真;运动模型;OGRE0.引言

发展海洋是新时代的必然趋势,水下机器人对海洋开发、海洋调查测绘及相当多水下作业都有举足轻重的作用。水下机器人系统的研究和开发中,仿真技术可以缩短其研制周期、提高研发质量和减少经费,避免因系统故障时导致其丢失的严重后果。三维视景仿真技术广泛应用于军事、航海、航空航天、游戏及医疗等领域,是集图形学、图像处理、模式识别、网络等计算机技术高度发展的一门综合性技术。

3Dmax与OGRE(Open-source Graphics Rendering Engine)是近年来得到迅速发展的嵌入Windows三维模型仿真技术。它性能卓越,API具有良好的可移植性。本文通过3Dmax建模和OGRE 3D引擎作为仿真平台,及Qt设计窗口,在Visual Studio2008环境下完成仿真。

首先配置好VS2008和OGRE开发环境,主要是一些插件和动态链接库,定义OGRE将要使用的资源,选择并设置渲染系统。通过初始化使用一些资源,并用这些建立一个场景,启动渲染循环。

1.仿真的一般流程

通常我们先用软件Creator、3Dmax、Photoshop和Auto CAD等画出一维、二维及三维的仿真图形库。一些特殊的如仿生鱼水下机器人建立时图形仿真时用到了自由变形计轴变形及其他样条曲线理论的支持完成。到最后显示的视景仿真一般都是通过Vega或者OpenGL再通过Visual studio编译执行写好的虚拟现实代码等来实现仿真,而且3D仿真大都需要进行碰撞检测。为了设计窗口的方便可能运用MFC或其它工具来设计人机交互窗口,最终形成一个完整的仿真系统。

2.模型的建立

通过3Dmax所得到的水下机器人三维模型。

根据国际水池会议推荐,建立固定坐标系(惯性坐标系)和运动坐标系(附体坐标系)上图的水下机器人也将按此坐标系[1]。

由于完整的六自由度运动方程具有极强的非线性和耦合性,所以需要我们进行解耦进而进行求解。对于方程的简化与求解大多数专家并没有给出,不过我们通常根据不同的水下机器人的形状等特点来适当减少式中的未知量及个数,一般将各方向的运动都简化为平面运动。简化得到的方程式不但有的时候能让我们更容易的得到未知量来实现仿真,而且对于水动力系数等得求解也简单的多。三自由度、五自由度及六自由度的操纵性方程是最常见的,有的为了方便甚至直接简化为一维的线性方程,再通过一些其他的算法来趋紧真实的结果。

水动力模型相对复杂,最简单就是力、力矩对速度、加速度、舵角等的一阶偏导数即线性流体水动力导数。这里就不诸一列举各项研究所用的水动力方程,水动力系数的选取与获得现在一般是通过经验公式、拖曳实验及CFD技术。其中拖曳实验应该是最准确的,但是它也受到实验环境及未知因素的影响。CFD技术已经被张赫等人验证了其具有一定的准确性[2]。

其中附加质量及附加质量所形成的力及力矩经常被放到质量矩阵里面。张赫也提过用面缘法来对惯性水动力系数进行估算。张晓频采用现有的比较成熟的商业流体力学软件FLUENT模拟潜水器的粘性绕流流场,模拟阻力试验、斜航试验和平面运动机构(PMM)试验,求解操纵性水动力系数。建立多功能潜水器六自由度运动的数学模型,编写仿真程序,预报其操纵性能[3]。

带有均衡潜伏系统的数学模型的建立,推进器的推力模型,舵的水动力系数模型及升降系数模型,海流模型、海浪模型及带缆的数学模型等。这些模型有的时候对仿真系统的仿真结果影响不大,有的时候却是起到主要影响作用,因此我们要视情况而定以达到仿真的最佳效果。梁宵构建了舵、翼、桨联合操纵的微小型水下机器人运动仿真系统,讨论PDCE运动控制系统结构及主要组成部分并通过外场试验来验证其可行性及可靠性[4]。

3.视景仿真的应用

不论我们研究什么理论到最后都要进行试验的验证,仿真就是为了使得试验更简单,更直观,风方便,甚至可以做到一些现实中无法做到的假设试验。

张赫过定常流动和非定常流动这两种情况进行不同试验形式的模拟计算,在得到模拟结果的同时,给出相应循环水槽试验结果,最后做出对比结果的分析。其中定常运动包括模拟直航试验和模拟斜航试验,非定常试验包括模拟平面运动机构进行的五种操纵性试验。最后在结论分析中对上述三种数值计算方法进行了总体的比较和分析,并由试验结果给出了用于建立潜水器空间运动方程的各个系数。为了我们的研究需要,可以发挥我们自己的想象合理的去做仿真试验,会得到意想不到的好处与突破创新。

4.结论

建立了动力学模型,研究了对象的水动力性能,得到运动方程所需的水动力、重力、浮力、推进器作用力等,并在此基础上建立了以推进器为主要操纵方式的运动仿真系统,对水下机器人的运动完成视景仿真,得到视景仿真的效果图。我们不但可以做不同的试验来获得水下机器人的操纵性能、适航性及受力变化情况,还可以此来对其进行结构上分析与设计。之后我们还可以将水下机器人的高度智能化进行视景仿真来验证与设计。还可以对某些重要的系数进行参数识别的仿真实验,还要继续加强视景仿真的真实性,来适应需求更高的仿真。 [科]

【参考文献】

[1]贾欣乐,杨延生.船舶运动数学模型.大连海事大学出版社,1999.

[2]张晓频.多功能潜水其操纵性能与运动仿真研究.哈尔滨工程大学硕士学位论文,2008.

篇6

Abstract: The overall milling error prediction model is obtained, including the thermal deformation errors of the workpiece, the tool thermal deformation error, the wear error of the tool and the tool deformation error.

关键词:工件受热变形;刀具受热变形;刀具磨损;刀具受力

Key words: workpiece heating;tool heating;tool wear;tool stress

中图分类号:TG54文献标识码:A 文章编号:1006-4311(2011)23-0026-01

1加工误差影响因素及分类

在数控铣削加工过程中,用户期望生产加工后的工件与设计人员所设计的图纸完全吻合一致,但这只是一个脱离实际的理论想法。在实际的生产加工中,由于受到加工操作规程、加工工艺系统、加工原理、加工测量、工件和刀具的材质、工件和刀具的温度、刀具受力变形、刀具磨损等因素的影响,实际生产加工后的工件与理论图纸会存在一定的偏差,进而产生了加工误差。

一般来讲,一个完整的数控铣削加工系统主要由机床、夹具、刀具和工件构成,也可以称之为加工工艺系统。在实际的数控铣削加工过程中,存在很多影响因素引起加工误差,进而影响加工工件的质量。在前人研究的基础上,按照误差的来源可以将加工误差分为三类:几何误差、物理误差和其它误差,其中几何误差是指机床或夹具或刀具本身存在的误差和加工过程中由磨损而引起的误差;物理误差是指数控铣削加工工艺系统由于受热和受力而产生的弹性变形和塑性形变而引起的误差;其它误差包括的范围较大,随机性较强,主要是指加工工人在数控铣削加工操作过程中,由于采用哪一种加工原理、操作是否严格遵守规程、重新调整工艺系统、定位刀具或待加工工件的精确程度、测量的准确度和加工工人的实践经验等因素所引起的误差。

2单因素加工误差模型

参考文献:

[1]周德生.基于计算机仿真技术的铣削加工精度控制研究[D].武汉理工大学,硕士学位论文,2006.

篇7

    论文摘要:介绍了工程技术训练中心数控设备与教学的概况,以及科研项目对机械加工的需求及其特点。分析表明,工程训练中心与科研团队存在巨大的合作前景,可以在改善教学的同时推进科研项目的进展。 

一、引 言 

工程训练中心是培养工科学生的一个重要基地,各学校在工程训练中心的建设过程中投入巨大,除基本的金属切削机床、材料成型设备外,各种数控机床、特种加工机床、精密测量等设备也已经成为工程实践教学的主力装备。2008年11月,国家机械制造基础及工程训练课程指导委员会就《普通高校工程训练中心建设基本要求》作了详细阐述,其中数控设备至少应有:6台数控车床、3台数控铣床、2台数控切割机床,并且各学校可根据实际教学需要,增加一定数量的加工中心,工程训练中心除教学任务外,还有巨大的潜力可以挖掘。同时,随着我国经济的迅速发展,国家在科学研究上的投入力度越来越大,这些科研项目对机械加工都有着巨大的需求,但这些需求一般为单件或者小批量,并且设计尚未完善或者一直处于改进之中,与现代企业的大批量生产存在一定脱节,而工程训练中心的硬件设施与任务恰好能够满足科研项目中机械加工的需求,同时又能改善学生的学习条件。 

二、数控机床的特点及教学 

数控机床是指可以通过计算机编程,进行自动控制的机床。与普通机床相比,数控机床具有很多优点:高柔性,适合单件、小批量生产,适合新产品的开发;加工精度高、加工质量稳定可靠、生产率高,数控机床的加工自动化,免除了普通机床上工人的疲劳、粗心、估计等人为误差,提高了产品的一致性;并且数控机床对操作工人的要求降低,一个普通机床的高级技工,不是短时间内可以培养的,而相对来说数控机床操作工人培养时间极短(如数控车工需要一周即可,还会编写简单的加工程序)。 

由于数控技术教学和培训都离不开数控机床,而数控机床本身价格比较昂贵,同时训练过程不可避免地存在误操作过程,这对机床安全是一个巨大的隐患,同时数控机床的数量有限,难以满足大量学生实践训练的需求。而随着计算机技术的发展,数控机床加工仿真技术得到了迅猛发展,很好地解决了这些矛盾。数控加工仿真是一种先进的计算机人机交互技术,具有生动的界面和强大的显示功能,图形大小、颜色、观察视角以及刀具的形状等都可由操作者自行设计以满足不同的监控与学习要求;仿真系统的通用性较强,其语法诊断功能可以帮助学生学习编程。在模拟过程中,系统能及时提供错误信息以及刀具相对移动轨迹的显示以及最终加工的立体效果,很容易发现和修改编写程序的错误,高仿真界面及动态的模拟仿真系统可有效地显示代替机床实际运行状况并且还能够提示操作信息,使数控机床的编程操作易于课堂化教学,从而既节省了机床设备和实习消耗,降低了实做危险,又大大提高了教学效率,规避了实习人员的操作风险。数控加工仿真系统采用了与数控机床操作系统相同的模拟界面,使其具备了整个加工过程的模拟仿真能力,即使仿真系统在模拟中出现人为的编程或操作失误也不会危及学生和机床安全,学生反而还可以从中吸取大量的经验和教训,所以说它是初学者理想的实验、实践工具。因此,数控加工仿真技术在数控教学领域的应用日益广泛[1][2]。 

当然,数控加工仿真技术同真正的数控机床存在一定的差别,容易引起以下弊端:(1)过于依赖计算机完成所有的操作,因为图纸绘制、g代码生成、仿真加工都可在计算机上完成,仿真与实际机床之间存在各种差异;(2)忽略加工工艺,仿真系统的仿真加工过程速度一般为5倍(调节范围:1-100),使得操作人员忽略进给速度、刀具转速和加工质量等;(3)无法保证加工质量,由于仿真软件只能仿真加工过程,对于零件的表面粗糙度和尺寸精度等无法保证。 

因此,数控教学必须采用数控加工仿真与实训操作相结合的方法,即先通过仿真系统让学生对数控编程有一定的了解,再通过实训操作使学生理解仿真与机床实训的差别,不能仅仅为了学生和机床安全废除实训操作,这样既可大大减少学生理解错误而产生的各种机床损坏及人身伤害,又可提高学生的实际操作技能。 

三、科研团队与工程训练中心的合作前景 

随着中国经济的迅速发展,国家和其他组织在科研上的投入力度越来越大,其中理工类的科研对机械加工有着巨大的需求。绝大部分新产品开发或者新技术在开发过程中,对产品的需求并不明确或者存在一个逐渐深化的过程,对零部件的定型需要一个漫长的、反复的过程,需要对零件进行单件或者小批量的试制、修改。一般的科研团队在机械加工方面的人员、设备力量非常薄弱,如果把这些任务交给企业去做,往往价格昂贵而又费时。而这恰恰是工程训练中心的强项,并且科研团队中往往有一大批计算机基础很好的研究生,利用数控机床的仿真软件,可以较快地学习数控设备的操作技术。一般说来,在工程训练中心学习的主要群体是低年级的学生,也有少数高年级的学生,这些学生在此学习的目标往往比较简单,仅仅是学习基本的操作技术,加工零件也仅仅是作为练习。如果科研团队与工程训练中心合作,对科研团队的研究生进行培训,训练他们自己进行机械加工的能力,不仅能节省大量时间促进科研进程,更重要的是积累了加工经验,这有助于后续的设计与改进。同时,对本科生来说,与研究生一起操作数控机床不仅仅是练习了,而是在生产在科研,能够极大地提高他们的积极性,培养自信心,增加他们的知识面,能够进一步推动高年级本科生进实验室的潮流,部分优秀的低年级学生也能参与到科研中,这对本科生的其他课程学习是非常有益的。 

四、结 论 

数控机床加工仿真技术已经成为数控教学的重要方法,这种方法功能强大、成本低、安全可靠,可在短时间内大量培训数控操作工,这些特点与科研项目存在互补之处,双方合作是互惠互利的,既能改善教学条件,又能推动科研项目的进展。 

参考文献: 

篇8

摘要:随着经济全球化的快速发展,我国制造业的转型升级成为必然,发展现代制造服务业,是加快制造业产业升级和转型升级的重要途径。文章以公共服务平台建设为例,简要阐述了发展现代制造服务业的模式和途径,并提出了企业发展现代制造服务业的建议。

关键词 :现代制造服务业 制造业 转型升级

一、现代制造服务业的内涵及发展现状

2014年08月国务院《国务院关于加快发展生产业促进产业结构调整升级的指导意见》,进一步明确了生产业是全球产业竞争的战略制高点。现代制造服务业融合了互联网、通信、计算机等信息化手段和现代管理思想与方法,围绕制造业的各个环节所开展的各类专业的服务活动,属于生产业范畴。发展现代制造服务业,是从生产型制造向服务型制造转变的战略需求,是加快制造业产业升级和结构调整的重要途径。

当前,我国现代制造服务业仍处于刚起步和较为新兴的发展阶段,服务业总体规模仍然偏小,发展程度尚较低,服务水平不高,结构不合理,机制创新滞后,整体发展水平与发达国家相比还有较大的差距。

二、建设公共服务平台是发展现代制造服务业的重要手段

《意见》指出建立专业化、开放型的公共服务平台是当前我国发展现代制造服务业的主要任务之一。公共服务平台是根据区域经济、科技、社会发展需求,以科技资源集成开放和共建共享为目标,通过有效优化和整合各类科技资源,向社会提供开放共享的一类科技创新服务载体。公共服务平台为企业发展提供技术开发、试验、推广以及产品设计、加工、检测、中试、信息共享、技术基础设施等以及投资融资、教育培训等公共服务。以企业为主体建立的公共服务平台可显著地强化企业的服务供给、提升企业服务水平、优化企业资源、促进企业由生产型企业向服务型企业转型升级。

三、公共服务平台发展模式探讨

为了研究公共服务平台的发展模式,本文以株洲时代新材料科技股份有限公司(以下简称时代新材)建设的“高速铁路机械系统仿真技术服务平台”为案例进行分析。

1.高速铁路机械系统仿真技术服务平台介绍

时代新材主要从事高分子减振降噪产品、高分子复合改性材料和特种涂料及新型绝缘材料三大系列产品的研制开发、生产、销售和服务,是目前我国交通机械装备行业整体科技实力最强的高分子复合材料减振降噪技术专业研究、开发基地。2013年公司依托强大的高速铁路机械仿真核心技术建立了高速铁路机械系统仿真技术服务平台。平台由高性能计算平台和机械设计仿真的功能平台组成,承担各高速铁路产业相关单位新产品研发、基础性和前沿性技术研究中的机械设计计算与仿真分析任务,整合机械结构仿真分析方向的技术和人力资源,为基础性研究的产业化应用提供理论和技术基础。

2.高速铁路机械系统仿真技术服务平台服务模式

经过探索和实践,时代新材建立了“技术研发、技术推广、技术信息一体化服务”的服务模式,即在企业本身开展研发的同时,为其它企业提供技术研发、产品检测等服务,并向企业提供相关技术信息、技术培训等。通过一体化技术服务和市场化推广策略的结合,初步实现了平台的组织网络化、功能社会化、服务产业化、手段现代化的运营目标。技术服务平台由依托层、核心层以及应用层组成。

(1)服务依托层。服务依托层围绕长沙国家超算中心,由研发与技术数据库、专业技术人才库组成。研发与技术数据库是对湖南省内乃至全国近三年来高速铁路机械设计领域内新登记的科技成果、专利及论文,进行收集与进度跟踪,整理形成最新的研发技术与数据库。专业技术人才库的建设主要包括两个方面的内容,一方面是专业人才库共建工程;二是专业技术人才的培养工程。专业技术人才库共建工程是通过收集高速铁路机械仿真技术领域一批熟练掌握专业技术知识、具有精湛操作技能的专业技术人才;针对企业人才需求,及时推荐最适合企业发展的技术人才。其次是做好人才储备服务,通过与提供专业技术人才的院校和科研机构合作,建立人才对接机制,源源不断地为企业提供急需的专业技术人才。

(2)服务核心层。此层充分发挥公司的优势,构成公共服务平台的技术服务核心力量,由仿真计算平台、仿真管理平台、仿真验证平台三部分组成。

(3)服务应用层。服务平台以长沙国家超算中心、研发与技术数据库、专家人才库为依托,以时代新材料公司的仿真管理平台、仿真技术平台、仿真验证平台为核心,通过多种措施与途径向高速铁路产业领域机械仿真设计企业提供技术服务。

3.高速铁路机械系统仿真技术服务平台效益分析

公共服务平台的建设,在整合、发扬湖南省高速铁路这一优势产业,优化集群内产业结构,提升关键材料与制品研发、试验、生产及配套能力,解决行业关键技术问题,促进高速铁路行业整体技术水平提高的基础上,有效的提升了相关企业的产品开发成功率、缩短了开发周期;提升了公司的服务水平和服务能力,促进了公司由传统制造业向现代制造服务业的转变。

四、企业发展现代制造服务业的建议

时代新材公司依托核心技术、以信息化建设为纽带,整合优势资源,立足于区域产业特色,实现传统制造业向现代服务制造业的转变。

1.核心技术服务化,逐步由传统制造业向现代制造服务业转化

现代制造服务业对技术有较高的要求,只有掌握差别化的核心技术,才能提供差异化、个性化的集成服务。制造企业应依托自身的核心技术发展制造服务业,逐渐将经营重心从加工制造转向提供技术服务、流程控制、产品研发等生产。

2.加强企业信息化建设,提升企业制造服务能力

制造业正在向全面信息化迈进,研发、设计、采购、制造、服务等各个环节都与信息技术密切相关;从产品的发展特征来看,产品的知识化、智能化、系统化、信息化、服务化得到全面提升。企业发展现代制造服务业必定要加强企业信息化建设,利用信息技术改造传统产业,实现高效益、高可靠性、提高企业制造服务能力。

3.转化观念,提升现代制造服务业的战略地位

企业要进一步打破“大而全”、“小而全”的格局,分离和外包非核心业务,提升现代制造服务业的战略地位,制定服务业务发展的战略和规划,分阶段、有重点地开展服务业务,培育企业品牌竞争优势向价值链高端延伸,促进企业逐步由生产制造型向生产服务型转变。

参考文献

[1]李浩,顾新建,祁国宁,纪杨建,陈笈熙.现代制造服务业的发展模式及中国的发展策略[J].中国工程机械,2012(7)

[ 2 ] 薛金山.中国制造业转型路径与阶段性探讨[ J ] .中国机电工业,2010(10)

篇9

关键词:建环专业;实验教学;虚拟仿真

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)05-0106-02

引言

虚拟仿真技术是20世纪末才兴起的一门崭新的信息技术,能够模拟真实设备或系统的工作过程,具有信息量大、生动形象、身临其境、实时交流等特征。虚拟仿真实验教学是虚拟仿真技术在教育领域的应用,是高等教育信息化建设的重要内容[1],促进当前教育模式、教学方法和学习方式的深刻变革。

建筑环境与能源应用工程是一个典型工科类的专业,在人才培养中普遍存在“重设计、轻实践”等问题,强化专业实验教学内容,培养应用型、复合型和创新型的实用人才,是社会对建环专业教学改革的迫切要求。将虚拟仿真技术的引入到建环专业实验教学中,解决目前实验教学中的存在问题,提高建环专业人才培养质量,是值得研究和探索的课题。

一、建环专业实验的教学现状

目前,建环专业实验教学基本上是传统模式[2],存在实验课时少、教学内容陈旧、实验教学方法和手段单一等诸多问题。实验类型多以验证性、演示型为主,学生学习被动,往往敷衍了事。为了改进实验教学效果,很多学校做出积极探索和改革[3-4],如独立设置专业实验课程、改革实验考核模式、开设创新实验、增加生产实习等。虽然这些努力对提高实验教学质量起到了一定作用,但是,建环专业实验教学改革发展中存在瓶颈:

1.受实验室条件限制,很难开设交叉性专业实验。

暖通空调系统形式多样、构成复杂、设备庞大、维护费用高,受实验室空间和资金的限制,很难建设较为综合的暖通空调实验平台,使学生对系统整体性和在工程中的实际运行缺少全面性认识。

2.受生产与安全条件限制,生产实习教学效果很难达到预期要求。

为了弥补交叉性专业实验的不足,很多学校加强了生产实习环节。但是,由于实际工程环境复杂、危险大、操作安全要求高,企业出于经济效益和安全考虑,不可能同意把在工程现场进行实验教学,只能是走马观花的参观式教学,实际教学效果不佳。

3.受师资力量和实验设备限制,实验教学质量大打折扣。

大多数学校建环专业每年招生2个班以上,有的学校甚至达到4个班。当学生人数多时,而师资力量有限、实验设备数量有限时,如何安排好学生进行实验,并且能够激发学生主动性、积极性是一件非常困难的事情。

二、建环专业虚拟仿真实验教学的必要性

虚拟仿真技可以生动形象地复现各类复杂的暖通空调系统,有效解决建环专业实验改革的瓶颈问题。虚拟仿真实验不受实验室条件的限制、生产与安全条件的限制、师资与实验设备的限制,可以实现在课堂和实验室中无法实现的教学过程,拓展实验类型,开展丰富多样的专业交叉性、创新性实验。

建环专业开展虚拟仿真实验教学,将带来如下优势:①能营造出一种仿真式与交互式的实验环境,不用考虑实验室面积、投资、运行、维护费用,使得实验经费大大降低。②能展现建环专业的最前沿技术,扩展实验项目。③扩展实验内容和深度,突破课堂教学难点。④去除了繁杂的实验准备工作,节省去人力、物力,更有效利用师资力量。⑤可以反复训练,为学生自主学习提供平台,提高学习兴趣,促进主动思考。

对于实践教学而言,不同层次的实践教学可以用不同层次的虚拟仿真技术进行模拟。在专业基础课程中的实践教学可以使用简单、高效、成本低廉的传统仿真技术来完成,对于专业核心课程的实践教学或综合性实验,可采用虚拟现实系统来实现。

三、建环专业领域的常用仿真技术

仿真技术以低成本、高开放性和广泛适用性等优势,已经在建环专业相关的科研领域有了广泛应用和研究,很多仿真软件被用于暖通空调的仿真建模,主要分为以下三个方面:

1.建筑室内环境的仿真。主要有Fluent、Airpak、Phoenics和Flovent等软件,其中Fluent和Airpak最具代表性。Fluent软件包含丰富而先进的物理模型,能够准确模拟所研究对象内的空气流动、传热和污染等物理现象。Airpak则是专门面向HVAC领域的室内环境仿真软件,在功能上没有Fluent全面,但是比Fluent更易于建环专业人员使用。

2.建筑或空调系统能耗的仿真。主要有EnergyPlus、DeST、DOE-2和BLAST等软件,其中EnergyPlus和DeST在我国应用最多。EnergyPlus吸收了DOE-2和BLAST的优点,采用集成同步的负荷/系统/设备的模拟方法。DeST基于状态空间法理论,利用多区热质平衡算法和三维动态传热算法模拟建筑能耗。

3.暖通空调系统性能的仿真。主要有TRNSYS、SIMULINK、HVACSIM+和DYMOLA等软件。TRNSYS模块化结构的动态系统模拟软件,内置了200多个功能性子程序,目前应用最为普遍。DYMOLA是基于方程式的多物理系统模拟软件,能够很好解决因果类仿真平台的代数循环问题,而且具备将建模和数值方法的理想解耦,适用于开发复杂的空调系统仿真模型。

可见,仿真技术已经在建环专业科研领域有广泛应用,可以模拟建筑室内复杂的热环境,仿真各种复杂的空调系统,为暖通空调虚拟仿真实验的开发奠定了技术基础。

四、建环专业虚拟仿真实验教学的发展状况

仿真技术是用来构建仿真系统的物理模型,真实反映出实际系统的特性。对于虚拟仿真实验来说,必须有交互式界面,通常用Vega、U3D、Eclipse、CATIA、WebBuilder、Visual Studio、LabVIEW等软件平台开发,使学生可直接参与,探索仿真对象的变化过程。目前,虽然建环专业领域的仿真研究很多,但主要应用于科研领域;建环专业的虚拟仿真实验研究相对很少,尚处于初步探索阶段。

美国可持续建筑性能研究所开发了LearnHVAC软件,如图1所示。学生可以对空调系统进行模拟操作,包括短期控制模拟,长期能耗模拟,分析系统故障。教师可以自定义暖通空调系统的模拟场景,对学生的实验进行管理。目前,LearnHVAC只是可发了变风量系统一项实验内容。

在国内,山东建筑大学开发了太阳能系统、地源热泵系统等虚拟仿真实验软件,只侧重于对原理的认识和体验,实验功能简单;合肥工业大学杨善林教授将组件技术应用于中央空调的计算机仿真培训系统研发过程中,其开发方法能够对虚拟仿真软件有一个很好的参考作用[5];湖北工业大学以BIM技术、信息技术为支撑,组建了绿色建筑全生命周期虚拟仿真实验教学中心[6]。

目前,虚拟仿真实验教学已经逐渐得到重视,很多大学已经开展了相关调研,建设虚拟仿真实验室、开发虚拟仿真实验项目、研究虚拟仿真教学方法等工作已经逐步开展。

五、结束语

虚拟仿真技术是当前高等教育的重要教学手段,虚拟仿真实验建设必将推动建环专业实验教学发展,如何与传统实验项目有机结合,设置合理的实践教学计划,开发创新性虚拟仿真实验项目,提高人才培养质量,将是近年来建环专业实验教学改革的重点内容。

参考文献:

[1]李平,毛昌杰.开展国家级虚拟仿真实验教学中心建设提高高校实验教学信息化水平[J].实验室研究与探索,2013,32(11):5-8.

[2]赵丽娜,贾永明.建筑环境与能源应用工程专业实验考核模式和方法的研究与探索[J].化工时刊,2015,29(3):56-58.

[3]熊军,刘泽华,罗清海,等.工程应用能力的实验教学改革研究――以建筑环境与设备工程专业为例[J].高等建筑教育,2011,20(1):158-161.

[4]陈世强,张登春,于琦,等.建环专业测试技术实践教学环节研究[J].高等建筑教育,2008,17(1):118-121.

篇10

每篇论文的写作都是建立在他人的研究成果之上的,这样就难免要引用他人的劳动成果来论证自己的学术观点,这样的科学论文是有继承性的,下面是学术参考网的小编整理的关于物流专业毕业论文参考文献,希望给大家在写作当中带来帮助。

物流专业毕业论文参考文献:

[1]曾永长.多式联运流程设计与路径优化[D].重庆:重庆大学,2009.p6.

[2]杨雪.考虑换装时间的集装箱多式联运路径优化问题研究[D].大连:大连海事大学,2013.

[3]荣朝和,魏际刚,胡斌.集装箱多式联运与综合物流:形成机理与组织协调[M].北京:中国铁道出版社,2001.

[4]魏际刚,荣朝和.我国集装箱多式联运系统的协调(上)[J].集装箱化,2000,(2):p21-24.

[5]赵颖.多式联运流程设计与仿真研究[D].吉林:吉林大学,2006.

[6]佟璐,聂磊,付慧伶.多式联运路径优化模型与方法研究[J].技术与方法,2010,(212):p57-60.

[7]贺国先.集装箱公铁联运的费用加权最短路计算机算法[J].铁道学报,2006,28(1):pll7-120.

[8]魏航,李军,刘赢子.一种求解时变网络下多式联运最短路的算法[J].中国管理科学,2004,14⑷:p56-63.

[9]邹雪丁,赵宁.王转.混合运输方式问题的建模与仿真[J].系统仿真技术,2007,3(4):p56-63.

[10]雷定猷,游伟,张英贵,皮志东.长人货物多式联运路径优化模型与算法[J].交通工程运输学报,2014,14(1):p76-83.

[11]朱晓宁.集装箱多式联运通道规划理论与方法[M].北京:中国铁道出版社,2002.

[12]袁加林.集装箱多式联运标准化及其经济动因分析[D].北京:北京交通大学,2010.

[13]张戎,闫攀宇.洋山深水港区集装箱海铁联运现状分析及对策建议[J].中国港口,2006,8:p25-27.

[14]王金华.基于运输合理化的多式联运路径优化[D].上海:上海交通大学,2010.pl.

[15]李愈.赵军.吴刚.陈佳琪.带有固定运费的多式联运方式选择[J].西南交通大学学报,2012,47(5):p881-887.

物流专业毕业论文参考文献:

[1]克里斯托夫·H洛夫洛克。服务营销(第3版)[M].中国人民大学出版社,2001.

[2]詹姆斯·A菲茨西蒙斯等着。服务管理:运营、战略和信息技术[M].机械工业出版社,2000.

[3]余平.继往开来[J].中国物流与采购,2002,(01)[7]中国物流航母织就信息大网[J].互联网周刊,2002,(35)

[4]何明珂.中国物流业面临的机遇与挑战[J].财贸经济,2001,(05).

[5]沈玉良.我国物流产业发展中的几个问题[J].国际商务研究,2001,(04).

[6]牟歌。随机需求下存在单项替代的服务能力决策模型研究[D].电子科技大学,2008.

[7]马简。服务预订下的定价与能力决策[D].西南财经大学,2011

[8]申文,马士华,陈潇。供应链环境下的物流能力[J].中国物流与釆购,2006(22):72-73

物流专业毕业论文参考文献:

[1]高志军,刘伟,王岳峰。基于物流能力的物流服务供应链研究[J].物流与采购研究,2009,23(6):17~20

[2]朱卫平,刘伟,高志军。三级物流服务供应链能力协调[J].上海海事大学学报,2012(6):27-32

[3]马士华,陈铁巍。基于供应链的物流服务能力构成要素及评价方法研究[J].计算机集成制造系统,2007(13):744-750