控制系统设计论文范文

时间:2023-03-28 23:11:31

导语:如何才能写好一篇控制系统设计论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

控制系统设计论文

篇1

关键词:火灾自动报警消防联动控制系统电气设计

现代化的建筑规模大、标准高、人员密集、设备众多,对防火要求极为严格。为此,除对建筑物平面布置、建筑和装修材料的选用、机电设备的选型与配置有许多限制条件外,还需要设置现代化的消防设施。随着我国经济建设的发展,各种高层建筑、大中型商业建筑、厂房不断涌现,对自动消防报警系统提出了更高更严的要求。为了早期发现和通报火灾,防止和减少火灾危害,保护人身和财产安全,保卫社会主义现代化建设,在现代化的工业民用建筑、宾馆、图书馆、科研和商业部门,火灾自动报警系统已成为必不可少的设施。电气工程设计、安装和使用是否正确不仅直接影响到建筑的消防安全而且也直接关系到各种消防设施能否真正发挥作用。因此,自动报警及消防联动的设计及设备选型显得尤为重要。

一、系统的组成

火灾自动报警与消防联动控制系统是建筑物防火综合监控系统,由火灾报警系统和消防联动控制系统组成。在实际工程应用中,系统的组成是多种多样的,设备量的多少、设备种类都会有很大的不同。但是,决定系统特征的是火灾自动报警和消防联动控制这两个系统的实现方式。

(一)火灾自动报警系统的组成

火灾自动报警系统一般由探测器、信号线路和自动报警装置三部分组成。

1、火灾探测器和手动报警按钮

火灾探测器是整个报警系统的检测元件。它的工作稳定性、可靠性和灵敏度等技术指标直接影响着整个消防系统的运行。

1)探测器的种类

火灾探测器的种类很多,大致有如下几种:

(1)离子感烟探测器。

(2)光电感烟探测器。

(3)感温探测器(包括定温式和差温式)。

(4)气体式探测器。

(5)红外线式探测器。

(6)紫外线式探测器。

2)常用的火灾探测器基本原理

(1)感烟火灾探测器

火灾发展过程大致可以分为初期阶段、发展阶段和衰减熄灭阶段。感烟火灾探测器的功能在于:在初燃生烟阶段,能自动发出火灾报警信号,以期将火扑灭在未成灾害之前。根据结构不同,感烟探测器可分为离子感烟探测器和光电感烟探测器。

①离子感烟探测器

离子式感烟探测器是由两个内含Am241放射源的串联室、场效应管及开关电路组成的。内电离室即补偿室,是密封的,烟不易进入;外电离室即检测室,是开孔的,烟能够顺利进入。在串联两个电离室的两端直接接入24V直流电源。当火灾发生时,烟雾进入检测电离室,Am241产生的α射线被阻挡,使其电离能力降低,因而电离电流减少,检测电离室空气的等效阻抗增加,而补偿电离室因无烟进入,电离室的阻抗保持不变,因此,引起施加在两个电离室两端分压比的变化,在检测电离室两端的电压增加量达到一定值时,开关电路动作、发出报警信号。

②光电感烟探测器

光电式感烟探测器由光源、光电元件和电子开关组成。利用光散射原理对火灾初期产生的烟雾进行探测,并及时发出报警信号。按照光源不同,可分为一般光电式、激光光电式、紫外光光电式和红外光光电式等4种。

a、一般光电式感烟探测器根据其结构特点可分为遮光型和散射型两种。

遮光型光电感烟探测器由一个光源(灯泡或发光二极管)和一个光电元件对应装在小暗室内构成。在无烟情况下,光源发出的光通过透镜聚成光束,照射到光电元件上,并将其转换成电信号,使整个电路维持在正常状态,不发出报警。当火灾发生有烟雾进入探测器,使光的传播特性改变,光强明显减弱,电路正常状态被破坏,则发出报警信号。

散射光电式感烟探测器的发光二极管和光电元件设置的位置不是对应的。光电元件设置在多孔的小暗室里。无烟雾时,光不能射到光电元件上,电路维持正常状态。而发生火灾时,有烟雾进入探测器,光通过烟雾粒子的反射或散射到达光电元件上,则光信号转换成电信号,经放大电路放大后,驱动自动报警装置发出报警信号。

b、激光式感烟探测器。由激光发射机(包括脉冲电源和激光发生器)和激光接收器(包括光电接收器、脉冲放大及报警)组成。它利用激光方向性强、亮度高及单色性和相干性好的特点。在无烟情况下,脉冲激光束射到光电接收器上,转换成电信号,报警器不发出报警。一旦激光束在发射过程中有烟雾遮挡而减弱到一定程度,使光电接收器信号显著减弱,探测器发出报警信号。在种类繁多的激光光源中,半导体激光器由于具有所需激发电压低、效率高、脉冲功率大、器件体积小、耐震、寿命长和价格低廉等优点而受到重视。

c、紫外光和红外光感烟探测器。它们具有灵敏度高、性能稳定、可靠、探测方位准确等优点,因而得到普遍重视,并成为目前火灾探测器的重要设备和发展方向。

光电式感烟探测器发展很快,种类不断增多,就其功能而言,它能实现早期火灾报警,除应用于大型建筑物内部外,还特别适用于电气火灾危险性较大的场所,如计算机房、仪器仪表室和电缆沟、隧道等处。

(2)感温火灾探测器

感温探测器按结构原理不同有双金属片型、膜盒型、热敏电子元件型等三种。

①双金属片型是应用两种不同膨胀系数的金属片作为敏感元件的,一般制成差温和定温两种形式,定温式是当环境温度上升达到设定温度时,定温部件立即动作,发出报警信号;差温式是当环境温度急剧上升,其温升速率(℃/min)达到或超过探测器规定的动作温升速率时,差温部件立即动作,发出报警信号。

②膜盒型探测器由波纹板组成一个气室,室内空气只能通过气塞螺钉的小孔与大气相通。一般情况下(指环境温升速率不大于1℃/min),气室受热,室内膨胀的气体可以通过气塞螺钉小孔泄漏到大气中去。当发生火灾时,温升速率急剧增加,气室内的气压增大,波纹板向上鼓起,推动弹性接触片,接通电接点,发出报警信号。

③电子感温探测器由两个阻值和温度特性相同的热敏电阻和电子开关线路组成,两个热敏电阻中一个可直接感受环境温度的变化,而另一个则封闭在一定热容量的小球内。当外界温度变化缓慢时,两个热敏电阻的阻值随温度变化基本相接近,开关电路不动作。火灾发生时,环境温度剧烈上升,两个热敏电阻阻值变化不一样,原来的稳定状态破坏,开关电路打开,发出报警信号。

3)火灾探测器的选择

(1)根据火灾的特点选择探测器

①火灾初期有阴燃阶段,产生大量的烟和少量热,很小或没有火焰辐射,应选用感烟探测器。

②火灾发展迅速,产生大量的热、烟和火焰辐射,可选用感烟探测器、感温探测器、火焰探测器或其组合。

③火灾发展迅速、有强烈的火焰辐射和少量烟和热、应选用火焰探测器。

④火灾形成特点不可预料,可进行模拟试验,根据试验结果选择探测器。

(2)根据安装场所环境特征选择探测器

①相对湿度长期大于95%,气流速度大于5m/s,有大量粉尘、水雾滞留,可能产生腐蚀性气体,在正常情况下有烟滞留,产生醇类、醚类、酮类等有机物质的场所,不宜选用离子感烟探测器。

②可能产生阴燃或者发生火灾不及早报警将造成重大损失的场所,不宜选用感温探测器;温度在0℃以下的场所,不宜选用定温探测器;正常情况下温度变化大的场所,不宜选用差温探测器。

③有下列情形的场所,不宜选用火焰探测器:

a、可能发生无焰火灾;

b、在火焰出现前有浓烟扩散;

c、探测器的镜头易被污染;

d、探测器的‘视线’易被遮挡;

e、探测器易被阳光或其他光源直接或间接照射;

f、在正常情况下,有明火作业以及X射线、弧光等影响。

高层民用建筑及探测器的灵敏度选择,应据探测器的性能及使用场所,正常情况下(无火警时)系统没有误报警为准进行选择。目前,国内高层建筑中,大部分使用光电感烟测器,只有在个别场所、厨房、发电机房、车库及有气体灭火装置的场所才用感温探测器。只用一种探测器,在联动的系统里易产生误动作,这将造成不必要的损失,无联动的系统里易误报。故应选用两种或两种以上种类探测器。他们是“与”的逻辑关系,当两种或两种以上探测器同时报警,联动装置才动作,这样才能确保不必要的损失

总之,探测器选择应根据实际环境情况选择合适的探测器,以达到及时、准确报警的目的。

4)手动报警按钮

报警区域内每个防火分区应至少设置一个手动火灾报警按钮,且从一个防火分区里的任何位置至最近一个手动火灾报警按钮的距离不应大于30m,并应设置在明显和便于操作的位置。手动报警按钮距地面1.5m。

2、自动报警装置

我国火灾自动报警装置的研究、生产和应用虽然起步较晚,但发展非常快,特别是最近几年,随着我国四化建设的迅速发展和消防工作的不断加强,火灾自动报警装置的生产和应用都有了较大的发展,生产厂家、产品种类和产量及应用单位都不断地增加。我国目前生产的火灾自动报警装置是包括报警显示、故障显示和发出控制指令的自动化成套装置。当接收到火灾探测器、手动报警按钮或其他触发器件发送来的火灾信号时,能发出声光报警信号,记录时间、自动打印火灾发生的时间、地点、并输出控制其他消防设备的指令信号,组成自动灭火系统。目前,生产、使用的自动报警装置,多采用多线制,分为区域报警控制器、集中报警控制器和智能型火灾报警控制器。

(1)区域报警控制器

区域报警器是一种由电子电路组成的自动报警和监视装置。它联结一个区域内的所有火灾探测器,准确、及时的进行火灾自动报警。因此,每台区域报警器和所管辖区域内的火灾探测器经正确连接后,就能构成完整、独立的自动火灾报警装置。

区域报警器的基本原理如下:

①接收探测器或手动报警按钮发出的火灾信号,以声光的形式进行报警;

②电子钟可以记忆首次发生火灾的时间;

③可以带动若干对继电器触点给出适当外接功能;可

④以配置备用直流电源,当市电断电时,直流备用电便自动投入;

⑤具有自检功能,当区域报警器与探测器之间有接触不良或断线时,报警器发出开路或短路的故障声、光报警信号并自动显示故障部位;

⑥具有“火警优先”功能,各类报警信号至区域报警器,经信号选择电路处理后,进行火灾、短路、开路判断,报警器首先发出火灾报警信号,指示具体着火部位,发出火警音响,记忆火警信号、开路、短路故障信号;

⑦通过通讯接口电路将三类信号送至集中报警控制器。区域报警控制器将接收到的探测器火警信号进行“与”“或”逻辑组合,控制继电器动用联动外部设备,如排烟阀、送风阀、防火门等。

目前国内各厂家生产的区域报警器的容量即监控部位多少不同。不同型号的区域报警器需与不同型号的探测器相连接。以西安262厂生产的JB-QB-2700/088A系列区域报警器为例,它有壁挂式、柜式两种,最大容量为256路,一路是一个部位号,一个探测器占一个部位号。

在工程设计中,选择区域报警控制器的容量应大于该区域的探测器数。如一建筑物以一层为一个区,共24个房间,每个房间一个探测器,共24个,则应选择30路区域报警控制器。若48个房间,则应选择50回路区域报警控制器。

(2)集中报警控制器

集中报警控制器的基本原理如下:

①把若干个区域报警器连接起来,组成一个系统,集中管理;

②可以巡回检测相连接的各区域报警器有无火灾信号或故障信号,并能及时指示火灾区部位和故障区域,同时发出声、光报警信号;

③其他功能、原理同区域报警控制器。

在系统中如只有探测器和集中报警器是不能工作的。因为集中报警器的巡检功能、火灾报警功能、自检功能等都是与区域报警器构成系统后才具备的。所以,只有区域报警器与集中报警器配合使用,才能构成自动火灾报警系统。

集中报警系统适用于大型、复杂工程。集中报警器最大容量可接40台区域报警器。

(3)智能型火灾报警控制器

智能型火灾报警控制器的基本原理如下:

①采用模拟量探测器,能对外界非火灾因素,诸如温度、湿度和灰尘等影响实施自动补偿,从而在各种不同使用条件下为解决无灾误报和准确报警奠定了技术基础;

②报警控制器采用全总线计算机通信技术,实现总线报警和总线联动控制,减少了控制输出与执行机构之间的长距离管线;

③采用大容量的控制矩阵和交叉查寻程序软件包,以软件编程代替硬件组合,提高了消防联动的灵活性和可修改性。

262厂生产的NA1000系列火灾报警控制器就属此类形式。

(4)自动报警装置的选择

火灾自动报警系统中,所选用的火灾报警装置应具有以下基本功能:

①能为火灾探测器供电;

②能接收来自火灾探测器或手动报警按钮的报警信号;

③能检测并发出系统本身的故障信号;

④能检查火灾报警器的报警功能;

⑤具有电源转换功能。

火灾报警控制器的选择,一般考虑下列因素:

①火灾探测器、火灾报警器宜选用同一厂家的配套产品;

②报警系统所需回路数量;

③是否需要自动消防联动控制功能;

④安装位置和安装方式等。

(二)消防联动控制系统的组成

消防联动控制范围很广,据实际工程的大小、等级高低的不同各异。联动控制设备有消火栓、水灭火、气体灭火、防火门、防火卷帘、排风机、空调设施、防火阀、排烟阀、电梯、诱导灯、事故灯、警铃、切断工作电源等。

二、系统选择

火灾自动报警系统的保护对象是建筑物或建筑物的一部分。不同的建筑物,其使用性质、重要程度、火灾危险性、建筑结构形式、耐火等级、分布状况、环境条件以及管理形式等各不相同。在设计中应仔细研究这些情况,根据不同的情况选择不同的火灾自动报警系统。

(一)系统确定

火灾自动报警系统是触发器件、火灾报警装置、火灾警报装置以及具有其他辅助功能的装置组成的火灾报警系统,是人们为了早期发现通报火灾、并及时采取有效措施,控制和扑灭火灾而设置在建筑中或其他场所的一种自动消防设施,是人们同火灾作斗争的有力工具。

报警系统的确定一般是整个系统中报警部位总点数,包括探测器数量、手动报警按钮数量及消火栓、自动门、自动阀、行程开关等总数量来确定。也就是说与建筑物大小、等级、使用功能有关。火灾自动报警系统的组成形式多种多样,特别是近年来,科研、设计单位与制造厂家联合开发了一些新型的火灾自动报警系统,如智能型、全总线型等,但在工程应用中,采用最广泛的是如下三种基本形式:区域报警系统、集中报警系统、控制中心报警系统。

1、区域报警系统

该系统一个报警区域宜设置一台区域报警控制器,系统中区域报警控制器不应超过3台,区域报警控制器宜设于有人值班的房间、场所。

系统的组成见下图。

2、集中报警系统

报警区域较多、区域报警控制器超过3台时,采用集中报警系统。集中报警系统至少有一台集中报警控制器和两台以上区域报警控制器集中报警控制器应设置有人值班的专用房间或消防班室内。

系统的组成见下图。

3、控制中心报警系统

工程建筑规模大、保护对象重要、设有消防控制设备和专用消防控制室时,采用控制中心报警系统。

系统的组成见下图。

以上各系统布线方式与探测器、报警器种类有关。采用二线制(即区域报警器到每一个探头为二线)。区域报警器单独使用为N+1式,到集中报警器为N+N/8+1+3+1式,设计、施工比较方便,而且降低造价。

除以上系统外,国内各厂家又相继推出总线制报警器。不同厂家总线制系统各异,但共同点都是总线制、地址编码形式。

(1)二总线制集中报警系统。区域报警器到探测器的线路传输只需二条总线,每一部位的控制器都有自己的编号,即一个部位一个编址单元。如JB-QB-50-2700/076型为例,它采用了先进的单片机技术,CPU主机将不断地向各编址单元发码。当编址单元接收到主机发来的信号后,加以判断:如果编址单元的码与主机的发码相同,该编址单元响应。主机接收到编址单元返回的地址及状态、信号,进行判断处理:如果编址单元正常,主机将继续向下巡检;经判断如果是故障信号,将发出故障区域声、光报警信号。发生火灾时,经主机确认后,火警信号被记忆,同时发出火灾区域声、光报警信号。

在实际工程应用中,如果用一台区域报警器控制一层楼,在二总线上可接50个编址单元;控制二层,每层二总线上可接35个编址单元;控制三层,每层二总线上可接25个编址单元。076型区域报警器的扩展型最多可设置200个编址单元。

(2)三总线制集中报警系统。该报警器是由单片机8031为中央控制单元,计算机管理的三线制报警器。三总线制系统通过三总线与被控的各区域报警器相联。三总线制在工程应用中有两种形式:楼层复示器——集中报警器系统、区域报警器——集中报警器系统。

①楼层复示器——集中报警器系统

楼层复示器可以对编址探测器发码、收码,显示本层的报警部位,具有断线故障自动报警功能。该系统适用于每层不超过32个报警部位,楼层无值班点,首层设有消防总值班室的建筑。

②区域报警器——集中报警器系统

由区域报警器和标准集中报警器组成的两级管理总线制火灾报警系统,适用于每层报警部位多少不一,并设有楼层服务台的中型宾馆等建筑物。

采用总线制报警系统布线简单,设计、施工方便,与其他报警系统相比多一些接口元件。

(二)消防联动控制系统

消防联动控制系统有无联动、现场联动、集中联动等几种形式。

在实际工程中,报警系统与消防联动系统的配合有以下几种形式:

1、区域——集中报警、横向联动控制系统。

此系统每层有一个复合区域报警控制器,他具有火灾自动报警功能,能接收一些设备的报警信号,如手动报警按钮、水流指示器、防火阀等,联动控制一些消防设备,如防火门、卷帘门、排烟阀等,并向集中报警器发送报警信号及联动设备动作的回授信号。此系统主要适用于高级宾馆建筑,每层或每区有服务人员值班,全楼有一个消防控制中心,有专门消防人员值班。

2、区域——集中报警、纵向联动控制系统。

此系统主要适用于高层“火柴盒”式宾馆建筑。这类建筑物标准层多,报警区域划分比较规则,每层有服务人员值班,整个建筑物设置一个消防控制中心。

3、大区域报警、纵向联动控制系统。

此系统主要适用于没有标准层的办公大楼,如情报中心、图书馆、档案馆等。这类建筑物的每层没有服务人员值班,不宜设区域报警器,而在消防中心设置大区域报警器,有专门消防人员值班。

4、区域——集中报警、分散控制系统。

此系统在联动设备的现场安装有“控制盒”,以实现设备的就地控制,而设备动作的回授信号送到消防中心。消防中心的值班人员也可以手动操作联动设备。此系统主要适用于中、小型高层建筑及房间面积大的场所。

此外,还有自动报警和消防控制于一体的灭火装置系统,如FJ-2714自动灭火装置。此系统主要适用于计算机房、发电机房、贵重物品仓库、档案库、书库等场所的火灾自动报警及自动灭火。气体灭火、药剂灭火具有能力强、效率高、对金属腐蚀性小、不导电、长期存储不变质、不污损灭火对象等优点,但造价高。

篇2

在温度控制过程中,单一的定值开关控制方式会产生较大的温度迟滞现象,对于加热箱等干燥设备的干燥效果差、干燥品质低;但是在普通的干燥设备中,单纯采用PID控制方式会使控制系统变得复杂,对于硬件的要求程度高,在持续高温环境下精度也随之降低,故障率高。为了解决这一问题,本文设计一种单片机温度控制系统,该系统使用两种功率大小不同的加热方式。加热元件使用红外加热管,功率大的加热管起主要的加热作用,正常工作时处于启动状态。功率较小的加热管起辅助加热作用,在测量温度高于目标温度时立即停止加热,当温度低于目标温度时开启加热;但当温度高于目标温度上限一定值时,主加热管也停止工作,同时引风机开启,辅助降温。对于一般的电加热干燥设备而言,此方案能够满足实际生产的需要,并且温度延迟效果低,节能效果显著。

2系统硬件电路设计

2.1系统主结构设计

该温度控制系统由主控制系统、温度采集模块、温度显示模块、温度动态控制系统、报警模块和按键控制系统组成。

2.2单片机主控系统

作为温度控制系统的核心部分,单片机承载着对温度信息的处理、按键的扫描识别、温度动态控制系统的协调、输出显示温度和报警的任务。本文采用的AT89C52单片机是美国ATMEL公司生产的低电压、高性能CMOS8位单片机。其内部有8k字节可重擦写Flash闪存,成本低廉,兼容MCS-51系列的所有指令,程序语言丰富;与AT89C51相比,存储空间更大,中断源更多,方便后期其他模块的添加;技术成熟,因此在自动控制等领域被广泛采用。AT89C52单片机主控制系统与其他模块连接原理图如图2所示。P1.0~P1.4口为键盘输入端口,通过对应按键对目标温度的上下限进行设定。数字温度传感器总线与单片机的P1.7口相接,经过单片机处理之后,测得的温度输出至P0口,通过LCD1602显示出来。温度动态控制信号通过单片机P2.4~P2.6口传输。加热管和散热风扇采用的是220V的交流电,温度控制口接相应控制电路的继电器,通过继电器控制加热、散热部分的工作。

2.3温度采集模块

DS18B20是由美国DALLAS公司生产的数字温度传感器,它通过单总线协议依靠一个单线端口进行通讯。其仅占用一个单片机的I/O口,无需其他任何外部件,把环境温度直接转化成数字信号,以数字码方式串行输出,从而简化了传感器和微处理器之间的接口。该传感器可以单个于单片机连接实现温度采集功能,在需要采集多点温度数据时,只需将多片DS18B20同时挂在一条总线上,由软件对每个温度传感器的ROM编码进行识别即可,具有成本低、结构简单、供电方式多样、方便扩展和可靠性高等优点。

2.4温度动态控制系统

温度动态控制系统主要由加热管、引风机、继电器等构成。单片机的P2.4口接主加热管的控制继电器,通过输出高低电平来实现主加热管的启动和停止;单片机的P2.5口与控制调温加热管的继电器相连;降温风机控制继电器控制端和高温报警电路,与单片机的P2.6口相连。

3系统软件设计

3.1主程序流程图

系统开机启动后,通过温度控制按键设定干燥温度范围;由传感器DS18B20采集实时温度,通过控制系统的对比给出控制信号,同时定时对按键进行扫描,以随时调整目标温度范围。

3.2温度数据读写子程序设计

由于DS18B20单总线通讯方式的特殊性,传感器读写温度数据具有严格的时序要求。工作时序包括初始化、读时序和写时序。单片机的命令和温度数据的传输都从执行单片机写时序的指令时开始,对于单片机需要DS18B20送回数据,要在写时序命令执行之后再启动写时序指令才能完成对数据的接收。总线通讯方式使得硬件电路的连接变得简单,但也使得程序部分变得复杂。本文采用的是一个传感器,因此在串口通讯时不需要识别传感器的序列号,程序中写入跳过读ROM序列号步骤。

3.3按键扫描子程序

由于不同的加热干燥对象对温度的要求不同,加热的温度控制部分要能够方便、快捷地设置温度上、下限。在干燥物的不同阶段,干燥的温度有所不同,在干燥过程中温度的范围需要做出调整。这就要求温度的上、下限设置在干燥的过程中也能够执行。因此,单片机在执行温度采集、显示和控制的同时,也要时刻监视按键是否被按下,对温度设定进行调整。针对这一问题,在程序中加入一个按键扫描子程序,定期执行按键的扫描功能,同时也要有中断子程序保持设定完温度之后单片机可以继续刚才未完成的工作。因此,按键扫描程序设计的思路是:在开机启动阶段,通过按键对控制温度范围进行初设定;在工作过程中,单片机定期对按键进行扫描,判断是否有按键被按下,如果有按键被按下,则加入一个外部中断,单片机转而执行干燥温度范围调整指令;待任务完成之后,继续返回执行温度控制命令。

4proteus仿真结果

温度控制系统硬件电路设计部分在proteus软件上完成,当C语言程序在keil软件上编译调试成功之后,导入单片机进行系统总调试。温度采集模块:DS18B20的温度实时数据能够有效地显示出来;键盘控制模块,相应按键按下之后,程序立即响应指定的动作指令;温度控制模块:采集的温度低于设定低温下限时加热管工作,高于温度上限时停止加热并且风扇开启降温;报警模块同样工作正常。调试后的温度显示结果如图4所示。LT、HT分别表示设定的温度下限与上限,1602的第2行显示实时温度。

5结论

1)功率不同的加热管承担不同的功能,大功率红外加热管起主要加热功能,小功率加热管控温,使得温度滞后幅度变小,减少能源浪费,节电效果显著。

篇3

1.1包装线码垛吊具结构

近年来,为了迎合高速包装生产线的发展需求,吊具结构以适应包装线产品的码垛方式、排列方式和低质量为设计准则,各种方案层出不穷[2]。本文所设计的电路控制系统所应用的码垛吊具。吊具主要工作过程为当产品被推送到指定位置后两侧气缸夹紧,压板电机启动,带动压板夹紧,吊具移动到码垛位置后,主轴电机启动,带动卷帘滚子两侧分开,产品下落到指定位置后,气缸、压板和卷帘滚子回到初始位置。

1.2包装线码垛吊具控制要求

包装线码垛吊具和其工作过程,控制系统的控制执行元件分为主轴电机、压板电机和侧夹紧气缸。在多数包装生产线中,为了节省生产空间,包装运输线和码垛时候的实垛运输线1—包边;2—主梁;3—侧板;4—夹紧气缸;5—输送链;6—卷帘滚子;7—细梁;8—主轴电机;9—压板电机;10—压板图1包装线码垛吊具结构是两条运行方向相反的平行线,码垛机器人将码垛层旋转90°,从实垛线转移到运输线垛架之上。综合吊具结构和码垛运输方式,吊具控制时序为:码垛过程,码垛产品到达指定位置压板箱电机夹紧侧夹紧气缸夹紧码垛机器人码垛。卸垛过程,码垛机器人到达指定位置主轴电机打开卷帘侧夹紧气缸松开压板箱电机松开主轴电机关闭卷帘。

2包装线码垛吊具控制系统硬件设计

控制系统设计主要包含硬件设计和软件设计两部分,硬件设计分为核心模块、控制执行模块、信号采集模块和信号转换隔离模块。软件设计主要是通过编程的手段控制硬件部分,使得执行部件按照码垛生产线的实际需求运作。

2.1核心模块设计

核心模块为单片机微处理器,其是执行元件的控制中心,本文所用的STC公司生产的STC89C52单片机[3],采用上电复位方式,晶振频率为11.0592Hz。单片机的工作电平为5V,电源供电模块既要满足单片机的工作电压需求,同时也要满足后续电路电压需求。电源供电模块将220V交流电转化为24V直流电,再通过电源转换芯片降低电压。供电模块由变压器、全桥整流电路、滤波电路和直流稳压电路组成,。变压器输入端经过熔断器连接供电电源,变压器后接由4个二极管组成的桥式整流电路,整流后得到一个电压波动很大的直流电源,再通过电容滤波电路和稳压电路得到24V直流电。本文选用LM7805三端稳压器,能够稳定输出24V直流电,内置过载和过流保护电路,且带有散热片保护。信号采集端采用较高的输送电压,能够保证采集的可靠性,本文采用电源转换芯片,使用电源分步转换的方式防止芯片过热,并在转换过程中考虑到外部的稳压滤波,保证了电源的稳定性。电源转换芯片为M20-24S12和M20-12S5,分别将电源电压由24V转换为12V及将12V转换为5V。

2.2开关信号采集电路设计

在吊具工作过程中,单纯地靠时间控制各个执行元件误差较大,不能达到工作要求,因此将各个执行部件的触发通过行程开关来实现,单片机检测开关信号,然后控制执行元件。由于采用低电平实现控制指令要比高电平好得多[4],因而采集时采用高电平,在单片机引脚接口处转换成TTL电平,且高电平和TTL电平之间采用光耦隔离。

2.3执行电路控制设计

电机控制分为主轴电机控制和压板箱电机控制,硬件电路部分主要是为了实现电机的正反转控制。本文采用固态交流继电器来实现交流电机的正反转,固态交流继电器可以与单片机直接相连,单片机的各引脚输出高低不同的电平,选择性地链接各个固态继电器,从而达到控制电机正反转的目的。气缸控制电路主要实现对两个侧夹紧气缸的控制,侧夹紧气缸的控制又可以归结为对电磁阀的控制,其控制电路如图7所示。

3包装线码垛吊具控制系统软件设计

软件所要实现的功能是让单片机接受信号采集电路所采集的开关信号,同时发出指令对两台电机和电磁阀进行控制。包装线码垛过程分为码垛过程和卸垛过程,本文采用C语言编程。

4结束语

篇4

供电系统设置5台电源,每台电源通过2台切换柜与负载连接,共计15台设备。在电源发生故障时,切换柜负责工作电源、备用电源和检修电源的切换,保证主机的连续供电,保障主机的长期稳定运行。切换柜除担负切换电源工作外,还负责启停电源以及投切补偿电容和短接(消除反电动势)。

2网络结构

网络底层为DP从站,由15台设备主控制器PLCCPU模块组成,通过PLC扩展模块采集设备内供电参数信号和部件状态信号,由PLCCPU模块进行转换处理后向主站发送。网络中间层为DP主站。主站通过1个PLCCPU模块与15个从站CPU模块组成1主15从的网络结构。主站不仅收集所有从站上传的数据,还将这些数据通过网络接口上传至供电监控系统。网络上层为供电监控系统。利用主站预留的网络Profinet接口,监控系统通过网络交换机以工业以太网形式进行供电参数的采集。

3硬件选型

根据西门子300系列PLC在工业的应用情况,其稳定性和可靠性较高,通讯及数据处理能力强大,适合复杂的逻辑控制设计,满足本文通讯及切换的控制。从站选用西门子CPU313C-2DP模块,该CPU自带1个DP接口及32点DI/DO通道。作为DP从站具备直接数据交换功能,可实现从站之间的通讯功能。系统主站选用西门子314-2PN/DP,该CPU包括1个DP接口和2个Profinet网络接口,主站DP接口与从站DP接口通过DP插头并行连接,形成1主15从通讯网络。通过Profinet网络接口可将主站数据上传至供电监控系统。作为DP主站最大数据输入量为2003个字节,根据从站上传数据量的统计,主站满足主从通讯运行要求。314C-2PN/DP最大数据输出量为2010个字节。

4直接数据通信硬件设置

从站直接数据通信根据供电系统电源与切换柜连接关系进行硬件组态,发送从站地址实际为该从站主从通讯上传数据所设定的起始地址,组态时只需设定接收从站地址,并根据数据量规定数据长度。直接数据通信只需在接收从站进行硬件组态。按照供电系统控制方式,电源与切换柜之间联络信号为:启动信号(来自切换柜)、启动完成信号(来自电源)、总故障信号(来自电源)。因此任意1台电源与1台切换柜通讯实际接收和发送联络控制信号分别为1个字节,本次通讯设计1个工作电源从站向1个工作切换柜从站均发送32个字节数据,1个工作切换柜从站向1个工作电源从站发送32个字节数据,1个切换柜从站向1个检修电源从站发送16个字节数据,1个电源从站向1个检修切换柜从站发送40个字节数据。直接数据通信只需在接收站从站进行硬件组态。

5直接数据通信的系统设计

因为直接数据通信中发送从站地址实际是主从通讯发送从站通信区的发送起始地址,因此只需在接收从站进行程序的编写。数据块(DB):根据不同的发送从站在接收从站建立相应接收数据块,数据块大小为32个字节,存放相应接收的数据。功能块(FC):调用系统功能块SFC14,将接收区数据解包到指定数据块中。发送从站除发送控制信号外,还向接收从站发送模拟量信号。组织块(OB1):调用功能块(FC)。

6结语

篇5

控制增稳的控制律设计,首先要满足稳定性要求。设计实践经验表明,在线性设计阶段,应力求留出足够的幅值稳定裕量和相位裕量;从而使非线性设计和实际系统交付时,得以满足6分贝幅值裕量和45°相位裕量的指标要求。具体设计指标如下。滚转轴操纵具备滚转角速度控制/倾斜角姿态保持响应类型,并具有自动转弯协调能力。偏航角操纵具备常规的侧滑角控制响应类型,而由侧滑引起的滚转趋势可以通过副翼调节自动防御。荷兰滚阻尼比大于0.5,滚转角速度响应零点和荷兰滚极点尽量对消,以提高乘坐品质。滚转模态半衰期足够小。

1.1基于滚转角速率反馈副翼的控制方案

滚转角速率反馈的主要目的是减少飞机滚转性能随飞行条件的变化。可以在提高动稳定性的同时,改善以致消除滚转角速率振荡引起的倾斜角振荡,并在全包线内获得良好的横航向控制增稳能。

1.2基于侧向过载或侧滑角反馈控制方案

引入侧向过载或侧滑角反馈有利于提高荷兰滚模态频率。同时引入偏航角速率和侧向过载反馈不仅可以补偿航向静安定度,而且有助于减小滚转机动和侧向扰动时的侧向过载和侧滑角。因此,在偏航通道和滚转通道中分别引入滚转角速率反馈和偏航角速率反馈可以增加相应通道的阻尼比,引入侧滑角或侧向过载反馈则可以增加系统静稳定性,但同样会减小系统阻尼。以上三种反馈控制方案的优、缺点总结于表1中。对于横侧向增稳来说,单独引入角速率反馈、侧向过载或侧滑角反馈不会使系统有较理想的特性。由于滚转和偏航运动的耦合关系,通常采用在副翼通道中引入滚转角速率、侧滑角、侧向过载反馈、在方向舵通道中引入偏航角速率、侧向过载、侧滑角反馈的综合增稳控制方案,如图1所示。

(1)在滚转通道中引入滚转角速率反馈可以提高飞机的滚转阻尼;在偏航通道中引入偏航角速率的负反馈,增大了荷兰滚的阻尼比,实现了偏航阻尼的功能,从而改善了高空飞行时的航向阻尼和荷兰滚阻尼特性。

(2)引入与副翼偏转同极性的正反馈比例信号,可以减小侧滑角,以实现自动协调转弯。

(3)在偏航通道中引入侧滑角的负反馈,可以增大航向运动的固有频率,起到偏航增稳系统的功能。

(4)在副翼通道引入侧滑角或侧向过载信号,使副翼产生滚转力矩以减小飞机过大的横向静稳定性导数,来改善飞机的滚摆比。

2民用飞机横航向增稳系统设计与分析

对自然飞机的稳定性仿真可知,原系统滚转阻尼、荷兰滚阻尼、航向静稳定性都不够,荷兰滚模态与滚转模态之间存在严重耦合,造成系统响应振荡剧烈,因此,为使系统具有较好的动态特性和稳定性,需要进行增稳控制。除了在航向通道中没有引入与副翼偏转同极性的正反馈比例信号,本文采用了图1所示的增稳系统架构来进行控制律设计。常规控制律设计方法主要采用经典单回路频域或根轨迹方法设计。当随着民用飞机结构变得更加复杂,各运动模态之间的耦合更加密切,控制系统变得更加复杂,经常为多输入多输出系统,这些都使得常规的单回路设计方法难以完成相应的飞行控制设计。因此现代设计方法逐渐被应用到飞行控制系统设计中,如最优二次型设计方法、LQG/LTR方法、特征结构配置方法、非线性系统动态逆设计方法等。本文采用最优二次型设计方法对横航向增稳控制律进行设计,该方法主要优点在于为了使性能代价函数最小化,所有控制增益能同时获得。

3结语

篇6

1.1远程监控需求分析

1)具有远程控制休眠、唤醒地震仪功能。地震仪在放炮之前唤醒,在停止施工期间休眠,地震仪可有选择的进行采集工作,这样大大节省了数据存储空间,降低了采集系统的功耗,延长了仪器的待机时间。

2)可查询如CF卡剩余空间,内置电池电量,位置经纬度,采集站状态等信息。对剩余空间、电池电量不足,采集站状态错误且不能远程修复的采集站及时安排工作人员更换。提高野外勘探作业的工作效率和灵活性,增强采集系统数据的可靠性。对读取回来的地震仪经纬度信息在上位机端进一步处理,可用于研发地震仪排列位置监测及远程防盗系统,保障野外勘探仪器的安全性。

3)远程控制地震仪自检功能,并能回收自检数据。地震仪系统自检内容包括检波器内阻、噪声、隔离度测试等,一次完整的自检过程通常需要2-5分钟,因此无缆存储式地震数据采集系统一般只在开机时自检一次,之后则无自检过程,因此采集站的部分工作状态,如检波器连接状态等仅仅反映了系统开机时的状态,不能作为现场质量监控的标准。法国UNITE系统由于没有远程监控功能,在自存储模式下通常是定时自检,自检时间为5分钟,在系统自检期间,地震仪停止其它一切工作,这样就减弱了地震仪野外勘探作业工作的灵活性。

4)有一定的远程修复及设置功能。如配置系统采样率、增益,系统复位等,出工前对地震仪的工作参数进行统一配置,布设到野外后,根据自检结果对有问题的地震仪进行参数设置和系统复位等操作,远程修复和解决问题,节省人力物力,提高无缆地震仪智能化控制程度。

1.2无线通信技术的选择

目前成熟的无线通信技术较多,如Wi-Fi、Zigbee、Bluetooth、GPRS、3G等,这些通信技术被广泛应用到生活及工业生产中,北斗短报文是近几年才发展起来的一种远距离通信技术,表1列出了应用以上几种通信技术典型模块的最大数据传输速率、传输距离、通信频带的参数值。

1.2.1Wi-Fi

Wi-Fi是IEEE802.11系列标准的统称,其传输速率快、安全性高,可集成到已有的宽带网络中,配合路由器组建有线、无线混合网络快捷方便。地震勘探仪器中Wi-Fi常用的组网模式有两种,即AP(无线访问接入点)模式和AdHoc(点对点)模式,在野外我们可以用架设AP基站的方式来拓扑无线局域网络的覆盖面积[3],而AP之间可以通过网桥设备连接,从而完成更大面积的网络覆盖范围,然而在实际勘探应用中AP基站和网桥设备架设困难,尤其应用于大道距的二维或者三维勘探工作中,需要更多的基站与网桥,较大的影响了施工进度。AdHoc是一种无中心、自组织、多跳移动通信网络,结点间通过分层的网络协议和分布式算法相互协调,实现了网络的自动组织和数据的相互交换,这种模式下地震仪可将其采集数据及工作状态信息接力式的传输回控制中心,美国WirelessSeismic公司的RT2无线遥测系统就是应用了这种多跳的数据传输方式,两个节点间通信距离的范围约为25~70m,然而这种工作模式会导致越靠近中央记录系统的节点积累的数据量越大,且在线性的网络拓扑结构中,数据传输的稳定性受通信距离与地形环境影响较大,数据通信的质量和速率难以得到有效的保证。

1.2.2GPRS、3G移动网络通信技术

移动网络通信技术已经成为人们工作生活中不可或缺的重要组成部分。该技术具有抗干扰能力强、传输速率高、网络覆盖面广、接入时间短、建设成本低等特点[10],在地震勘探中可被应用于移动网络信号覆盖范围内的地震台网远程监控,它提高了远程仪器维护的工作效率[11]。然而在地震勘探大道距(道距大于1km)地震深反射、折射探测作业中,由于其基站的信号覆盖范围有限,对于远程监控地震采集站工作存在一定的局限性。

1.2.3北斗短报文通信技术

北斗卫星作为北斗通信技术的中继,转发来自地面用户端的定位及通信请求,地面中心站控制端接收到请求后,解析消息后将解算出的位置信息传回用户端或将接收到的接收信息通过北斗卫星转发至另一地面用户端,达到卫星定位及通信的目的。北斗短报文通信技术在应用时具有信号覆盖范围广、安全、可靠性高和控制简单等特点,用户一次最大可以传送120个汉字的报文信息,而民用信息发送的频度通常为30-60s,接收信息则没有频度的要求,对于地震仪基本的控制命令收发及状态信息的传送,北斗短报文通信技术可以满足无缆地震仪基本状态监控数据传送的要求。

1.3系统结构设计

基于北斗的无缆存储式地震仪远程监控系统工作,系统由主控中心、北斗卫星、采集单元三部分组成,主控中心通过北斗指挥机完成对采集单元远程的控制及状态数据的回收工作,并对接收到的数据进行管理和存储。采集单元完成地震数据采集的同时,通过北斗通信模块可接收来自主控中心端的控制命令,并反馈执行结果信息。北斗卫星是控制命令及反馈信息传递的媒介。

2采集站单元设计

2.1硬件设计

地震检波器将地面振动信号转化为模拟电信号传输到FPGA数据采集单元,由FPGA完成数据的采集、缓存,并提供必要的测试、控制功能。AT91RM9200作为中央处理器,读取FPGA中存储的数据,并转存到CF存储卡中;通过SPI接口与Wi-Fi模块连接,实现近距离的无线数据传输功能;通过UART与GPS、北斗模块连接,为采集站提供高精度的授时、定位、远程通信功能,完成数据同步采集、位置信息获取、工作质量远程监控。采集站也可通过以太网接口与电脑终端连接,完成数据的回收及参数设置、检查工作。采集站在野外应用时采用太阳能和内置锂电池两种供电模式,电源智能管理系统会根据采集站当前工作的天气条件转换供电模式,保证仪器可靠、稳定的工作[12]。

2.2软件设计

采集单元的主控制器ARM9运行嵌入式Linux内核版本为2.6.31的操作系统,北斗通信进程完成对北斗模块接收信息的解析与执行,及执行结果的反馈。北斗短报文通信系统包括指挥机与用户机,指挥机是北斗短报文通信系统的中央控制器,它相当于一个服务器,负责接收来自多个用户机的报文,并可以控制多台用户机来完成相应的指令。用户机是北斗短报文通信系统的子节点,相当于一个客户端,负责将节点工作信息上传到指挥机,和接收来自指挥机的命令。北斗用户机在接收到指挥机传来的信息时,用户机会通过UART将信息内容上传给下位机系统,下位机会根据其数据传输的格式将信息进行解析,并根据信息包含的指令内容来执行相应的任务。

3上位机服务器软件设计及测试

主控中心由上位机、打印机、存储器、发电设备、北斗指挥机组成。上位机与北斗指挥机完成命令的选择与打包发送,及对采集站反馈信息的接收、显示、存储和打印处理。发电设备输出220V的交流电压,为上位机及其外设供电。此外上位机服务器软件通过对GoogleEarthAPI接口的调用,实现了对野外采集站排列位置的远程监测,为微动勘探实验中按两个嵌套式三角形方式排列的采集站传回的GPS位置信息在GoogleEarth中的显示。操作人员可根据地图显示软件中采集站的排列位置了解施工进度,获取采集站排列班报,完成布站人员调度等工作。为了了解远程监控系统的性能及数据传输丢包、误码情况,设计如下测试实验:将7台内置有北斗通信模块的采集站接好检波器放置在室外采集,由主控中心完成与各个采集站间的数据包收发,采用60s一次通讯频度,数据包长度为200字节,从500个样本数据中任选7个,分别用于七个站的通讯测试,主控中心将样本数据依次发给各个子站,并重复500次,子站收到数据包后向主控中心返回相同的样本数据。主控中心计算从开始发包到收包完成的时间间隔作为通信的延时,主控中心与采集站分别记录通信时丢包数,并根据与标准样本数据对比的结果记录错包数。

4结论

篇7

关键词:PID控制;流量;PM2.5;编码;解码;

中图分类号:S611 文献标识码: A

The design of the winter indoor temperature control system PID control theory and the stepping motor based on

HanLiang

(Heilongjiang province atmospheric detection securitycenter, Harbin, 150030)

Abstract: In the north of China, winter heating technology usually adopts the centralized heating and users can not control temperature by themselves. As a result, indoor temperature is too high which results in a serious waste of resources. The design adopts PID control technology and uses a step motor as the actuator. The design can change the flow of hot water or gas in pipes by controlling valves according to the real-time measurement of the indoor temperature. In this way, indoor temperature can be controlled. People will live in a more comfortable environment. At the same time, energy is saved.

key words:PID control; flow; PM2.5; encoding; decoding;

引言

我国北方属于典型的温带大陆性气候,冬季寒冷干燥。目前为了改善室内温度环境,我国北方城市普遍采用集中供暖[1]。各市均建有大规模的地下暖气管道网,由政府指定的供暖公司负责运营。集中供暖有着较为明显的好处:资源利用率高,平均成本较低,供暖效果好。但是,也存在不少缺点:一是无论白天还是黑夜,不管用户是否需要,暖气始终全天供热;二是用户没有办法自主调节室内温度的高低,造成室内温度过高,空气流通不好。居民非常容易出现皮肤发紧,口唇干燥、咽部发痒、咳嗽、流鼻血等“暖气病”。用户为了降低温度,只能打开窗户散热,使宝贵的能源白白浪费了。近年来,我国北方地区冬季雾霾频发,pm2.5频频爆表,燃烧煤炭作为集中供暖的主要手段,成为罪魁祸首,成为众矢之的。如何才能在不降低冬季室内生活的舒适度的前提下,实现节能降耗的目的呢?

本设计采用步进电动机来控制阀门的开度,进而调节暖气管道内水或气的流量,实现了控制室内温度的目的,从而增强了居民室内生活的舒适度,为节能降耗做出了巨大贡献。

一、系统设计方案

本系统由两个模块组成,一个是温度设置及测量模块,一个是驱动模块,两个模块在物理上相互分立,使用时可以将温度和测量模块放到远离暖气片的地方,保证温度测量的准确性。驱动模块直接到暖气管道上控制暖气的流量。两个模块之间通过红外遥控发射/接收芯片PT2262/2272传递控制信息。温度设置及测量模块又分为键盘输入、温度测量、温度显示三个单元。人们可以通过键盘设定自己需要的温度,温度的测量采用数字温度传感器18B20,18B20将采集到的温度信号以串行数据的形式传递给单片机AT89C51,经过处理后,在数码管上显示当前测量的温度。同时,AT89C51把实时测量的温度和用户预先设定的温度比较和分析,得出调整指令。通过红外遥控发射/接收芯片PT2262/2272将调整指令传递给驱动模块的单片机,由驱动模块单片机控制步进电动机完成阀门开度的调整,实现改变暖气管道内热水流量的目的。系统框图如图1所示。

图1 系统框图

二、温度传感器18B20

18B20是美国Dallas 半导体公司创造的数字化温度传感器。该温度传感器外形如一只三极管,温度感应元件及转换电路集成在一个芯片上。现场温度直接转换成二进制数字表示的温度,存储在18B20内的存储器里,18B20和单片机之间仅需要一条数据线连接,单片机可以通过数据线向18B20写入或读取数据,而且可以通过数据线提供18B20正常工作所需要的电源。每个18B20都有不同的序列号,所以多个18B20可以使用同一根总线和单片机相连接,单片机通过序列号识别不同的18B20并发起读写动作。这一特点使用户组建温度传感器网络变得十分容易。通过程序设定,DS18B20 可以达到9~12 个二进制位的分辨率。测量温度的范围为-55°C~+125°C,在-10~+85°C范围内,测量精度可以达到±0.5°C[2]。由于DS18B20 具有体积小、测温精度高、适用电压范围宽、采用一线式总线、可组网等优点,在实践中的得到了广泛的应用。

三、红外遥控发射/接收芯片PT2262/2272

PT2262/2272采用CMOS工艺制造,分别具有编码和解码的功能,其中PT2262是编码电路,PT2272是解码电路,PT2262/2272必须配对使用,可用于无线数据的发送和接收。PT2262/2272分别拥有18个管脚,最多可以设置12位地址端管脚和6位数据管脚。地址管脚可以设置成“0”、“1”、“悬空”三种状态,但是必须保证PT2262和PT2272的地址管脚设置相同,否则PT2272不能解码。在实际应用中,我们一般采用4位数据码和8位地址码的方式。

编码芯片PT2262发出的编码信号称为码字,一个完整的码字包含地址码、数据码和同步码三部分。解码芯片PT2272在接收到PT2262发来的信号后,首先分离出地址码,并对地址码进行比较,只有当接收到的码字的地址码和2272的地址码相同时,2272的VT管脚才能输出高电平,表示解码成功。单片机在检测到VT脚高电平的信号后,开始读取PT2272接收到的数据。

四、步进电动机

步进电动机也称为脉冲电动机,它可以将电脉冲信号转换成相应的角位移,每输入一个电脉冲信号,步进电动机就转动一定的角度,由于该电动机的转动方式是步进的,所以把它叫做步进电动机。步进电动机具有以下优点:一是步进电动机转动的角度和输入电脉冲的个数成正比,转动的速度由输入电脉冲的频率决定,频率越高,速度越快。而且在不超出步进电动机负载能力的情况下,以上关系不受负载大小、电压高低等因素的影响;二是步进电动机在不失步的情况下,每转动一圈的步数是固定的,所以电动机的步距误差不会积累;三是步进电动机具有良好的控制性能,在开环控制系统中,转速具有很宽的调节范围,而且能够快速启动、制动和反转。正是由于步进电动机具有以上优点,所以在数字控制系统中经常被用作执行元件。

五、软件设计

该系统的软件设计分为两大部分,分别对应系统硬件的两个模块。其中驱动模块的程序设计包括控制量的读取和步进电动机的控制。温度测量模块包括温度采集子程序(读取18B20测得的温度数据)、显示子程序、键盘输入子程序(用户设置室内温度)、PID温度控制子程序(计算控制量)。前面几个程序都比较简单,这里不再赘述,下面我们详细介绍一下PID温度控制子程序的设计原理。单片机首先读取18B20测量的实时温度数据,然后把测量温度和设定温度进行比较得到温度误差,把温度误差作为PID控制系统的输入信号,由PID算法计算得出控制量。PID控制系统的结构框图如图2所示。

图2 PID控制系统的结构框图

系统的控制规律可以用u(k)= u(k)+u(k-1)和u(k)=Kp[e(k)- e(k-1)]+Ki e(k) +Kd[e(k)- 2e(k-1)+ e(k-2)]两个算式表示[3]。其中u(k)表示每个测量周期阀门的变化量,Kp表示PID控制系统的比例系数, Ki表示PID控制系统的积分系数、 Kd表示PID控制系统的微分系数,e(k)表示k时刻的温度误差。由于室内温度是一个相对缓慢的变化过程,所以我们在该温度控制系统中采用了周期性的控制方式,即在一个温度采样周期内保持控制量u(k)恒定不变[1]。

结语

为了验证系统对室内温度控制的准确性和稳定性,我们做了多次试验,下表为实验记录的测量数据,分析记录数据可知,本设计控制温度准确性高,达到了预期目标。

本系统采用PID控制理论,以AT89C51单片机为系统的控制单元,以红外遥控发射/接收芯片PT2262/2272为数据传输的纽带,选用步进电动机作为系统最终的执行机构,根据室内温度和设定温度的误差来改变阀门的开度,较好的实现了室内温度的调节。实验表明,该系统具有稳定性好、控制精度高、节能环保等优点,具有一定的实用价值。

参考文献:

[1]于浩令.北方冬季室内温度控制系统的设计.科技信息.2010,(26):272.

[2]艾诚,韩峻峰.基于DS18B20的温度控制系统设计.微型机与应用.2013,32(17):11-13.

篇8

关键词 锅炉控制系统;系统设计;解决方法

中图分类号TK22 文献标识码A 文章编号 1674-6708(2013)110-0120-02

锅炉控制系统在工业生产的一系列过程中发挥着重要的作用,其以提供充分的高效热能来保障工业的正常生产,进而保障工厂生产的高效益、高利润。伴随着科学技术发展水平的提高,工业生产的需要,新型的锅炉控制系统被研制出来,并投入到工业生产运营当中。

1锅炉控制系统设计原理

从设计原理上看,构成锅炉控制系统的最为重要的两部分是计算机控制系统和单片机控制系统。其中的计算机控制系统是完成自动控制的核心部分,主要由工业控制器、电脑显示器、打印机以及报警装置所组成。由计算机自动控制锅炉的给水、鼓风、引风,可以使锅炉的出水和回水的温度都保持在规定值范围内,包括锅炉的水位也符合规定指标。处于运行状态的锅炉,各个运行参数都会在计算机显示器上以模拟图的形式呈现出来并配有数据。一旦运行锅炉压力、水温以及水位超过了规定范围,锅炉控制系统就会发出报警信号。

2 锅炉控制系统的设计与实现

锅炉在实际运行中,要确保高效运营状态,就要采用先进的控制系统设计,在对锅炉自动控制的同时,还要实施必要的监视,以完善锅炉的操作和管理工作。锅炉控制系统的各项参数,包括锅炉出入口的水温和水压,空气预热器的入口负压和引风机负压以及除尘器入出口负压等等,都要随时观察,并将数据传送到控制操作台上,在显示器上显示出来。

2.1锅炉控制系统的设计

锅炉控制系统是由各项功能系统所构成的复杂的控制系统。各项参数都会根据系统的实际工作情况有所调节,并且相互之间会产生影响。为了能够对于锅炉控制系统设计以详细说明,可以将该控制系统分解为给煤控制系统、送风控制系统、炉膛负压控制回路、汽包液位控制、过热蒸汽出口温度控制。

给煤控制系统所承担的是锅炉燃烧系统的自动调节功能。燃料经过燃烧后所释放出的热量,能够满足蒸汽的负荷,而且还确保了锅炉安全运营。

送风控制系统的调节作用是通过符合规则调节器来实现的,其与给煤控制系统相协调。当增加负荷的时候,可以先加风,然后加煤;当减少负荷的时候,就要先减煤,再减风。将风煤的比例控制在合理的范围内,可以使燃烧处于最佳状态。

炉膛负压控制回路是确保锅炉在运行当中,微负压在送风量平衡状态下趋于稳定,以确保锅炉安全运行。

锅炉给水自动调节,是为了确保汽包液位维持在工艺允许的范围内,给水量要与锅炉的蒸发量保持平衡。液位控制主要包括单冲量控制、双冲量控制和三冲量控制。单冲量控制,即为单回路控制系统,其作为单参数是以水位作为调节信号的;双冲量控制,即为双参数控制系统,其是通过蒸汽流量对于信号进行补充的;三冲量控制,即为三参数控制系统,其对于信号的补充是通过给水流量、主蒸汽流量来完成的。

过蒸汽出口温度控制是通过蒸汽过热系统来完成调节任务的。其对于过热器具有保护作用,确保过热蒸汽在出口处的温度被控制在规定的范围内。此外,过热管壁也不可以超过控制温度范围。

2.2锅炉的自动保护系统

锅炉自动保护系统包括超压报警装置、水位报警装置、超温报警装置、熄火保护装置。

2.2.1 超压报警装置

超压报警装置的作用在于,一旦锅炉出现超压问题,控制系统就会发出声色报警,并启动控制燃烧的报警装置。那么在装置的设计上,除了压力测量仪器之外,还安装有灯光音响设备以及报警信号部件。当报警信号出现的时候,保护系统会自动停止通风,不再供应燃烧。

2.2.2水位报警装置

当锅炉的水位出现不正常状态的时候,自动报警装置就会发出信号。水位报警装置安装有高、低水位报警器,当水位超出了规定的安全范围内,保护装置就会自动启动。为了提高保护装置的灵敏度,要定期地对装置调试、检修,以保证可靠运行,防止缺水事故发生。

浮球式水位报警器的组成上除了报警器之外,还设置有高水位和低水位浮球、针型阀和连杆。当水位处于正常状态时,两个针型阀处于关闭状态,连杆平衡,高水位浮球在蒸汽空间内悬浮,而低水位浮球则浸在水中。当这种平衡遭到破坏的时候,针型阀就会自控启动报警装置。

磁铁式水位报警器的组成上除了浮球之外,还包括用永磁钢组、调整箱以及三组水铁开关。当水位发生变化的时候,在浮球的带动下永磁钢组会升降,其所连接的报警系统就会发出报警信号。

电极式水位报警器处于高低水位电极的末端锅炉的安全水位处。当锅炉中的水位超出了安全范围,就电极就会与锅炉中的水脱离开来,切断接触回路而发出报警。连锁装置被启动后,锅炉停止燃烧。

2.2.3超温报警装置

如果锅炉的温度超出了允许范围内,锅炉控制系统就会自动启动报警装置。报警器被安装在温度测量仪表盘上,一旦有故障出现,比如温度超过了安全范围等等,就会出现自动报警。

2.2.4熄灭保护装置

熄灭保护装置被安装在连锁保护装置当中,当锅炉发生熄火情况的时候,自动控制的正常机能就会被切断,燃料自动停止供应。

3 监控中心报警监管

当监控中心接到锅炉故障报警信号之后,就要实施安全操作。报警系统具有档案管理功能,对于锅炉运行状况都存有历史记录。当监控系统发现锅炉运行故障之后,操作人员可以参考历史记录采取必要的应急处理措施。此外,报警软件还对于报警信息实施过滤功能,报警的级别也会自动显示出来。对于级别较高的故障报警,操作人员可以优先处理,其他的报警信息会依次向优先级过度,以便于操作人员对于锅炉故障井然有序地处理。

4结论

综上所述,伴随工业技术的发展,锅炉控制系统设计不断地实现创新,提高了其在工业生产中的安全性以及高强度可靠性。各种高端科技成果渗入到工业生产当中,特别是自动化控制系统的运用,实现锅炉在工业生产系统中的智能化、科技化。本论文分析了与锅炉控制系统设计相关的问题,为锅炉控制系统的设计提供参考。

参考文献

[1]浩清勇.工业锅炉控制系统的设计与实现[J].黑龙江科技信息,2008(9).

[2]王玉哲.工业燃煤锅炉自动控制系统的设计[D].内蒙古大学,2007.

篇9

论文关键词:云南古寺,古建筑,现代消防设计理念

1.前言

云南某千年古寺为国家重点文物保护单位,历史上曾两度遭遇火毁。2009年的地震导致古寺大部分建筑受损,现正进行统一修复,而消防系统设计与实施便是其中一项重要任务。

2.火灾危险性分析

1)火灾荷载大,耐火等级低

寺院以木材作为主要的建筑材料,以木构架为主要的结构形式,火灾危险性极大,而建筑构件的耐火等级很低,并且由于寺院是建在山上,发生火灾后火势能够迅速蔓延,极易形成立体燃烧。

2)建筑之间无防火间距,容易出现“火烧连营”

寺院以各式各样的单体建筑为基础,组成各种庭院。在庭院布局中,基本采用“四合院”和“廊院”的形式。这两种布局形式都缺少防火分隔和安全空间,如果其中一处起火,一时得不到有效控制,就会形成“火烧连营”的局面。

3.消防系统设计

由于寺院存在上述火灾隐患,而对其实施保护又具有极其重要的意义,因此,必须加强消防安全对策。古建筑消防安全不仅要以扑灭火灾为第一目标,而且还要最大限度的保护古建筑的整体结构及形式。因此,火灾探测技术及消防安全措施的选择就显得尤为重要,必须能够因地制宜的达到早期探测和早期灭火。整个工程中消防系统包括消防电气系统及消防灭火系统。

1)消防电气系统设计

消防电气系统包括火灾自动报警及联动控制系统、消防广播系统、消防电话系统、应急照明和疏散指示系统。

(1)根据本工程对火灾自动报警及消防联动控制系统的要求,经过认真细致的研究和论证,为该工程提供以下配置方案如下表1所示。

(2)根据《古建筑消防管理规则》及《火灾自动报警系统设计规范》,并参照故宫等国内古建筑领域的常用探测保护方式,在本次设计中采用了点型感烟探测、点型感温探测、极早期吸气式探测以及视频火灾探测。

其中,视频火灾探测系统是现代消防的最先进技术。本工程在大雄宝殿设置一套8路视频火灾探测系统,大雄宝殿空间高大,点式探测器不能满足规范的设置要求,其他探测方式对古建筑的美观及使用会有一定的影响,综合以上因素,设置了视频火灾探测系统。它的特点是:

2)消防灭火系统设计

寺院属于国家级文物保护单位,为保持寺内建筑的原貌,建筑内不便安装传统的室内消火栓系统和自动喷水系统,又由于寺院建筑比较集中,道路陡峭狭窄,消防车难以到达现场,鉴于本工程特点,在建筑内部设置灭火器,建筑外部设置室外消火栓系统,设置在室外的消火栓采用“室外用室内型消火栓”,在火灾初期,可使用灭火器将火灾扑灭;当火灾较大时,可直接使用消火栓系统进行灭火,无需消防车加压或供水。

(1)消防蓄水池设计

根据现场地质勘查报告,蓄水池设计选址在寺院西侧一百米左右地方,水池长约8米,宽约10米,蓄水池内有效水深3米,蓄水量约为240立方米,以满足寺院消防用水的需求。

序号

保护区域名称

保护措施

火灾自动报警系统

联动控制系统

消防广播系统

消防电话系统

应急照明和疏散指示系统

1

鼓楼

2

钟楼

3

藏经阁

4

禅房

5

客堂

6

大雄宝殿

7

地藏殿

8

方丈室

9

圆通殿

10

后轩北院

11

斋堂

12

消防控制室

篇10

关键词:控制系统;控制方式;自动控制;太阳能;热水工程

中图分类号:TP13 文献标识码:A 文章编号:1009-3044(2013)05-1149-02

太阳能是典型的绿色可再生能源,研究、开发与应用太阳能资源具有全球性的战略意义。在太阳能资源的应用中,太阳能热水项目是目前技术比较成熟、经济效益较高、环保效益与社会效益较好的项目。随着太阳能热水的广泛使用,市场对太阳能热水的系统特别是控制系统提出了越来越高的要求。该文以太阳能热水工程的控制系统作为研究对象,根据北方高寒地区气候特点和多年的工程设计、施工、维护经验,切合市场反应及用户需求研究、设计了太阳能热水工程控制系统。

1 太阳能热水工程概述

太阳能热水工程是利用太阳能集热器收集太阳能量,通过循环系统,将太阳能集热器的热量传递给水,将水加热后根据控制系统的数据设定收集存储于储热单元中,为用户提供所需要的热水。当天气条件影响或其他原因使得系统储存热水不能满足供热指标时,可以通过辅助热源系统加热使水温提高供用户使用。为了减少管路热损失,防止恶劣天气条件管路冻堵,改善热效,北方高寒地区还要有相应的保温防冻系统。太阳能热水工程主要由控制系统、集热系统、储热水箱、循环系统、辅助热源、保温防冻系统等部分组成,见图1。集热系统是太阳能系统的能量积累转换中心,其接收太阳辐射的能量,并将太阳的辐射能量转化为水的热能。储热水箱将太阳能所产热水集中存储,并通过管路供应至用水单元。循环系统是集热器至储热水箱及辅助热源至储热水箱的循环管道以及相关的水泵、电磁阀门等。辅助热源主要是在太阳能产热水能力供不应求时辅助加热。北方高寒地区太阳能还需要有保温防冻系统和,以减少管路热量损失,防止低温冻堵,保证系统在高寒条件下正常运行。

图1 太阳能热水工程系统组成

2 控制系统设计

2.1控制系统功能与组成

控制系统是太阳能热水工程的中枢系统,其通过电气控制的方式,提供智能的人机交互界面、实时采集显示相关水温、水位信号,实时监测相关运行信息,自动控制集热器进行能量交换、自动控制循环系统的泵阀工作、自动控制辅助热源按需加热,确保系统正常运行。控制系统能够根据用户现场设定数据及实时监测到的水压、水位、水温等参数自动控制加水泵阀、伴热防冻、循环泵阀、辅助热源、排空泵阀、供水泵及变频器等设备的启停,满足用户热水需求。因此控制系统需有水位水温监测显示、数据输入、运行信息指示、上水控制、集热控制、供水控制、防冻控制、辅热控制、排空控制等功能,见图2。

图2 控制系统结构与功能

2.2控制信号分析

控制系统根据用户指令和输入信号进行判断、分析,从而输出信号驱动相应的泵阀、热水设备进行工作。据图2所示系统,输入信号有集热器水温[T1]、管道水温[T2] 、储热水箱水温[T3]、供水水温[T4]、水位信号[H1]、水压信号[P]等,输出信号有上水泵阀控制信号、循环泵阀控制信号、辅助热源控制信号、供水泵阀控制信号、防冻伴热控制信号、排空泵阀控制信号、变频供水控制信号等。

2.3控制方式分析

在太阳能热水工程的控制系统中,根据运行原理和适用场合的不同,常用的有手动控制、温差控制、定时控制、定温控制等四种控制模式。

1)手动控制是最为基础的控制方式,也是比较受大家认可的一种由操作人员根据实际需要手动控制上水、集热循环、供水、防冻加热、辅助加热、排空等控制方式。在紧急情况或特殊情况时可以启用手工模式进行控制。

2)温差控制即系统适时监测集热器水温([T1])和储热水箱水温([T3]),并且将二者送到控制系统进行分析,当温差([ΔT=T1-T3])大于设定值([Δt0])时(5~20℃),控制核心输出信号启动循环供水泵将集热系统的热量传输到储热水箱;当温差([ΔT=T1-T3])小于设定值([Δt0])时(2~10℃),控制核心不再输出信号循环泵停止工作。同时当温差([ΔT=T1-T3])等于设定值([Δt0])时(50~60℃),控制核心输出信号停止循环供水泵以保护低温水进入集热器造成集热管炸裂;当温差([ΔT=T1-T3])小于设定值([Δt0])时(20~30℃),控制核心再次输出信号启动循环泵开始工作。

3)定温控制模式是系统适时监测集热器水温([T1]),并且将其送到控制系统进行分析比较,当集热器水温([T1])大于等于设定值([t1])时,控制核心输出信号启动控制电磁阀或循环水泵,冷水进入集热器将热水压入储热水箱;当集热器水温([T1])小于设定值([t1])时,控制核心不再输出信号,控制电磁阀或循环水泵停止工作。

4)定时控制是效率较低的一种控制模式,操作人员根据实际需要,预先设定系统启停、运行时间或排空时间,系统在设定时间启动泵阀或停止循环泵。

2.4控制系统构建

据以上分析,结合北方地区气候特点及用户需求构建了以凯盈电子有限公司的KING-C型太阳能集热工程控制器为核心,辅以SA136型数码温差控制器进行超温保护、SB252型数码定时器做定时排空控制、SC393电子探极式液位继电器做液位双重保护、水温水位传感器等器件的适合北方地区应用的太阳能热水工程控制系统,见图3所示。该系统综合手动、温差、定温、定时四种控制方式,具有水位监测显示、水温监测显示、数据输入、运行信息显示、自动与手动运行控制、上水控制、集热循环控制、供水控制、防冻控制、辅助燃气锅炉或电加热控制、恒温控制、排空控制、自动保护等功能,适合北方高寒地区使用。

图3 太阳能热水工程控制系统简图

3 结束语

本系统应用于实际工程,经过现场调试、运行及参数测试,系统运行稳定、智能化程度高、保护措施完善,通过对数据的分析计算得到系统产热量稳定、经济效益与环保效益较高,适合在北方高寒地区使用。

参考文献:

[1] 杨永刚.太阳能热水器控制电路的设计[J].产业与科技论坛,2012,11(14):63-64.

[2] 王怀龙.太阳能热水系统全功能控制仪的开发设计[D].大连理工大学硕士学位论文,2010.

[3] 张世坤,许晓光.我国当前的能源问题及未来能源发展战略[J].能源研究与信息,2004,20 (4):211-219.