变频技术论文范文

时间:2023-03-18 19:45:06

导语:如何才能写好一篇变频技术论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

变频技术论文

篇1

(1)交流-交流变频,使固定的交流电源转换成频率变化的交流电源,主要特点是没有中间环节,缺点为变换的频率范围不大。(2)交流-直流-交流变频,使固定的交流电源转换成直流,将直流电源转变成频率变化的交流电。由于直流到交流环节易于控制,因此,频率可调节范围和提高变频电机特性等,具有明显的优势。其装置在煤矿井下已大量使用。如图1所示为交直交变频器的主电路图。这种方法只适用于小容量逆变器,不常用。还有一种方法为脉宽调制,逆变器电压的大小经过变化,使输出脉冲进行变化。现在国内外变频器技术以惊人的速度在发展,在不同的功能上,模拟早期的设置已被设定数字量取代,特别是在我国煤矿井广泛应用,带来了巨大的经济和社会效益。

2变频调速技术的应用

使用PID控制器和可编程控制器(PLC)控制技术来控制变频器,反向,速度,加速,减速时间,实现各种复杂的控制,为适应煤矿提升,压风,排水,电牵引采煤机设备的要求。提升机PLC,PID变频控制技术更为复杂,这里不介绍了。压风机为例,对变频调速控制技术和功能的应用,证明变频调速技术的优越性和经济效益的描述。在正常操作压力风机,当罐内压力达到规定的压力,通过压力调节器处于闲置状态,风机的压力,为了降低储罐压力,当气体储罐压力低于规定压力,机器正常使用工作。但空气压缩机输出压力波动较大,不能达到理想的空气压力,直接影响到气动工具的正常运行。在变频技术的使用,确保空气压缩机输出压力保持不变,总是让空气压缩机输出压力保持在正常的工作压力水平,大大提高煤炭生产效率。与传统的PID控制对比,检测信号反馈给变频器控制量,以控制变量的目标信号进行比较,以确定它是否是预定的控制目标,根据二者之间的差异进行调整,达到控制目的。如储气罐压力超过目标值(气舱压力给定值),应调节压缩空气同气舱压力值近视平衡。相反,如储气罐压力低于目标,应调节储气罐压力同目标压力近视平衡。通过对变频调速技术在压风机上的应用,可以达到空气压缩机输出压力基本上保持恒定的生产价值的需要,空气压缩机输出压力始终保持在最佳状态下生产。

3变频调速技术优点和效益

篇2

本次改造主要是根据企业电机系统设施的现状和存在的问题,针对电厂系统特点,对#3、#4、#5、#6锅炉引风机、一次风机、二次风机共计12台(电机总装机容量3900KW)6KV电机进行变频节电技术改造,采用高压变频调速技术,根据工况需要,控制电机的转速,来调节风量的变化,以替代落后的挡板调节方式,以减少电能损耗。同时,风量的变化由非线性改善为线性,使得炉膛的燃烧效能控制变得更及时、精确。从而达到节能降耗和提高自动化程度的双重目的。本次节电技术改造新建一座高压变频室、增加变频调速装置12台、DCS控制系统、、通风系统及配电设施。

1.1变频器选型

近年来已有很多大中型电厂采用变频技术进行节电技术改造的实例,实践证明不但节电效果明显,而且提高系统的安全性,不存在运行风险。此次节电技术改造设备选用原则,变频技术先进,成熟可靠。选择雷奇节能科技股份有限公司生产的LOVOL系列高压智能节电装置(变频器),该产品由移相变压器,功率单元和控制器组成。高压变频器采用模块化设计,互换性好、维修简单,噪音低,谐波含量小,不会引起电机的转矩脉动,对电机没有特殊要求。高压变频调速系统的结构图如下:

1.2电气改造方案

采用一拖一自动旁路控制,实现变频/工频自动切换。旁路柜在节电器进、出线端增加了两个隔离刀闸,以便在节电器退出而电机运行于旁路时,能安全地进行节电器的故障处理或维护工作。旁路柜主回路主要配置:三个真空接触器(KM1、KM2、KM3)和两个高压隔离开关K1、K2。KM2与KM3实现电气互锁,当KM1、KM2闭合,KM3断开时,电机变频运行;当KM1、KM2断开,KM3闭合时,电机工频运行。另外,KM1闭合时,K1操作手柄被锁死,不能操作;KM3闭合时,K2操作手柄被锁死,不能操作。自动旁路控制结构图如下:

1.3系统控制方案

(1)本地控制:利用系统控制器上的键盘、控制柜上的按钮、电位器旋钮等就地控制。(2)远程控制:变频器与DCS系统连接,进行数据通讯,使运行人员通过DCS系统画面对变频器的工作电流,运行状态及故障信息进行监控,由DCS实现控制。

1.4系统散热方案

设备自身发热量较大,运行环境的温度和湿度会影响设备的稳定性及功率元件的使用寿命,为了使变频器能长期稳定和可靠地运行,采用室内空调冷却方式,满足设备对温度和湿度的要求。

2变频改造效果分析

2.1节电效果

节电改造前,锅炉正常工况下引风机档板的平均开度在70-80%左右,二次风机在35-45%左右。采用落后的档板调节控制方式,用电量高居高不下,影响机组的经济运行质量。本次节电改造于2012年10月安装调试完毕,经过一段时间的运行测试,以3#锅炉引风机为例,原工频电流由平均49.5A下降到变频后的36-39A,功率因数由0.8左右提高到0.95左右。从12台改造后的风机运行情况看,完全能够满足锅炉运行工艺的要求(主要是风压、风量、加减风的速率等)。运行后一年的电表数据表明,经过变频改造后12台风机总计节电量为280万KWh,比挡板调节控制方式节能率达到23%,节能效果十分显著。并且电机在启动、运行调节、控制操作等方面都得到极大的改善。

2.2其它效果

(1)采用变频调速控制后,杜绝“大马拉小车”现象,既提高了电机效率,又满足了生产工艺要求;(2)采用变频调速控制后,由于变频技术装置内的直流电抗器能很好的改善功率因数,功率因数由0.8左右提高到0.95以上,提高了有功功率,减少了设备和线路无功损耗;(3)实现了电机的软启动,避免了对电网的冲击,提高了系统的可靠性,延长了设备的使用寿命;(4)减少风机叶片和轴承的磨损,延长大修周期、节省维修费用。风机、管网振动大幅减小,降低了噪声对环境的影响;(5)变频器的过载、过压、过流、欠压、电源缺相等自动保护功能,使系统的安全可靠性大大提高;(6)由于变频器具有工频/变频自动切换功能,变频器发生重故障时可在2-3秒内切换到工频运行,且在变频调速控制系统检修维护或故障时,工频控制系统照样可以正常运行,满足风机系统对电机高可靠性运行的要求;(7)实现了高压变频装置与主控室DCS系统连接,DCS系统能够满足实时性的要求,经过电厂运行的逻辑实现对变频器的控制,对各种数据的分析和判断,这也是电厂提高效率的关键环节之一。

3结语

篇3

炼钢一次除尘风机高压变频器采用交-直-交高压方式,高压变频器每相由8个功率单元串联而成,各个功率单元由输入隔离变压器的二次隔离线圈分别供电,功率单元为交-直-交结构,相当于一个三相输入、单相输出的低压电压源型变频器,主电路开关器件为IGBT。功率单元由主电路包含整流滤波电路,逆变电路,旁通电路三部分。功率单元的输入额定电压AC750V,经熔断器进入三相整流桥整流,经电解电容滤波,变为直流电;逆变电路由四只IGBT组成单相全桥逆变电路。将直流电变为SPWM波输出。旁通电路由一个单相桥整流和一只可控硅组成,旁通电路的作用是在功率单元发生某些故障时,把四只IGBT全部关闭,故障单元不再有输出波形,此时把旁通的可控硅打开,使外电路电流流过本功率单元时通行无阻,旁通整流桥为交流电流提供通路。功率单元串联多电平PWM电压源型变频器拓扑图如图1、图2所示。控制电路由光信号通信电路、IGBT驱动保护电路、可控硅驱动电路、故障检测电路等组成,变频器主控制器与功率单元之间的信号传输采用光纤,具有良好的抗电磁干扰性能,功率单元IGBT的驱动信号来自于变频器主控制器。

2调速系统的改进

⑴为保证系统稳定运行及达到好的节电效果,风机传动采用高压变频器进行控制,风机传动设备变频改造时拆除电动机与风机之间的液力偶合器,对电机基础进行改造,将原基础打去-1000mm至钢筋网层,重新焊接钢筋制作浇筑基础,电机前移与风机直接相连。实施前后见对比图3、图4。⑵变频调速系统和现场PLC控制系统进行通讯连接,从现场PLC控制系统发出变频器的启动、停机等信号进行协调控制,根据运行工况按设定频率,实现对风机电动机转速的控制。变频器具有非常完善的自诊断和保护功能,变频器有过电压、过电流、欠电压、缺相,变频器过载、变频器过热、电机过载、输出接地、输出短路等保护功能,变频器配备汉字显示的液晶显示屏,可实现变频器参数设定和显示电机电压、电流、频率等状态参数;一旦变频器发生故障,进入保护状态,系统自动记录故障原因、故障位置及发生故障时变频器各状态参数,便于故障排除。

3运行分析

转炉一次除尘风机在改造前,风机高速运行在1250r/min,电机功率因素0.88,风机电机电流120A左右,风机低速运行在500r/min,风机电机电流40A左右,自2011年6月至2012年8月转炉一次除尘三台风机电机采用高压变频器控制系统投入运行后,风机高速运行时电机电流在97A左右,风机低速运行时电机电流在6A左右,功率因素0.98,具体参数见表1。

4节能计算

一座转炉每天平均冶炼32炉,每炉平均冶炼时间35min,一个冶炼周期中,吹氧冶炼时间16min,兑铁时间3min,风机需高速运转1250r/min,高速运行时间在19min,风机变频改造前后高速状态下电机电流差120-97=23A,电压10kV,风机电机在高速状态下每天节省电量为(23×10)×(32×19)/60=2331kWh。一个冶炼周期中,出钢过程中需低速运转在500r/min,每炉钢低速运行时间约16min,风机变频改造前后低速状态下电机电流差40-6=34A,电压10kV,一台风机电机在低速状态下每天节省电量约为:(34×10)×(32×16)/60=2901kWh。一台除尘风机在变频器调速运行,每天节省电量约为2331+2901=5232kWh。一台风机全年运行时间按340天计算,电费成本为0.37元/度,一台除尘风机全年节省电费约为=5232×340×0.37=65.82万元。三台除尘风机在变频调速运行后,全年节省电费约为=3×65.82=197.46万元。

5结语

篇4

1)实时在线监测功能。可实现对矿井主通风机及其附属设备主要工作参数、运行状态的实时在线监测与显示,智能化故障识别与报警。具体监测项目包括:主通风机的入口静压、风量、风速信号;主通风机电动机电压、电流、有效功率、功率因数等电量参数;主通风机电动机轴承温度和定子温度的实时监测显示;主通风机振动状态信息的监测、显示与分析,具有机械故障预警及停机功能。2)远程通信功能。能支持与第三方远程通信(变频器或其它监控设备),实现远程监测控制,支持多种通信协议,具有多种通信方案,可方便地把监控数据上传到目前煤矿使用的安全监测系统KJ98,实现对矿井通风系统的远程集中控制。3)自动控制功能。通过友好交互的人机控制界面可以方便地控制高压开关柜的启动、停止、风门的开关;能控制高压变频器、水阻柜启动、停止,实时设置变频器频率;可实现主通风机、风门用电动执行机构多种控制模式间的切换。

2程序设计

2.1PLC程序设计

在西门子S7-417-4H型PLC中,运用梯形图编制监控系统的运行程序,整套系统的主控程序流程如图3所示。在调用初始化子程序后,系统按照设定程序与参数进行自检,待自检正常后对主通风机及其附属设备的初始状态进行顺序控制,一切准备工作就绪后系统会自动开启主通风机,系统按预先图3控制程序流程图编制的程序、设计的功能进行实时监控。整套PLC程序包含了高压柜供电状态监测、变频器控制、水阻柜控制、主通风机运行参数及故障检测、风门电动执行机构运行状态监测等多个功能模块。对PLC控制程序采用模块化设计和过程设计原理,将上述功能模块进行结构化编程设计,提升了控制程序的完整性和可执行性。

2.2WinCC组态程序设计

通过WinCC组态程序设计建立友好交互的人机控制界面,借助远程通讯和PLC控制程序,实现对主通风机及其附属设备的过程监控与故障监控。基于WinCC组态软件的主通风机监控系统具备可视化、智能化、功能多样化等诸多优点,能将矿井通风系统的工作参数和运行状态形象化地展现在控制人员和管理人员面前,便于实时监控设备运行情况。

3应用效果

2013年9月鲁班山北矿主通风机监控系统改造工程完成,图4所示为监控系统的主界面图。目前该套系统已经连续正常运行一年多,在新的监控系统模式下,实现了紧急情况提前预警,提高了矿井通风安全水平。主通风机在变频调速系统控制下更容易实现电动机的正、反转,加、减速时间及频率可任意调节,运行平稳,工频水阻软启动技术的应用,确保了两台变频器都出故障时,主通风机仍能正常运行,确保了通风安全。使用变频调节后由于变频器内滤波电容的使用,使得主通风机功率因数据提高,通过减小变频器输出频率、降低主通风机转速来满足矿井风量需要,主要风机始终运行在高效区间内,统计显示,在增加风量27%的情况下,每个月主通风机电力消耗同比节约3.1万度,节能效果十分明显。

4结语

篇5

随着我国社会经济的不断发展,虽然我国的能源结构有所变化和发展,但是在目前我国现有的能源结构中,火力发电仍然是重要的组成部分,伴随着其它能源结构的出现,火力发电在能源市场上面临的压力将逐渐的增加,为了提高火力发电行业在能源市场中的竞争力,企业必须加强该方面的研究。伴随着电子信息技术的发展,高压电频技术得到了广泛的应用,火力发电厂要想提高工厂的工作效率,提高设备的运行速度,实现发电厂经济效益的提高,就必须科学合理的应用高压电频技术。高压电频技术在火力发电厂中的应用,在提高企业经济效益的同时,有利于节能减排工作的顺利开展。

2高压变频技术在火力发电厂中应用的重要作用

2.1有利于节能减排工作的开展

在传统的火力发电厂中需要使用挡板和阀门来调节发电设备的风量和水量,挡板和阀门对能量的需求较高,在火力发电厂中使用了高压变频技术之后,通过驱动水泵和风机来代替挡板和阀门,不但能够解决掉使用阀门和挡板调节方法给设备运行带来的不足,还能实现节能减排,降低企业对发电厂的成本投入,有利于企业经济效益的提高。

2.2使用方便快捷,减少设备故障出现的频率

高压变频技术在应用的过程中往往同电子信息技术相结合,电子信息技术的使用不断的提高了企业的经营管理水平,还有效的减少了企业在人力物力方面的投资。火电厂设备的正常运行需要发电机的协调合作,火电发电厂中有两种型号的发电机,同步发电机和异步发电机,同步发电机使用直接启动的方式,异步发电机使用间接启动的方式,在发电机启动的过程中会造成大量的电量消耗,在启动过程中会产生较大的振动对设备产生冲击,在很大程度上影响设备的使用寿命。通过使用高压变频技术能够缓解启动过程中产生的机械振动,提高了设备的运行效率,在保证设备正常运行的同时,提高了设备的使用寿命,在一定程度上减少了发电厂在设备上的成本投入,有利于企业经济效益的提高。

3高压变频技术的分析研究

3.1高压变频器的DCS控制方式分析

分散型的控制系统也就是DCS在火电发电厂中的主要控制系统,手动控制DCS控制是高压变频技术中的主要控制,在高压变频技术中的控制方式有很多种,主要总结如下:采用闭环控制方式对设备的压力和流量进行控制;采用开环控制方式对设备的转速进行控制;使用开环控制方式对设备的频率进行控制,通过在设备的屏幕上直接输出数值,然后边频率器的边频率的控制得出数值。

3.2高压变频器工作旁路的切换方式分析

在火电发电厂中,风机和水泵设备属于持续运作的负载,为了减少设备使用过程中故障出现的频率,较少设备检修的次数,在应用高压变频技术时同时使用工频旁路,工频旁路的设置方式主要有手动和自动两种形式,一旦高压变频出现故障,就要及时的采用采用手动或者是自动的方式对贡品旁路进行切换,手动旁路是一种可以通过手动控制进行高压隔离的开关,手动控制在高压旁路中的应用较为广泛,因为本身结构较为简单,操作简单,成本较低,开关设置明显,应用在高压变频中之后,有利于高压变频器的检修。

4高压变频技术应用的具体措施

随着其他能源方式不断创新和发展,传统的火力发电将面临着越来越大的压力,火力发电厂要想在激烈的市场竞争中站住脚,就必须提高火力发电的使用率,在符合国家节能减排的规范要求的同时,减少火力发电的成本投入,采用高压变频技术就能够很好的解决以上的问题。

4.1安装和调试变频设备的具体措施

传统的设备运行方式是采用了一拖二二拖三的方法,这样的方法在很大程度上增加了设备的回路难度,为了减少设备运行回路变频和工频之间故障出现的频率,在对设备进行安装的过程中要主义防范措施。

4.2合理设置变频器和上级开关保护功能

变频器在运行的过程中经常会出现跳闸的现象,为了防止这种现象的发生,一般的在事故按钮上采用一拖二的方法,在事故按钮上安装两个电源断路器,一般的选取两个节点,在一个节点上使用工频跳闸回路,在一个节点上使用变频跳闸回路。这样不论出现何种情况,都能很好的预防跳闸现象的发生。

4.3设计可靠的风机和控制电源

为了保障设备的正常运行,就要保证变频器电流输入值趋于正常,如果输入电流变化较大,就容易出现跳闸的事故,所以为了防止这种现象的发生,要对设备进行不间断的检测和维修,为设备提供充足的电能。

5结语

篇6

论文关键词:风机,自动调速装置

 

1 、前言

当前,我国煤矿使用的局部通风机数量多,功率大,是能耗最大和浪费较严重的设备之一。从理论上讲,对风机调速是调节风机性能、降低能耗的最佳方法之一。随着科学技术的不断发展,防爆变频调速装置以其卓越的调速性能,显著的节能效果在煤矿领域得到广泛的运用。

2、概况

煤矿井下局部通风机是用量大、耗能大的常用设备,每年需求量在数千台以上,但在性能调节功能上,基本上是空白。从理论上讲,调速是调节风机性能最经济、有效的手段。阻碍变频调速技术在局扇上应用的主要原因是价格昂贵,节能效果差,变频器可靠运行难。随着对煤矿安全生产重视程度的增加,一些明显存在安全隐患工作场所,要求必须对风机性能进行调节。因此风机,我矿与煤炭科学研究总院重庆分院合作,根据当前我矿的具体情况,在原有矿用通风机自动调速装置的基础上进行了技术改进,研制了一套ZJTS型矿用通风机自动调速装置,并投入使用。该变频调速装置采用了IGBT变频调速技术、热管散热技术以及智能控制技术,可根据不同的运行工况,通过检测不同地点的瓦斯浓度,自动调节通风机的风速,达到高效排瓦斯和节能通风的目的。

3、调速装置的结构设计

该调速装置的总体结构主要由人机操作界面、隔爆箱体、真空热管散热器、双电源控制器、进出线接线腔、变频调速控制系统、本安电源、双风机控制器、频率转换器等单元组成,外接瓦斯浓度传感器和主、备局部通风机。实现了按设定瓦斯浓度值,自动调节通风机转速,达到按需定量通风的目的。同时也实现了专用供电线和备用供电线、主通风机和备用通风机的自动切换的目的论文提纲怎么写。

4、调速装置的工作原理

调速装置的频率转换器把瓦斯浓度传感器的频率或电流信号转换成模拟信号,然后经控制器处理后,去控制变频器,让变频器输出相应的频率,控制风机的运转。实现了调速装置根据不同的瓦斯浓度传感器值输出不同的频率来控制风机电机的运行速度;控制面板又通过转换器与控制器连接

总体结构图

来实现调速装置各种参数的显示和设定。当专用供电线有故障或停电时,备用供电线就通过双电源控制器工作,这时通过双风机控制器切换让备用风机工作;当专用供电线恢复正常供电时,双电源控制器切换让专用供电线工作,这时双风机控制器切换让专用风机工作。

电气原理图

5、调速装置的主要特点

5.1自动化程度高。

通风机性能的最佳调节方式是变转速调节,而改变通风机转速最经济、适用的万式是改变输入电源的频率。该调速装置通过对工作地点瓦斯浓度实时检测,用变频调速器和自动控制系统,智能地自动调节通风机输入电源的频率风机,达到按需通风的目的。适用长时间、无人值守连续工作。

5.2主要元部件品质高。

该调速装置主要元部件:整流器、IGBT逆变器、控制系统等均采用国外著名品牌,其 主要特点是体积小、重量轻、发热量小,运行可靠,非常适合安装在井下隔爆箱体中。专门定作的散热器外形美观、实用、可靠。

5.3直观、清晰的液晶显示屏。

大屏幕液晶显示屏随时监视风机、变频器、瓦斯浓度运行状态,报警用文字说明,画面直观、清晰。可随时选择操作状态(自动、手动),设定最低输出频率值和瓦斯浓度值。超过规定的瓦斯浓度值,输出报警信号。

5.4系统运转稳定可靠。

该调速装置从瓦斯信号的采集,控制模块的分析、运算,各单元之间的通讯,到执行 机构运行,均采用国内先进技术和元件。软件部分逻辑关系清晰明确,操作性强,经长期运行试验,系统运转稳定可靠。

5.5安全性好

具有过流、缺相、过电压、欠电压、过热等完善的软硬件保护。

6、调速装置的主要功能

6.1掘进工作面限量排放瓦斯,实现最大效率安全排放。

因意外停电或计划停风而造成掘进工作面瓦斯超限时,该调速装置可自动以接近于混合处的瓦斯浓度安全值进行排放,避免人工排放时,难以控制瓦斯浓度风机,超量排放问题。

6.2采煤工作面限量抽排瓦斯,形成安全可控的引排系统。

用于引排系统处理采煤工作面上隅角瓦斯积聚时,瓦斯传感器探头放置在测试风筒中,检测风流中瓦斯浓度,即进入风机风流中的瓦斯浓度。该调速装置根据设定的瓦斯浓度安全值,自动地调节通风机转速,确保抽出式通风机进口的瓦斯浓度不超过3%,实现安全抽排。

6.3节能运行

当瓦斯浓度值在安全设定值以下时,根据工作面瓦斯涌出量的大小自动控制转速调节风量,既保证了瓦斯浓度不超限,又可避免风量过大而扬尘,影响工作环境,实现节能通风论文提纲怎么写。

6.4正、反转切换功能

可通过按液晶显示屏里风机转向画面的正转选择数字键或反转选择数字键来切换,而无须改变局扇接线即可改变局扇的转向。

6.5主、备用风机自动切换功能

当主风机或备用风机出现故障时,调速装置会自动切换让备用风机或主风机工作;实现主、备用风机自动切换功能。

6.6双电源自动切换功能

当专供线路或备用线路有故障或停电时,调速装置会自动切换让备用线路或专供线路工作;实现双电源自动切换功能。

6.7闭锁接口功能

风、电闭锁功能,当风机运行后输出一个常闭触点。

瓦斯、电闭锁功能:当瓦斯浓度传感器值大于设定值时,调速装置输出一个常开触点。当瓦斯浓度传感器值小于设定值时,调速装置输出一个常闭触点。

6.8手动控制功能。

可通过液晶显示屏手动控制画面来选择手动控制风机,局扇运转频率值可以在0比到5OHz之间设定。

6.9报警文字显示功能

当调速装置有故障、报警时,液晶显示屏会自动弹出报警信息,用文字说明故障、报警的原因及处理万法。

7、结束语

通过ZJTS型矿用通风机自动调速装置在我矿的使用,充分达到了节能高效的效果。在同等条件下与无调节性能的高效风机相比,平均运行效率可提高15%左右,节省电能,对大功率风机,效果尤为明显。

总之,ZJTS型矿用通风机自动调速装置具有广泛的推广应用价值,不仅增加了效益,尤其对加强煤矿的安全生产具有重要的意义。

参考文献:

[1]徐益民林海鹏赵汗青.新型变频调速智能控制装置的研制与应用[J].煤矿机械,2004,25(12):131-132.

[2]石秋洁.变频器应用基础[M].北京:机械工业出版社,2003..

[3]冯垛生.变频器的应用与维护[M].广州:华南理工大学出版社,2001.95-99.

[4]唐耀华徐庆龙.空压站变频改造的节能分析和参数监控[J].变频器世界,2004(4):.

篇7

关键词:交流双速电梯;交流变频调速电梯;能耗;对比

引言:

现在的城市中,高层建筑鳞次栉比,电梯成为了使用频率最高的特殊运输设备。特别是在公共场所,电梯的电能消耗量是非常高的,已经超过了照明能源消耗和供水能源消耗。目前的高层建筑所安装的电梯主要为交流双速电梯和交流变频调速电梯。交流双速电梯在进行电梯调速的时候,乘客能够感受到速度的变化。这种电梯设计结构很简单,实用性能稳定,价格也比较低[1]。但是,电梯要发挥节能的作用,就要对电梯进行变频改造。交流变频调速电梯,在运行中,就是采用了变频调速的方法对电梯的运行速度进行转换,在能源消耗上相对比较低。下面就针对流双速电梯和交流变频调速电梯的能源消耗情况进行对比。

一、交流双速电梯和交流变频调速电梯拖动方式的比较

关于电梯的拖动,在电流和电压调整上经历了不同的发展阶段,起初是直流电压运行调整电梯运行速度,之后是交流电压、交流电压运行调整电梯运行速度、交流变频调压调整电梯运行速度、能量回馈式变频调压调整电梯运行速度。现在的高层建筑所安装的电梯主要为两种,即交流双速电梯和交流变频调速电梯。

(一)交流双速电梯所采用的拖动方式

交流双速电梯的运行速度调节,是通过快车绕组与慢车绕组之间相互切换对电梯的运行速度进行调整的,按照固定的几个转速调整电梯的运行速度,属于是有级调速。比如,交流双速电梯运行中,一般所设定的速度为启动速度、慢速、快速、惯性停车等等,操作简单,以开环的方式对运转速度进行控制,不仅设计线路简单,而且造价也很低[2]。但是,技术上存在不完善之处,主要体现为乘坐交流双速电梯的舒适度不够,平层精度和运行效率都比较低,能源消耗量也比较大。通常额度速度不可以超过每秒1米。

(二)交流变频调速电梯所采用的拖动方式

交流频调速电梯所采用的是三相电源,变频电压采用变频器完成,之后传输到电动机中。随着电源的频率发生改变,交流电动机的运行状态就发生了改变,从有级调速转变为无极调速。如果变频的幅度比较大,速度调整的范围也会很大。由于采用了变频技术,交流变频调速电梯的平层精度相对较高,也具有很高的运行效率,乘坐电梯也比较舒适,而且还具有节约能源的效果。现代的高层建筑物所安装的电梯普遍采用了变频变压调整电梯运行速度的方式。

二、变频器所发挥的作用

目前市面上有多种变频器,电梯上所安装的是专用的变频控制系统,对电梯和电机的驱动进行一体化控制。这种变频器采用了先进的智能化技术,主要包括变频器和编程控制板所构成的一体化控制器、电梯显示控制器、电梯轿顶的控制板以及电梯轿厢内的指令板等。当变频控制器处于运行状态,就需要调动多种技术,诸如计算机技术、电机驱动技术、智能控制系统和自动控制技术等,所有的这些技术集成化、一体化运行,基于距离控制完成电梯的停靠、安全隐患识别和紧急救援等,变频控制器发挥着控制作用的同时,还会使电机性能得以充分发挥,使得电梯在运行中更具有舒适感[3]。电梯一体化变频系统设计简单,接线数量少,不仅运行成本低,而且电梯的安全稳定性相对较高。

三、交流双速电梯和交流变频调速电梯能源消耗比较

比较交流双速电梯和交流变频调速电梯,后者的能源消耗是比较少的。之所以交流双速电梯的能源消耗量大,是由于启动电流相对较大;无论是空载上行,还是重载下行,都需要消耗能源。具体如下。

(一)交流双速电梯的启动电流相对较大

交流双速电梯的启动电流相对较大,能源消耗量也自然会非常大。交流双速电梯所采用的启动方式通过直接启动,启动过程中就会有大量的能源消耗。交流变频调速电梯在启动的时候,所采用的是通过变频器调整电梯运行速度,之后启动,可以使得启动电流更为平稳一些,启动时所消耗的能量也会非常少。中国城市化发展,大量的人口涌入到城市中,导致城市人口密度非常大,电梯频繁使用,启动的频率也相对较高。如果高层建筑所安装的是交流双速电梯,就必然会消耗大量的电能,导致能源浪费。

(二)交流双速电梯空载上行和重载下行都消耗能源

交流双速电梯运行的过程中,只要电梯处于运行状态,交流电动机就要发电,但是交流双速电梯所安装的电动机不能够逆向发电,就会导致交流双速电梯无论是空载上行,还是重载下行,都需要消耗能源[4]。交流变频调速电梯则不同,这种电梯所安装的电梯无论是空载上行,还是重载下行,都能够持续发电,因此不会消耗大量的电能。现在安装的电梯应用了电能反馈技术,电动机发电过程中,能够将发电状态传输到电网上,从而使得电梯运行的过程中,不仅不会消耗电能,而且还起到了发电的作用,因此交流变频调速电梯具有节约能源、保护环境的作用。

结束语:

综上所述,交流双速电梯与交流变频调速电梯相比较,交流双速电梯不仅能源消耗高,而且运行的舒适度不够;交流变频调速电梯的能源消耗低,而且运行具有较高的舒适度。存在这种明显差别的主要原因在于,交流变频调速电梯再启动的时候不会消耗大量的电流,而且电梯运行的过程中,电动机会发电。因此,交流变频调速电梯更值得推广以发挥其价值。

参考文献:

[1]于建明.在用电梯节能改造的研究[J].上海铁道科技,2012(01):114―116.

[2]张怀继.交流双速电梯变频驱动节能改造实践[J].现代物业(新建设),2012,11(08):46―47.

篇8

论文关键词:变频器调速技术,节能

 

在生产企业中,风机、泵类设备应用范围广泛;其电能消耗和诸如阀门、挡板相关设备的节流损失以及维护、维修费用占到生产成本的7%~25%,是一笔不小的生产费用开支。随着经济改革的不断深入,市场竞争的不断加剧;节能降耗业已成为降低生产成本、提高产品质量的重要手段之一.而八十年代初发展起来的变频调速技术,正是顺应了工业生产自动化发展的要求,开创了一个全新的智能电机时代。一改普通电动机只能以定速方式运行的陈旧模式,使得电动机及其拖动负载在无须任何改动的情况下即可以按照生产工艺要求调整转速输出期刊网,从而降低电机功耗达到系统高效运行的目的。八十年代末,该技术引入我国并得到推广。现已在电力、冶金、石油、化工、造纸、食品、纺织等多种行业的电机传动设备中得到实际应用。目前,变频调速技术已经成为现代电力传动技术的一个主要发展方向。卓越的调速性能、显著的节电效果,改善现有设备的运行工况,提高系统的安全可靠性和设备利用率,延长设备使用寿命等优点随着应用领域的不断扩大而得到充分的体现。

二、综述

通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。泵类设备在生产领域同样有着广阔的应用空间,提水泵站、水池储罐给排系统、工业水(油)循环系统、热交换系统均使用离心泵、轴流泵、齿轮泵、柱塞泵等设备。而且期刊网,根据不同的生产需求往往采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。这样,不仅造成大量的能源浪费,管路、阀门等密封性能的破坏;还加速了泵腔、阀体的磨损和汽蚀,严重时损坏设备、影响生产、危及产品质量。风机、泵类设备多数采用异步电动机直接驱动的方式运行,存在启动电流大、机械冲击、电气保护特性差等缺点。不仅影响设备使用寿命,而且当负载出现机械故障时不能瞬间动作保护设备,时常出现泵损坏同时电机也被烧毁的现象。近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用变频调速器(简称变频器)易操作、免维护、控制精度高,并可以实现高功能化等特点;因而采用变频器驱动的方案开始逐步取代风门、挡板、阀门的控制方案。变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n=60f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。变频器就是基于上述原理采用交-直-交电源变换技术,电力电子、微电脑控制等技术于一身的综合性电气产品。

三、节能分析

通过流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n与流量Q,压力H以及轴功率P具有如下关系:Q∝n,H∝n2期刊网,P∝n3;即,流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。

篇9

这本书进一步探讨了全球范围内有待研究的新课题,并解释了现有的挑战和可供选择的方法,介绍了电能转换、配电和可持续发展能源战略的国际发展趋势、标准和计划。本书将推进国际电力电子技术在可再生能源、运输和工业应用中的发展,可以为工业界和学术界在能源转换和分布式发电配电等方向补充相关经验。

本书共分24章:1.能源、全球变暖以及电力电子在本世纪的发展;2.当今能源问题带来的挑战和电力电子学在解决这些问题过程中的贡献;3.分布式发电和智能电网的基本概念和技术;4.功率半导体的最新发展;5.一种应用在可再生能源和能量传输方向的新型变频器:AC母线全功能变频器;6.风电行业中的电力电子;7.光伏发电系统;8.可再生能源系统的控制方法;9.小型、中型可再生能源系统的运行机制;10.双馈异步电机的特点和控制;11.交-直-交变频器在分布式发电系统中的应用;12.多电化飞机中的电力电子设备;13.电动汽车和插电混合式汽车;14.多电平变频器的拓扑结构和应用;15.矩阵式变频器的拓扑结构和控制;16.功率因数校正器;17.有源电力滤波器;18.一种多功能新型仿真工具:电力电子硬件仿真环境;19.电机的模型和调速;20.电流源型变频器在电力驱动中的应用;21.共模电压和轴漏电流产生的原因、危害和防治;22.大功率驱动系统的工业应用实例;23.单相电网侧变频器的控制;24.阻抗源变频器。

本书作者AbuRub博士是美国德州农机大学教授,他的主要研究方向是能量转换系统,包括可再生能源和机电系统。他已经发表了200余篇期刊和会议论文,出版了4本专著,并在多个国际刊物中任编委,如IEEE可持续发展能源期刊。他目前正管理着多个与可再生能源发电相关的项目。

本书可以作为可再生能源系统工程人员的应用手册,也可以作为电气工程专业学生和研究者的参考书。

篇10

关键词:电气控制,绞车,拖体

 

一. 拖体绞车功能设计需求

在拖曳式多参数剖面测量系统的定型研制中,为满足系统整体小型化安装和使用的需要,拖体绞车采用了双层导流套排缆的设计方式,提出了对绞车实时的张力、缆长和缆速等信号进行的测量显示的要求,并要提供和上位机的数据通信功能,以便系统总控软件对绞车的状态信息进行远程实时监控和采集。本电气控制设计主要通过PLC的模块化功能设计,保证了绞车所需功能的实现。

二. 绞车的基本电气控制特性

拖体绞车采用了SEW变频电机和变频控制器。SEW电机具有变速稳定、噪声小、体积紧凑等优点,特别是减速机的工艺水平和齐全的型号满足了多领域的应用需求。

在电气控制功能方面,SEW电机可以采用专用的变频器控制,也可采用第三方的变频控制设备。SEW的变频器附带有专用的配置软件,多样的控制连接总线,便于构成多电机系统或者复杂的工业控制系统。免费论文参考网。绞车电机的工作参数可以通过变频器扩展面板或者上位机的配置软件来连线进行。

根据绞车工作基本需求,在绞车控制柜面板上设置正、反转,变速调节,紧急停车等控制按钮,另外根据人性化的工作需要,对电源连接和系统功能正常设置监视灯,以便于操作人员及时了解绞车的工作状态,分析解除系统故障。

三. 绞车的扩展电气控制功能

绞车设备中为采集收放缆长度以及拖缆所受张力的信息,添加了缆长测试单元和力传感器。针对绞车的双层排缆结构和力传感器安装特性,传感器数据的修正和放缆状态相互关联。由此设计了缆长和张力的采集和自动修正程序,保证了绞车参数的准确可靠性,满足设备正常工作需要。

1、缆长和缆速测量

缆长测量是根据电机转动的圈位信号换算而得。在电机上安装了编码器,能随着电机的转动情况产生脉冲信号,PLC中的计数单元对脉冲信号进行计数处理,换算出电机转动圈数对应的走缆长度。

缆速的测量的是根据定时间隔算得的缆长变化量,通过PLC的间接计算获得。

这其中,由于绞车采用了双层排缆技术,两层排缆卷筒的直径有较大差异,需要在排缆卷筒切换前后,更替缆长计算的参数,保证获得的数据准确性。在实际设计中采用了固定缆长自动切换和手动缆长切换两种方式,在绞车缆长切换位置基本不变的情况下,在固定的缆长位置切换计算参数,自动获得缆长和缆速信息,而在绞车缆长切换位置存在较大误差时,允许手动修正排缆切换点,保证误差的及时消除。

2、张力测量

在绞车卷筒出缆位置和前端导缆轮之间添加了固定位置的测力轮,测力轮的轴直接采用了一个力负载传感器,通过配套的后置放大电路,将信号以电平方式传给PLC的AD转换单元,从而获得张力信号。

张力测力轮的安装方式和张力的修正密切相关。张力的准确修正需在传感器安装固定以后,通过实验测试实际拖缆张力和传感器测得的法向应力,比较相互间关系,通过插值拟合获得准确的修正公式。绞车排缆卷筒的直径变化,也会使修正公式发生变化,在实际应用中要对不同卷筒分别进行张力拟合,还需和缆长换算一样,同步卷筒的切换状态,实现张力修正公式的自动切换。

3、显控通信功能

为使绞车操作人员及时获得绞车收放缆过程的状态,通过在控制台面板上添加触摸显示屏将PLC获得的缆长、缆速及张力信号及时反馈给操作人员。通过在PLC上添加通信单元,将信号数据以485方式传送给远端的上位机,来进行远程监控和信息保存。

四. 绞车电气设计经验

在绞车的实际加工生产和调试过程中,结合实际的生产和测试条件,对绞车的各项设计功能进行了及时的调整和改进,不仅保证了产品更好的质量和性能,并且获得了许多有益的设计心得和经验。

1、系统的选型

本套设计方案的实施,选用了三菱公司的PLC产品。三菱PLC在中国市场上得到非常广泛的应用,产品的众多系列品种保证了整套电气设计功能的实现便利性和灵活性,对于系统设计的功能扩展和可靠性保证起到了很好的保障作用。

2、PLC编程的方法

绞车的扩展功能多利用PLC来实现,在PLC的算法设计上类似于单片机的底层编程方式,需要对PLC的硬件性能和工作特殊方式较深入的了解,在算法的实现上要更多考虑到系统优化。如在缆速的换算过程中,由于要在更新速率和显示精度上达到匹配协调,需要充分了解计算单元的精度位数,实际问题出现的数据范围,调整计算次序来保证运算精度。

3、张力换算方法

准确的进行张力测量是一个程序复杂,实践性强的问题。要获得准确的张力,不仅要有好的传感器,还要有好的设计安装,最后还需要有一个细致的测试修正过程。在本绞车设计中,张力传感器采用瑞士的LB系列轴应力传感器,该传感器本身具有良好的线性精度设计,应力变化的准确性非常高。绞车的张力测量设计采用了缆对压力轮法向压力的方式,通过设计的定角度安装位置,保证了对缆张力转化参数的一致性。在后期的张力校准调试中,对两层卷筒分别进行了多工作位置,多导向轮角度的工作张力测试,最后获得的拟合公式仅采用一次多项式就达到了设计指标提出的±10%测量值误差的精度。

五. 绞车电气设计的改进提高

双层导流套排缆绞车的设计是拖体绞车的创新设计,在这第一次设计中难免存在不尽完善的地方。作为电气控制设计部分能够改进和提高之处有很多。免费论文参考网。

l电气接插件的选型和改进

绞车电气由于初次设计,对于配套成熟产品的选型方面了解得不够深入,选用的电气、信号接插电缆都限于点对点连接,这样在绞车的电缆拆装方面有不够方便简洁的问题。绞车电机本身的控制电缆就有四组:电源三相进线、电机控制的三相线、刹车控制线、风机三相线,外加传感器的编码器线和张力传感器线,以及和远端通信的信号线,堆在控制柜后的电缆就密密匝匝。在安装和拆卸时不仅繁琐,而且容易出现错误。如果采用了合适的接插设备,不仅在安装上简便、安全,而且外观上也整齐大方。在产品的专业性上就显得更为到家。免费论文参考网。

l软件的设计和优化

基于PLC的软件设计,专一性比较强,程序的优化提高的需要有一定时间的应用熟练和磨合提高。同样功能的软件,在代码上的优化,小则提高运行的速度和效率,大则可以避免出现bug和系统错误的危险。要开发出人机界面友好,简洁易用的软件也需要多了解真实工作中操作习惯和安全规范,绞车软件的完善提高也需要经历这样一个应用-反馈-改进的过程。

l控制功能方式的改型和提高

绞车的电气控制功能有很多可以提升和变通改进的地方,通过本型绞车电气功能的设计,在将来的绞车电气控制设计中可以有更多的发挥应用。比如通过远端连线和监控可以实现操控人员的远程绞车收放,通过无线控制设备的添加,可以满足操控人员灵活换位等等。如同软件设计,控制方式的搭配变化也可以孕育出满足不同类型需要的控制功能,使得产品有更广阔的市场空间。

参考文献:

[1]10kN电动拖曳绞车试验大纲,QF4.028.010MX-SY

[2]SEW Movidrive MDX60B/61B 操作手册,版本01/2005

[3]三菱微型可编程控制器手册,2006版