交通通信范文

时间:2023-03-16 12:05:05

导语:如何才能写好一篇交通通信,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

交通通信

篇1

[关键词]轨道交通 通信系统 WLAN网络 传输

中图分类号:U239.5 文献标识码:A 文章编号:1009-914X(2016)21-0131-01

前言

通信系统的建设是城市轨道交通建设发展中重要的一环,其对轨道交通的日常运行和管理工作有着重要的联系。其技术的运用对轨道交通的正常运转有重要保障,同时也是其他系统的重要传输通道,它提高了轨道列车的工作效率以及自动化程度,密切了各系统部门之间的联系,有利于相关工作人员对列车进行及时的管理调度。城市轨道交通信息通讯系统比较复杂,其主要子系统包括传输系统、电源系统、专用电话系统、公话电话系统等,为了充分发挥该系统特有的功能,各子系统应该互相协调和配合。

一、城市轨道交通通信系统技术研究现状

轨道交通由于每天都承载了一座城市人的出行工作和生活,其高效、安全和准时的特点是其必要的三个特征。目前,依据我国城建设中的具体情况,可以将城市轨道交通通信系统分为以下几个子系统:传输系统、无线系统、公务电话系统、专用电话系统、无线电通信系统、闭路电视系统、广播系统、时钟系统以及自动售检票系统等。随着城市轨道交通技术的不断进步,以及大量城际轨道交通线的建立,我国城市轨道交通信息通讯系统的发展方向越来越多样化,并形成了大运量、中运量、市郊线多种并存的局面。为了进一步提升我国城市轨道交通的整体技术水平,使之能够为城市的发展做出更大的贡献,努力从自身抓起,打破原有的技术性垄断。进一步促使社会各个行业的发展和前进。因此,更应该重视起对城市轨道交通的的通信系统的研究。

二、WLAN网络在城市轨道交通中的应用

因为现代社会科学的发展,城市轨道通信系统的发展也必须跟上脚步,所以,提高WLAN无线网络建设在城市轨道交通中的应用,是促进现展必不可少的。轨道WLAN无线网络除了在平时能够满足乘客上网,提高媒体传播等需要,还可满足运营信息,紧急信息,应急抢险信息,车载CCTU,列车状态及故障数据等实时传输要求,从系统上实现功能分析,轨道交通WLAN网络可服务于轨道交通的运营管理,维护保障,故障报警和资源经营等系统。要提高交通WLAN网络建设技术在轨道的有效性,具体应在现场查勘数据的基础上,根据沿线区间的弯度和坡度等数据,调整每个AP布设位置和间距。安装定向天线,限定覆盖范围,同时相邻两个轨旁AP应设置信号重叠覆盖区域,以保证跨AP网桥的平滑切换,并需要经过反复的测试调试,使列车沿线获得均匀良好覆盖,满足车地间数据传输需求。

通过WLAN网络建设可以提高轨道交通民用通信网络的整体能力,依托无线宽带接入服务能够提升轨道交通整体的服务能力和服务价值,并进一步提升轨道交通的信息化水平和运营服务品质。

三、传输系统是城市轨道交通信息通信系统的关键

城市轨道交通的信息通信系统中,最重要的一环系统就是传输系统,因为运行和日常管理中的各项工作都离不开该系统。当前在我国城市轨道系统中比较常见的传输技术主要有三种,以下将简单介绍分析这三种技术。

1. 开放式传输网络技术

一般而言,在当前的技术条件下,开放式的传输网络技术性能相对而言会比较稳定,其具备了大量的数据以及接口是一项专门为城市轨道交通进行服务的技术。然而,由于该技术缺乏统一的国际标准,造成其本身的封闭性,不利于进行系统的升级和优化。另外,我国在城市轨道交通方面的业务量越来越大,在宽带不断改进的环境下,开放式传输网络技术已经适应不了宽带的需求。

2. 同步数字传输技术

这种技术其实是输送过程中能够做到同步的的传输。作为一个关键性技术中的一个组成要素,同步数字传输技术它的成熟和应用的好评程度都要高于开放式的传输技术,该技术具备统一的国际标准,为系统的更新换代提供了可能性,另外还有自愈以及网管的功能。但是,该技术还有一些欠缺,例如,语音业务是同步数字传输技术主要服务项目,因此在数据和图像业务方面还存在着不足。

3. 异步转移模式技术

异步转移模式技术的优势在于,一是业务服务对象比较多样,可以给各种业务提供服务,特别是在视频的相关业务中,其效果非常明显;二是能够有效地提高宽带的使用效率,这是因为该技术属于面向连接的技术,使用统计复用功能就能实现宽带利用率的提高。然而,由于异步转移模式技术系统的复杂性,导致该技术不够准确可靠,此外该技术的成本比较高,这也对该技术的发展产生了不利的影响。另外值得一提的是,随着各种新型通讯新技术的开发和涌现,轨道交通的业务有了相当程度的发展,新型的业务不断成熟,对宽带的需求也有所上升。在未来城市轨道交通信息通讯系统中,将会采用千兆以太网技术和粗波分复用技术。其中,千兆以太网技术,能够和以太网及快速以太网兼容,并且具有直接、快速的特点,设备比较便宜,传输距离长,在一定程度上能够让城市轨道交通信息通讯系统组网的要求得到满足,而且也解决了以太网存在的缺陷;粗波分复用技术,已成为大容量电信骨干网的首选,它具有操作简单、价格便宜以及容量大等优点,未来城市轨道交通信息通讯系统中可以充分利用粗波分复用技术,值得推广。

四、城市轨道交通信息通信系统的其他子系统?

1.通话系统

在轨道交通运行过程中,经常性会需要一些交通部门进行联系,所以通讯成为了通信系统中一个重要部分。公务电话是轨道交通线上的一类内部的公务通信设备,除了连接必要的交通部门之外,还连接了市话网和一些相关的轨道交通线的公务电话网。

在轨道交通运输中,除了与一些交通部门进行联系之外,联系最紧密的就是调控中心和一些站点的管理中心,所以在设计了专用电话系统,负责的是控制中心和各车站的列车、电力、防灾及公安等方面的调度,并且还提供了紧急电话、调度电话以及站间电话业务。在轨道交通中使用专用电话系统,有利于工作人员指挥列车的运行,以及进行设备的操作,同时也为行车调度提供了有力的支持。

2.闭路电视监控系统

在城市轨道交通运行中,为了更好的实时跟踪和记录其运行的情况,需要闭路电子监控设备的进行辅助工作。由于这种系统还便于指挥和管理,所以其有利于实现轨道交通的自动化调度和管理。另外,电视监控系统的传输具有不对称的特点,导致车站到中心需要比较大的宽带,而中心到车站运用低速的数据业务即可。就目前来看,ATM技术仍是电视监控系统中最佳的传输机制,该系统可以利用ATM技术按需求连接、分配带宽的特点,保证图像的质量,同时也节省了所占的宽带。

五、结束语

随着我国通信行业不断发展,其给轨道交通带来的技术支持,越来越多,也为城市轨道交通的发展提供了很大的动力。由于近年来,城市列车的运行更需要高性能的通信系统作为保障,所以,我们需要更进一步加大力度对通讯系统加以分析研究。另外,注意结合运用无线卫星以及移动通讯等先进的科技,保障列车能够在运行过程中实现通讯联系,这样才能够更好的完善通信系统,提高系统的可靠性,保证列车行驶的安全。更好地促进城市轨道交通的发展和进步。

参考文献:

[1]高E,韩晓亮,刘培欣,杨志华.地铁通信系统建设方案研究[J] .数字通信,2014(1).

[2]薛连斌.地铁通信系统现状及发展趋势研究[J] .中国新通信,2014(17).

[3]钟治国.通信技术在城市轨道交通中的应用[D] .上海:上海海运学院,2013.

篇2

1.收费系统

高速公路收费系统一般采用半自动收费方式,即人工判别车型,车道入口发放通行卷,出口验卷,计算通行费,人工收费,计算机管理,辅以车辆检测器校核,闭路电视监视。目前,提倡计算机联网收费。远期,逐步实现自动收费方式。通行卷有采用非接触式IC卡,也有采用磁卡 。为便于计算机联网收费,联网收费区域内均应采用同一种 通行卷。

1.1 计算机收费系统

计算机收费系统一般分两级,即收费中心计算机系统和收费站计算机系统。收费站控制室计算机与该站的收费广场车道控制计算机组成该站的局域网。收费中心内的计算机构成中心独立的局域网。各局域网之间、收费中心与区域拆帐中心之间需要通过通信系统实现数据传输进行勾通。

1.2 收费数据传输

收费数据分三级管理:收费中心计算机、收费站计算机及收费车道计算机。收费站与收费中心之间的数据传输是通过数据通道直接传输的,各通信站的ONU设备提供必要的2Mbps(G.703)数据通道接口。通信与收费系统是通过收费站和收费中心的路由器连接起来的,在区域收费联网的情况下,路由器至少要具备两个E1(G.703)接口,一路传往收费中心,一路传往区域拆账中心。

1.3 收费图像传输

收费系统在个收费站广场出口均设置了摄像机,各摄像机的图像信号既要传到相应的收费站又要传到收费/监控中心。从摄像机到收费站的视频及控制信号传输是由收费系统完成的,而图像及控制信号的远程传输与监控有所不同,未采用复用方式,庵个摄像机图像对应一芯光纤,而控制信号是经MODEM通过通信系统的话路通道传输的。

2.通信系统

2.1 通信干线传输

长途通信干线传输系统设计的正确与否,决定着整个通信系统质量,它不仅关系到能否实现现代通信网设计的目的,还关系到工程投资的经济性、合理性和可靠性。目前,高速公路机电工程基本是采用光纤通信系统。高速公路通信系统长途通信干线传输网采用光纤通信,这是因为: 高速公路通信网要求同时传输语音、数据和图像通,信量较大,选用频带、通信容量大的光纤通信系统是合理的。 光纤通信具有通信容量大、抗电磁干扰能力强、通信质量高、传输距离长等特点,是其它通信传输方式无可比拟的。 光缆通信中继距离长,适应公路沿线各通信站点间距离不一致的实际情况。 采用长波长单模光缆传输方式,在中等容量以上长距离传输系统中,从经济上占有优势。

2.2 通信系统的程控交换

根据高速公路通信系统业务的内容和特点,通信系统采用三级程控交换,第一级交换中心设在高速公路总公司通信总中心,其主要职能是完成本局终端的话务接转,汇接所有来话、去话的转接任务,并与二级公路网中心联接,完成本局话务接续与本局以外的话务转接;第三级交通中心分别设在各高速公路公司下属的管理所,其主要职能是完成本局的话务接续与出入本局的话务接续。为了提高系统的可靠性、灵活性及话务流向的需要,各级交通交换中心之间均可进行互连,以便组成一个多迂回、多路由的程控数字交换网。

2.3 话音通信系统

高速公路通信网话音系统包括业务电话系统、指令电话系统和移动电话系统。业务电话系统为高速公路管理局、各公司、各管理所以及高速公路上各种设施(如监控、收费、服务区、停车场、加油站、维修、交警、通信、供电、配电及养护等)提供内、外业务联系电话。业务电话为全网自动拨号,业务电话网应与市话公用网汇接。指令电话系统主要是为监控总中心以及监控中心下达交通监控和调度指令。为便于交通控制和交警业务调度,在监控中心和分中心可分别设置两套指令电话控制台,以便供公路值班员和交警值班员使用,指令电话应自成系统。指令电话控制台设置在各路公司内,分监控指令控制台和交警指令控制台,分别控制所辖路段各指令电话机和交警用指令电话机;指令电话控制台具群呼、组呼、单呼功能及自动录音功能;指令电话控制台具有转接功能,即实现指令电话控制台与指令电话机之间的转接。

2.4 移动通信系统

移动通信,就是指通信双方至少有一方在移动中进行信息交换。移动通信不仅指双方的通话,还应包括数据、传真、图像等业务。移动通信系统可以自己建网,也可以租用邮电部建立的公用蜂窝移动通信网。邮电部公用蜂窝移动通信网可实现全省漫游,管理也比较方便,可以省去了自己建网的费用,但公用蜂窝移动通信网费用很高,同时不能完成高速公路网要求群呼、组呼等调度功能。自行建立高速公路移动通信专用网,可以解决上述不足,但建网投资很大。建议高速公路移动通信系统自己建立专业移动通信网,采用800MHz集群移动通信系统。据了解,辽宁省高速公路管理系统应用移动通信较为先进,移动通信成为快速应变能力的强有力手段。

3.监控系统

高速公路监控系统应用图像传输可将道路现场的活动图像,利用图像传输系统的能力把图像信息用电信号的方式传送到远方,清楚地再现在屏幕上,有利于管理人员做出控制决策。活动图像传输采用光缆传输方式,高速公路监控摄像点不太多的特点,一般采用一对一(一摄像头对一监视器)方式传输到各路监控中心。通过视频切换方式,由总部的控制信号来选取所需的图像信号,由光缆传至监控总部的监视器,使总中心也能监视到它所关心的全省高速公路运行情况,以便进行宏观管理。

监控系统主要由两部分组成:监控中心计算机系统和外场设备。

3.1 监控中心计算机系统

监控中心计算机系统即情报处理系统,它包括通信控制器、网络服务器、交换式集线器、终端计算机等。这些计算机组成局域网,组网方式:收费站控制室计算机与该站的收费广场车道控制计算机组成该站的局域网。收费中心内的计算机构成中心独立的局域网,只是多了一台通信控制器,它配有多串行接口控制器,用于外场设备与中心的数据通信管理。

3.2 监控中心的外场设备

监控的外场设备包括车辆检测器,可变情报板,可变限速标志,气像检测器等。由于这些检测点(数据采集点)距离通信

站较远,相对分散,且数据量较小,无法采用标准的高速数据接口进行传输,因此在每个远端数据点配一台MODEM,将数据传到就近通信站的ONU,最后通过通信系统传至监控中心通信控制器。

3.3 监控数据传输

监控数据分二级管理:监控中心、监控外场设备。通信系统在各站综合业务接人网的ONU设备业务通道中提供足够的2/ 4wVF接口,监控数据采用模拟传输方式,通过这些音频接口完成,由监控系统提供MO-DEM进行数模转换。

3.4 监控图像传输

监控系统在全线设置了一定数量的摄像机,各摄像机的图像和控制信号均要传至监控中心。通信系统负责为摄像机的图像和控制信号传输提供光电缆,视频图像信号和控制信号经过数字/视频复用光端机复用后,占用一根光纤。

篇3

【关键词】同步数字体系;交通系统;同步数字体系

随着现代通信的不断发展,要求传送的信息不仅是话音,还有文字、数据、图像、视频等。加之数字通信和计算机技术的发展,人们希望现在信息传输网络能快速、经济、有效地提供各种电路和业务。在上世纪70-80年代陆续出现的网络技术,由于其业务的单调性、扩展的复杂性、带宽的局限性,仅在原有框架内修改或完善已无济于事。同步数字体系应用在接入网中,可以将该技术在核心网中的巨大带宽优势和技术优势带入接入网领域,充分利用同步数字体系同步复用,标准化的光接口,强大的网管能力,灵活的网络拓补能力和高可靠性所带来的好处,将在接入网的建设发展中长期受益。

1.同步数字体系技术简介

该技术是一种光纤传输体制,它以同步传送模块(STM-1,155Mbit/s)为基本概念,其模块由信息净负荷(payload)、段开销(SOH)、管理单元指针(AU)构成,其突出特点是利用虚容器方式兼容各种PDH体系。同步数字体系传输网具有智能化的路由配置能力、方便维护监控管理能力强、光接口标准统一等优点。同步数字体系的技术特点主要有:

(1)同步数字体系传输系统在国际上有统一的帧结构,数字传输标准速率和标准的光路接口,使网管系统互通,因此有很好的横向兼容性,它能与现有的PDH完全兼容,并容纳各种新的业务信号,形成了全球统一的数字传输体制标准,提高了网络的可靠性。

(2)同步数字体系接入系统的不同等级的码流在帧结构净负荷区内的排列非常有规律,而净负荷与网络是同步的,它利用软件能将高速信号一次直接分插出低速支路信号,实现了一次复用的特性,克服了PDH准同步复用方式对全部高速信号进行逐级分解然后再生复用的过程,由于大大简化了DXC,减少了背靠背的接口复用设备,改善了网络的业务传送透明性。

(3)由于采用了较先进的分插复用器(ADM)、数字交叉连接(DXC)、网络的自愈功能和重组功能就显得非常强大,具有较强的生存率。因同步数字体系帧结构中安排了信号的5%开销比特,它的网管功能显得特别强大,并能统一形成网络管理系统,为网络的自动化、智能化、信道的利用率以及降低网络的维管费和生存能力起到了积极作用。

(4)由于同步数字体系有多种网络拓扑结构,它所组成的网络非常灵活,它能增强网监、运行管理和自动配置功能,优化了网络性能,同时也使网络运行灵活、安全、可靠,使网络的功能非常齐全和多样化。

(5)同步数字体系有传输和交换的性能,它的系列设备的构成能通过功能块的自由组合,实现了不同层次和各种拓扑结构的网络,十分灵活。

(6)同步数字体系并不专属于某种传输介质,它可用于双绞线、同轴电缆,但同步数字体系用于传输高数据率则需用光纤。这一特点表明,同步数字体系既适合用作干线通道,也可作支线通道。例如,我国的各级电信网,国家与省级有线电视干线网就是采用同步数字体系,而且它也便于与光纤电缆混合网(HFC)相兼容。

(7)从OSI模型的观点来看,同步数字体系属于其最底层的物理层,并未对其高层有严格的限制,便于在同步数字体系上采用各种网络技术,支持ATM或IP传输。

(8)同步数字体系是严格同步的,从而保证了整个网络稳定可靠,误码少,且便于复用和调整。

(9)标准的开放型光接口可以在基本光缆段上实现横向兼容,降低了联网成本。

2.同步数字体系的传输原理

同步数字体系采用的信息结构等级称为同步传送模块STM-N(Synchronous Transport,N=1,4,16,64),最基本的模块为STM-1,四个STM-1同步复用构成STM-4,16个STM-1或四个STM-4同步复用构成STM-16;定位即是将帧偏移信息收进支路单元(TU)或管理单元(AU)的过程,它通过支路单元指针(TUPTR)或管理单元指针(AUPTR)的功能来实现;复用则是将多个低价通道层信号通过码速调整使之进入高价通道层或将多个高价通道层信号通过码速调整使之进入复用层的过程。

3.SHD技术在交通系统通信中的应用

3.1网络架构设计

交通通信网的网架结构,决定了交通通信网分级、分层、分区的传输网络拓补结构。国调中心至各大区调度中心的交通通信为一级传输网,大区调度中心至各省级调度中心的交通通信为二级传输网,省级调度中心至各地区级调度中心的为三级传输网,地区级调度中心至各县级调度所为四级传输网,各县级调度网就是五级交通传输网了,交通系统通信网的业务流向比较特殊,是从低级向高级的流向,因此网络的结构、容量也必须符合这一要求,在实际建设过程中,还需要根据实际情况,考虑网络建设和管理的复杂度,确定网络的层次架构。

3.2同步数字体系用户接入设备的布置

省级调度中心配置一套同步数字体系用户接入设备,将各地区通信网至省调及上级调度的主通道业务信号进行分叉/复接,实现业务重组:地区级调度中心配置一套同步数字体系用户接入设备,实现业务重组。同步数字体系用户接入设备,其基本平台是一套高性能的STM-1同步数字体系传输设备,多台同步数字体系用户接入设备能够组成STM-1的同步数字体系网,也能够接入到STM-4或STM-16的网络中组成同步数字体系子网,同步数字体系传输与复用部分应符合ITU建议G.782,G.707,G.826,G.813。

3.3业务实现过程

考虑将来的业务扩展,根据业务需要分配带宽颗粒,在传输系统中,一次分配4个左右2M,二次分配3个左右2M,局间提供分组交换所需的2M。综合业务接入网设备需满足如下业务需求:2/4线音频专线接入、Z接口延伸业务、热线电话、以太网等。

3.4保护方式的选择分析

同步数字体系的特点是其光环自愈功能,在光纤被切割等故障发生时仍能在很短的时间内恢复通信,这在保证整个通信系统的可靠性方面起了重要作用。在实际设计过程中需要结合节点的分布、格局、不同的保护方式,主要有两种不同的网络配置方案:(1)自愈环保护,较适应于环网结构,对网络通信容量较大,结构简单的大型网络更为实用,(2)SNC(子网连接保护),较适应于网孔型网络结构,对于交通通信网通信容量较小,分支较多更为适用,该配置方案可靠性强,投资小,公共点仅需一套设备,时延短。

4.结语

同步数字体系已经是一套在电信网中成熟应用的技术,而结合交通系统发展现状、交通系统通信业务特点、系统特征等多个方面的需求,本文阐述了同步数字体系技术的普遍性和应用于交通通信网络区别于其他通信系统的特殊性,为交通基础设施建设提供一些方案参考。 [科]

【参考文献】

[1]赵新丽.《电子技术基础》教学改革的探索[J].巴音郭楞职业技术学院学报,2011,(04).

篇4

关键词:轨道交通 通信 传输系统 以太网

中图分类号: TP39文献标识码:A文章编号:1007-3973 (2010) 02-066-02

1引言

传输系统在轨道交通中提供信息传送服务,是最重要的通信子系统。目前以SDH为基础的MSTP在轨道交通领域被广泛应用。SDH是因应TDM业务的需求为产生,而以SDH为基础的MSTP是随着数据业务的增加由SDH改进而来。以太网在承载数据业务时效率最高,具有标准化、互通性、经济性和易用性等优点,MSTP通过通用成帧规程(GFP,Generic Framing Procedure)、虚级联(VC,Virtual Concatenation)、链路容量调整(LACS,Link Capacity Adjustment Scheme)等关键技术实现了以太业务的承载。轨道交通领域各子系统如乘客信息系统、视频监视系统、信息网络系统、自动售检票系统等均已数据业务为主,因此在传输系统中实现以太网业务的有效承载对轨道交通通信系统功能的发挥具有重要意义。本文详细分析了MSTP承载以太网业务在轨道交通通信系统中的组网方式和应用。

2MSTP中以太网业务的类型

MSTP中承载的以太网业务可以分为4种类型:以太网专线(EPL)业务、以太网虚拟专线(EVPL)业务、以太网专用局域网(EPLAN)业务和以太网虚拟专用局域网(EVPLAN)业务。以上组网方式可以分为专线组网和二层交换组网方式,专线组网方式包括EPL和EVPL,二层交换组网方式包括EPLAN和EVPLAN。由于轨道交通通信系统对安全及可靠性的要求,各子系统的传输通道采用相互独立、隔离的方式,即不同子系统不共享同一通道,因此EVPL和EVPLAN两种带宽共享的方式在轨道交通通信系统中很少被采用。

2.1EPL业务

EPL业务称为以太网透传业务,该业务具有两个业务接入点,实现对用户以太网MAC帧进行点对点的透明传输。每个EPL用户的业务有专用的SDH通道承载,不同用户不需要共享传输通道。因此该业务具有带宽独享、业务隔离、传输延时小等特点。

2.2 EPLAN业务

EPLAN属于多点到多点的以太网业务,不同用户不需要共享链路带宽,因此具有严格的带宽保障和用户隔离,不需要采用其他的QoS机制和安全机制。由于具有多个节点,因此需要基于MAC地址进行数据转发,需要MAC地址学习和L2交换的能力。

3 轨道交通通信系统MSTP以太网组网方式及应用

3.1 EPL组网方式

控制中心CCTV、PIS中心设备与车站设备通过MSTP设备连接,CCTV带宽需求为20Mbit/s,PIS带宽需求为10Mbit/s。两系统的业务需完全隔离。

图1 EPL组网方式

控制中心CCTV、PIS的以太网交换机分别通过100Mbit/s电接口连接到MSTP NE1设备的以太网盘的100Mbit/s电接口MAC1和MAC2端口上。车站CCTV、PIS的以太网交换机也分别通过100Mbit/s电接口连接到MSTP NE2设备的以太网盘的100Mbit/s电接口MAC1和MAC2端口上。在MSTP设备NE1和NE2之间的线路上,CCTV的数据通过一条VC TRUNK1通道传送,PIS的数据通过另一条VC TRUNK2通道传送。其中VC TRUNK1绑定10个VC-12,VC TRUNK2绑定5个VC-12。其他车站与控制中心的连接与此相同。这样两系统的数据就可以在控制中心和各车站间透明传送。

CCTV和PIS独享各自分配的带宽,因此两业务完全隔离,可靠性强,安全性高。但EPL存在传输系统带宽利用率低、带宽分配不灵活的缺点。

3.2EPLAN组网方式

控制中心CCTV中心设备需要访问车站1及车站2的CCTV车站设备。局域网之间共享300Mbit/s。

控制中心、车站1和车站2CCTV局域网设备采用局域网交换机,并且支持VLAN功能,它们通过100Mbit/s以太网电口分别与MSTP NE1、NE2和NE3设备上的以太网盘的100Mbit/s电口MAC1连接。以太网盘支持虚拟网桥(VB)功能,可以实现以太网数据的二层交换。在MSTP NE1、NE2和NE3设备之间建立相应的VC TRUNK,VC TRUNK绑定2个VC-4。为了实现3个局域网的互通,将3个局域网的VLAN ID都划到同一虚拟局域网中(VLAN ID=100)。MSTP NE1、NE2和NE3设备网元可以建立一个或多个VB,每个VB可以建立一张MAC地址与VC TRUNK对应的表,此表通过系统自学能力定期进行更新。

图2EPLAN组网方式

为避免广播风暴,以太网业务可不设置成环,则NE1至NE3之间的业务需经过NE2,如图2所示。例如控制中心CCTV工作终端要访问车站2摄像机,则NE1接收数据后,根据VB的MAC地址表选择VC TRUNK,传送到车站1,车站1VB根据其MAC地址表选择VC TRUNK,将数据传送至车站2。

如果以太网EPLAN设置成环,则在网络中必须启动生成树协议(STP/RSTP),以避免广播风暴的出现。

EPLAN实现以太网业务的多点动态共享,符合数据业务的动态特性,节省带宽资源,因而在轨道交通通信系统中被广泛采用。

3.3MSTP以太网业务的保护

EPL点对点透传本身并无保护功能,它的保护必须依赖SDH保护倒换环的方式来实现。而对于组成环网的EPLAN在采用以太网二层交换处理后,对以太网业务的保护要采用以太网生成树(STP)或快速以太网生成树协议(RSTP)来实现保护功能。

4结论

MSTP所提供的以太网组网方式和应用能很好地满足现有轨道交通领域通信系统的需求,但随着速率、安全性及可靠性等要求的提高,MSTP以太网业务,尤其是以太环网,在应用中会暴露出一些问题:采用逐跳方式进行MAC地址交换,随着节点的增加,查询效率将会降低;以太环上节点间带宽分配存在不公平性;生成树协议保护倒换收敛时间过长等。以上问题较好的解决方案是弹性分组环技术(RPR)。MSTP将RPR引入其中能很好地解决目前以太环网存在的不足,因此内嵌RPR的MSTP将会是未来传输系统的一种优先选择方案。

参考文献:

[1]李伟章,徐幼铭,林瑜筠等.城市轨道交通通信[M].北京:中国铁道出版社,2008.

[2]曹蓟光,吴英桦.多业务传送平台(MSTP)技术与应用[M].北京:人民邮电出版社,2003.

[3] 张国平.MSTP承载以太网业务分析[J].电力系统通信,2008,29(184):9-12.

篇5

关键词:轨道交通;课程体系;通信信号;技术体系:专业开设

中图分类号:G642文献标识码:A文章编号:1009-5349(2016)05-0132-02

轨道交通通信号专业包含铁道通信信号和轨道交通通信信号技术两个方向,前者主要为大铁路服务,后者为城市轨道交通服务。不论铁道通信信号技术,还是轨道交通通信信号技术,各技术形成设备都自成系统,各系统既相互独立又相互联系,但是都属于自动控制领域和可靠性工程领域在铁路信号控制方面的一项应用技术,因此在人才培养上有共同的基础。

一、铁道通信信号专业人才培养体系

自2003年至今,铁路建设进入飞跃发展期,其中既包含既有线路的提速、电气化改造和铁路中长期路网规划而新建的普速、快速铁路,又有城际铁路和高速客运专线的开通,截止2015年底,全国铁路营业里程达到12.1万公里,其中高铁运营里程超过1.9万公里。由此,带来了轨道交通行业人才需求旺盛的局面。随着铁路的不断建设及投入运营,人才的需求出现井喷,出现了轨道交通行业人才供不应求的局面,各铁路背景院校对铁路专业进行了扩招,并出现了其他院校开设铁路专业的情况。

铁道通信信号专业是高等职业院校为长大铁路(指长大干线、支线、高速铁路、城际铁路、地方铁路等)通信信号工程建设和维护而培养铁道通信信号人才的专业,以车站信号联锁设备、区间信号闭塞设备、列车运行控制系统、铁路调度指挥系统为核心专业课,旨在培养铁道通信信号专业(侧重铁道信号)高端高技能型人才。该专业在各铁路背景院校均开设,在山东职业学院(原济南铁道职业技术学院)自2009年至现在,共计为济南、上海、兰州、南昌、成都等各铁路局及工程局培养技术人才共计约1000余人。经过近几年人才培养经验的积累,已形成较为完善的人才培养体系。其课程体系综合了计算机、通信技术和交通运输三个学科方面的课程,人才培养体系关系见图1。专业基础课主要包括:电工电路分析、电子技术、通信技术、计算机网络等,专业课主要包括:铁道概论、铁路信号基础、区间信号自动控制、车站信号自动控制、铁路调度指挥系统、列车运行控制系统等。

二、轨道交通通信信号技术专业人才培养体系

“十三五”时期,我国将进入城市轨道交通建设大发展阶段,到2020年,全国城市轨道建设里程将由2015年的3000公里达到7,000公里。随着城市轨道交通建设,会急需一批具有扎实基本功的轨道交通专业技术人才。依据国际轨道交通专业人才配备标准,每建设一公里城市轨道交通线路,至少需要60名管理及技术人员。由此可见,未来国内轨道交通从业人员需求量是相当巨大的。

城市轨道交通人才需求有区域性特点,因此各高等职业院校城市轨道交通人才培养主要以区域培养为主。以山东为例,山东现已开展济南、青岛地铁和轻轨建设(总规模约1200公里)。“十三五”期间,山东将加强城市交通体系建设,加快以轨道交通为主体的城市快速通道建设,推进济南、青岛地铁和轻轨建设, 启动烟台、潍坊、淄博、临沂、济宁、威海、日照等市轨道交通规划建设,因此未来山东省内城市轨道交通从业人员会有较大需求量,城市轨道交通相关专业的开办就显得极为必要。轨道交通通信信号技术专业主要为城市轨道交通建设(地铁和轻轨等)和维护培养城轨通信信号方向(侧重城轨信号)高端高技能型人才。

轨道交通通信信号技术专业人才培养体系关系图见图2,其课程体系综合了计算机、通信技术和交通运输三个学科方面的课程。其专业基础课主要包括:电工电路分析、电子技术、通信技术、计算机网络等,专业课主要包括:城市轨道交通概论、铁路信号基础、车站信号自动控制、ATC(列车运行控制系统)系统、城市轨道交通ATP及ATO系统、城市轨道交通ATS系统等。

三、专业开设情况

铁道通信信号专业和轨道交通通信信号技术专业都为轨道交通行业服务,可直接分为两个独立专业单独招生及授课。但从人才培养体系中大家又不难看出,铁道通信信号专业和轨道交通通信信号技术专业其支撑课程完全相同,因此其基础课程的设置完全相同, 且在个别专业基础课和专业课课程上也有交叉,因此也可按同一专业招生,其后分铁道通信信号和轨道交通通信信号技术不同方向,这样做的优点是:师资和实训资源实现最大程度的共享,并利于统筹安排,而且还可根据个人爱好及市场对专业人才需求(根据最近就业情况做出最精准判断)做出选择和判断,最大限度避免培养出的专业人才的浪费。

四、结语

随着高速铁路的发展和城市轨道交通的快速建设,通信信号技术及装备都得到了很大的发展,既给高等职业院校的人才培养带来了机遇,同时也带来了挑战。一方面随轨道交通的建设带来大量的人才需求,另一方面随着技术及装备发展对专业技术人才提出了更高的要求。因此只有不断的将各学科专业知识融合,紧紧地与现场设备及现代通信信号技术结合,才能培养出合格的、适应岗位需求的高端高技能型通信信号专业人才。

参考文献:

[1]张晓玲. 铁路与城市轨道交通人才需求调查分析与培养改革[J]. 城市轨道交通研究,2010(12):12-14.

[2]罗建国,张丽华. 城市轨道交通对技能型人才的需求[J]. 中国科教创新导刊,2011(34):191.

[3]慕威. 城市轨道交通运营管理专业人才需求及培养目标分析[J]. 现代商业,2013(06):125-126.

[4]韩松龄. 我国城市轨道交通行业人才培养面临的难题及其解决途径[J]. 经济师,2013(03):247-248.

[5]张洪满. 城市轨道交通运营管理专业人才需求及定位分析[J]. 职业时空,2014(05):84-86.

篇6

【关键词】轨道交通通信信号应用发展

一、引言

1、城市轨道交通发展概况。

伴随着世界经济的不断发展,城市人口的增加和规模的扩大,给公共交通造成了很大压力,也必然促使城市公共交通的积极发展,不仅数量上激增,而且在质量上也提出了更高要求。当前,以城市轨道交通为主、高速公路、等级公路为辅的立体交通网络日趋完善,已经形成了一个综合的交通体系,为城市经济繁荣和人们出行带来了很大便利。近年来,地铁和轻轨发展迅速,颇受一些发展中国家的重视,都在积极规划和建设,以缓解城市日趋严峻的交通拥堵问题。值得一提的是,高铁的发展给城市间的交通以及经济繁荣带来了巨大生命力,特别是磁悬浮轨道技术的应用,更是体现了当前轨道交通的前沿科技水平和发展趋势。例如,上海磁悬浮列车的运行,是我国最新城市轨道交通技术发展的缩影,产生了巨大影响力。

2、城市轨道交通信号系统的应用。

交通信号不仅是列车运行的通行证,更是安全运行的指挥棒。轨道交通要实现安全运行和提高通过能力两大要求,离不开轨道交通信号的发展和应用。20世纪中叶以来,微电子技术,信息技术和计算机网络技术等科学技术的发展,给轨道交通信号技术带来了了一场颠覆性革命,城市轨道交通信号系统(即ATC)应运而生,它为轨道交通安全运行和通过能力的提高发挥了巨大作用。不仅提高了运行效率,同时实现了列车运行的自动化。

二、城市轨道交通信号系统

1、城市轨道交通信号系统组成和作用。

轨道交通信号系统是由各类信号显示、轨道电路、道岔转辙装置等主题设备及其他有关附属设施构成的一个完整的体系。目前城市轨道交通的信号系统一般包括两大部分:联锁装置和列车自动控制系统ATC(Automatic Train Control)。ATC系统包括三个子系统:列车自动监控系统(简称ATS)、列车自动防护系统(简称ATP)、列车自动运行系统(简称ATO)。

ATC系统是一种依据地面传送的信息,自动控制列车运行状态的信号设备。可实时监控列车的轨道运行速度,并参照允许速度及时作出反应,通过对列车的制动控制,自动降低列车速度,确保列车高效、安全的运行。城市轨道交通信号系统是确保列车安全运行,实现行车综合指挥和列车运行智能化,提高运输能力和效率的重要系统设备。

2、城市轨道交通ATC系统的特点。

传统的轨道交通信号系统是通过设置在地面的色灯信号机来传递不同的行车信息和命令,这种信号模式是依赖司机对列车进行速度控制和调整,人为因素占主导地位,安全性差,已经不适应轨道交通的发展。而ATC系统是一种智能化系统,它将列车信号作为主体信号,把具体的速度或距离信息传递给列车指挥系统,列车按调度人员设置的工作程序和时刻表,实现自动运行、自动调整停站时分,以及运用控制程序实现列车在车站的停靠要求。ATC系统大大提高了轨道运营效率和安全系数,具有广阔的发展和应用前景。

3、城市轨道交通信号系统的功能理解。

(1)联锁是指为确保列车运行的安全,将轨道线路中的所有交通信号机、轨道电路及道岔等相对独立的信号设备构成一种相互制约、互为控制的连带环扣关系,即“联锁”关系。它主要是控制列车的确定路线和进出改变路线。

(2)ATC系统各部分的功能理解。①列车自动防护(ATP)子系统。ATP子系统可分级或连续对列车运行的速度状态进行防护,主要是针对列车运行进行防护,实行监控与安全有关的设备或系统,实现列车间隔保护、超速防护等功能,其主要工作原理是及时的将一些地面信息(如来自联锁设备和操作层面上的信息、地形信息、前方目标点的距离和允许速度等)传至车上,进行分析判断,从而得出此时所允许的安全速度,依此来监督和管理列车的速度状态。当列车实际速度大于安全速度时,ATP子系统就会通过全制动或紧急制动控制列车速度,使列车停在显示红灯信号机或停车指定位置。这种系统通过仪表指示方式向司机显示列车应有速度、目的地距离和目的速度等数字式信息,司机只要按列车的这些速度信息操作列车运行,就能保证列车的安全。这样可以有效缩短列车间隔,提高轨道线路的运行效率和行车的安全可靠性。②列车自动监控(ATS)子系统。ATS系统依靠ATP系统的支持完成对列车运行的自动监控。ATS子系统在电脑辅助下做出对列车基本运行图的编制及管理,并具有较强的人工介入能力。它主要实现对列车在轨运行的监督和控制,辅助行车调度人员对全线列车运行的状态进行管理。行车调度人员可以以此把控列车的运行情况,监督和记录运行图的执行情况,在列车因故偏离运行图时,及时提出调整建议或者自动修整运行图,作出处理反应,通过ATO系统的显示终端,向无线通信、广播、旅客向导系统提供必要的信息(例如:列车到达、出发时间,运行方向,中途停靠站名等)。③列车自动运行(ATO)子系统。ATO子系统是控制列车自动运行的设备,由车载设备和地面设备组成,它可以对列车进行自动驾驶,并实现行车安全和行车要求,可以避免不必要的、过于剧烈的加速和减速,使列车出于最优化运行状态,节约电能。ATO子系统主要用于实现“地对车控制”,即用地面信息实现对列车驱动和制动的控制。使用ATO子系统后,列车能根据停车站点的位置及停车精度,自动地对车门进行开关控制,因此明显提高了旅客的舒适度、列车准点率,提升了列车运行档次。

三个子系统是个有机的整体,通过信息共享网络构成一个安全指挥系统,实现地面控制与列车控制的有效结合,提高了运行效率。

三、通信信号系统的发展趋势

(1)系统的应用实现IP化。随着科技进步,轨道交通信号系统将逐步地实现IP化。多信息传输和共享平台以及虚拟专用局域网业务(MPLS/ VPLS)等技术的成熟应用,使得IP服务质量将逐步得到保障,这将有力促进轨道交通运营的信号系统实现IP化,IP化可以使轨道交通运营的管理更加便捷,效率更高,进一步降低交通运行的成本。(2)通信、信号系统一体化。就目前而言,城市轨道交通的信号和通信系统还是相对独立的。这种局面不利于轨道交通的发展。近年来,轨道交通列车自动控制系统(ATC),需要经过多次数据处理和信息交换,才能实现安全防护功能,这种情况需要通信技术和信号技术的融合统一。实践证明,网络通信技术和信息技术的迅速发展为信号系统的进一步发展提供了有利条件。我们有理由相信,发展中的通信信号系统将逐步走向一体化,最大限度地实现信息共享和信息传输,发挥城市轨道交通通信信号系统的最大作用,体现系统一体化优势。

四、结语

根据发达国家城市轨道交通的发展现状,以及通信信号技术的发展趋势,通信信号系统将会进一步完善,集成化更高,会更有效地促进城市轨道交通的发展,这也是顺应时展的必然要求。我相信,我国的轨道交通建设以及通信信息技术会取得长足的发展,定会为城市繁荣和经济发展贡献更大力量。

参考文献

[1]肖培龙.城市轨道交通信号系统设计与系统集成设计差异分析[J].铁路技术创新. 2010(5):57-58.

[2]李增海.铁路信号微机监测系统中通用轨道信号发码器的硬件设计[J].科技创新导报. 2010(7):76.

篇7

中文分类号:U491文献标识码:A

1.引言

随着汽车交通运输的发展,交通拥挤、道路阻塞和交通事故频繁发生正越来越严重地困扰着世界上的各大城市。汽车工业发展引发的道路交通不能满足需求的种种交通问题越来越突出。与此同时,除了修建必要的道路网以外,针对交通事故多发道路,需要紧急确保交通安全的道路,还建设了一系列的交通安全设施,如建设信号机、道路标识、交通指挥中心等有助于交通安全的设施,以期改善道路的交通环境,提高交通的顺畅性,这在一定程度上缓解了交通拥挤状况。但是,交通需求不断增长、交通系统日益复杂,单独从车辆方面或道路方面考虑,均很难有效地解决交通问题。于是,近年来把道路、车辆等,凡与交通有关的所有一切都归为一体,通过采用信息通信技术、电子技术以及其他的科学技术把它们联系起来,致力于使之智能化的智能交通系统(ITS)的研究开发应运而生。

先进的交通信息系统(ATIS)是ITS的重要组成部分,也是发展ITS的基础和关键技术,ATIS是建立在完善的信息网络基础上的,交通参与者通过装备在道路上、车上、换乘站上、停车场上以及气象中心的传感器和传输设备,可以向交通信息中心提供各处的交通信息;中心得到这些信息并通过处理后,实时向交通参与者提供道路交通信息、公共交通信息、换乘信息、交通气象信息、停车场信息以及与出行相关的其他信息;出行者根据这些信息确定自己的出行方式、选择路线。概括地说,交通信息系统就是要收集相关交通信息,分析、传递、提供信息,为出行者在从起点到终点的出行过程中提供实时帮助,使整个出行过程舒适、方便、高效。

近年来,信息技术得到了较快发展,在中国的个别城市,实现了部分开发的城市地图网上地理信息系统,如成都市,但是,目前在国内的各大中城市,综合运用信息网络技术建设相对完善的城市交通信息系统还没有一例。近来,在部分城市的交通管理规划中对交通信息系统有所涉及。如果把城市比作人体,那么,交通信息系统就象一双明亮的眼睛。在高度发达的信息社会,人类虽然有很多获取信息的途径,但是,若有一个完善的系统,能够让人们轻松地获取更多、更方便、更有价值的信息将是非常重要的。作为居民,不管在哪里,他都知道用最短的时间,走最近的路,办最快捷的事;作为一个交通管理者或物流业者,不管在何时,他都能耳聪目明,有的放矢,这一切都势必会对交通产生积极的影响,如缓解城市交通压力、减少环境污染、降低交通事故发生率、节约能源等。因此,研究与实施城市交通信息系统具有重要的理论价值和现实意义。

2.国外交通信息系统研究现状

许多发达国家近年来投入了大量的人力、物力和财力对先进的交通信息系统进行研究、试验和开发。下面就欧洲、美国及日本等一些国家有代表性的ATIS作一简要介绍。

2.1欧洲的代表性系统

欧洲的代表性系统有:SOCRATES、EUROSCOUT、Trafficmaster。

SOCRATES是一种有效发挥传统的蜂窝无线电话的基础设施(地面站)的作用,使交通指挥中心与行驶中车辆进行双向通信的系统,它的下行线路可通过“广播方式”向行驶在各种地面站的网络内的装有SOCRATES车载装置的车辆提供道路交通状况的详细数字信息。上行线路利用多频存取协议经过基地台向交通指挥中心发送信息。

EUROSCOUT是以红外线信标为媒体的动态路线引导系统。车辆和信标间的红外线通信是双向进行的,汽车就变为一个探头,将旅行时间、排队等候时间及OD信息等交通信息数据传输给中央引导计算机。

Trafficmaster是以伦敦为中心的广范围高速公路使用的系统,采用传呼机网络提供交通信息。收集高速公路交通状况数据的传感器向前后方向发出2条红外线光束,并根据各光速在车上的反射波时间差检测车辆的速度。

2.2美国的代表性系统

美国的代表性系统有:TRAVTEK、ADVANCE、FASTTRAC。

TRAVTEK以实时路线引导和服务信息系统实用化为目的,由交通管理中心、信息与服务中心、装有导航装置的车辆组成。交通管理中心进行道路交通信息的收集、管理及提供,同时还进行系统运行所必需的信息管理和提供;信息服务中心收集观光设施、旅馆、饭店等为对象的各种服务信息;车载导航装置由车辆位置测定、路线选择及接口3种功能构成,可显示交通堵塞地段、事故及施工等信息的奥兰多地区的地图、按驾驶员需要进行的路线引导及提供服务的文字信息等。

ADVANCE通过电波的双向通信直接将车载导航装置和交通管制中心连通,导航装置由接触式屏幕、显示器及导航计算机构成。一输入最终目的地便可利用最新交通信息计算最佳路线。路线引导是采用声音合成及用显示器上的符号指示的形式。

FASTTRAC是把先进交通管理系统(ATMS)和先进交通信息系统(ATIS)技术组合在一起的ITS项目,它计划进行使实验车辆与信息控制方式统一的试验,亦即根据车辆测量的等候时间等使信号控制和绿色信号实现最佳化。

2.3日本的代表性系统

日本的代表性系统有VICS和ATIS。

VICS中心通过日本道路交通通信中心汇总交通管理者和道路管理者双方的交通信息。由VICS提供的信息有:交通堵塞信息、所需时间信息、交通障碍信息、交通管制信息和停车场信息5种。

ATIS是先进的交通信息服务系统,它的通信媒体是电话线路(无线、有线)。交通信息利用者通过车上装载的导航装置或自己家及办公室的微机,可按需要接收多媒体的地图信息和文字信息。

3.交通信息系统结构方案

信息系统的本质是通过高新技术的有效应用,使得对各种决策(包括交通战略决策、交通管理决策、交通方式及交通路线选择决策等)起到支持作用的信息和知识在系统中有效流通,提高决策的科学性,引导合理的交通行为,达到最大限度地发挥已有交通设施潜力的目的。

为了实现智能化控制交通的要求,收集相关的实时可靠的交通信息是交通信息系统的前提和基础,然后根据不同交通管理与控制的目的和要求,进一步分析、传递、提供信息。信息流程。

出行者所关注的信息大致包括3个方面:对“出发前”移动计划有效的信息、对“驾驶中”在道路上移动过程中有益的信息以及对“换乘”火车、客车、民航或轮船等提供乘车方便的信息。

依据出行者的信息需求以及交通管理者和物流业者在经营管理方面的需求,结合中国在行政管理方面的实际情况,确定了交通信息系统结构见图2。

城市交通信息系统包括一个中心即交通信息中心,交通管理、电子收费、交通诱导、交通信息服务、地理信息、紧急救援、营运车辆管理、车辆安全辅助驾驶八个子系统以及道路交通管理和车辆管理两个数据库。交通信息系统各子系统功能结构。

交通管理子系统主要由交通指挥中心提供通过采集的路段、交叉口、高架交通以及城市出入口的基础数据组织而成的信息。营运车辆管理子系统包括公交和物流管理,公交管理涵盖出租车和公交车辆的管理,物流管理包含货运和租赁车管理。紧急救援子系统包括一般性的事故报警以及特殊情况的灾害救助。诱导系统含有路径诱导和停车诱导。部分子系统采集的信息将提供给整个系统共享,通过提供历史数据和实时可供预测的信息,用以支持出行决策的制定,系统实时地通过网络查询对公众交通信息,向各种媒体诱导信息。

系统的结构为分布与集中相结合,各子系统分布相对平等,交通信息中心拥有信息整合的共用信息平台。各子系统完成数据采集、局部运行管理、共享信息整合等项任务。

城市交通信息系统的建设可分阶段进行,条件相对成熟的部门可优先发展,建成示范工程,推动其它部门发展。同时,交通信息系统的实用化进程需要各子系统所涉及的各个部门之间通力合作,实现系统的优化建设与运行。系统设计不但要重视系统核心的研究开发,而且要重视与各子系统之间的相互衔接关系,资源共享是交通信息系统的命脉。人类的生活离不开交通,在以人为本的交通规划、管理与设计中,综合运用现代信息与通讯技术等手段提高交通运输的效率是必由之路。交通信息系统在确定了基本结构之后,需要通过进一步的系统设计后,加以实施。

4.交通信息系统的主要媒体和特点

城市交通信息系统中可传递信息的媒体主要特点。

篇8

Abstract: This paper starts from the composition of urban rail transit engineering communication system, combs the cost composition and proportion of communication system, analyzes the technical and economic indicators of each subsystem and the main factors influencing the indicators, and provides reference for the follow-up project.

关键词:城市轨道交通工程;通信系统;技术经济指标;分析

Key words: urban rail transit engineering;communication system;technical and economic indicators;analyze

中图分类号:U239.5 文献标识码:A 文章编号:1006-4311(2017)22-0055-02

1 概述

城市轨道交通通信系统是一个适应城市轨道交通运输效率、保证行车安全、提高现代化管理水平,并能迅速、准确、可靠地传递语音、数据、图像和文字等各种信息的机电系统。

通信系统由专用通信系统、公安通信系统、民用通信引入系统组成[1]。

专用通信系统包括传输系统、无线通信系统、公务电话系统、专用电话系统、视频监视系统、广播系统、乘客信息系统、时钟系统、办公自动化系统、电源系统及接地、集中告警系统等子系统。

公安通信系统包括公安视频监视系统、公安无线通信引入系统、公安数据网络、公安电源系统等子系统。部分城市根据公安部门的要求增设了公安传输系统。

民用通信引入系统包括民用传输系统、移动通信引入系统、民用电源系统等子系统。

2 总指标及费用比例

通信系统由专用通信、公安通信及民用通信引入系统三部分组成。由于4B、6B、6A、8A等4种编组类型车站规模不一样,导致各项目通信系统正线公里指标存在一定差异。

目前约100多个在建或规划建设城市轨道交通的大中型城市主要采用6B编组,本文以6B编组的通信系统作为分析对象。工程实例经历了实践检验,具有代表性。合肥市轨道交通3号线为6B编组,线路全长37.20公里,设站33座,站间距1.16km,设车辆段及停车场各1座,其通信系统包括专用通信、公安通信及民用通信引入系统3部分,是6B编组通信系统的典型代表,其初步设计概算费用及指标如表1所示,编制期为2014年10月。本文以合肥市轨道交通3号线通信系统为例,分析通信系统的主要技术经济指标、费用组成及比例。

各城市对民用通信引入系统是否纳入城市轨道交通投资做法不统一。有些城市,例如武汉,民用通信引入系统由运营商自行建设、维护,费用由运营商承担,不纳入城市轨道交通投资,有些城市,例如合肥,民用通信引入系统由地铁集团建设、维护,费用纳入城市轨道交通投资。

通信系统费用一般由专用通信、公安通信及民用通信引入系统3部分组成。专用通信、公安通信及民用通信引入系统分别占通信系统费用的60%、20%、20%,如图1所示。

3 主要技术经济指标

合肥轨道交通3号线通信系统指标为1552.76万元/正线公里,通信系统指标主要受站间距、公安系统方案、民用通信引入系统是否列入、线路敷设方式、移动通信新技术等因素影响。一般6B编组城市轨道交通工程通信系统指标约为1450万元/正线公里,较合肥轨道交通3号线低,主要原因是其站间距较合肥轨道交通3号线大。

3.1 专用通信系统

专用通信系统费用指标约为930万元/正线公里,指标主要受站间距等影响,其指标如表2所示。

3.2 公安通信系统

公安通信系统指标约300万元/正线公里,公安通信系统指标主要受站间距、公安通信系统方案等影响,其指标如表3所示。

3.3 民用通信引入系统

民用通信引入系统指标约为320万元/正线公里,主要受站间距、线路敷设方式及移动通信新技术等影响,其指标如表4所示。

4 指标分析

通过费用组成及比例分析,得出专用通信、公安通信、民用通信引入系统分别约占通信系统费用的60%、20%、20%。

专用通信系统方案比较稳定,主要设备是影响其指标的关键因素;公安通信系统指标主要受系统方案影响;民用通信引入系统指标主要受线路敷设方式、移动通信新技术影响,因此,公安通信系统方案、线路敷设方式、移动通信新技术等是影响通信系统指标的重要因素。

4.1 公安通信系统指标分析

公安通信系统指标与系统方案有关。以公安视频监视系统为例,公安通信系统视频监视系统的服务器、存储设备、摄像机可以与专用通信系统视频监视系统共用,也可以独立设置。武汉轨道交通11号线东段公安通信系统与专用通信系统共用视频监视系统的服务器、存储设备和摄像机等设备,仅新设少量视频监视终端,公安通信系统指标为169.86万元/正线公里,合肥轨道交通3号线独立设置公安视频监视系统的的服务器、存储设备和摄像机等设备,公安通信指标为305.13万元/正线公里,较武汉轨道交通11号线指标高135.27万元/正线公里。

4.2 民用通信引入系统指标分析

民用通信引入系统指标与线路敷设方式有关,当线路采用高架或地面敷设时,不需设置民用通信引入系统车站级设备。以宁波至奉化城际铁路工程(以下简称“宁奉城际”)民用通信引入系统为例,该线仅在宁波轨道交通3号线陈婆渡站引出处有一小段地下区间,仅需在此地下区间设置民用通信引入系统,其民用通信引入系统指标仅为10.65万元/正线公里,其指标如表5所示。

民用通信引入系统指标与移动通信新技术有关。随着移动通信技术的发展,新的移动通信制式也需引入到城市轨道交通中,民用通信引入系统指标增加。以4G信号引入为例,工业和信息化部于2013年12月4日向中国移动、中国电信、中国联通发放4G牌照,在此之前的城市轨道交通未考虑4G信号引入,如武汉轨道交通7号线初步设计于2013年10月批复,未考虑4G信号引入,民用通信引入系统指标为260.35万元/正线公里,而合肥轨道交通3号线考虑引入4G信号,民用通信引入系统指标为316.60万元/正线公里,较武汉轨道交通7号线指标高约56.25万元/正线公里。

参考文献:

[1]建设部标准定额司.城市轨道交通工程设计概预算编制办法[S].北京:中国计划出版社,2007.

篇9

交通运输业在新的历史时期面临着新的机遇和挑战。必须以网络通信资源开发利用为主线,加快电子政务建设的步伐。

(一)通过全国联网,建立道路数据中心。建立公路、运输业户、运输车辆以及从业人员等大型基础信息资源库。推动各级交通管理部门的目录体系建设。采用数据交换技术,建立行业数据交换平台,形成完善的数据交换指标体系,推动道路运输服务系统的信息化建设。

(二)建立健全交通行业信息化标准体系。以电子政务应用系统数据元标准为核心,以推动标准应用为导向,加强交通运输业信息化建设的标准化工作,完善交通行业信息化标准体系,确保交通运输信息化建设“有标可依”。积极推动智能交通、现代物流、电子数据交换、交通通信与导航及电子地图等信息化推广应用工作。

(三)加大对物流信息化发展的组织和引导力度。积极引导RFID技术、集装箱多式联运等物流信息化研究成果的推广应用,开展公共服务模式的物流信息平台建设。建立和完善公路货运枢纽信息系统,推动农村物流系统、应急保障体系系统、大件运输和危险品运输系统等与人民群众关系密切或“市场失灵”的物流信息平台建设。

(四)建立完善的物流信息平台。以互联互通为目标,启动高速公路信息通信资源整合工程。倡导物流企业间的联合与协作,逐步形成若干具有较强的辐射功能和影响力的区域性物流信息平台。

二、威胁交通运输网络通信安全的因素分析

网络故障基本上都是硬件连接和软件设置问题,也可能是操作系统应用服务本身的问题。网络安全方面的问题有可能是因为电磁泄露、黑客非法入侵、线路干扰、传播病毒、搭线窃听、信息截获等,造成信息的泄露、假冒、篡改和非法信息渗透、非法享用网络信息资源等等。主要表现为计算机打开页面连接浏览器无法与互联网连接和局域网内机器互访信息共享受阻。来自网络安全的威胁因素,根据其攻击的目标和范围不同,对网络的危害程度也不同。网络安全可分为控制安全和信息安全两个层次。控制安全是指身份论证、授权和访问限制。信息安全是要保证有关信息的完整性、真实性、保密性、可用性、可控制性和可追溯等特性。造成对网络威胁的主要原因基本有三:人为的误操作;人为的恶意攻击;计算机网络软硬件的安全漏洞和缺陷。因为开放性、交互性、分散性、脆弱性和连接方式的多样性是计算机网络通讯的共有特征,计算机病毒和黑客入侵是威胁当今网络安全的最主要因素。针对屡屡出现一些技术故障和网络通讯安全方面的问题,探索和掌握一套行之有效的维护网络常见故障的技术和方法是确保网络管理安全运行的关键。

三、交通运输网络通信安全的保障内容

(一)链接网络的安全保障。其是指从技术上和管理上解决网络系统用户应用方面对网络基础设施漏洞、操作系统漏洞和通用基础应用程序漏洞的检测与修复;对网络系统安全性能的整体综合测试;防火墙等网络安全防病毒产品的部署,脆弱性扫描与安全优化;模拟入侵及入侵检测等。

(二)信息数据的安全保障。即是指从技术上和管理上解决信息数据方面和对载体与介质的安全保护和对数据访问的控制。

(三)通信应用的安全保障。指对通信线路的安全性测试与优化,设置通信加密软件、身份鉴别机制和安全通道。测试业务软件的程序安全性等系统自检通信安全的保障措施,对业务交往的防抵赖,业务资源的访问控制验证,业务实体的身份鉴别检测。测试各项网络协议运行漏洞等等。

(四)运行安全的保障。指以网络安全系统工程方法论为依据,提供应急处置机制和配套服务和系统升级补丁。网络系统及产品的安全性检测,跟踪最新漏洞,灾难恢复机制与预防,系统改造管理,网络安全专业技术咨询服务等。

(五)管理安全的保障。包括人员管理及培训,软件、数据、文档管理,应用系统及操作管理,机房、设备及运行管理等一系列安全管理的机制。

四、交通运输网络通信的安全防范措施

随着网络通信安全技术的日益产业化和网络通信安全的法律环境建设的日益完善,交通运输网络通信的安全防范技术也在日臻完善。

(一)保持高度警惕,保持主机和网络上结点计算机的安全。遵循多人负责、任期有限、职责分离三原则。切实提高网络通信安全的防范意识。

(二)控制访问权限,安全共享资源。使每个用户只能在自己的权限范围内使用网络资源。做到开机必查毒,发现必杀毒,经常对系统漏洞补丁升级更新。谨慎下载文档,对于来历不明的电子邮件及附件不轻易用Office软件打开。

(三)选用合格单位的防火墙和防火墙的规则设置、更新。将交通运输局域内网与因特网分隔开来。网络使用者要设置并经常变换口令。对所有进入内网的用户身份进行认证和对信息权限的控制,阻止非授权用户对信息的浏览、修改甚至破坏。对进出内网的数据进行鉴别,防止恶意或非法操作,严防有害信息的侵入。

(四)采用数据加密技术。以不易被人破解为目的,采用密码或计算法对数据进行转换。只有掌握密钥才能破解还原。实现对网络信息数据保密的目的。

篇10

关键词:交通;信息化;智能化

Abstract: urban transportation information system will in the efficient comfortable transportation society play an important role. Combined with the actual, the paper focuses on urban traffic information system's structure and development.

Keywords: traffic; Information; intelligent

中图分类号: D631.5 文献标识码:A 文章编号:

专家指出:21世纪,世界将进入信息化、物流化时代,道路交通事业日益发达、科技信息日新月异。如何把有限的IT资源最有效的作用于核心业务发展,提高工作效率,增加最终用户满意度;如何最快地获取专业的支持能力,实现对系统的完善管理,提高系统的可靠性和可用性;如何跟上IT技术的发展,更好地管理IT运营成本,及时更新相关技术,以提高竞争力,将会是任何一个单位面临的突出问题。

先进的交通信息系统(ATIS)是智能交通系统的重要组成部分。城市交通信息系统的结构包括:一个核心,即交通信息中心,交通管理、电子收费、交通诱导、交通信息服务、地理信息、紧急救援、营运车辆管理、车辆安全辅助驾驶八个子系统以及道路交通管理和车辆管理两个数据库,交通信息系统将在中国产生的积极影响。

1 国外交通信息化的现状

1.1美国。美国的代表性系统有:TRAVTEK、ADVANCE、FASTTRAC。

TRAVTEK以实时路线引导和服务信息系统实用化为目的,由交通管理中心、信息与服务中心、装有导航装置的车辆组成。交通管理中心进行道路交通信息的收集、管理及提供,同时还进行系统运行所必需的信息管理和提供;车载导航装置由车辆位置测定、路线选择及接口三种功能构成。

ADVANCE通过电波的双向通信直接将车载导航装置和交通管制中心连通,导航装置由接触式屏幕、显示器及导航计算机构成。一输入最终目的地便可利用最新交通信息计算最佳路线。路线引导是采用声音合成及用显示器上的符号指示的形式。

FASTTRAC是把先进交通管理系统(ATMS)和先进交通信息系统(ATIS)技术组合在一起的ITS项目,它计划进行使实验车辆与信息控制方式统一的试验,亦即根据车辆测量的等候时间等使信号控制和绿色信号实现最佳化。

1.2 日本。日本的代表性系统有VICS和ATIS。

VICS中心通过日本道路交通通信中心汇总交通管理者和道路管理者双方的交通信息。由VICS提供的信息有:交通堵塞信息、所需时间信息、交通障碍信息、交通管制信息和停车场信息五种。

ATIS是先进的交通信息服务系统,它的通信媒体是电话线路(无线、有线)。交通信息利用者通过车上装载的导航装置或自己家及办公室的微机,可按需要接收多媒体的地图信息和文字信息。

1.3欧洲。欧洲的代表性系统有:SOCRATES、EURO SCOUT、Traffic master。

SOCRATES是一种有效发挥传统的蜂窝无线电话的基础设施(地面站)的作用,使交通指挥中心与行驶中车辆进行双向通信的系统,它的下行线路可通过“广播方式”向行驶在各种地面站的网络内的装有SOCRATES车载装置的车辆提供道路交通状况的详细数字信息。上行线路利用多频存取协议经过基地台向交通指挥中心发送信息。

EURO SCOUT是以红外线信标为媒体的动态路线引导系统。车辆和信标间的红外线通信是双向进行的,汽车就变为一个探头,将旅行时间、排队等候时问及OD信息等交通信息数据传输给中央引导计算机。

Traffic master是以伦敦为中心的广范围高速公路使用的系统,采用传呼机网络提供交通信息。收集高速公路交通状况数据的传感器向前后方向发出两条红外线光束,并根据各光速在车上的反射波时间差检测车辆的速度。

2交通信息系统结构

随着汽车交通运输的发展,交通拥挤、道路阻塞和交通事故频繁发生正越来越严重地困扰着世界上的各大城市。汽车工业发展引发的道路交通不能满足需求的种种交通问题越来越突出。于是,近年来把道路、车辆等,凡与交通有关的所有一切都归为一体,通过采用信息通信技术、电子技术以及其他的科学技术把它们联系起来,智能化的智能交通系统(ITS)的研究开发应运而生。

先进的交通信息系统(ATIS)是ITS的重要组成部分,也是发展ITS的基础和关键技术,ATIS是建立在完善的信息网络基础上的,交通参与者通过装备在道路上、车上、换乘站上、停车场上以及气象中心的传感器和传输设备,可以向交通信息中心提供各处的交通信息;中心得到这些信息并通过处理后,实时向交通参与者提供道路交通信息、公共交通信息、换乘信息、交通气象信息、停车场信息以及与出行相关的其他信息;出行者根据这些信息确定自己的出行方式、选择路线。概括地说,交通信息系统就是要收集相关交通信息,分析、传递、提供信息,为出行者在从起点到终点的出行过程中提供实时帮助,使整个出行过程舒适、方便、高效。

出行者所关注的信息大致包括三个方面:对“出发前”移动计划有效的信息、对“驾驶中”在道路上移动过程中有益的信息以及对“换乘”火车、客车、民航或轮船等提供乘车方便的信息。

依据出行者的信息需求以及交通管理者和物流业者在经营管理方面的需求,结合中国在行政管理方面的实际情况,确定了交通信息系统结构。

交通管理子系统主要由交通指挥中心提供通过采集的路段、交叉口、高架交通以及城市出入口的基础数据组织而成的信息。营运车辆管理子系统包括公交和物流管理,公交管理涵盖出租车和公交车辆的管理,物流管理包含货运和租赁车管理。紧急救援子系统包括一般性的事故报警以及特殊情况的灾害救助。诱导系统含有路径诱导和停车诱导。部分子系统采集的信息将提供给整个系统共享,通过提供历史数据和实时可供预测的信息,用以支持出行决策的制定,系统实时地通过网络查询对公众交通信息,向各种媒体诱导信息。系统的结构为分布与集中相结合,各子系统分布相对平等,交通信息中心拥有信息整合的共用信息平台。各子系统完成数据采集、局部运行管理、共享信息整合等项任务。城市交通信息系统的建设可分阶段进行,条件相对成熟的部门可优先发展,建成示范工程,推动其它部门发展。同时,交通信息系统的实用化进程需要各子系统所涉及的各个部门之间通力合作,实现系统的优化建设与运行。系统设计不但要重视系统核心的研究开发,而且要重视与各子系统之间的相互衔接关系,资源共享是交通信息系统的命脉。人类的生活离不开交通,在以人为本的交通规划、管理与设计中,综合运用现代信息与通讯技术等手段提高交通运输的效率是必由之路。交通信息系统在确定了基本结构之后,需要通过进一步的系统设计后,加以实施。

3交通信息化的管理手段

3.1分兵把手,对口管理。为便于各种业务数据得到及时准确的录入,便于为下一步决策提供有价值的参考依据,应按照不同数据的搜集录入要求,与岗位职责挂钩,逐一建立对应关系。

3.2“三分技术,七分管理”。这已是被无数实践证明了的经典理论,这理论同样适用于交通智能信息化建设。交通智能信息化管理的内涵十分丰富,如信息化机构的设置,信息化政策的制定,信息化体制的改革,信息化发展战略、规划、计划,信息化项目实施、成果管理和推广以及信息化经费、人才、设备、情报等管理活动和过程。因此,信息化管理要运用计划、组织、指挥、协调、控制等基本职能,有效地利用人力、物力、财力、信息等基本要素,达到预期目标。

结束语

城市交通信息系统必将在今后真正的高度信息通信社会中占有一席之地,交通信息系统也必将在实现高效舒适的交通社会中发挥重要作用。城市交通信息系统未来的实施,必将在居民出行、事故和灾害救援以及货物流通等方面带来更大的便利。

同时,在交通管理方面更加有的放矢、标本兼治,在减少交通出行、降低交通量、减少阻塞、减轻污染、提高服务水平等增加社会和经济效益方面也将起到巨大的作用。

参考文献

【1】黄卫,陈里德.智能运输系统(ITS)概论【M】.北京:人民交通出版社,1999.

【2】[日]社团法人.智能交通系统【M】.北京:人民交通出版社.2000.

【3】史其信.21世纪智能交通系统(ITS)展望【J】.交通工程通讯,2001.