纳米复合材料范文

时间:2023-03-22 10:12:24

导语:如何才能写好一篇纳米复合材料,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

纳米复合材料

篇1

关键词:纳米金刚石,环氧树脂,复合材料,制备,性能

环氧树脂是一种重要的热固性树脂,具有优异的机械性能、电绝缘性能和粘接性能,加工性能好,可应用在电子封装、胶黏剂、涂料等领域。但是环氧树脂固化后存在不耐冲击和应力开裂的缺点[1-2]。因此,增韧改性一直是环氧树脂领域研究的热点[3-4]。目前环氧树脂增韧常用的方法主要有弹性体增韧、IPN互穿网络聚合物增韧、核壳结构聚合物增韧、纳米粒子等方法[5-7]。纳米金刚石(Nanodiamond,ND)由于其独特的结构和物理化学特性被广泛地应用于、抗磨损、复合材料、药物传递等领域[8-10]。纳米金刚石是一种理想的纳米增强增韧材料,本文利用机械共混法制备一种新型的环氧树脂/纳米金刚石纳米复合材料,系统地研究了纳米金刚石对环氧树脂结构和性能的影响。

1实验部分

1.1原料与试剂纳米金刚石(直径5nm~10nm,纯度≥97%),南京先丰纳米材料科技有限公司;双酚A型环氧树脂(DGEBA),工业级,中国台湾南亚树脂有限公司,环氧值为0.51mol/100g;聚醚胺(JeffamineD-230),工业级,活泼氢当量60g•mol-1,美国亨斯迈公司。1.2环氧树脂/纳米金刚石纳米复合材料的制备室温下,将纳米金刚石、环氧树脂按比例混合,利用SF0.4砂磨分散搅拌多用机混合分散2h,再加入固化剂JeffamineD-230继续分散20min,其中环氧树脂和固化剂的质量比为100∶32,抽真空除去气泡后倒入硅橡胶模具中室温固化24h。1.3测试与表征拉伸性能和弯曲性能分别根据ASTM3039和ASTMD790采用台湾高铁公司的GOTECHAI-700M型万能材料试验机测定。无缺口冲击强度根据ASTMD256-88采用台湾高铁公司的GO-TECHGT-7045-MDL型冲击试验机测定。TGA测试采用德国耐驰公司的TGA209F3型热重分析仪测定,升温速率20℃/min,温度范围40℃~600℃,在氮气气氛下进行测试。DMA测试采用美国TA公司的Q800动态热机械分析仪测定,采用单悬臂模式,升温速率10℃/min,测试温度范围为30℃~200℃,样条尺寸10mm×4mm×30mm,频率为1Hz。复合材料冲击断面的相貌经过喷金处理后在日立公司SU8010型扫描电子显微镜上观察。

2结果与讨论

2.1环氧树脂/纳米金刚石纳米复合材料的力学性能表1是不同纳米金刚石含量时环氧树脂纳米复合材料的力学性能。从表1中可知,复合材料的纳米金刚石含量(质量分数)低于0.4%时,拉伸强度随着其用量的增加而增加,超过0.4%后复合材料的拉伸强度有所下降,这是由于部分纳米金刚石发生了团聚。纳米金刚石用量为0.4%时,复合材料的拉伸强度为67.6MPa,比纯环氧树脂提高了51.9%。随着纳米金刚石用量的进一步增加,复合材料的拉伸强度有所降低,复合材料的弯曲强度和弯曲模量在纳米金刚石含量为0.4%时达到最高值,分别为58.19MPa和1.29GPa,但随着纳米金刚石用量的进一步增加,复合材料的弯曲强度和弯曲模量逐渐降低。从表1中还可以看出,添加纳米金刚石后,复合材料的冲击强度明显提高,随着纳米金刚石用量的增加先增加后降低,在添加量为0.4%时达到最大值为17.26kJ•m-2,是纯环氧树脂的1.9倍。在复合材料受到外力作用时,纳米金刚石在环氧树脂基体内产生很多的微变形区,能够较好地传递载荷,同时纳米金刚石粒子之间的基体产生塑性变形,从而起到良好的增韧效果。当纳米金刚石添加量超过一定比例后容易团聚,产生的塑性变形太大,容易发展成为宏观应力开裂,因此导致复合材料的冲击性能下降。图1是环氧树脂/纳米金刚石纳米复合材料的TGA曲线,表2为复合材料的TGA分析数据。从图1和表2中可以看出,随着纳米金刚石用量的增加复合材料的热稳定性逐渐提高。添加0.5%的纳米金刚石,复合材料的残炭率(600℃)由纯环氧树脂的1.88%提高到3.51%。这是因为高温阶段纳米金刚石形成一层炭层,对环氧树脂起到了保护作用,延缓了环氧树脂的热降解[11]。图2是环氧树脂/纳米金刚石纳米复合材料的DMA曲线。从图中可以看出,添加纳米金刚石后复合材料的储能模量比纯环氧树脂明显提高,且随着填料含量增加而逐渐升高,这是由于纳米金刚石具有高的强度和硬度,对环氧树脂具有较好的增强作用。从图2中还可以看出,纳米金刚石的加入明显降低了复合材料的玻璃化转变温度(Tg)。这是由于纳米金刚石加入后破坏了环氧树脂的交联网络结构,降低其交联密度,因此复合材料的玻璃化转变温度降低[12]。2.4环氧树脂/纳米金刚石纳米复合材料的形貌分析图3是环氧树脂/纳米金刚石复合材料冲击断面的SEM谱图。如图3a所示,纯环氧树脂的冲击断面平整光滑,是脆性断裂。如图3b、图3c所示,添加纳米金刚石后复合材料的断裂面明显变得粗糙,是韧性断裂。从图3d中还可以看到,纳米金刚石能够在环氧树脂基体中均匀分散,并且与树脂基体之间的界面比较模糊。纳米金刚石的加入使得环氧树脂试样断裂面的裂纹呈无序分布,在复合材料受到冲击时载荷能够通过界面有效传递到纳米金刚石,阻止微裂纹的宏观扩展,因此环氧树脂的强度和韧性得到了提高。a:纯环氧树脂;b:0.1%ND;c

3结论

篇2

关键词 碳纳米管/铜基复合材料;制备工艺;显微组织

中图分类号:TB33 文献标识码:A 文章编号:1671-7597(2013)13-0050-02

将增强纤维、颗粒等与铜制备成铜基复合材料,可以提高其强度、耐磨性以及保持较优良的导电导热性能。SiC作为一种陶瓷颗粒,具有弹性模量高及抗氧化性能好等优良性能。由于金属具有优良的力学机械性能,使得金属基复合材料可以按机械零件的结构和性能要求,设计成合理组织和性能分布,从而工程技术人员对材料的性能进行最佳设计。由于能够根据不同的力学性能要求来选择相应的金属基体和不同的增强体,使得复合材料中的各组成材料之间既能保持各自的最佳性能特点,又可以进行性能上的相互补充,功能上的取长补短,甚至满足一定的特殊性能,所以纳米复合材料是一类具有结构和功能极佳的材料。另外,纳米复合材料由于具有特有的的纳米表面效应、特有的纳米量子尺寸效应,能够对其光学特性产生影响。按照复合材料基体的性能特点特,人们将纳米复合材料通常分三大类:纳米树脂基复合材料、纳米陶瓷基复合材料和纳米金属基复合材料。纳米金属基复合材料不仅具有强度高、韧性高的特点,纳米金属基复合材料还具有耐高温、高耐磨及高的热稳定性等性能。纳米金属基复合材料应用表明:在功能方面具有高比电阻性能、高透磁率性能,以及高磁性阻力等物理性能。本文采用球磨混料方法,通过真空热压法工艺,制备出碳纳米管增强铜基复合材料,研究铜基纳米复合材料的制备工艺,分析相应的材料性能。

1 试验材料及方法

1.1 试验材料

试验用原材料是上海九凌冶炼有限公司生产的电解铜粉,铜粉纯度是99.8%,铜粉粒度为-300目,铜粉松装密度是1.2~1.7。碳纳米管(CNTs)选用深圳纳米港有限公司产品。选用哈尔滨化工化学试剂厂的十二烷基硫酸钠(化学纯),以及该厂生产的酒精(分析纯)。

1.2 试验方法

试验采用行星式球磨机进行湿磨混合配料,选择的球磨机转速参数为300 r/min,球磨时间为2.5小时,试验球料比选择为1:1。试验的热压温度参数选择在800℃进行烧结,热压压力参数为3.9吨,烧结时间参数为3小时。使用光学显微镜分析复合材料的显微组织特点,用新鲜配制的三氯化铁盐酸酒精溶液腐蚀复合材料组织,腐蚀时间选为15 s。

2 试验结果与分析

2.1 碳纳米管/铜基复合材料显微组织

2.2 CNTs/Cu复合材料的硬度

2.3 CNTs添加量对复合材料相对密度的影响

试验结果表明,纯铜试样致密度最高,但是,随着碳纳米管含量的增加,纳米复合材料的相对密度下降。复合材料材料相对密度随着碳纳米管含量的增加而逐渐降低,原因主要是碳纳米管和铜的润湿性较差,致使强化相CNTs不能均匀分布,引起复合材料的缺陷,材料中产生孔隙,呈现出相对密度的下降的特点。

3 结论

1)采用球磨混料方法,真空热压法工艺,制备出碳纳米管增强铜基复合材料。

2)随着CNTs的增加,复合材料的硬度呈现降低的趋势,CNTs含量与硬度之间关系为曲线关系。

3)纯铜试样致相对密度最高,随着碳纳米管含量的增加,复合材料的相对密度下降。

参考文献

[1]解念锁,李春月,艾桃桃,等.SiCp尺寸对铜基复合材料抗氧化性及磨损性的影响[J].热加工工艺,2010,39(8):

74-77.

[2]王瑾,解念锁,冯小明,等.SiCp/Cu梯度复合材料的压缩性能研究[J].热加工工艺,2011,40(8):106-107.

[3]王艳,解念锁.原位自生Sip/ZA40复合材料的组织及性能研究[J].陕西理工学院学报(自然科学版),2011,27(1):1-4.

[4]董树荣,涂江平,张孝彬.碳纳米管增强铜基复合材料的力学性能和物理性能[J].材料研究学报,2000,14(Sl):132-136.

[5]王浪云,涂江平,杨友志.多壁碳纳米管/Cu基复合材料的摩擦磨损特性[J].中国有色金属学报,2001,11(3):367-371.

篇3

关键词:碳纳米管;聚氯乙烯;复合材料

中图分类号:TB332 文献标识码:A 文章编号:1000-8136(2012)03-0020-02

1 前言

1991年日本电镜专家NEC公司的Iijima在用石墨电弧放电法制备C60的过程中,发现了一种多层状的碳结构――碳纳米管(CNTs)。[1]CNTs独特的结构和性能使它具有良好的应用前景,尤其是其大规模生产的实现使其成为聚合物填充材料的首选,为未来复合材料的发展和广泛应用开辟了更为广阔的空间。

聚氯乙烯(PVC)作为一种通用型合成树脂材料,由于具有优异的耐磨性、抗化学腐蚀性、综合机械性及容易加工等特点,目前在工业及日常生活中均得以广泛应用。近年来,CNTs才逐渐用于改性PVC。

2 碳纳米管/聚氯乙烯复合材料的制备

2.1 溶液成膜法

溶液成膜法是目前制备CNTs/PVC复合材料的常用方法,其过程是将PVC溶于溶剂形成溶液,然后在机械搅拌或超声波作用下将CNTs分散在PVC溶液中,浇铸成膜挥发溶剂便得到复合材料。

Broza Georg等[2]采用溶液成膜法,通过四氢呋喃溶液分别制备出将单壁CNTs/PVC和多壁CNTs/PVC纳米复合材料,并将其进行了电性能测试,均一分散的CNTs改善了PVC的电学性能,但是CNTs的质量分数高达20%,这可能是因为CNTs未经过修饰,与PVC基体的结合力差所致。陈利等[3]通过溶液成膜法简单制得CNTs/PVC复合材料,CNTs含量介于1%~2.5%的PVC复合材料的导电性和拉伸强度都较纯PVC有较大改善。R. Jung等[4]将CNTs酸化处理后,用十六烷基溴化三甲基铵将酸化CNTs在超声波作用下分散在水中,再将预处理带负电荷的PVC微球过量加入到CNTs的水分散溶液中。CNTs靠静电作用吸附在PVC表面,真空干燥后将PVC粒子溶于N,N2二甲基甲酰胺(DMF)中浇铸成膜,薄膜的导电率在CNTs质量分数为29%时明显增加,拉伸强度等力学性能也有提高。JH Shi等[5]在CNTs表面接枝了聚甲基丙烯酸正丁酯(PBMA),将改性后的CNTs混于PVC的四氢呋喃溶液中浇铸成膜。PBMA的引入大大改善了CNTs在PVC中的分散性,使PVC的拉伸弹性模量和断裂伸长率都得到大幅度的提高。

上述研究表明,经过改性的CNTs在较低含量时就能显著改善PVC的力学性能。

2.2 熔融混合法

尽管溶液成膜法是制备碳纳米管/聚氯乙烯复合材料的常用方法,但此法不适合进行大规模工业生产,因此,研究人员又采用了熔融混合法。

Wang GJ等[6]先通过(苯乙烯/马来酸酐)共聚物(SMAH)改性CNTs,再将质量分数为0.25%的经修饰的CNTs与PVC熔融共混,使PVC材料的力学性能得到显著提高。此外,还用酸化、酰氯化、接枝等一系列反应成功地在MWNTs表面接枝聚己内酯(PCL),采用熔融混合法制备了PVC/改性MWNTs纳米复合材料,[7]在M1-g-PCL质量分数仅为0.7%时,复合材料的表面电阻率降低了3个数量级。

王平华等[8]采用RAFT活性聚合方法在CNTs表面接枝上聚合物链,然后与PVC通过熔融共混方法复合制备了CNTs/PVC纳米复合材料,对复合材料的结构与拉伸强度进行了表征研究,结果表明,接枝聚合物链的碳纳米管显著提高了PVC的拉伸强度。

王文一等[9]选用聚团状多壁碳纳米管(MWNTs)及氯化聚乙烯(CPE)、乙烯醋酸乙烯共聚物(EVA)等改性剂对聚氯乙烯(PVC)通过熔融混合法进行了抗静电及增韧研究,结果表明,MWNTs/CPE/PVC体系具有较高的抗静电效果,碳纳米管在复合材料中的含量为8.3%时分散均匀且形成了很好的网络结构,这在提高复合体系的热稳定性的同时赋予复合体系良好的导电性。

Faruk Omar等[10]采用熔融混合法制备了多壁CNTs/PVC复合材料,并将最优条件所得复合材料进行了弯曲性能、电性能及热性能测试。

目前,碳纳米管/聚氯乙烯复合材料的制备主要采用以上两种方法。

3 展望

从上文分析可知,碳纳米管作为填料能有效地改进聚氯乙烯的电学性能和力学性能,提高其导电性可以解决聚合物材料介电常数大、易带静电等问题。同时在尽量低的电渗流阈值下,使复合材料的力学性能和电学性能得到最优结合。

目前这方面的研究还处于初级阶段,主要集中在碳纳米管的分散、材料的制备等方面,主要还存在以下问题:①制备方法虽然简单,但要制备均一性能的复合材料,工艺仍需进一步改进。②复合材料中碳纳米管和聚氯乙烯之间的作用机理研究还不成熟,需要投入大量工作。③对复合材料的研究仍局限于碳纳米管或聚氯乙烯性能的改善及其应用,复合材料能否出现新的性能尚需进一步研究。

参考文献:

[1]Iijima S. Helical microtubules of graphite carbon[J]. Nature, 1991(7):56~58.

[2]Broza G, Piszczek K, Schulte K,et al. Nanocomposites of poly

(vinyl chloride)with carbon nanotubes(CNT)[J]. Composites Science and Technology, 2007(5):890~894.

[3]陈利.多壁碳纳米管/聚氯乙烯复合材料的制备及性能[J].高分子材料科学与工程,2009(4):140~143.

[4]Jung R, Kim H S,Jin H J. Multiwalled carbon nanotube reinforced poly(vinyl chloride)[J]. Macromolecular Symposia, 2007(1):259~264.

[5]Shi JH, Yang BX, Pramoda KP, et al. Nanotechnology, 2007, 18: 1~8.

[6]Wang GJ, Qu ZH, Liu L, et al. Material Science and Engineering A, 2007, 472: 136~139.

[7]王国建,赵明君.聚己内酯接枝改性MWNTs对PVC抗静电性能的影响[J].工程塑料应用,2010(1):10~14.

[8]王平华,王贺宜,唐龙祥等.碳纳米管/PVC复合材料的制备及表征[J].高分子材料科学与工程,2008(1):36~38.

[9]王文一,罗国华,魏飞. MWNTs/PVC复合材料的性能与结构[J].高分子材料科学与工程,2010(8).

[10]Faruk Omar, Matuana Laurent M. Journal of Vinyl & Additive Technology, 2008, 14:60~64.

Advances in the Study of Carbon Nanotubes/Poly(vinylchlorid)Composites

Wen Hairong, Cao Liunan, Zhang Hongmei, Yang Yuncui, Wu Liuwang

篇4

[关键词]纳米TiO2 光催化 溶胶-凝胶

[中图分类号] TB33 [文献码] B [文章编号] 1000-405X(2014)-4-348-2

纳米TiO2在光照下比一般材料具有更优异的催化能力,但它只能利用太阳中的紫外光,太阳能利用率低,在太阳光辐射中,波长小于388 nm的紫外辐射只占大约4%―5%。另外,纳米TiO2 催化剂光激发后产生的空穴和电子复合的几率很高、量子效应较低,这些缺点也是目前半导体光催化剂普遍存在的问题。本实验的目的是探索纳米TiO2复合材料的制备,提高其在可见光下的光催化活性。

1材料制备过程

1.1实验过程如下

(1)将10ml钛酸丁酯与20ml无水乙醇混合搅拌15min,充分溶解为A溶液。

(2)另取一定量的0.1 mol/L V5+溶液,加酸至50 ml为B溶液。

(3)将A滴入B中,机械搅拌1.5h,常温反应,得透明溶胶。

(4)取NaOH溶液缓慢滴入溶胶,用HNO3调节pH值,得到TiO2凝胶。

(5)加入适量水离心分离洗去杂质。100℃下烘干,并研细至无明显颗粒感。

1.2XRD测试

采用日本理学公司的Rigaku-D/MAX-2550PC型X射线衍射仪对所得粉末样品进行X射线衍射分析,使用Cu-Kα 辐射源,波长为1.5406 A,使用Ni滤波片,采用管流为300 mA、管压为40 KV,扫描速度5度/分,步长为0.02°。阶梯扫描步长为0.04°,每步停留5秒。

1.3光降解试验

准确称取0.100g活性艳红染料,配成浓度为50mg/L的染料, 模拟印染废水。另取0.200g催化剂投入染料溶液,测混合液的吸光度。活性艳红的特征吸收波长为540nm。紫外灯浸入水中照射,并每隔0.5小时取上清液,直接于Kmax=540nm处测其吸光度,再根据吸光度变化求其脱色率。

脱色率=(1-A/A0)×100%

式中:A0,A分别为光照前后的吸光度。为保证紫外线的有效利用,在玻璃烧杯的外面贴上一层反光的铝铂纸。

2材料制作结果与讨论

2.1掺钒比率对材料结晶的影响

添加不同量的钒制得TiO2作XRD测试,结果如图1所示。从XRD衍射图分析得到,各材料的晶粒尺寸大小依次为4.2、4.0、3.4、3.9、4.1、4.3nm,说明随着掺钒的比例增加, 晶粒尺寸先减小后增大,在x=0.01时最小。由于V5+离子的离子尺寸比Ti4+离子要小, V5+离子渗入晶胞,替代了Ti4+的位置,使纳米晶体的晶粒尺寸减小。当x量较小时(x

2.2pH值对材料结晶的影响

对不同pH下制得的样品作X射线衍射分析,见图2。在碱性条件下,溶胶沉淀速度较快,二氧化钛结晶度差,呈无定形状态。当pH=6时,二氧化钛的峰形明显尖锐化,说明pH=6条件下合成的二氧化钛晶形较好。pH=6和pH=3的条件下,样品中含有板钛矿型的二氧化钛。实际操作中低pH条件下制得的材料量较少,所以反应的pH值不应过低。

2.3实验温度对材料结晶的影响

随着反应温度的升高,锐钛型TiO2峰形尖锐化,说明TiO2微粒晶形越来越好;同时从XRD衍射图分析得到,不同反应温度制得的复合材料中,TiO2纳米晶粒尺寸依次为3.4 nm ,3.3 nm , 3.6 nm ,3.9 nm ,4.3nm,说明反应温度升高,TiO2纳米晶粒尺寸呈增大趋势,这可能是由于在较高的温度下,TiO2生成结晶的反应速度较快,容易生成较大的颗粒。随着纳米材料晶粒尺寸增大,其量子化效应减弱。

3材料催化性能研究

3.1钒添加量对材料催化性能的影响

对实验制备的材料作催化实验,从降解效果图4中可以看出,随着掺杂量的变化,催化效率先增加再减少。可能是由于钒离子进入TiO2晶胞中,造成晶格缺陷,改变了能隙,从而增加了紫外光的利用率。当钒的量过大时,可能生成了钒的氧化物包覆在TiO2的表面,减少受光面积,而降低催化效率。

3.2温度对材料催化性能的影响

将1%掺杂量制得的TiO2催化降解活性艳红染料,其催化结果如下,样品的催化性能先升后降,在40℃下材料具有最大的催化降解率,达到90%。

3.3PH值对材料催化性能的影响

尽管不同的pH值对纳米二氧化钛的晶型有影响,但是各样品在紫外线下对活性艳红的催化性能基本无差别。

4结论

实验结果表明纳米TiO2合成过程中,温度,pH,钒的掺杂量等对结晶有较大影响。在V5+的掺杂量为1%,pH=6,温度为100℃,溶解酸为HNO3的情况下可以制得锐钛矿型的纳米TiO2,晶形较好,纳米晶粒尺寸约在3nm~~4nm之间。纳米TiO2在低浓度的染料溶液中催化脱色效率在80%~90%之间,而且反应过程中,脱色速率基本衡定。

参考文献

篇5

关键词:热稳定性;环氧树脂;改性纳米SiO2;介电性能

中图分类号: O631 文献标识码:A

Abstract:The blending method was used to prepare nanoSiO2/epoxy composites, where nanoSiO2 was premodified using silane coupling agent. The influences of nanoSiO2 content on the microstructure, thermal stability and dielectric properties of SiO2/EP composites were studied by using IR, SEM, TGA, impedance analyzer et al. The microscopic mechanism of thermal stability and dielectric property evolutions of the SiO2/EP composites were also discussed. with the increase of nanoSiO2 content, the thermal stability of SiO2/EP composites gradually increased, while the dielectric constant and dielectric loss factor of the composites decreased first and then increased. When the content of nanoSiO2 equaled 4%, the nanoparticles exhibited a uniform dispersion in composite, its dielectric constant was 2.86, and its corresponding dielectric loss was 0.023 53.

Key words:thermal stability; epoxy resin; modified nanoSiO2; dielectric properties

随着信息产业的飞速发展, 人类社会正稳步朝着高度信息化的方向发展,信息处理与信息通讯正构成高度信息化科学技术领域发展中的两大技术支柱.以高速计算机、示波器、IC测试仪器为主体的信息处理技术追求信息处理的高速化、容量的增大化和体积的小型化;以手机、卫星通讯及蓝牙技术等为代表的信息通讯技术追求多通道数、高性能化和多功能化,使得使用频率不断提高,进入高频甚至超高频领域.在高频电路中,由于基板介电常数越低,信号传播得越快;基板的介电常数越小,损耗因数越小,信号传播的衰减越小[1],因此,要实现高速传输、低能量损耗与小的传输延时,则对基板材料提出了更高的要求,即要求基板材料为低ε、低tanδ.此外,高的耐热性,低的吸水性和高的尺寸稳定性也是高频电路对基板材料的基本要求[2].传统的基板材料(FR4)所用的基体树脂主要为环氧树脂,因其成本低、工艺成熟而在印刷电路板中大量使用;但作为高频电路基板材料,却暴露出介电性能低劣、耐热性不佳、热膨胀率偏高、耐湿性差等缺陷.因此开发适合高频电路基板材料用的树脂体系是印刷电路板行业目前研究的一个重要方向,而对EP进行改性并借助EP较为成熟的生产和加工工艺研究、开发和制备新型的树脂体系,是制备高性能电路基板的一条非常经济有效的途径[3-5] .

研究表明,无机纳米粒子弥散分布的树脂基体材料,由于纳米粒子具有的表面特性和晶体结构使基体材料显示出一系列优异的性能[6-7],其中纳米SiO2 改性树脂基体具有很多优异的性能[8-10],但纳米SiO2表面存在大量的羟基使其表现为亲水性、易团聚,贮存稳定性差等缺点.因此纳米颗粒在树脂中的均匀分散是制备高性能纳米颗粒弥散分布有机树脂的一个重要环节[11].

本文采用硅烷偶联剂KH570改性纳米SiO2粉体,通过共混法制备了高性能SiO2EP树脂复合材料,并对其微观结构、热稳定性和介电性能进行研究.

1实验部分

1.1原料

纳米SiO2质量分数≥99.5%,粒径15 nm,杭州万景新材料有限公司;苯(A.R.)、二甲苯(A.R.)、无水乙醇、H2O2 (30 %,A.R.),γ2(甲基丙烯酰氧)丙基三甲氧基硅烷(A.R. KH570)、环氧树脂(E44,6101)(湖南三雄化工厂)、固化剂聚酰亚胺(低分子650)(湖南三雄化工厂).

1.2SiO2改性环氧树脂复合材料的制备

参考文献[11],采用 γ2(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)对纳米SiO2进行表面改性处理得到亲油性纳米SiO2粉体.

SiO2改性环氧树脂复合材料的制备工艺如下(以2% SiO2EP为例):取2 g亲油性SiO2粉体,超声分散于80 mL二甲苯中,然后加入49 g环氧树脂,搅拌均匀后再加入49 g的聚酰胺固化剂,超声分散搅拌均匀,最后将混合体系倾入铝制模具中,放置于烘箱中先于120 ℃预固化2 h,再升温至150 ℃固化3 h,最后于180 ℃固化1 h得最终试样.

为对比不同试样的性能,采用相同工艺制备了未添加纳米SiO2的EP.不同组成的试样编号如表1所示.

1.3性能测试

采用傅立叶变换红外光谱(FTIR,Avatar360,Nicolet)研究改性纳米SiO2前后,不同试样中化学键的变化,判断可能发生的反应.操作条件:采用KBr压片法制样,测量的波长范围为(4 000~400) cm-1.

采用扫描电子显微镜(SEM,JSM6700F,Jeol)表征微观形貌,观察纳米颗粒在复合材料中的分散情况.

用STA449C综合热分析仪研究试样的热稳定性.操作条件:样品质量为25~35 mg,Ar流量为50 mL・min-1,升温速率为10 ℃・min-1,温度变化范围为(0~800) ℃.

介电常数是指介质在外加电场时会产生感应电荷而削弱电场,在相同的原电场中某一介质中的电容率与真空中的电容率的比值. 介电损耗是电介质在交变电场中,由于消耗部分电能而使电介质本身发热的现象.SiO2改性环氧树脂复合材料的介电常数和介电损耗采用美国安捷伦公司生产的Agilent 4991A高频阻抗分析仪测试,测试频率为1 M~1 G,测试夹具为美国安捷伦公司生产的Agilent16453A介电性能测试夹具.

2结果与讨论

2.1FTIR分析

图1为3种试样的红外图谱.对改性纳米SiO2而言,位于1 103 cm-1左右的一个宽强峰及812 cm-1附近的一个尖峰属于Si-O-Si键的对称振动峰(νSi-O-Si) .波数为1 395 cm- 1 的吸收峰属于νSiO-H的伸缩振动峰;波数为1 637 cm-1 处的吸收峰属于νC = C 的伸缩振动峰,波数为1 606 cm-1 处的吸收峰归属于νC-C的收缩振动峰,这两种化学键均来自于硅烷偶联剂KH570,从这几个吸收峰来看,硅烷偶联剂已经成功地连接在SiO2表面[11-12].同时由于改性纳米SiO2中仍存在Si-OH键振动峰,表明偶联剂在纳米SiO2表面的反应进行得并不完全,偶联剂用量对SiO2改性效果的影响有待进一步研究.

由于聚酰亚胺固化EP材料的官能团较多,本文重点分析添加改性SiO2后,相应官能团的变化.对比添加改性纳米SiO2前后EP的红外吸收,可知纳米SiO2在1 395 cm- 1处的峰消失,同时EP材料中出现于1 628 cm-1处的δCO-H和1 405 cm-1处的δN-H的强度降低甚至消失,表明硅烷偶联剂和改性纳米SiO2与EP树脂材料发生了化学反应,导致δCO-H和δN-H吸收峰强度降低或者消失.

波数/cm-1

2.2纳米SiO2添加量对EP热稳定性能的影响

图2为不同样品在Ar气氛下的热重(TG)曲线和微分热重(DTG)曲线.从图2(a)所示TG曲线可以看出,不同组成的试样在Ar气氛中的热失重过程相似,在300~500 ℃,在相同的温度下,随SiO2含量的增加,失重率显著升高;而当失重率相同时,随SiO2含量的增加,复合树脂对应的温度升高,表明其热稳定性增加.表2给出了不同试样一定失重率对应的温度.

从图2(b)所示DTG曲线可以看出,0#试样有两个峰值,这表明EP基体的分解可大致分为两个步骤,这两个失重峰对应的分别是环氧树脂基体的热分解和裂解残碳的氧化[13-14].随着添加量的增加,第一个峰值逐渐变平缓直到最后消失,而失重速率最大时对应的峰值温度(见表2)则逐渐升高,这也表明随添加量的增加,偶联剂的官能团和改性纳米SiO2表面残留的Si-OH与基体树脂的官能团发生了化学反应,从而提高了树脂基体的“牢固度”[15].添加量越多,“牢固度”增加的程度越大,从而导致基体材料的热稳定性逐渐提高.

由于环氧树脂及其固化剂含有较多的氧,因此尽管在惰性气氛中进行热分解研究,但其裂解后的残炭量几乎完全消失,残余质量与添加在其中的SiO2量相一致[14].

2.3纳米SiO2添加量对EP微观形貌的影响

图3为添加不同纳米SiO2颗粒的SiO2/EP复合材料的微观形貌图谱.从图3(a)中可以看出,未添加SiO2的试样断面较为粗糙;从图3(b)~(e)可以看出,随SiO2添加量的增加,其在EP中的分布由分散均匀,团聚少(图3(b) 和3(c)),逐步改为团聚明显,分散均匀性差(图3(d) 和3(e)).当添加量为4%时,纳米SiO2均匀地分散在EP基体中,粒径约为30 nm,对比原始SiO2尺寸,纳米颗粒还存在微弱的团聚现象.随添加量的增加,纳米SiO2团聚现象明显增加,当添加量增加到16%时,纳米颗粒出现严重的团聚现象,这将影响其介电性能.这种团聚一方面是由于纳米颗粒有很高的比表面积,同时由于偶联剂与纳米SiO2颗粒表面Si-OH反应得并不完全,导致纳米颗粒表面仍存在Si-OH,这些官能团彼此之间可以发生缩合反应导致颗粒团聚.

2.4纳米SiO2添加量对EP基体介电性能的影响

2.4.1纳米SiO2添加量对EP介电常数的影响

图4为不同试样的介电常数与测试频率的关系曲线图.从图4可以看出,5组试样的介电常数均随着频率的升高呈下降趋势.同时随着纳米SiO2添加量的增加,试样的介电常数呈先降低后升高的趋势.当添加量为4%时,试样的介电常数具有最低值.

log(f/Hz)

析认为,当纳米SiO2的添加量小于4%时,纳米SiO2添加到树脂基体后,形成了“ 核壳过渡层”结构,以“核”作为交联点使得复合材料的交联度提高,其极性基团取向活动变得困难, 因而复合材料的介电常数下降.而当纳米SiO2的添加量大于4%时,纳米SiO2本身介电性能较高的影响超过了其对树脂基体极性基团的“束缚”作用而产生了介电性能降低效应,这就导致复合材料介电常数的增加[16].

2.4.2纳米SiO2添加量对EP介电损耗的影响

图5为5种试样的介电损耗随频率的变化曲线.从图5可以看出,试样的介电损耗均随测试频率的增加先升高后降低;随着纳米SiO2加入量的增多呈现先降低后升高的趋势.同一测试频率下,当纳米SiO2的添加量为4%时,材料的介电损耗最低;当纳米SiO2的添加量为6%时,材料的介电损耗开始增加;当纳米SiO2的添加量为16%时,材料的介电损耗接近纯EP试样的介电损耗.

分析认为,复合材料的介电损耗取决于环氧树脂极性基团的松弛损耗和极性杂质电导损耗的共同作用.加入纳米SiO2后,一方面改性纳米SiO2表面的官能团可以与聚酰亚胺固化EP中的官能团反应,束缚了树脂基体中极性基团的运动,从而降低了松弛损耗;另一方面,改性后的纳米颗粒表面不可避免地存在一些极性基团,这些基团同时增加了电导损耗,复合材料的介电损耗正是这二者共同作用的结果.当纳米SiO2的添加量小于6%时,试样的松弛损耗的降低效果高于电导损耗的增加效果,所以试样的介电损耗均比纯EP的小.而当纳米SiO2的添加量为16%时,纳米SiO2出现明显的团聚现象,这就导致松弛损耗的效果迅速降低,从而导致试样总体的介电损耗接近纯EP试样[17].

3结论

利用硅烷偶联剂对纳米SiO2进行表面改性,通过共混法制备了不同纳米SiO2含量的SiO2/EP纳米复合材料,研究了SiO2的添加对复合材料微观结构、耐热性和介电性能的影响.结论如下:

1 ) 当纳米SiO2含量在0~16%时,随着纳米SiO2含量的增加,SiO2/EP纳米复合材料的热稳定性逐渐升高.

2) SiO2/EP纳米复合材料的介电性能随着测试频率的升高呈下降趋势.同一测试频率下,随着纳米SiO2添加量的增加,试样的介电常数呈先降低后升高趋势.

3)当纳米SiO2含量为4%时,复合材料的综合性能最优.其耐热性较好,介电性能最优(频率为1 GHz时,介电常数为2.86,介电损耗为0.023 53).

参考文献

[1]祝大同. 高频基板材料的新技术发展[J].印制电路信息, 2001(8):15- 19.

ZHU Datong. Development of new technology in high frequency PCB[J]. Printed Circuit Information, 2001(8):15-19.(In Chinese)

[2]祝大同. 印制电路板制造技术的发展趋势[J].印制电路信息, 2003(12):14 -21.

ZHU Datong. Developing trends of manufacturing technology for PCB [J]. Printed Circuit Information, 2003(12):14-21.(In Chinese)

[3]孟季茹,梁国正. 聚苯醚改性环氧树脂基覆铜板的研制[J].复合材料学报, 2003, 20(1): 74-78.

MENG Jiru, LIANG Guozheng. Preparation of the copper clad laminate based on modified epoxy with poly (2,6dimethyl1,4phenylene ether [J]. Acta Materiae Compositae Sinica, 2003, 20(1):74-78. (In Chinese)

[4]赵立英, 马会茹,官建国. 聚醚链段长度对氨基聚醚环氧树脂力学性能的影响[J]. 高等学校化学学报, 2009, 30(7): 1454-1458.

ZHAO Liying, MA Huiru, GUAN Jianguo. Influence of polyether segment length on mechanical properties of cured epoxy resins based on aminoterminated Poly(ethylene glycol) and diglycidyl ether of bisphenol [J]. Chemical Journal of Chinese Universities, 2009, 30(7):1454-1458.(In Chinese)

[5]钱军民,李旭祥. 环氧树脂改性研究进展[J].工程塑料应用, 2001, 29 (10): 50-53.

QIAN Junmin, LI Xuxiang. Advances in modification of epoxy[J]. Engineering Plastics Application, 2001,29(10):50-53.(In Chinese)

[6]WANG Zhengzhi,GU Ping, WU Xiaoping,et al. Micro/nanowear studies on epoxy/silica nanocomposites [J]. Composites Science and Technology, 2013, 79: 49-57.

[7]LIN Jing, WU Xu, ZHENG Cheng,et al. Synthesis and properties of epoxypolyurethane/silica nanocomposites by a novel sol method and insitu solution polymerization route[J]. Applied Surface Science, 2014, 303: 67-75.

[8]柯昌美,段辉.环氧树脂基纳米复合材料研究进展[J]. 武汉科技大学学报:自然科学版, 2003(6): 120-121.

KE Canmei, DUAN Hui. Research progress in epoxynanocomposites[J]. Journal of Wuhan Yejin University of Science and Technology:Natural Sciences,2003(6):120-121.(In Chinese)

[9]MATEJKA L,DUSEK K, PLESTIL J,et al. Formation and structure of the epoxy silica hybrids [J].Polymer, 1998,40:171-181.

[10]张小华,徐伟箭.无机纳米粒子在环氧树脂增韧改性中的应用[J]. 高分子通报, 2005, 6: 100-112.

ZHANG Xiaohua, XU Weijian. Application of inorganic nanoparticals in epoxy resin toughening[J]. Polymer Bulletin, 2005, 6: 100-112.(In Chinese)

[11]张祺,毕成,李耀刚,等. 纳米SiO2表面改性及其分散性能研究[J] 化工新型材料, 2008, 36(5): 41-42.

ZHANG Qi, BI Cheng, LI Yaogang,et al. Study on surface modification of the SiO2 nanoparticles and dispersion[J].New Chemical Materials, 2008, 36(5): 41-42.(In Chinese)

[12]常建华, 董绮功. 波谱原理及解析[M].2版.北京:科学出版社,2006:2.

CHANG Jianhua, DONG Yigong. The principle and analysis of spectrum[M].2nd ed. Beijing: Science Press, 2006:2.(In Chinese)

[13]陈敏孙,江厚满,刘泽金. 玻璃纤维/环氧树脂复合材料热分解动力学参数的确 定[J]. 强激光与粒子束, 2010, 22(9): 1969-1972.

CHEN Minsun, JIANG Houman, LIU Zejin. Determination of thermal decomposition kinetic parameters of glassfiber /epoxy composite [J]. High Power Laser and Particle Beams, 2010, 22(9):1969-1972.(In Chinese)

[14]WANG Xin, HU Yuan, SONG Lei,et al. Thermal degradation mechanism of flame retarded epoxy resins with a DOPOsubstitued organophosphorus oligomer by TGFTIR and DPMS[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92: 164-170.

[15]LIN Chinghsuan,FENG Chenchia,HWANG Tingyu. Preparation, thermal properties, morphology, and microstructure of phosphorus containing epoxy/SiO2 and polyimide/SiO2 nanocomposites[J]. European Polymer Journal, 2007, 43: 725-742.

[16]徐曼,曹晓珑,俞秉莉. 纳米SiO2/环氧树脂复合体系性能研究― (SymbolIA@ )复合材料的性介电特性和力学特性[J]. 高分子材料科学与工程,2005,21(1):156-159.

篇6

关键词 血红蛋白; 磷酸钬; 过氧化氢; 电催化; 生物传感器

1 引 言

稀土元素独特的4f电子构型,赋予稀土材料优异的光、电、磁性能,在工业催化、燃料电池、荧光材料、生物传感器等领域应用广泛[1~5]。以稀土磷酸化合物纳米材料为例,因其优越的物理化学性质,近年来成为科研工作者的研究热点。Wang等[6]通过水热法制备了不同组成的(Y 0.95Eu 0.05)PO4和 (Y 0.96.xTb 0.04Eux)PO4 (x=0~0.10)晶体纳米片,并详细研究不同组份时的发光性能。Zhang等[7]利用自牺牲模板技术制备了Eu3+掺杂的YPO4空心球,并对不同掺杂条件下产物的荧光性能进行了详细探讨。此外,纳米稀土磷酸化合物具有大的比表面积,稳定性、良好的导电性及生物相容性,因此也被应用在生物传感器领域[1,8]。Zhou等[1]通过水热法在150℃下反应12 h成功合成了LaPO4纳米线,用于生物传感器的构建, 该生物传感器在多巴胺(DA)、尿酸(UA)检测中表现出良好的选择性、宽的检测范围、低的检出限。

磷酸钬(HoPO4)作为一种重要的稀土磷酸盐,制备方法包括高温灼烧法[9]、共沉淀法[10]、结晶法[11]等。HoPO4由于其优异的荧光性能在安全防伪、装饰等领域具有广泛应用。在太阳光和三色光的激发下,HoPO4能发射不同波长的光[10]。通过不同金属离子的掺杂作用,可以改变其晶体结构和荧光性能[11]。但是目前关于HoPO4在生物传感领域的应用,却鲜有报道。

H2O2是一种强氧化剂,被广泛应用在食品加工、消毒液、医药生产等领域。但H2O2的强氧化性会对人体健康造成危害,因此对其含量的分析测定具有重要意义[12~14]。目前对H2O2的检测方法主要有电化学法[15]、荧光分析法[16]、比色法[17]、表面增强拉曼光谱法[18]和电化学发光法[19]等,其中电化学法因具有选择性好、灵敏度高、反应快速等优点得到广泛应用[20]。Guo等[14]制备了基于血红蛋白(Hb).collagen复合材料的新型H2O2生物传感器,该传感器表现出稳定性好、灵敏度高、线性范围宽等优点。血红蛋白作为一种重要的氧化还原蛋白,对人体内的氧和二氧化碳的存储和运输起着重要作用。血红蛋白拥有丰富的生物催化活性位点,而且价格低廉易得,被广泛的用于构建H2O2生物传感器[21]。然而,血红蛋白作为生物大分子,被直接固定在电极表面时,将阻碍电子的直接转移[22]。为了克服该难题,碳纳米管[23]、石墨烯[24]、普鲁士蓝[25]及各种金属纳米粒子[26,27]等被用于固载生物酶,提高酶与电极间的直接电子转移,进而提高H2O2的检测灵敏度。

本研究结合稀土元素多能级的电子结构、良好的生物相容性等特点,研究稀土纳米材料HoPO4的电化学性能及生物传感应用。首先采用热水法合成n.HoPO4,将其用于固载Hb到玻碳电极表面,从而制备出Hb/n.HoPO4/GCE修饰电极,并研究了修饰电极的电化学行为。n.HoPO4因具有良好的导电性和生物相容性,能够促进Hb与电极间的电子转移。所制备的生物传感器对H2O2具有较宽的检测范围、良好的稳定性和重现性。

2 实验部分

2.1 仪器与试剂

CHI660D型电化学工作站(上海辰华仪器有限公司); 能谱分析(EDS)仪(Philips XL30)、MLA650F型扫描电子显微镜(美国FEI公司); Autolab PGSTAT12电化学交流阻抗仪(Ecochemie, BV,荷兰); 电化学测量采用三电极体系,玻碳电极作为工作电极(Φ=4 mm),铂丝电极作为对电极,甘汞(饱和KCl溶液)电极作为参比电极。

壳聚糖(CS)溶液由0.5 g壳聚糖、1 mL冰醋酸、99 mL去离子水混合超声1 h制备,0.1 mol/L磷酸盐缓冲溶液(PBS)由NaH2PO4, Na2HPO4和 KCl配制,实验所用支持电解液预先通入高纯氮气除氧。2 mmol/L铁氰化钾溶液由铁氰化钾、亚铁氰化钾、KCl配制; 血红蛋白(Hb),H2O2(30%),过氧化氢消毒液(3.0%),Ho2O3,浓HNO3, NaOH,柠檬酸三钠等试剂均为分析纯级,实验用水为去离子水。

2.2 n.HoPO4的合成

根据文献[28]制备YPO4的方法略有改动: 首先称取0.1 g Ho2O3固体粉末于烧杯中,加入去离子水后加热,再缓慢滴加浓HNO3至固体完全溶解后,用一定浓度的NaOH调节溶液pH值至中性。随后将0.5 g柠檬酸三钠和0.1 g NaH2PO4加到上述溶液,在磁力搅拌器下持续搅拌,当溶液开始变浑浊后继续搅拌30 min,再将此溶液移到100 mL聚四氟乙烯反应釜中, 140℃下反应24 h。将所得产物依次用乙醇和去离子水多次洗涤,最后在真空干燥箱60℃下烘干,得到n.HoPO4。

2.3 修饰电极的制备

首先,分别用粒径为0.3 μm和0.05 μm的氧化铝粉末抛光打磨裸玻碳电极成镜面,再用乙醇和去离子水超声清洗后, 置于4℃储存, 备用。将制备好的n.HoPO4用去离子水超声分散获得n.HoPO4溶液(2 mg/mL),同时将2 mg Hb振荡溶于2 mL PBS缓冲溶液(pH 7.0),将制备好的溶液置于4℃储存备用。

分别取20 μL的H2O、n.HoPO4溶液、Hb溶液,充分振荡混合均匀后,取10 μL滴涂在抛光好的裸玻碳电极表面,室温下晾干,再取5 μL CS溶液用于电极表面的封闭,从而制得Hb/n.HoPO4/GCE修饰电极。用同样的方法制备n.HoPO4/GCE修饰电极和Hb/GCE修饰电极,将制备好的修饰电极置于4℃储存, 备用。

3 结果与讨论

3.1 n.HoPO4的形貌表征和组成分析

通过水热法合成的n.HoPO4的SEM图如图1A所示, n.HoPO4的形貌呈六棱柱体,粒径在50~100 nm之间均匀分布。同时对n.HoPO4进行了能谱分析,从图1B和表1可知, 制备的材料由Ho, P, O及Na元素组成,由此可以推断合成的物质主要是HoPO4。

3.2 修饰电极的电化学表征

不同修饰电极的循环伏安曲线如图2A所示,在01 mol/L PBS溶液(pH 7.0)中,n.HoPO4/GCE(曲线b)与裸GCE(曲线a)相比背景电流增大,说明n.HoPO4具有良好的导电性,能促进电子的转移速率; 将Hb修饰在玻碳电极表面后(曲线c),在电0.334 V出现明显的还原峰,这是Hb在PBS溶液(pH 7.0)中的经典还原峰[14]; 而Hb/n.HoPO4复合材料修饰电极的CV图(曲线d)与n.HoPO4/GCE、Hb/GCE相比,有明显的还原峰和更大的还原峰电流值,表明n.HoPO4具有良好的生物相容性,能够保持Hb与玻碳电极间的直接电子转移。为进一步说明HoPO4在H2O2电催化还原中所起的作用,考察了Hb/GCE和Hb/n.HoPO4/GCE修饰电极在含有0.1 mmol/L H2O2的 PBS溶液中的循环伏安行为,与Hb/GCE修饰电极对H2O2的电化学还原电流(曲线e)相比,Hb/n.HoPO4/GCE修饰电极(曲线f)对H2O2的电化学还原具有更大的响应电流。此结果进一步说明n.HoPO4的存在,能有效提升Hb对H2O2的电化学催化效果。

不同修饰电极在2 mmol/L铁氰化钾溶液中的电化学交流阻抗图如图2B所示。在高频区产生的半圆部分反映其界面电子转移过程,半圆直径大小为修饰电极的电子转移阻抗值(Ret), 直径越大, 其修饰电极的Ret越大; 低频区的曲线部分代表着扩散过程。从图2B可知,在所有修饰电极中,n.HoPO4/GCE的Ret最小,表明其电子转移阻碍性最小,

从而证明了n.HoPO4具有良好的导电性; 而Hb修饰电极的半圆部分最大,说明Hb/GCE的Ret最大,这是由于Hb生物大分子阻碍了电子的转移速率[29]。Hb/n.HoPO4/GCE与Hb/GCE相比,其Ret明显的减小,表明n.HoPO4促进了Hb与玻碳电极间的直接电子转移速率; 与n.HoPO4/GCE相比,其Ret明显更大,表明Hb已经成功地修饰在电极表面。

3.3 pH值对Hb/n.HoPO4/GCE电化学行为的影响

3.6 稳定性和重现性实验

本实验考察了Hb/n.HoPO4/ GCE制备过程的重现性,将制备的3支修饰电极在PBS(pH 7.0)溶液中检测,电化学响应电流的相对标准偏差(RSD)为2.1%,表明修饰电极的制备过程具有良好的重现性。同时考察了修饰电极对H2O2检测的重现性和稳定性,3支修饰电极在含有0.1 mmol/L H2O2的PBS溶液(pH 7.0)中进行检测,电化学响应电流的RSD为3.5%。此外,将修饰电极置于4℃储存10天,在含0.1 mmol/L H2O2的PBS溶液(pH 7.0)中的响应电流仍为初始信号的96%,表明修饰电极对H2O2的检测具有较好的稳定性。

3.7 干扰实验和实际样品回收率

配制含有0.1 mmol/L H2O2, 0.1 mmol/L UA, 0.1 mmol/L AA, 1 mmol/L NaCl, 1 mmol/L MgCl2, 1 mmol/L葡萄糖的PBS(pH 7.0)溶液,用于考察修饰电极的选择性及抗干扰能力。将制备好的3支Hb/n.HoPO4/ GCE浸在此溶液中检测,与只含0.1 mmol/L H2O2检测的电流值相比,修饰电极的平均响应电流值(RSD=4.6%)仅提高了1.94%。实验表明,此生物传感器具有良好的选择性和抗干扰能力。

选择含3% H2O2的医用消毒液作为实际样品进行检测分析。将消毒液用PBS溶液(pH 7.0)稀释,通过检测其实际H2O2的含量,探讨了该生物传感器的实际应用价值。由表3中可知,H2O2的回收率为100.6%~107.9%,说明此生物传感器可用于医用H2O2消毒液的测定。

4 结 论

利用水热法合成了纳米HoPO4,并将Hb/n.HoPO4复合材料修饰在裸玻碳电极表面,制备得到H2O2生物传感器。n.HoPO4优良的导电性、生物相容性等性能,能够保持Hb的生物活性,并促进Hb与玻碳电极间的直接电子转移。此生物传感器对H2O2的检测表现出线性范围宽、重现性和稳定性好、抗干扰能力强等优点,在实际样品的检测中具有良好的回收率。

References

1 Zhou Y Z, Zhang H Y, Zhang J, Liu T, Tang W M. Sens. Actuators, B, 2013, 182: 610-617

2 Gai S L, Li C X, Yang P P, Lin J. Chem. Rev., 2014, 114(4): 2343-2389

3 Onoda H, Nariai H, Moriwaki A, Maki H, Motooka I. J. Mater. Chem., 2002, 12: 1754-1760

4 Kaur M, Verma N K. J. Mater. Sci..Mater. Electron, 2013, 24(4): 1121-1127

5 SUN Cai.Ying, HU Shu.Lin, XING Hai.Tao, DONG Chun.Mei, ZHAN Zhao.Shun. Chinese J. Appl. Chem., 2010, 27(10): 1172-1176

孙才英, 胡树林, 邢海涛, 董春梅, 展召顺. 应用化学, 2010, 27(10): 1172-1176

6 Wang Z H, Li J G, Zhu Q, Li X D, Sun X D. RSC Adv., 2016, 6(27): 22690-22699

7 Zhang L H, Jia G, You H P, Liu K, Yang M, Song Y H, Zheng Y H, Huang Y J, Guo N, Zhang H J. Inorg. Chem., 2010, 49(7): 3305-3309

8 Chen H Q, Wu Y, Zhang Y Y, Guan Y Y, Wang L. Luminescence, 2014, 29(6): 642-648

9 Hraiech S, Chehimi.Moumen F, Goutaudier C, Hassen.Chehimi D B, Trabelsi.Ayadi M. Solid State Sciences, 2008, 10(8): 991-997

10 Wen Q, Xiao S G, Gao X J, Xia W B, Yang X L. Chin. Optics Lett., 2015, 13(3): 59-62

11 Kijkowska R, Malina D, Sobczak.Kupiec A, Wzorek Z, Orlicki R. Cryst. Res. Technol., 2012, 47(7): 804-809

12 LI Y Z, Townshend A. Anal. Chim. Acta, 1998, 359(1.2): 149-156

13 YANG Shao.Ming, CHEN Yan.Sheng, LI Rui.Qin, LONG Qi.Yang, DING Su.You. Chinese J. Appl. Chem, 2015, 32(7): 849-854

杨绍明, 陈延胜, 李瑞琴, 龙启洋, 丁素游. 应用化学, 2015, 32(7): 849-854

14 Guo F, Xu X X, Sun Z Z, Zhang J X, Meng Z X, Zheng W, Zhou H M., Wang B L, Zheng Y F. Colloids Surf., B, 2011, 86(1): 140-145

15 WANG Wei.Wei, QIU Yu, ZHANG Shao.Peng, LI Jia.Wei, LU Xiao.Quan, LIU Xiu.Hui. Chinese J. Anal. Chem., 2014, 42(6): 835-841

汪维维, 裘 宇, 张少鹏, 李嘉伟, 卢小泉, 刘秀辉. 分析化学, 2014, 42(6): 835-841

16 Liang L L, Lan F F, Li L, Su M, Ge S G, Yu J H, Liu H Y, Yan M. Biosens. Bioelectron., 2016, 82: 204-211

17 Pla.Tolos J, Moliner.Martinez Y, Molins.Legua C, Campins.Falco P. Sens. Actuators B, 2016, 231: 837-846

18 Gu X, Wang H, Schultz Z D, Camden J P. Anal. Chem., 2016, 88(14): 7191-7197

19 Hu X F, Han H Y, Hua L J, Sheng Z H. Biosens. Bioelectron. 2010, 25(7): 1843-1846

20 Bai J, Wu L P, Wang X J, Zhang H M. Electrochim. Acta, 2015, 185: 142-147

21 ZHOU Li.Juan, YIN Fan, ZHOU Yu. Chinese J. Anal. Chem., 2011, 39(9): 1313-1317

周丽娟, 尹 凡, 周 宇. 分析化学, 2011, 39(9): 1313-1317

22 Sun W, Gong S X, Shi F, Cao L L, Ling L Y, Zheng W Z, Wang W C. Mater. Sci. Eng., C 2014, 40: 235-241

23 Vilian A T E, Chen S M, Lou B S. Biosens. Bioelectron., 2014, 61: 639-647

24 Fan Z J, Lin Q Q, Gong P W, Liu B, Wang J Q, Yang S R. Electrochim. Acta, 2015, 151: 186-194

25 LI Hua.Gang, YUAN Ruo, CHAI Ya.Qin, LI Wen.Juan, MIAO Xiang.Min, ZHUO Ying, HONG Cheng.Lin. Chinese J. Anal. Chem., 2009, 37(6): 806-810

李华刚, 袁 若, 柴雅琴, 李文娟, 苗向敏, 卓 颖, 洪成林. 分析化学, 2009, 37(6): 806-810

26 Gong Y F, Chen X, Lu Y L, Yang W S. Biosens. Bioelectron., 2015, 66: 392-398

27 Baccarin M, Janegitz B C, BertéR, Vicentini F C, Banks CE, Fatibello.Filho O, Zucolotto V. Mater. Sci. Eng., C, 2016, 58: 97-102

28 LiC X, Hou Z Y, Zhang C M, Yang P P, LiG G, Xu Z H, Fan Y, Lin. J. Chem. Mater., 2009, 21 (19): 4598-4607

29 Ding Y, Wang Y, Li B K, Lei Y. Biosens. Bioelectron., 2010, 25(19): 2009-2015

30 Zhao Y D, Bi Y H, Zhang W D, Luo Q M. Talanta, 2005, 65(2): 489-494

31 Zhao H Y, Zheng W, Meng Z X. Zhou H M, Xu X X, Li Z, Zheng Y F. Biosens. Bioelectron., 2009, 24(8): 2352-2357

篇7

【关键词】 纳米羟基磷灰石 二氧化锆 生物相容性

由于创伤、感染、肿瘤以及先天性缺损等原因所致骨缺损在临床十分常见,传统修复骨缺损的方法:如自体骨移植,同种异体骨移植。自体骨取骨量有限,同时取自体骨痛苦大、后遗症多、异体骨又有排异反应。而人工合成的骨移植材料在一定程度上可以达到自体骨和异体骨修复的效果,又可以避免疾病感染和骨源有限等弊端[1]。纳米羟基磷灰石与人体骨骼主要无机成分相似的化学组成和晶体结构,它具有良好的生物相容性,对人体无毒,又能够在植入人体后同骨表面形成很强的化学键结合,有利于骨的长入[2]。然而它的脆性大、韧性较差、容易发生断裂破坏,二氧化锆陶瓷是一种生物惰性陶瓷,具有良好的生物相容性、较高的弯曲强度、断裂韧性和较低的弹性模量。正是由于二氧化锆具有增韧补强的作用,有效的改善纳米羟基磷灰石的力学性能[3]。因此,纳米羟基磷灰石复合40%二氧化锆陶瓷材料,兼具材料生物活性、骨诱导性以及材料力学特性,成为用于承载部位骨缺损修复具有广泛前景的新兴材料。

一、实验方法

(一) 致敏试验

取豚鼠30只,雌雄各半,体重300—500g,随机分为三组,实验组、阴性对照组和阳性对照组各10只。实验样品的生理盐水浸提液,5%甲醛溶液作为阳性对照,生理盐水作为阴性对照[4]。

(二)刺激试验

选用新西兰白兔,每组3只,雌雄各半随机分3组,体重2.5kg-3.0kg。HA/40% ZrO2浸提液,阴性对照:生理盐水,阳性对照为3%甲醛溶液。在脊柱左侧取一去毛区,标记5个点,常规麻醉消毒用1ml注射器试验组于5个点每点注射0.1ml的浸提液,阴性对照组每点注射0.1ml的生理盐水,阳性对照组每点注射01.ml的甲醛溶液。

(三)溶血实验

穿刺抽取人静脉血10ml加入到含有抗凝肝素钠的试管中,混合抗凝。取抗凝人血8ml,加入10ml生理盐水,稀释备用。取24支干净玻璃试管每组8支。实验组每只试管加入材料浸提液10ml,阴性对照组每只试管加入10ml生理盐水,阳性对照组每只试管加入10ml蒸馏水,将全部试管在37℃恒温箱中恒温30分钟后,每只试管分别加入0.2ml稀释抗凝人血,轻轻混匀,继续保温60分钟后,离心5分钟,吸取上清液至比色皿中,用分光光度计在545nm波长处测定吸光度。

溶血率 =实验材料的吸光度—阴性对照的吸光度/阳性对照的吸光度—阴性对照的吸光度

结果评定:若材料的溶血率5%,则不符合生物医用材料溶血试验要求。

(四)肌肉内植入试验

选用Wister大鼠48只,雌雄各半,体重220±25g,随机分为术后第7、15、30、90天4组, 每组10只。对照组8只。常规麻醉消毒, 分离竖脊肌,于肌肉内植入消毒的HA/40% ZrO2材料块, 缝合肌膜和皮肤。术后每日予以青霉素20 万U 肌注, 连续3 d , 于术后第7、15、30、90 天取材,对照组手术操作如上, 但不放材料板。大体观察并制作标本切片,HE染色,光镜下观察。

二、结 果

(一)致敏试验

各实验组和生理盐水对照组皮肤均无红斑、水肿或疹块发生,致敏率为0。

但甲醛对照组动物出现显著的红斑和水肿,致敏率为100%,致敏作用强

(二)刺激试验

生理盐水对照组均未见任何刺激反应,试验组3号兔的第2点24h时可见淡红色边界清晰的红斑和边缘明显高于周围皮面的轻度水肿,48h时可见淡红色边界清晰的红斑刚可查出的极轻微的水肿,72h时可见此点极轻微的红斑无水肿。所以24h的平均原发性刺激指数为0.267,48h的平均原发性刺激指数为0.2,而72h的平均原发性刺激指数为0.067,均小于0.4,则说明材料对皮肤无刺激作用,而甲醛对照组各时间点可见严重的红斑和水肿,为强刺激。

(三)溶血试验:

实验组和阴性对照组各管离心后,上层均为清亮无色液体,下层为红细胞沉淀物,该材料的溶血率为3.17%,小于国家标准5%,说明该材料符合组织工程支架溶血试验要求。

经SPSS 10.0统计软件单因素方差分析和SNK-q检验:实验组与阴性对照组之间光吸收度值无统计学差异(P>0.05),实验组与阳性对照组光吸收度值有显著性差异(P<0.05)。

(四)肌肉植入试验

将各组实验动物包绕纳米羟基磷灰石-二氧化锆材料的组织切开, 植入后7天,试样周围可见以嗜中性粒细胞浸润为主的炎性反应,可见吞噬细胞,无囊壁形成。

植入15天后试样周围有少量嗜中性粒细胞,淋巴细胞浸润和巨细胞反应;试样周围可见小血管与纤维母细胞增生,开始形成疏松囊壁。

植入30天后,试样周围可见少量淋巴细胞,试样周围可见纤维母细胞与胶原纤维,并已形成纤维囊腔结构。

植入90天后试样周围未见或仅见极少量淋巴细胞,纤维化囊壁致密,壁的厚度比形成初期要薄。

三、讨 论

目前,生物医学材料安全性评价主要是采用医疗器械生物学评价体系,即世界标准化组织(ISO)制定的10993系列标准,国内转化为国家标准(GB/T)16886系列标准。参照以上标准,选择了(致敏试验、刺激试验、溶血试验、、肌肉植入试验),由于该生物医学材料在体内是不降解的,作为异物一定会对生物体产生作用,同时生物体也会对植入材料产生排斥反应,如果该材料最终被生物体接受,就认为该生物材料与组织之间相容,被称为具有好的生物相容性;反之,被称为生物不相容。

致敏反应属Ⅳ型变态反应,试验用完全弗氏佐剂和十二烷基硫酸钠石蜡液起到加强致敏作用的效果,又采取了最大剂量法,保证了试验结果的可靠性。况且豚鼠为T淋巴细胞敏感型动物,而结果显示试验组各注射点均无红斑和水肿,证明此材料无致敏反应。

刺激是不涉及免疫学机制的一次、多次或持续与试验组织工程支架材料接触引起的局部炎症反应。本文使用的是皮肤刺激试验。采用5点注射法,各时间点平均原发性刺激指数均小于0.4,则说明材料对皮肤无刺激作用,而甲醛对照组各时间点可见严重的红斑和水肿,为强刺激。

溶血试验是检测生物医用材料对血液红细胞的溶血作用,测定红细胞溶解和血红蛋白游离的程度。本实验采用直接接触法,该材料的溶血率为3.17%,小于国家标准表明该材料不引起溶血反应。此试验对吸光度数值先用单因素方差分析,结果为p〈0.05,说明三组之间存在统计学差异,多组间均数的两两比较采用q检验,结果为试验组与阴性对照组之间p〉0.05,说明与阴性对照组之间无差别,而与阳性对照组之间p〈0.05,说明试验组与阳性对照组之间有显著差别。

体内植入实验是为了评价活体组织与试验样品材料的相互反应。所有医疗器械和材料植入体内均会不同程度地产生组织反应。目前,常采用肌肉局部组织生物学反应评价是根据炎性细胞反应和纤维囊形成进行组织反应分级,然后在根据组织反应分级情况进行结果评定。本试验植入各个时期炎症细胞浸润和纤维囊形成分级符合国家标准。

本实验体内和体外试验结果表明纳米羟基磷灰石复合40%二氧化锆陶瓷材料是一种无致敏、无刺激、无溶血,具有良好的血液和组织相容性的材料,又因其材料本身具有良好的生物活性及力学特性,有望成为修复骨缺损十分重要的生物材料。

参 考 文 献

[1] MuruganR,RamakrishnaS.Development of nanocomposites for bonegrafting.Compos.Sci.Technol.,2005,65(15-16):2385-2406.

[2] 胡江.组织工程研究进展.2000.生物医学工程学杂志,17(1):75-79

篇8

[关键词] CNTs;镁基;复合材料;制备方法

[中图分类号] TB331 [文献标识码] A 文章编号:1671-0037(2014)01-66-1.5

镁及镁合金具有密度低,比强度、比刚度高,铸造性能和切削加工性好等优点,被广泛应用于汽车、航空、航天、通讯、光学仪器和计算机制造业。但镁合金强度低,耐腐蚀性能差严重阻碍其广泛应用。

碳纳米管不仅具有极高的强度、韧性和弹性模量,而且具有良好的导电性能,还是目前最好的导热材料。这些独特的性能使之特别适宜作为复合材料的纳米增强相。近年来,碳纳米管作为金属的增强材料来强度、硬度、耐摩擦、磨损性能以及热稳定性等方面发挥了重要作用。

近些年,镁基复合材料成为了金属基复合材料领域的新兴研究热点之一,碳纳米管增强镁基复合材料的研究也逐渐成为材料学者研究重点之一。本文就目前有关碳纳米管增强镁基合金复合材料的制备技术做综述,以供研究者参考。

1 熔体搅拌法

熔体搅拌法是通过机械或电磁搅拌使增强相充分弥散到基体熔体中,最终凝固成形的工艺方法。主要原理是利用高速旋转的搅拌器搅动金属熔体,将CNTS加入到熔体漩涡中,依靠漩涡的负压抽吸作用使CNTS进入金属熔体中,并随着熔体的强烈流动迅速扩散[1]。

周国华[2]等人采用搅拌铸造法制备了CNTs/AM60镁基复合材料。研究采用机械搅拌法,在精炼处理后,在机械搅拌过程下不断加入碳纳米管到镁熔体中,搅拌时间20 min,然后采用真空吸铸法制得拉伸试样。研究结果显示,碳纳米管具有细化镁合金组织的作用,在拉伸过程中,能够起到搭接晶粒和承载变形抗力的作用。

C.S.Goh[3]等采用搅拌铸造法制备了CNTS / Mg基复合材料时,金属熔化后采用搅拌桨以450 r / min的转速搅拌,然后用氩气喷枪将熔体均匀地喷射沉积到基板上,从而制得CNTS / Mg基复合材料。力学性能测试表明,复合材料具有较好的力学性能。

李四年[4]等人采用液态搅拌铸造法制备了CNTS/Mg基复合材料。CNTS加入前首先经过了化学镀镍处理,研究采用了正交实验,考察了CNTS加入量、加入温度和搅拌时间对复合材料组织和性能的影响。研究结果表表明,CNTS加入量在1.0%、加热温度在680 ℃、搅拌3 min时,能获得综合性能较好的复合材料。

搅拌铸造法优点是工艺简单、成本低、操作简单,因此在研究CNTS增强镁基复合材料方面得到广泛应用。但搅拌铸造法在熔炼和浇铸时,金属镁液容易氧化,CNTS均匀地分散到基体中也存在一定难度。

2 消失模铸造法

消失模铸造是将与铸件尺寸形状相似的石蜡或泡沫模型黏结组合成模型簇,刷涂耐火涂料并烘干后,埋在干石英砂中振动造型,在负压下浇注,使模型气化,液体金属占据模型位置,凝固冷却后形成铸件的新型铸造方法。

周国华[5]等人就通过消失模铸造法制备CNTs / ZM5镁合金复合材料。将PVC母粒加入到二甲苯中溶解,把CNTs加入上述溶液中超声分散10 min后过滤、静置20 h,装入发泡模具发泡成型,用线切割机加工制得消失模。把制得的含碳纳米管的消失模具放入砂箱内,填满砂并紧实,将自行配制的ZM5镁合金熔体浇注制得复合材料。实验结果表明,碳纳米管对镁合金有较强的增强效果,对ZM5合金的晶粒有明显的细化作用。

3 粉末冶金法

粉末冶金法是把CNTS与镁合金基体粉末进行机械混合,通过模压等方法制坯,然后加入到合金两相区进行烧结成型的一种成型工艺。粉末冶金法的优点在于合金成分体积分数可任意配比而且分布比较均匀,可以避免在铸造过程中产生的成分偏析现象,而且由于烧结温度是在合金两相区进行,能够避免由于高温产生的氧化等问题。

沈金龙[6]等人采用粉末冶金的方法制备了多壁碳纳米管增强镁基复合材料。试验采用CCl4作为分散剂将镁粉和CNTS混合,在室温下将混合粉末采用双向压制成型后进行真空烧结,制成碳纳米/强镁基复合材料。研究结果表明:碳纳米管提高了复合材料的硬度和强度,镁基复合材料的强化主要来自增强体的强化作用、细晶强化和析出强化。

Carreno-Morelli[7]等利用真空热压烧结粉末冶金法制备了碳纳米管增强镁基复合材料。研究发现,当CNTs含量为2%时,复合材料的弹性模量提高9%。

杨益利用利用粉末冶金法,制备了碳纳米管增强镁基复合材料,研究了碳纳米管制备工艺和含量对复合材料组织和性能的影响。研究采用真空热压烧结技术,通过研究发现,在热压温度为600 ℃、保压时间20 min、保压压力在20MPa、CNTS含量为1.0%时,制得的复合材料具有强度最高值。TEM分析CNTS与镁基体结合良好,增强机理主要有复合强化、桥连强化和细晶强化。

4 熔体浸渗法

熔体浸渗法是先把增强相预制成形,然后将合金熔体倾入,在熔体的毛细现象作用下或者一定的压力下使其浸渗到预制体间隙而达到复合化的目的。按施压方式可以分为压力浸渗、无压浸掺和负压浸渗三种。

Shimizu等采用无压渗透的方法制备了碳纳米管增强镁基复合材料,随后进行了热挤压,力学性能测试显示,抗拉强度达到了388MPa、韧性提高了5%。

5 预制块铸造法

周国华等人采用碳纳米管预制块铸造法制备了CNTS / AZ91镁基复合材料。将AL粉、Zn粉、CNTs按比例混合分散后,用50目不锈钢网筛过滤后在模具中压制成预制块。然后利用钟罩将预制块压入镁熔体并缓慢搅拌至预制块完全溶解,采用真空吸铸法制得复合材料试样。研究结果表明,预制块铸造法能够使CNTs均匀分散到镁合金熔体中,复合材料的晶粒组织得到细化,力学性能明显提高。

6 结语

近年来,CNTs在增强镁基复合材料的研究越来越多,目前存在的主要问题是CNTs的分散和与基体界面的结合等问题。由于但碳纳米管具有高的比表面能,使其在与其他材料的复合过程中易形成团聚,导致复合材料性能不甚理想,最终起不到纳米增强相的效果,同时碳纳米管属轻质纳米纤维,与各类金属的比重相差太大,不易复合。目前有关碳纳米管增强镁基合金复合材料的研究还处于初期阶段,随着技术的不断发展,新工艺和新方法不断出现,CNTs的分散及与基体的界面结合等问题将逐渐被解决,开发出性能优异的CNTs / Mg基复合材料将有着重要的意义。

参考文献:

[1]张玉龙.先进复合材料制造技术手册[M].北京:机械工业出版社,2003

[2]周国华,曾效舒,袁秋红.铸造法制备CNTS/AM60镁基复合材料的研究[J].铸造,2009,58(1):43-46.

[3]Goh C S, Wei J, et al.Ductility improvement and fatigue studies in Mg-CNT nano-composites[J].Compos Sci.Techn,2008,

68:1432.

[4]李四年,宋守志,余天庆等.铸造法制备纳米碳管增强镁基复合材料[J].特种铸造及有色合金,2005,25(5):313-315.

[5]周国华,曾效舒,袁秋红等.消失模铸造法制备CNTS/ZM5镁合金复合材料的研究[J].热加工工艺,2008,37(9):11-14.

[6]沈金龙,李四年,余天庆等.粉末冶金法制备镁基复合材料的力学性能和增强机理研究[J].铸造技术,2005,26(4):309-312.

[7]Carreno-Morelli E, Yang J, et al.Carbon nanotube/magnesium composites[J].Phys Status Solidi A, 2004,201(8):53.

[8]杨益.碳纳米管增强镁基复合材料的制备与性能研究[D].北京:国防科学技术大学硕士论文,2006.

收稿日期:2013年12月12日。

基金项目:郑州市科技攻关项目(20130839),黄河科技学院大学生创新创业实践训练计划项目(2013XSCX025)。

篇9

关键词:石墨烯;复合材料;纳米银;制备及应用

石墨烯作为一种由单层单质原子组成的六边形结晶碳材料,其特殊性能的应用一直是近几年研究的重点。但是石墨烯的生产效率低,需经常将其进行改性,达到以较少的添加量获得更好性能的目的。其中,纳米银的出现在一定程度上扩大了石墨烯在导电[1],导热方面的应用。而且纳米银的生产效率高,很好地解决了石墨烯/纳米银的生产问题,为石墨烯在诸多技术领域的应用拓展了[2]空间。金属粒子由于含有自由移动的电子和极大的比表面积,在导电性和导热性方面有着出色的表现。而纳米银颗粒,纳米银棒,纳米银线则可以在复合基体中形成网络通路,提高材料的导电性和导热性。

1石墨烯/纳米银复合材料的制备方法

目前,石墨烯掺杂纳米银复合材料可以根据纳米银的形貌特征分为石墨烯/纳米银颗粒复合材料和石墨烯/纳米银线复合材料。纳米银的加入使得石墨烯复合材料的导电性和导热性以及石墨烯的表面硬度均得到了提高[3]。

1.1机械共混法

机械共混法可分为搅拌法和熔融共混[4]法。刘孔华利用搅拌法制备得到石墨烯/纳米银线杂化物,在50℃下搅拌,升温至210℃,最后降至常温得到石墨烯/纳米银线杂化物。熔融共混法是利用密炼机或者挤出机的高温和剪切作用力下将石墨烯、纳米银和基材熔融后,共混得到石墨烯/纳米复合材料。该方法用途广泛,适用于极性和非极性聚合物和填料的共混。并且纳米银的烧结温度在180℃,对于纳米银颗粒可以烧结形成一定规模的网络结构。此方法制备的复合材料所需时间短,且纳米银线是单独制备,所以可以单独控制纳米银线的长度和长径比。但是由于是机械共混,纳米银在石墨烯材料中的分散性不是很好,且容易发生团聚,达不到形成大量网络结构的目的。

1.2化学还原法

化学还原法是目前比较常见的将金属纳米粒子附着在石墨烯表面的方法。其主要是通过在石墨烯表面化学还原一些金属前驱体,经常伴随原位复合法和溶液插层法。郑[5]璐等以联胺为还原剂制得纳米银插层的石墨烯。附着在石墨烯表面的银的粒径在20[6]nm左右。王宇鹏等运用柠檬酸钠作为还原剂制得水溶性石墨烯/纳米银线杂化导电体。此方法得到的附着纳米银线直径在40nm左右,长度在2μm,银线断面呈现规则的立方[7]体结构。Mislav等在碱性条件下,利用肼还原银离子,3步法制备纳米银棒附着的石墨[8]烯。Hooman等对石墨烯先进行酸处理,再将纳米银线与石墨烯按照质量比1∶6比例混合搅拌,得到纳米银石墨烯复合材料。该方法制备的复合材料中,纳米银线分散均匀,且长径比较大,一次制备所得产物较多,实验过程稳定,可随时观察反应状态,是目前较为实用的方法。

1.3无溶剂微波

加压法微波辐射法是利用微波反应器产生的快速且大量的热量促使银盐的分解。而且石墨烯具有很好的吸收微波的能力,使得银颗粒可以在短的时间里附着在石墨烯表面。同时,因是无溶剂,得到的产物产率相比于普通溶剂得到的产物有较大的提升,但是实验需要通过对环境施加额外的压力,才能达到试验条件。[9]Lin等用一个典型的反应方式将银颗粒附着到石墨烯表面。试验结果表明,微波处理时间对银颗粒的粒径存在影响。而且由于石墨烯是层状材料,可反应的面积大,相比于碳纳米管,石墨烯表面附着的银颗粒粒径较小。并且由于银颗粒的附着使得石墨烯的表面硬度得到增加。这种方法不需要溶剂溶解且反应时间短,纳米银在石墨烯表面分布也较为均匀,可以得到足量的产物。但是实验仪器较为苛刻,实用性较低。同时石墨烯会吸收一定的微波功率,反应过程存在不确定因素和安全问题。目前,使用此类方法制备石墨烯/纳米银复合材料不是很广泛。

1.4溶剂热悬涂法

[10]溶剂热悬涂法是一种利用溶剂的温度配合晶核在一定温度下沿某一固定晶面生长[11]的方法。徐士才采用溶剂热悬涂法,利用氯化银为晶核,甲醛将银离子还原为银单质,制备得到长度为30μm,直径为20~50[12]nm的纳米银线。Dinh等用VitaminC在N/H条件下制备石墨烯/纳米银复合材料,将22纳米银线悬涂在石墨烯表面。该方法具备了化学还原法的稳定性和无溶剂微波加压法的高效性,并且可以得到超长纳米银线。

2石墨烯/纳米银复合材料的应用

目前,虽然石墨烯是优良的导电纳米材料,但是生产成本高,且提升石墨烯本身导电导热能力由石墨烯的厚度决定,所以有一定的局限性。因此,银的导电导热能力都很出色,且成本不太高,可以很好地解决上述问题。同时,银线的生成在石墨烯中可以提[13]供良好的导电通路,大幅降低材料电阻。

2.1导热性能应用

在众多散热硅脂中,银含量是衡量散热硅脂性能的一个重要指标。同时,石墨烯也具备很好的导热能力。因此将银表面附着或者插层能够很好地提高材料的导热性能。[8]Hooman等在40℃条件下,加入0.1%的石墨烯/纳米银复合材料,热导率提高22.22%。

2.2导电性能应用

在如今高科技年代,人们对电子领域的要求越来越高,其中石墨烯和纳米银线制备[14]的透明电极和透明导电膜等得到了广泛关[15,16]注与发展。Liu等利用石墨烯和纳米银的高透过率和高效的光催化能力,成功研制[17][7]出透明电极。Mislav等研究发现,在高电场环境下,石墨烯/纳米银复合物的临界电[18]流密度得到提高。Lee等研究制备了可见光透过率为94%,表面电阻为33Ω/sq的可延伸电极。

2.3光学性能应用

纳米银可以作为表面增强拉曼光谱(SERS)的基质。同时,由于纳米银拥有灵敏的非线性光学响应,可用来制备光学电器件。目前,SERS的增强机理主要有电磁增强[19]机理和化学增强机理。张太阳等制备了聚苯乙烯/石墨烯/纳米银复合材料和层析硅胶/石墨烯/纳米银复合材料,均发现拉曼光谱[20]G峰和D峰有明显增强。Lu等将纳米银/石墨烯复合材料作为SERS基底,可实现对芳香族[21]分子的检测。Kumar等降低了对邻氨基苯硫[22]磺和三聚氰胺的检测限,Ren等使得对叶酸的检测低至9nmol/L。

2.4其他性能的应用

[23]在生物应用方面,Lu等研究发现了银纳米粒子在基体材料上的附着可以实现对血糖和HO的检测。其作为传感器具有高效,灵22敏,可靠的特点,并在临床医学,食品安全[24]和环境质量检测中发挥重要的作用。同[25]时,银的加入也增加了材料的抗菌能力。[26]Chen等成功实现了对DNA分子的无标记测[27]量。Kim等制备了高性能的蛋白质传感器。[28]Bae等成功制备了石墨烯透明触摸屏。

3结语

篇10

关键词:NiAl金属间化合物 Ni-Al合金 制备工艺 研究发展现状

中图分类号:TG22 文献标识码:A 文章编号:1674-098X(2015)09(a)-0080-02

1 NiAl金属间化合物材料的研究现状和应用

Ni-Al金属间化合物主要包括NiAl金属间化合物材料。NiAl金属间化合物材料由于具有较高的力学性能,良好的耐磨损性能和抗高温氧化性能等而被广泛应用在工程领域中。NiAl金属间化合物具有金属键和共价键共存的特点,所以NiAl金属间化合物材料具有较高的力学性能,具有较高的熔点,具有较高的热导率,具有良好的抗氧化性能以及耐腐蚀性能等优点[1-5]。NiAl金属间化合物材料作为耐高温抗氧化结构材料有望在高温工程领域中得到广泛应用[1-5]。由于NiAl金属间化合物具有较高的性能而且制备成本较低,所以在实际应用中具有很大优势。对NiAl金属间化合物的性能进行广泛的研究和应用。但是NiAl金属间化合物材料还存在室温脆性大和抗蠕变性能差等问题[1-5]。为此研究者对NiAl合金开展了广泛的研究[1-5]。NiAl合金的熔点为1638℃,NiAl合金的密度为5.86g/cm3,NiAl合金的弹性模量为294GPa,NiAl合金的热导率较高,NiAl合金的成分比例是Ni50:Al50[5-10]。NiAl金属间化合物材料具有较高的抗高温氧化性能和良好的耐高温性能,但其NiAl合金在室温条件下塑性较差,断裂抗力较差以及高温强度较低等[5-10]。NiAl金属间化合物的使用温度更高[5-10]。所以NiAl合金可以作为高温结构材料应用于更高的温度和环境中[5-10]。NiAl金属间化合物由于具有较高的力学性能,较高的耐磨损性能,良好的抗高温氧化性能而被广泛应用在高温工程领域中。NiAl金属间化合物的组成是Ni元素与Al元素的摩尔比例为50∶50。本文主要详细讲述NiAl金属间化合物材料的制备工艺,力学性能和其他性能以及研究发展现状等,并介绍NiAl金属间化合物材料在工程领域中的应用。并简要介绍NiAl金属间化合物基复合材料的研究现状。并对NiAl金属间化合物未来的研究发展趋势进行分析和预测。

2 NiAl金属间化合物材料的制备技术

NiAl金属间化合物材料可以作为功能材料和结构材料[5-10]。NiAl金属间化合物材料具有较高的力学性能和良好的抗高温氧化性能[5-10],NiAl金属间化合物材料可以作为高温结构材料和复合材料基体应用在工程领域中[5-10]。NiAl金属间化合物材料的制备方法有很多种类,制备工艺方法将会影响NiAl金属间化合物材料的性能。NiAl金属间化合物材料的制备方法有机械合金化法、热压烧结法和热等静压烧结法,燃烧合成法等。

2.1 机械合金化法

机械合金化是一种制备高温合金粉末和金属间化合物粉末的高能球磨工艺。机械合金化工艺是将不同种金属粉末放入高能球磨机进行机械球磨,通过磨球,粉末和球磨罐之间的强烈相互碰撞,破碎和焊合作用,粉末颗粒发生碰撞粘结,变形断裂和冷焊并被不断细化,金属粉末颗粒就会被粘结在一起形成层状结构的颗粒,继续球磨破碎形成粉末粒度较细的金属合金粉末。从而使得金属混合粉末实现合金化形成金属合金粉末。采用机械合金化球磨工艺可以制备出NiAl金属间化合物材料。利用机械合金化制备纳米晶NiAl金属间化合物,在机械合金化工艺后形成具有纳米结构的NiAl金属间化合物粉末。可以将Ni粉末和Al粉末按照摩尔比例为50∶50进行混合然后进行机械合金化工艺和热处理工艺得到NiAl金属间化合物粉末,并通过热压烧结工艺制备NiAl金属间化合物块材。

2.2 热压烧结法和热等静压法

采用热压烧结和热等静压可以制备致密的NiAl金属间化合物块材。热压烧结法和热等静压法适用于烧结NiAl金属间化合物材料。热等静压处理还能提高NiAl合金的致密性[5-10]。采用机械球磨和热压烧结法合成NiAl金属间化合物块材,按照摩尔比例为50∶50球磨Ni粉末和Al粉末,机械球磨过程中通过反应合成NiAl金属间化合物粉末,最后通过热压烧结工艺制备出NiAl合金块体材料。也可以将机械合金化得到的NiAl合金粉末通过热等静压烧结工艺制备致密的NiAl合金块材。所以可以通过机械合金化工艺制备NiAl合金粉末,并通过热压烧结工艺制备NiAl合金块材[5-10]。

2.3 燃烧合成法

燃烧合成法可以制备NiAl金属间化合物材料。制备方法主要有自蔓延高温合成,热压放热反应合成法等。将Ni粉末和Al粉末通过自蔓延高温合成工艺可以制备NiAl金属间化合物粉末,并通过热压烧结工艺制备NiAl金属间化合物块材。通过热压放热反应合成法可以制备颗粒增强的NiAl金属间化合物基复合材料。

3 NiAl合金的改性研究

改善和提高NiAl金属间化合物性能的主要方法是向NiAl基体中加入合金元素,并且在NiAl金属间化合物材料中取得成功[5-10]。向NiAl合金中加入Ti,Cr,Nb,Si,Fe等形成高温合金材料将提高NiAl合金的抗高温氧化性能和耐高温性能[5-10]。

4 NiAl金属间化合物基复合材料的制备和性能

NiAl金属间化合物材料由于具有较高的力学性能、较高的熔点、较低的密度、较高的导热率、较高的弹性模量以及良好的抗腐蚀性能和抗氧化性能等[5-10]。因此NiAl合金在工业领域中有着广泛的应用前景。制备NiAl金属间化合物基复合材料是NiAl合金材料主要的研究发展方向。制备NiAl合金基复合材料可提高NiAl金属间化合物材料的室温断裂韧性,室温塑性以及高温强度等性能。所以就需要制备NiAl金属间化合物基复合材料,提高NiAl合金的高温力学性能、抗蠕变性能、抗高温氧化性能等[5-10]。

4.1 NiAl纳米晶复合材料

采用纳米颗粒增强和增韧NiAl合金制备NiAl基复合材料可以提高NiAl合金的力学性能、耐磨损性能、抗高温氧化性能等。纳米级颗粒在NiAl合金基体中起到增强和增韧的作用。通过纳米颗粒的强化作用有助于增强NiAl合金材料的抗蠕变能力。制备纳米颗粒增强和增韧的NiAl基复合材料成为提高NiAl合金性能主要方法。此外采用机械合金化工艺制备纳米NiAl合金粉末,并通过热压烧结工艺或者放电等离子烧结工艺制备纳米NiAl合金块材。

4.2 NiAl金属间化合物基复合材料的制备技术和性能

制备NiAl金属间化合物基复合材料的制备方法是将金属颗粒、陶瓷颗粒、晶须和短纤维加入到NiAl金属间化合物基体中,从而制备颗粒增强,晶须增强或短纤维增强的NiAl基复合材料,制备NiAl基复合材料可以提高NiAl合金的室温韧性和室温塑性以及高温强度[5-10]。并通过增强相的增强和增韧作用提高NiAl金属间化合物基复合材料的强度和韧性[5-10]。通过TiB2、TiC颗粒的弥散强化使得NiAl金属间化合物的强度和韧性得到较大提高。通过原位反应合成和热压烧结工艺制备TiB2,TiC颗粒增强NiAl基复合材料。还可以通过热等静压烧结工艺制备颗粒增强NiAl基复合材料[5-10]。热压放热合成工艺是将放热反应合成与热压烧结工艺相结合,用热压放热反应合成工艺制备TiC、TiB2、Al2O3颗粒增强NiAl基复合材料。现在已经制备出NiAl-TiC复合材料、NiAl-TiB2复合材料、NiAl/Cr(Mo)-TiC复合材料和NiAl-Al2O3-TiC复合材料等。还可以将晶须或者短纤维加入到NiAl合金基体中形成晶须增强和增韧的NiAl基复合材料。通过复合后得到的NiAl合金基复合材料的高温强度得到显著提高,韧性和塑性得到明显改善[5-10]。有些研究者研究TiC颗粒增强NiAl(Co)复合材料的合成和力学性能。有些研究者研究NiAl/HfC复合材料的机械合金化和力学性能。有些研究者研究NiAl/TiB2复合材料的显微结构和力学性能。

4.3 NiAl金属间化合物基复合材料的研究发展趋势和发展方向

NiAl金属间化合物基复合材料主要包括:NiAl/Al2O3复合材料,NiAl/TiC复合材料,NiAl/ZrO2复合材料,NiAl/WC复合材料,NiAl/HfC复合材料,NiAl/TiB2复合材料,NiAl/HfB2复合材料,NiAl/AlN复合材料等。还可以将连续纤维与NiAl合金相复合制备连续纤维增强NiAl基复合材料,例如制备Al2O3纤维增强NiAl基复合材料,Mo纤维增强NiAl基复合材料。可以将短纤维或晶须加入到NiAl合金中制备晶须或短纤维增强NiAl基复合材料。还可以制备具有复合层状结构的NiAl/Ni复合材料,NiAl/Al复合材料等。采用扩散粘结法可以制备连续纤维增强NiAl基复合材料。例如连续Mo纤维增强NiAl基复合材料,连续Al2O3纤维增强NiAl基复合材料。连续纤维增强NiAl金属间化合物基复合材料具有较高的力学性能。

5 结语

NiAl金属间化合物由于具有较高的力学性能,良好的耐磨损性能和抗高温氧化性能等而被广泛应用在工程领域中。该文主要讲述NiAl金属间化合物材料的制备工艺和性能以及研究发展情况等。该文主要讲述NiAl金属间化合物材料的制备工艺、力学性能和其他性能以及研究发展现状等,并介绍NiAl金属间化合物在工程领域的应用。NiAl金属间化合物的未来研究发展趋势是开发新型制备工艺制备具有高性能的NiAl金属间化合物材料;将颗粒、晶须和短纤维、连续长纤维等引入到NiAl金属间化合物基体中形成NiAl基复合材料;还可以通过机械合金化工艺制备纳米级NiAl金属间化合物粉末,并通过粉末冶金工艺制备出NiAl金属间化合物纳米块材,可以显著提高NiAl合金的力学性能。

参考文献

[1] 夏东生,李博,李谷松.原位内生TiC颗粒增强NiAl(Co)基纳米复合材料的合成及力学性能[J].金属学报,1999, 35(S2):452-454.

[2] 杨福宝,郭建亭,周继扬.HfC颗粒增强NiAl基纳米复合材料的机械合金化与力学性能[J].材料工程,2001(7):7-10.

[3] 杨福宝,郭建亭,周继扬.机械合金化合成NiAl/TiB2复合材料组织与力学性能[J].金属学报,2001,37(5):483-487.

[4] 刘震云,黄伯云,林栋梁.La对富Ni的NiAl系合金组织与性能的影响[J].材料工程,1999(3):11-14.

[5] 李谷松,丁炳哲,苗卫方.用机械合金化方法制备Ni-Al系金属间化合物[J].金属学报,1994,30B(2):91-94.

[6] 夏冬生,郭建亭,李博.NiAl(Co)系机械合金化的研究[J].金属学报,1999,35(3):320-325.

[7] 李博,夏冬生,王铁力.Co元素对Ni-Al机械合金化影响的研究[J].东北大学学报,1999,20(2):213-215.

[8] 王淑荷,郭建亭.制备工艺对NiAl-30Fe-Y合金组织与性能的影响[J].航空学报,1996,17(1):77-84.