超声波测距范文
时间:2023-03-19 04:45:41
导语:如何才能写好一篇超声波测距,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
【关键词】超声测距 AT89C51
近年来,随着电子测量技术的发展,运用超声波精确测量已成可能。随着经济发展,电子测量技术应用越来越广泛,而超声波测量精确高,成本低,性能稳定则备受青睐。随着机器人技术在其诞生后短短几十年中的迅猛发展,它的应用范围也逐步由工业生产走向人们的生活。机器人通过其感知系统察觉前方障碍物距离和周围环境来实现绕障、自动寻线、测距等功能。超声波测距相对其他测距技术而言成本低廉,测量精度较高,不受环境的限制,应用方便,将它与红外、灰度传感器等结合共同实现机器人寻线和绕障功能。超声波由于方向性强、衰减缓慢且在介质中传播的距离较远,因而经常用于距离的测量。主要应用于倒车雷达、测距仪、物位测量仪、移动机器人的研制、建筑施工工地以及一些工业现场等,例如:距离、液位、井深、管道长度、流速等场合。利用超声波检测往往响应速度快,且计算方便、易于实时控制,测量精度也能达到工业现场的要求,因此在现代控制和工业现场该方法得到广泛的应用。
1 超声波测距的原理
超声波是指频率高于20kHZ的机械波,其频率较高,波长很短,在一定距离内沿直线传播,具有优异的束射性与方向性。超声波测距正是利用此特性,首先测出超声波从发射到遇到障碍物反射回来所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离。测距的数学公式表示为:
S=C×T
式中S为测量的距离;C为超声波在介质中的传播速度;T为超声波传播的时间(T为发射到接收时间数值的1/2)。
2 误差分析
由超声波测距公式S=C×T,可知测距的误差又两个因素,其一为超声波的传播速度误差,其二为测量距离传播的时间误差。
2.1 时间误差
如果要求测距误差小于1mm,假设已知超声波速度C=340m/s (20℃室温),忽略声速的传播误差。时间误差?t≤0.001/340≈0.000029s,即2.9μs。
忽略超声波传播速度误差的前提下,时间误差精度只要达到微秒级,就能达到测距误差小于1mm的要求。实际测量中用12MHz晶体作时钟基准的89C51单片机定时器能可靠的计数到1μs的精度,即满足设计要求。
2.2 超声波传播速度误差
超声波的传播速度与空气的密度相关,空气的密度高则传播速度就快,而空气的密度与温度有着密切的联系。根据实际测量经验,超声波速度与温度关系如下:
C≈C0
公式中:T为空气的绝对温度。
C0为零摄氏度时的声波传播速度332m/s; 超声波测距过程中就必须把超声波传播的环境温度考虑进去,例如当温度0℃时超声波速度是332m/s, 30℃时是350m/s。
3 系统硬件设计
单片机控制发出超声波,不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差ΔT,然后求出距离S=C.ΔT/2,式中的C为超声波波速。
首先我们知道AT89C51系列单片机内部是有2个16位定时器/计数器的,那么我们就用这个计时器进行计时。并且该系列单片机内部有一个寄存器,我们可以将从计时器获得数据进行处理并寄存在单片机的寄存器中,利用单片机软件编程与预存的超声波传播速度相乘,得出测量距离通过显示电路将数据显示出来。超声波测距系统结构图如图1所示。
单片机发出40kHZ的信号,经放大后通过超声波发射器输出;超声波接收器将接收到的超声波信号经放大器放大,用比较电路进行检波处理后,启动单片机中断程序,测得时间为ΔT,等到把数据送到单片机后使用软件对超声波的传播速度进行调整,使测量精度能够达到要求。再由软件进行判别、计算,得出距离数并送LED显示。用复位电路重置系统后可进行下一次测试。
4 系统软件设计
软件采用模块化设计方法,由主程序、超声波发生子程序、超声波接收中断子程序、温度测量子程序、距离计算子程序、显示子程序、键盘扫描处理程序等模块组成。
5 结论
该系统整体电路的控制核心为单片机AT89C51。超声波发射和接收电路中都对相应信号进行整形及放大,以保证测量结果尽可能精确。超声波探头接口实现超声波的发射和接收。等到把数据送到单片机后使用软件对超声波的传播速度进行调整。整体结构包括超声波发射电路、超声波接收电路、放大电路、比较电路、震荡电路、单片机电路、键盘输入电路、电源电路、复位电路、显示电路等几部分模块组成。经过设计调试该系统能够满足一般近距离测距的要求,且成本较低、有良好的性价比。当今汽车普及到千家万户,倒车雷达的需求不可谓不大,而本设计方法可以广泛的应用于倒车雷达的测距中,所以其经济效益非常可观。
限制该系统的最大可测距离存在4个因素:超声波的幅度、反射的质地、反射和入射声波之间的夹角以及接收换能器的灵敏度。接收换能器对声波脉冲的直接接收能力将决定最小的可测距离。为了增加所测量的覆盖范围、减小测量误差,可采用多个超声波换能器分别作为多路超声波发射/接收的设计方法。
篇2
本文设计了一个基于单片机的压电式超声波测距仪(前向通道),该系统可应用于汽车倒车、雾天行车、水深测量等距离不易测量的环境。文章概述了超声检测的发展及基本原理,介绍超声传感器的原理及特性,并且在介绍超声测距系统的基础上,提出了系统的总体构成。
一、超声波测距仪系统硬件电路设计
(一)超声波测距仪系统设计结构框图
根据设计要求,该控制系统的基本结构框图如图1。
系统由四个主要功能模块组成:传感器发送-接收模块、稳压电源模块,信号处理模块,单片机控制模块。通过测量不同方向的传感器的信号,经过信号处理电路,由单片机控制计算出与障碍物的距离,从而达到测距目的。
(二)超声波传感器测量
超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 。这就是所谓的时间差测距法。
(三)超声波测距仪系统设计方案
1. 传感器选择
(1)超声波发生器 。为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。
(2)压电式超声波发生器原理 。压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部结构有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。
2.超声波测距系统的电路设计
(1)40kHz 脉冲的产生与超声波发射。测距系统中的超声波传感器采用UCM40的压电陶瓷传感器,它的工作电压是40kHz的脉冲信号,这由单片机执行程序来产生。
前方测距电路的输入端接单片机P1.0端口,单片机执行上面的程序后,在P1.0 端口输出一个40kHz的脉冲信号,经过三极管T放大,驱动超声波发射头UCM40T,发出40kHz的脉冲超声波,且持续发射200ms。右侧和左侧测距电路的输入端分别接P1.1和P1.2端口,工作原理与前方测距电路相同。
(2)超声波的接收与处理。接收头采用与发射头配对的UCM40R,将超声波调制脉冲变为交变电压信号,经运算放大器IC1A和IC1B两极放大后加至IC2。IC2是带有锁定环的音频译码集成块LM567,内部的压控振荡器的中心频率f0=1/1.1R8C3,电容C4决定其锁定带宽。调节R8在发射的载频上,则LM567 输入信号大于25mV,输出端8脚由高电平跃变为低电平,作为中断请求信号,送至单片机处理。
前方测距电路的输出端接单片机INT0端口,中断优先级最高,左、右测距电路的输出通过与门IC3A的输出接单片机INT1端口,同时单片机P1.3和P1.4接到IC3A的输入端,中断源的识别由程序查询来处理,中断优先级为先右后左。(程序参见附件源程序)
(3)计算超声波传播时间。在启动发射电路的同时启动单片机内部的定时器T0,利用定时器的计数功能记录超声波发射的时间和收到反射波的时间。当收到超声波反射波时,接收电路输出端产生一个负跳变,在INT0或INT1端产生一个中断请求信号,单片机响应外部中断请求,执行外部中断服务子程序,读取时间差,计算距离。(程序参见附件源程序)
(4) 超声波测距系统误差分析。通过对所要求测量范围0-100m内的平面物体做了多次测量发现,其最大误差为0.5cm,且重复性好。可见基于单片机设计的超声波测距系统具有硬件结构简单、工作可靠、测量误差小等特点。
二、 超声波测距系统的软件设计
本设计软件分为两部分:主程序和中断服务程序。主程序完成初始化工作、各路超声波发射和接收顺序的控制。定时中断服务子程序完成三方向超声波的轮流发射,外部中断服务子程序主要完成时间值的读取、距离计算、结果的输出等工作。
篇3
超声波测距在社会生活中已经有广泛的应用如汽车倒车雷达等。本文主要设计了一种基于单片机微处理器的超声波测距仪。该设计以空气中超声波的传播速度为确定条件,利用反射超声波测量待测距离。
该系统设计是以ATEML公司生产的单片机AT89C2051为核心,具有低成本、高精度、微型化数字显示等优点。论文对超声波测距的可能性进行了理论分析,对超声波测距系统的硬件部分进行了具体设计,编写、调试和运行了相应的软件程序。另外,为保证测量的可靠性和稳定性,设计中采取了相应的抗干扰措施。设计的超声波测距系统可实时将温度通过串口显示在PC机或者其它显示设备上。
该测距仪最大测量距离是20米,精确度是±2cm,它具有成本低、非接触、速度快、精度高、可靠性强、适应性好,操作方便等优点,有着广泛的应用前景。
篇4
【关键词】智能避障 超声波测距 GPS定位 STM32 语音导航
1 引言
盲人是指双目失明或单目失明的人,不同于其他社会群体,他们由于先天或后天的生理缺陷而长期处于“黑暗”生活环境中,相比于正常人而言,他们的生活有许多不方便,不能准确及时的发现并躲避障碍物是其中一个重要弊端之一。国际上欧美等发达国家和国内少数家庭多采用导盲机器人或导盲犬,导盲效果好但成本较高,难以普及。基于此,本文结合电子技术与机械结构创新,设计了一款以GPS定位、超声波测距为主要功能的智能导盲预警系统。
2 系统总体设计
该系统由超声波测距单元、语音播报单元、GPS定位卧、信息收发单元、声光报警单元及电路构成。采用STM32F106C8T6作为主控,主控在接收到超声波测距的信息后,可以进行语音提示,指导盲人避让前方的障碍;通过GPS定位单元,定位用户的位置并通过信息收发单元上传至网络数据库;结合高德地图接口,借助语音播报实时对用户进行GPS定位导航。同时考虑在夜晚能见度低时,由声光报警单元提示来往行人和车辆主动避让。系统总体设计如图1所示。
3 系统硬件设计
3.1 核心控制模块
本设计所选用的STM32F103C8T6单片机,是一款基于ARM Cortex架构的中等容量增强型微处理控制器,扩展48个GPIO口、FLASH 128KB、工作电压:2V~3.6V。通过AD接口读取超声波测距单元数据、定时器复用PWM波控制电机的振动频率、IIC协议控制语音播报单元、串口获取GPS定位数据和发送数据至数据库、I/O接口控制声光报警单元。
3.2 超声波测距单元
根据超声波测距原理,考虑到在实际使用过程中使用者可能会遇到正前方和脚下存在障碍物的情况,本设计在拐杖安装两个超声波模块分别测量前方和脚下障碍物的距离。HC-SR04超声波测距模块内部集成超声波发送接收和控制电路,具有接触式距离感测功能,距离可达400cm,精度可达2mm,工作电压:5V。
3.3 GPS定位及信息收发单元
GPS定位单元由GPS模块USM-3N和GSM模块组成, 通过AT指令获取GPRMC类型数据,程序解析得到数据信息(包括:纬度、经度、高度、速度、日期、时间、航向、卫星状况等)。设置采样间隔1S并将GPS坐标通过GSM模块实时发送服务器,家人使用APP访问服务器以便于获取盲人当前的位置。APP界面示意图如图2所示。
3.4 语音播报单元
语音播报单元使用SYN6288中文语音芯片。此芯片用SSOP28L贴片封装,具有很多优点:较简单硬件接口资源、低功耗、音色清凉圆润。主控对接收到的超声波信号进行数据处理后,将数据信息发送给语音模块,语音模块根据对应的指令进行语音播报(包括时间和温度)。
3.5 声光报警单元
该单元除用语音播报警示外还添加了人性化的光控制LED灯示警系统,为方便于在夜晚时提醒路过的车辆和行人主动避让盲人。依据光敏电阻的特性控制LED灯开关,LED灯闪烁引起周围人员注意。
4 系统软件设计
(1)通过IIC协议获取MPU6050数据,并通过卡尔曼滤波函数对原始数据进行滤波融合,获取欧拉角,测试数据时通过串口发送至上位机,获取姿态角数据。
(2)通过模拟信号协议获取两个超声波收发模块HC-SR04数据,通过使能T1定时器的PWM的输入捕获,复用通道1和通道2进行PWM输入捕获,获取高低电平时间,从而计算出探测距离。
(3)通过STM32接收到的UM220-III_GPS模块发出的数据,对比程序查表信息并读出地理名称数据,发送给GSM进行数据发送至数据库,数据库通过高德地图接口,获取相应的导航信息,再发送至单片机,进行语音模块播报。
(4)通过STM32的串口1发送位置数据至GSM模块。
(5)通过I/O口的输入捕获,获取人体传感器HC-SR501模块的输出数据,判断是否有人在使用智能拐杖。
(6)控制T2定时器的PWM输出产生,复用通道1和通道2进行PWM输出,控制电机的不同强度的振动,以便于障碍物检测的提醒。
算法流程图详如图3所示。
5 结语
本文设计了一种基于GPS导航、超声波测距、语音播报的智能导盲预警系统,该系统可以对盲人前方道路上的障碍物进行距离探测并把障碍物距离信息转换成语音提示, 盲人可以根据提示音避让障碍;通过姿态数据解算判断盲人是否摔倒,当盲人摔倒时,GPS定位盲人位置,并将位置信息和报警消息发送给亲人和当地的救护中心。经实验测试,该系统满足导盲的实际需求,效果理想,且成本低、性价比高,具有良好的市场应用前景。
参考文献
[1]吴丽华,杜衡吉.电子导盲拐杖的设计[J].科技创新导报,2011(22).
[2]刘宇红,刘超,何腾鹏.基于机器视觉的智能导盲系统的开发与设计[J].电子技术与软件工程,2017(02).
[3]沙爱军.基于单片机的超声波测距系统的研究与设计[J].电子科技,2009,22(11):57-61.
[4]张海鹰.超声波测距技术研究[J].仪表技术,2011.
[5]李远.基于GPS和单片机的定位终端开发[J].湖北邮电技术,2004,74(06):29-32.
[6]周颖.基于AT89S52单片机的电子万年历系统设计[J].现代电子技术,2012.
作者简介
田宇航(1995-),男,河北省张家口人。现为河北农业大学电子信息科学与技术专业在读本科生。
篇5
关键字:超声波发生器;超声波换能器;测距
中图分类号:TP311文献标识码:A文章编号:1009-3044(2007)04-11083-03
1 引言
近年来随着微电子技术发展而产生的小型价廉的微处理器(单片机)的出现,使超声波测距传感器的功能得到了提升。有了微处理器不仅使测距的精度大为提高,而且为超声波测距技术的应用开辟更大的空间。
利用超声波制作汽车防撞雷达可以帮助驾驶员及时了解车周围阻碍情况,防止汽车在转弯、倒车等情况下撞伤、划伤。
2 超声波测距的工作原理与方式
2.1 超声波测距的工作原理
人能听到的声音频率为:20Hz~20kHz,即为可听声波,超出此频率范围的声音,即20Hz以下的声音称为低频声波,20kHz以上的声音称为超声波。超声波是一种只有少数生物(如蝙蝠、海豚)才能感觉的机械波,其频率在 20kHz以上,波长短,绕射小、能定向传播。超声波为直线传播方式,频率越高,绕射能力越弱,但反射能力越强。为此,利用超声波的这种性能就可制成超声波传感器。
超声波测距的原理就是利用超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 。
2.2 超声波测距的工作方式
利用超声波测距的工作,就可以根据测量发射波与反射波之间的时间间隔,从而达到测量距离的作用。其主要有三种测距方法:
(1)相位检测法,相位检测法虽然精度高,但检测范围有限;
(2)声波幅值检测法,声波幅值检测法易受反射波的影响;
(3)渡越时间检测法,渡越时间检测法的工作方式简单,直观,在硬件控制和软件设计上都非常容易实现。其原理为:检测从发射传感器发射超声波,经气体介质传播到接收传感器的时间,这个时间就是渡越时间。
本设计的超声波测距就是使用了渡越时间检测法。在移动车辆中应用的超声波传感器,是利用超声波在空气中的定向传播和固体反射特性(纵波),通过接收自身发射的超声波反射信号,根据超声波发出及回波接收的时间差和传播速度,计算传播距离,从而得到障碍物到车辆的距离。
3 系统硬件设计
3.1 系统硬件总体框图
构成超声测距系统的电路功能模块包括发射电路、接收电路、键盘显示电路、核心功能模块单片机控制器及一些辅助电路。采取收发分离方式有两个好处:一是收发信号不会混叠,接收探头所接收到的纯为反射信号;二是将接收探头放置在合适位置,可以避免超声波在物体表面反射时造成的各种损失和干扰,提高系统的可靠性。
根据设计要求并综合各方面因素,选择了西安立宇电子科技有限公司的超声波测距传感器 TCT40-16T/R(T 表示发射传感器,R表示接收传感器),最大探测距离为 6m,发射扩散角为 60度。同时,采用AT89C51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距器的系统框图如下图1所示。
图1 系统总体框图
3.2 超声波发射部分
超声波发射电路原理图如图2所示:由NE555 时基电路及元件构成40kHZ 多谐振荡器电路,调节电阻器RP 阻值,可以改变振荡频率,最终达到40KHZ。同时用单片机控制NE555 第3 脚输出端驱动超声波换能器T40-16,使之发射出超声波信号。电路简单易制。电路工作电压9V,工作电流40~50mA。
用555定时器接成的多谐振荡器来驱动超声波发射传感器。555定时器外接电阻和电容构成的多谐振荡电路。振荡频率 f主要取决于电阻 R1(包括电位器的阻值)、R2和电容 C1,当 R1、R2 和 C1固定时,改变电位器的阻值就可改变振荡频率,振荡幅度由电源电压来决定。
图2 超声波发射电路原理图
但是输出的矩形波是不对称的,占空比为:
这里采用独立的 9V电源对三极管驱动电路供电,以增强超声波发射的能量和测量精度。
3.3 超声波接收部分
接收电路电路的功能是将连续变化的信号放大,滤掉高频干扰和噪声,把连续变化的信号转变为离散信号,量化后进入信号采集系统。
超声波接收电路原理图如下图3所示,当R40-16感应到超声波时,信号经过VT2,VT1两级放大后再经整形滤波,最后有VT3放大输出,若有收到40KHZ超声波回波,输出低电平到单片机,若无接收40KHZ超声波的回波,输出高电平到单片机。
图3 超声波接收电路原理图
3.4 单片机控制部分
40KHZ的发射频率由单片机的P3.2提供给软件进行处理,回波经过AT89C51对接收到的信息进行处理后,被测的距离在LED上显示,显示的数据由P0口和P2口分别控制数码管的段和位实现LED的显示,显示部分采用动态扫描显示。两位LED可表示4.9~0.1 m的距离,满足显示精度;若该距离小于预置的汽车低速安全刹车范围(如:1m或0.5m),报警电路发出适当的警告提示音,由P2.4口的蜂鸣器输出控制报警电路的工作。
4 系统软件设计
汽车倒车防撞系统根据超声测距原理用AT89C51单片机开发设计。整个软件采用模块化设计,由主程序、预置子程序、发射子程序、接收子程序、显示子程序等模块组成。
根据系统的要求,系统软件应具有以下功能:
(1)控制超声波发射、接收传感器的工作状态。传感器的工作状态因行驶方向的不同而不同,而且,探测距离时发射传感器还要依次轮流工作,这些功能需靠软件程序来实现。
(2)根据汽车的行驶速度计算出倒车避撞的安全距离和报警距离。安全距离就是汽车自由停下所需的距离,这时需要的距离必然小于根据车速确定的安全距离。比安全距离稍远些的是报警距离,设计的报警距离比安全距离长出 1 米。通过报警来减少不必要的停车。
(3)测出超声波信号的往返时间,来计算出最近的障碍物与平台车的距离。超声波从发射出去碰到障碍物返回接收传感器的时间,需要通过软件定时器来记录。根据这个时间才能计算出障碍物的距离。
系统主程序流程图如右图4所示:
图4 系统主程序流程图
软件设计的主要思路是将预置、发射、接收、显示、声音报警等功能编成独立的模块,在主程序中采用键控循环的方式,当按下控制键后,在一定周期内,依次执行各个模块,调用预置子程序、发射子程序、查询接收子程序、定时子程序,并把测量的结果进行分析处理,根据处理结果决定显示程序的内容以及是否调用声音报警程序。当测得距离小于预置距离时,声音报警程序被调用。
主程序首先是对系统环境初始化,设置定时器T0工作模式为16位定时计数器模式。置位总中断允许位EA并给显示端口P0和P2清0。然后调用超声波发生子程序送出一个超声波脉冲,为了避免超声波从发射器直接传送到接收器引起的直射波触发,需要延时约0.1 ms(这也就是超声波测距仪会有一个最小可测距离的原因)后,才打开外中断0接收返回的超声波信号。
由于采用的是12 MHz的晶振,计数器每计一个数就是1 s,当主程序检测到接收成功的标志位后,将计数器TO中的数(即超声波来回所用的时间)按式(3)计算,即可得被测物体与测距仪之间的距离,设计时取20℃时的声速为其中,To为计数器T0的计算值。测出距离后结果将以十进制BCD码方式送往LED显示约0.5s,然后再发超声波脉冲重复测量过程。
5 系统的调试与优化
超声波测距仪的制作和调试都比较简单,安装时探头时应保持两换能器中心轴线平行并相距4~8cm,其余元件无特殊要求。若能将超声波接收电路用金属壳屏蔽起来,则可提高抗干扰能力。根据测量范围要求不同,可适当调整与接收换能器并接的滤波电容C的大小,以获得合适的接收灵敏度和抗干扰能力。
系统调试完后对测量误差和重复一致性进行多次实验分析,不断优化系统使其达到实际使用的测量要求。
5.1 发射器探头对接收器探头的影响
超声波从发射到接收的时间间隔是由控制器内部的定时器来完成的。由于发射器探头与接收器探头的距离不大,有部分波未经被测物就直接绕射到接收器上,造成发送部分与接受部分的直接串扰问题。这一干扰问题可通过软件编程,使控制器不读取接收器在从发射开始到"虚假反射波"结束的时间段里的信号。这样,就有效的避免了干扰,但另一方面也形成了20cm的“盲区”。此“盲区”很小,对本系统没有影响。
5.2 温度的补偿
由于超声波也是一种声波,其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。
表1 声速与温度关系表
所以,在超声波的两个探头旁边需要放置温度传感器,测出环境温度T,由单片机控制器进行软件修正。
6 结束语
虽然用一个单独计时器电路也可以测量超声波的传输时间,但利用AT89C51单片机可以简化设计,便于操作和直观读数。该系统经实际测试证明,可以满足大多数场合的测距要求。
参考文献:
[1]沈进棋.移动机器人多路超声波数据采集系统的研究与实现[J].电子技术,2003,(6).
[2]马义德.汽车防撞系统的研究[J].交通管理,2004,(7).
[3]杨自栋.简易超声波测距仪的软硬件设计[J].农业装备与车辆工程,2005,(4).
[4]左震.黄芝平.骆潇.超声波测距仪与嵌入式SPT-K控制器在汽车自动刹车系统中的应用.中国半导体设备与材料网, 2006,5.
篇6
关键词:超声波 单片机 物距测量
中图分类号:TN802.4 文献标识码:A 文章编号:1007-9416(2013)06-0159-02
1 超声波测距简介
当音频的频率高于2KHZ超出人耳所能接受的声音频率范围时,我们称之为超声波。超声波在空气中传播向性好,穿透能力强,不受光波、电磁波等的干扰,因此它常用于空气或水中进行物距测量、速度探测或是某些特殊功能如清洗消毒等,其在工程学、医学、生物学科等多个领域都有广泛应用。在工程学中,利用超声波进行汽车防撞、液位测量、移动机器人定位和避障等方面物距的探索及测量的需求都很普遍。
2 超声波原理和测距方法
2.1 压电式超声波传感器原理
超声波发生器的工作原理通常被分为机械式和电气式作用产生二种。本设计采用压电式(电气式)作用原理,具体步骤:首先发射器向外发射超声波,接着超声波在空气或水等介质中传播,当遇到障碍物后反射,形成回波,最后由接收器感测接收回波。
2.2 超声波测距方法
3 超声波测距方案的实现
3.1 硬件设计
本文使用渡越时间法进行超声波测距,测控芯片选用的是89c2051单片机。系统主要硬件设计包括稳压电路、超声波发射电路、超声波接收电路、以及测距显示电路。另外还有一个串口调试电路,主要用作超声波测距的数据调试和显示。工作过程描述:单片机的P3.3作为超声波发射控制端口,用于发射相关信号使发射电路起振从而发出超声波;超声波发出的同时、启动定时器计数,开始测量渡越时间;P3.2作为超声波接受控制端口,用于接收经障碍物反射的回波;一旦接收到有效回波信号,单片机的定时器立即停止计数得计数脉冲个数N并通过串口调试助手显示在电脑屏幕上,代入公式(2)计算可得出预测距离s,换算后的距离经由LCD1602实时显示。
发射电路主要由74LS04反射器和超声波发射辅助电路构成。单片机P3.3口输出40kHz 的方波信号分二路分别采用无反射器和一级反射器方式送入超声波换能器的二个电极,以此提高发射强度。另外输出端二路均并联两个74LS04反射器后经上拉电阻接入,以期在提高输出高电平的驱动能力的同时、增加超声波换能器的阻尼效果以减少振荡影响[3]。
接收部分的电路主要由NE5532P运放、LM339AJ比较器及超声波接收辅助电路构成。超声波接收部分是为了将回波顺利接收,因此要将声波信号转换成电信号,并对采集到的信号进行放大、比较等必要处理后输入到单片机P3.2口,以产生中断并立即让计数器停止计数,计数结果转化后显示在LCD1602上。液晶部分原理及控制相对简单,电路可参照其芯片资料的典型接法。
3.2 软件设计
利用51单片机的两个定时器,定时器1主要用于串口调试电路用于辅助计算串口波特率,定时器0用来计算时钟脉冲计数,以计算超声波所测距离。外部中断0接收由高到低的负脉冲,以检测回波信号并采取相应动作。系统主程序流程:系统初始化-发送超声波子程序-开INT0中断并启动定时器T0计数-检测回波并分别在串口和LCD上回显数据。
4 系统测试及结论
实验及数据分析表明,本超声波测距系统,虽然测距范围不是很大,但在精度上可以达到毫米以上级别。采用了串口调试助手以及示波器辅助测试,系统的实现更加可靠。当然,影响超声波测距的因素有很多。如温度因素,可以采取在软件中加入温度补偿程序或直接在硬件系统中加上测温技术,使其更能精准的测出更大范围内两个物体之间的距离,因此该系统还可以继续完善。
参考文献
[1]时德钢,刘晔,王峰等.超声波测距仪的研究[J].计算机测量与控制,2002.10.
篇7
关键词:电力电缆 局部放电 超声波检测 超声传感器
随着社会经济的发展,电网运行可靠性不断提升,电力电缆的运行要求也随之提高。根据电网运行情况统计,电缆的局部放电是造成电力电缆绝缘损坏的最主要原因之一[1]。电力电缆在长年运行后,很容易产生内部的局部缺陷,从而产生局部放电现象,引起电缆进一步老化,最终导致绝缘失效击穿。局部放电是造成高压电力电缆的绝缘损坏的重要因素,为了保障电力系统的稳定运行,有效地检测电缆的状况,有必要深入研究对电缆局部放电检测技术,这对于及时发现潜伏隐患,提高电缆有效使用寿命具有十分重要的意义。根据检测结果,采取相应的措施,实施有计划、合理的检修,可以减少因突发故障而造成的损失,达到提高供电可靠性的目的。
超声波检测法是用超声波传感器接收电气设备内部或电力电缆局部放电产生的超声波,由此来检测局部放电的大小和位置。典型的超声波传感器的频带一般都为50-200kHz,可以通过选中频谱中所占分量较大的频率范围作为测量频率,以提高检测灵敏度。由于超声检测法抗干扰能力相对较强、使用方便,可以在运行中或耐压试验时检测局部放电,适合预防性试验的要求,并且随着声电换能器效率的提高和电子放大技术的发展,超声波检测法的灵敏度有了较大的提高。因此,近年来采用超声波探测仪的情况越来越多。
1.局部放电产生超声波的机理
通常情况下,局部放电一般是在绝缘介质中的气隙里产生,局部放电等效模型[2]如图1所示,相当于绝缘内部有一个微小气隙,用g表示,四周绝缘完好,其气隙模型如图1(a)所示,等效电路模型如图1(b)所示u。
(a)绝缘介质气隙模型 (b)三电容等效电路
图1 绝缘介质中的局部放电模型
其中,Cg是气隙电容,Cb是与气隙g串联绝缘b1和b2的电容。Cm代表其余大部分完好绝缘m的电容。电缆运行时候,相当于在电极两端加交流电源um,在Cg得到的电压为:
当气隙很小的时候,Cg比Cb大, Cm则比Cg大很多。ug随着外加电压um的增加而增加,当ug上升到某个瞬时值时,ug达到气隙的放电电压Ug,气隙开始放电。放电后Cg上的电压瞬间从Ug下降到Ur,放电熄灭,Ur称为残余电压。放电熄灭之后,Cg的电压再次上升发生放电,然后熄灭,局部放电这样周而复始地进行。
一般认为,当局部放电发生后,受电场力或压力作用,气泡会发生膨胀和收缩的过程,这个过程将会引起局部体积变化,在外部产生疏密波,即产生声波。局部放电的种类有很多,有些在很低的过电压下的局部放电几乎不产生热辐射,有些在很高的过电压下局部放电则可能产生很强的热辐射[3]。从物理角度分析,当局部放电发生时,气泡将会受到一个脉冲电场力的作用,同时,由于放电过程中存在很大的热辐射的情况下,通道中的电弧电流产生的高温将会在气泡内产生一定的压力。因此,在局部放电过程中影响气泡产生超声波的主要因素有两个:一是放电时刻的电场力,在较低电压情况下,气泡在脉冲电场力的作用下将产生为衰减的振荡运动,在气泡振动的作用下,周围的介质中将产生超声波;二是当较高过电压的情况下,放电以后产生的热引起气泡膨胀而产生的压力。放电通道内气体被强烈的电离和加热,气体的加热引起放电通道的膨胀,其膨胀速度一般在声速的数量级,经过几微秒的时间,放电通道横截面达到最大值。随着能量的释放,放电空间的电场强度减弱,最后放电熄灭。当下一次能量积累后,进行第二次放电。在实际的局部放电中,超声波往往是由上述两种因素同时作用而产生的。但是局部放电过程中超声波的产生机理和传播途径尤其复杂,目前还难以利用超声波信号对局部放电进行模式识别和进行定量分析[4]。
2.局部放电超声波检测法
局部放电超声波检测技术是基于声发射原理的检测方法,工业中常用的局部放电超声波检测法主要有空气传导式和接触式。空气传导式是利用声聚能器将空间的声波收集和聚焦,用声传感器检测。该方法的优点是操作方便、安全;缺点是灵敏度较低。接触式检测是用一根玻璃纤维探测杆传导声波信号,探测杆首端与电缆终端绝缘外部相接触,末端接触声传感器,同时要求探测杆有足够的绝缘强度。该方法的优点是衰减小、灵敏度高;缺点是现场操作时工作量较大。 虽然局部放电及所产生的声发射信号具有一定的随机性,每次局部放电的声波信号频谱不同,但整个局部放电声波信号的频率分布范围却变化不大,大量的频谱研究结果表明,局部放电时产生的超声波的能量集中在50kHz至300kHz频段,其峰值频率主要在70kHz~150kHz之间[5]。而噪声频谱分布在小于65 kHz的频率范围,二者的频率分布明显不同,因此受噪声影响并不大。低频谱对声传递有利,高频谱对抗声音干扰有利。
3.超声波传感元件的选择
超声传感器是选择超声法局部放电监测中的关键技术,传感器的种类很多,在实际选用中应结合工作频带,灵敏度,分辨率,材料尺寸、角度以及现场的安装难易程度和经济效益问题等进行综合衡量和选择。
(1)超声压电材料的固有机械振动频率取决于传感器的检测频带,并等于转换出的电信号的频率,超声波传感器的中心频带宽度一般选为70kHz~150kHz。
(2)传感器材料尺寸大时,其覆盖范围大,晶片小时,覆盖范围小。角度的选择应尽可能使其便于接受超声波,就检测灵敏度而言,如果忽略超声波在材料中的衰减,灵敏度随被测物到传感器距离的增大而降低。
(3)对于现场状况比较复杂的场合,在安装方式可实现的条件下可以考虑不同的传感器进行组合安装,一方面可提高检测灵敏度,另一方面可排除干扰减少误判,获取更为丰富的局部放电的信息。
在局部放电超声波检测应用中,超声波传感器的简单便携且高灵敏度是技术的关键所在。PVDF压电薄膜作为一种比较独特的高分子传感材料,能够感应压力或拉伸力的变化并输出电压信号,凭借其轻薄柔软的特性成为研制超声波传感器的首选。
结语
近年来,随着电网运行电压等级的不断提高以及对电缆运行可靠性要求的提升,局部放电作为评估电力电缆绝缘状态的一个重要指标被大多数人所采纳。超声波局部放电检测法凭借非电气接触测量、可远距离测量、可以避免电磁干扰的影响、可以方便地定位、可实现在线检测等原因,受到了国内外研究者的广泛关注,通过超声波局部放电检测评估电缆绝缘材料的绝缘性能和状态,掌握其可能出现的劣化情况,并能提前给绝缘故障的风险预报,避免突发性故障的发现。
参考文献:
[1] 李红雷, 李福兴等. 基于超声波的电缆终端局部放电检测[J]. 华东电力, 2008, 36(3):43-46.
[2] 赵智大. 高电压技术[M]. 中国电力出版社, 2006年8月第二版.
[3] 陈宗柱, 高树香. 气体导电(下)[M]. 南京工学院出版社, 1988.
篇8
关键词:变压器;超声波;局部放电;测量 Supersonic Measurement of Partial Discharge in Transformers in Power Network
Abstract:This paper describes the work principle of supersonic method to measure partial discharge in transformers,and introduces the capacity of domestic equipment and degree of voltage are increasing incessantly,which explains the necessity and application status of this technology.
Key words:transformer;supersonic wave;partial discharge; measurement
目前检测变压器放电性故障的主要方法是进行局部放电水平的测量,有脉冲电流局部放电量测量法(以下简称脉冲电流法)和超声波局部放电测量法(以下简称超声波法)。脉冲电流法需在设备停电条件时靠外施电压进行检测,虽然能对放电量的大小进行定量测量,以确定放电点的电气位置,但是无法确定放电点的空间位置,且检测时必须为停电情况。因此对变压器实施及时、在线的超声波局部放电检测,并配合其它的绝缘试验项目(如油色谱气体分析、远红外测温等),分析变压器绝缘状况,及时确定绝缘缺陷性质就显得越来越重要。
1 超声波局部放电测试原理
绝缘介质局部放电有2种类型:气泡内放电;介质在高场强下游离击穿。一些浇注、挤压的绝缘介质容易夹杂着气隙或气泡,空气的介电常数较固体介质小,而场强与介电常数成反比。因此,介质中的气隙或气泡是第一种局部放电的发源地;当局部电场更高时,在绝缘薄弱环节处将引起介质的游离击 穿。以上2种局部放电,在多数情况下往往同时发生或互相诱发。
变压器在试验电压(或工作电压)下出现局部放电时,伴随产生电脉冲、超声波、光、热和化学变化等物理现象。只要变压器内部存在局部放电,就一定会产生高频的电气扰动,并将向所有与其有连接的电气回路传播。利用连接到设备端子上的测试装置接到放电信号,可对变压器局部放电进行定量检测。同时,只要存在局部放电,在放电过程中,随着放电的发生,伴随着爆裂状的声发射,产生超声波,且很快向四周介质传播,通过安装在变压器油箱外壁上的超声波传感器,将超声波信号转换为电信号,就能对变压器内的局部放电水平进行测量,此即为变压器超声波局部放电测量法。
篇9
从基本原理来说,自动对焦可以分成测距自动对焦和聚焦检测自动对焦。
测距对焦主要有红外线测距法和超声波测距法,红外线测距法,该方法的原理是由照相机主动发射红外线作为测距光源,并由红外发光二极管间构成的几何关系,然后计算出对焦距离,超声波测距法,该方法是根据超声波在相机和被摄物之间传播的时间进行测距的。
相机上分别装有超声波的发射和接收装置,工作时由超声振动发生器发出持续超声波,超声波到达被摄体后,立即返回被接收器感知,然后由集成电路根据超声波的往返时间来计算确定对焦距离。红外线式和超声波式自动对焦是利用主动发射光波或声波进行测距的,称之为主动式自动对焦。
(来源:文章屋网 )
篇10
[关键词]超声波 传感器 疾病诊断 测距系统 液位测量
一、超声波传感器概述
1.超声波
声波是物体机械振动状态的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数很高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵向振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现象,并且在传播过程中有衰减。超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用──当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。
超声波的特点:(1)超声波在传播时,方向性强,能量易于集中;(2)超声波能在各种不同媒质中传播,且可传播足够远的距离;(3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。
2.超声波传感器
超声波传感器是利用超声波的特性研制而成的传感器。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。
超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器既作发送,也能作接收。 超声波传感器由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中幅射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。
二、超声波传感器的应用
1.超声波距离传感器技术的应用
超声波传感器包括三个部分:超声换能器、处理单元和输出级。首先处理单元对超声换能器加以电压激励,其受激后以脉冲形式发出超声波,接着超声换能器转入接受状态,处理单元对接收到的超声波脉冲进行分析,判断收到的信号是不是所发出的超声波的回声。如果是,就测量超声波的行程时间,根据测量的时间换算为行程,除以2,即为反射超声波的物体距离。把超声波传感器安装在合适的位置,对准被测物变化方向发射超声波,就可测量物体表面与传感器的距离。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。
2.超声波传感器在医学上的应用
超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。
3.超声波传感器在测量液位的应用
超声波测量液位的基本原理是:由超声探头发出的超声脉冲信号,在气体中传播,遇到空气与液体的界面后被反射,接收到回波信号后计算其超声波往返的传播时间,即可换算出距离或液位高度。超声波测量方法有很多其它方法不可比拟的优点:(1)无任何机械传动部件,也不接触被测液体,属于非接触式测量,不怕电磁干扰,不怕酸碱等强腐蚀性液体等,因此性能稳定、可靠性高、寿命长;(2)其响应时间短可以方便的实现无滞后的实时测量。
4.超声波传感器在测距系统中的应用
超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压 (其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔 t,故被测距离为 S=1/2vt。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。
三、小结
文章主要从超声波与可听声波相比所具有的特性出发,讨论了超声波传感器的原理与特点,并由此总结了超声波传感器在生产生活各个方面的广泛应用。但是,超声波传感器也存在自身的不足,比如反射问题,噪声问题的等等。因此对超声波传感器的更深一步的研究与学习,仍具有很大的价值。
参考文献:
[1]单片机原理及其接口技术.清华大学出版社.
[2]栗桂凤,周东辉,王光昕.基于超声波传感器的机器人环境探测系统.2005,(04).
[3]童敏明,唐守锋.检测与转换技术.中国矿业大学出版社.