电容测量仪范文

时间:2023-03-25 10:42:58

导语:如何才能写好一篇电容测量仪,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

电容测量仪

篇1

关键词:STC89C52;555振荡器;电容测量;数码管显示

中图分类号:F425 文献标识码:A 文章编号:1674-7712 (2014) 02-0000-01

数字电容测量计设计主要包括测量电路,记数电路和显示电路三部分。测量电路的核心部分是555定时器构成的单稳态触发器和多谐振荡器。记数电路是由74LS160和74LS161构成的计数器以及74LS273锁存器构成。显示电路由译码器和数码管构成,测量方法使用测脉宽法,测脉宽法利用记数控制电路中的单稳态触发器在被测电容CX上的充放电规律,将电容容值转换为脉冲宽度TX,再与标准脉冲信号相与得到TX内的脉冲数N,通过记数显示就可以得到容值。本设计选择用闸门信号来控制时钟信号产生的CP脉冲个数,使其来反映被测电容Cx的数值。用测脉宽法得到的数值比较容易通过数码管来显示。

一、单元电路设计与分析

(一)测量电路

图1是由两个555定时器接成的单稳态触发器和多谐振荡器所构成的电容测量电路,C3为被测电容,当被测电容CX接入电路后,由于电容充放电效应,单稳态触发器会产生一个脉宽与被测电容大小成正比的闸门信号,同时多谐振荡器会产生脉冲信号CP,闸门信号与脉冲信号CP同时经过与门运算,得到一个新的脉冲信号,再将此信号送入计数器进行计数。单稳态触发器由555定时器接成,当接入被测电容时,通过被测电容C3充放电,使电压在0到2/3VCC之间振荡,最后脉冲由3端输出。单稳态触发器输出电压脉宽:TX=RCXln3≈1.1RCX,这种电路产生的脉冲可以从几微秒到数分钟。当R固定时,则TW为正比于电容。C越大,则Tw时间内通过与门的时钟脉冲就越多,则计数电路实现T与C正比。多谐振荡器输出电压脉宽:T=(R1+2R2)Cln2≈0.69(R1+2R2)C。

经过与门后得到的信号满足:RCxln3=N(R1+2R2)Cln2,令参考电容C=1uf进过整理得:CX=N(R1+2R2)Cln2/Rln3,即当(R1+2R2)Cln2/Rln3=1时,闸门信号内单位脉冲数N×10就得到被测电容CX的容值。

(二)计数电路

计数电路由74LS161计数器74LS160计数器和74LS273锁存器构成,两片计数器通过置数法将两片计数器连接成百进制计数器,计数范围为0到99。时钟信号由闸门信号和脉冲信号相与得到,当计数达到99时,再经过一个脉冲时钟信号74LS161的输出端Q3和Q1输出1。两片计数器输出端接74LS273锁存器输入端,锁存器时钟信号由单稳态触发器输出信号经过反相得到,经过反相器是为了使锁存器在计数结束时开始锁存。计数部分由74LS161十六进制计数器和74LS160十进制计数器构成,74LS160计数器的EP和ET端接高电平,使之保持在工作状态,时钟信号由测量电路输出提供,其进位输出端接到74LS161计数器的EP和EP端,使其在进位时让计数器U3工作。两片计数器的MR端和LOAD端均接测量电路的单稳态输出端,保证计数器在有效技术范围内计数。当超出计数范围时,Q3和Q1为1通过74LS08与门输入到下一级电路。计数电路中的锁存功能由锁存器74LS273完成,D0到D7端为数据输入端,分别对应接到计数器的输出端。MR端为异步清零端,接高电位使其保持在工作状态。时钟信号由测量电路中的单稳态触发器输出端经过反相得到,使其在技术结束时进行锁存。Q0到Q7端为输出端,分别接到下一级显示电路的译码器输入端。

显示电路主要包括译码器7448和数码管两部分,计数电路的锁存器输出端分别接到译码器输入端,译码器LT,RBI均接高电位使其保持工作状态,QA到QG为译码器输出端分别接到数码管输入端,同时Vcc接限流电阻接到输入端。当接入被测电阻电路工作时,计数器计数再通过锁存器将计数结果送入7448译码器,译码器将相应数值译成高低电平送入数码管,数码管显示相应数值。显示驱动电路,A0到A3为输入端,当LI和RBI同时置高电位时译码器工作。Ya到Yg为输出端,分别接数码管各端驱动显示。

二、结束语

在这次设计中虽然遇到了许多的困难,首先在设计总电路的时候就有好多方案,是经过了多次的实验测量选择出了最合适的方案进行设计。通过与同伴、老师进行商议讨论,最终完成了设计方案的确定,通过查阅相关参考文献对STC89C52单片机的各个管脚进行了了解。以及电路中各个芯片的使用,每个管脚的作用都要有所熟悉才能够进行本次设计。在进行555定时器产生单脉冲信号时脉冲信号出现了小毛刺,对设计结果产生了不小的影响,后经过上网查阅资料得知信号干扰的解决方法可以在多谐振荡器输出端加入74HC08使输出波形毛刺减少,从而使单片机测量结果变精确。

参考文献:

[1]胡辉.单片机原理及应用设计[M].北京:中国水利水电出版社,2005.

[2]康华光.电子技术基础(模拟部分)第四版[M].北京:高等教育出版社,1999.

[3]邱关源.电路(第五版)[M].北京:高等教育出版社,2006.

篇2

1、记录移动电源总容量,在移动电源的外壳和说明书上即可查看;

2、给移动电源充满电;

3、记录手机电池容量,可通过查网站、查看说明书和打开电池盖查看;

篇3

关键词:橡胶树;容栅原理;树皮厚度;精度分析

中图分类号:TP212.9;S794.1 文献标识码:A 文章编号:0439-8114(2015)15-3756-04

DOI:10.14088/ki.issn0439-8114.2015.15.046

Abstract: Based on capacitive principle,a set of intelligent rubber tree bark thickness measuring instrument was designed, and through the measurement test of rubber tree bark thickness, the numerical difference of standard deviation and variation were obtained. Results showed that compared with the traditional measurement method, the efficiency of the intelligent rubber tree bark thickness measuring instrument increased by 17~19 times, with the characteristics of portability, low cost, high precision, good stability and so on, which will play a pioneer role in the field of ecological instrument measuring thickness of the bark of rubber trees in China.

Key words: rubber tree; capacitive principle; bark thickness; accuracy analysis

天然橡胶兼具农业与资源属性,是四大基础工业原料中惟一的可再生资源,已被广泛应用于工业、农业、国防等领域[1]。橡胶树经济寿命的长短主要取决于割胶的耗皮量,没有树皮,橡胶树就失去了特有的经济价值[2],橡胶树树皮厚度不仅能够预测病虫危害、树木生长和遗传变异等情况,还能够评估出树皮中经济成分的含量[3],并对割胶过程进行充分的指导[4]。因此,对橡胶树树皮及树皮厚度进行研究意义重大。

目前,国内对树皮厚度的测量仍然处于基础阶段,即用刀切出一块树皮,然后采用钢尺或游标卡尺进行直接测量的方法。该测量方法不仅效率低,而且对树皮损伤较严重,同时不同的测量人员切取的树皮区域存在一定的差异,因而人为因素易造成同一部位测量的树皮厚度值有较大的误差。国际上只有瑞典研发了一款树皮厚度测量器,其价格高,量程0~50 mm,而且该测量器仍处于机械读数阶段,读数慢,效率低,同时读数存在主观误差,这些问题使得测量器的推广受到了限制[5]。综合考虑以上原因,研发了一种便携式、高效、成本低、精度高的电子测量仪,且价格低廉。

1 测量仪基本工作原理

1.1 容栅传感器

容栅式传感器是在变面积型电容式传感器的基础上发展起来的一种新型传感器。它同时具有多极电容带来的平均效应与电容式传感器的优点,并且采用闭环反馈式等测量电路,从而降低了寄生电容的影响,提高了抗干扰能力及测量精度。它与光栅、感应同步器等其他数字式位移传感器相比,具有体积小、结构简单、准确度和分辨率高、测量速度快、功耗小、成本低、对使用环境要求不高等优点,因此在电子测量技术中占有十分重要的地位。

1.2 容栅传感器测长基本原理

容栅位移传感器与电容两极板之间的间隙d和介电常数ε有关,其原理为在一定的条件下,电容变化量ΔC的大小与耦合面积变化量Δs呈正比,即ΔC=(ε×Δs)/d。另外,容栅位移传感器又可分为长容栅位移传感器和圆容栅角位移传感器。本设计所涉及的是长容栅位移传感器。

2 智能测量仪设计

2.1 结构设计

如图1、图2和图3所示,分别为设计的橡胶树树皮厚度测量仪的主视图、俯视图及内部结构图,包括插刀刀片2、锁紧螺钉3、插刀固定部件4、弹簧9、位置限制叉1、显示部件8、塑料手柄6、多功能按键5等。其中插刀刀片2插入到插刀固定部件4的槽中,通过锁紧螺钉3进行固定;显示部件8安装在插刀固定部件4上,并且在插刀固定部件4的中部两侧有限位突起11,弹簧9缠绕在固定部件4的尾部上,且插刀固定部件4的端部与手柄6相连;限位叉1紧贴插刀柄4,且其尾部插入弹簧9的内部,限位叉上设有插刀刀片2,并设有限位挡块10;其中,插刀固定部件4、限位叉1的后半部及显示部件8、弹簧9等均在手柄6的内部。另外,插刀柄4上设有定栅,限位叉1上设有动栅。

2.2 部件设计及功能分析

1)手柄。手柄的前端安有透明显示窗口,多功能按键设置在手柄中部,尾部设有端盖。手柄采用符合人体工程力学的造型,使用更为舒适。材质为工程塑料,表面涂有树脂材料,手接触的地方设置有凸点,进一步防止打滑,便于操作。

2)显示部件。显示部件由集成电路、传感器、介电层、显示屏等组成,并连接有多功能按键。其中,集成电路设计有示数锁定、自动关机等功能。

3)多功能按键。开关机、零点校正等功能均可通过多功能按键实现。在测量装置关机时,轻按一下则开机;在开机状态下,长按按键则启动零点校正功能,短按一下则关闭测量装置。

4)位置限制叉(图4)。叉上设有插刀刀片,整体紧贴插刀固定部件,尾部插入在弹簧内,并设置有限位突起。

2.3 操作分析

启动:轻按按键,装置自动开机。

测量:用手握住手柄,将插刀插入树皮,锋利的插刀可以将树皮刺穿,而位置限制叉则被树皮阻挡在外部,绝对位置不变。在插入树皮的过程中,位置限制叉向后滑动从而压缩弹簧,当插刀插入到木质层时,因木质层具有较高的硬度而无法继续刺入,对弹簧的压缩因而停止。拔出插刀,便可在显示屏上读出示数。显示示数将锁定5 s以方便读数,随后自动清零以便下一次测量。另外,该装置如果超过1 min未进行新的测量或零点校正操作,则仪器自动关机。

零点校正:为消除装置间隙以及刀片的长度引起的测量误差,在开机状态下用手握住手柄,将位置限制叉在硬质平面上压下,直到插刀刀片与平面接触,长按多功能按键,系统将记录此时位置限制叉与插刀固定部件的相对位置并设置为零,即可完成校正。

3 测量仪的测量及数据分析

为了对该仪器进行较准确的精度、准确度与稳定性分析,将该装置与目前普遍使用的精度最高的游标卡尺测量法进行了对比试验。根据不同年龄橡胶树的树皮硬度及厚度的差异,分别选取了橡胶树1、2、3作为试验对象。选取该3棵橡胶树距离地面1 m处10 mm×10 mm的方形平整区域作为测量范围,20次重复取平均值。为避免主观因素的影响,由同一个试验员进行3棵橡胶树的树皮厚度测量和读数,两种方法测得的数据如表1所示。

从表1可知,每一棵树由设计电子厚度测量仪所测得的树皮厚度的标准偏差均小于游标卡尺所测数据,标准偏差越小,其偏离平均值就越少。另外,3次试验中,游标卡尺测出数据的方差分别为电子厚度测量仪测得的7.9、3.1、3.6倍,在充分利用试验所得的数据估计试验误差的情况下可判断,电子厚度测量仪的精度明显高于游标卡尺测量法。游标卡尺测出数据的极差分别为电子厚度测量仪的2.4、1.8、1.6倍,因此电子厚度测量仪作为分散性数据的测量仪器具有很高的稳定性。经电子厚度测量仪测量的数据变异系数均小于经游标卡尺测量得出数据的变异系数,进一步说明前者数据精密度好于后者。

3棵树两种测量方法所得结果的散点分布图见图5、图6和图7。

由图5、图6、图7显示的数据变动幅度可以得出,经电子厚度测量仪测量的数据上下波动幅度较游标卡尺测量所得的数据小。另外,相对于中心点的分布情况,数据集中度较好,并不发生很尖锐的变动。电子厚度测量仪测量数据的彼此符合程度明显优于游标卡尺所测数据,因此有更高的精密度,能反映重复分析测定均一样品所获得的测定值之间的较高的一致性程度。

该橡胶树树皮电子厚度测量仪大大提高了测量效率,在满足测量要求的前提下,统计了两种测量仪器一次工作所需的时间并分别计算其效率。树皮厚度测量仪只需将插刀插入树干即可测量树皮厚度,统计该仪器对每种树进行测试所需时间;而游标卡尺测量需要凿开树皮进行测量,对每棵树则进行一次测量。其测量时间结果如表2所示。从表2可以看出,橡胶树树皮电子厚度测量仪的测量时间远短于传统游标卡尺的测量时间,其效率是游标卡尺测量法的17~19倍。

4 小结

基于对容栅技术的测长位移传感器的研究和橡胶树皮厚度的物理特性分析,设计了一种结构简单的橡胶树树皮电子厚度测量仪。测量数据结果表明,橡胶树树皮电子厚度测量仪的精密度明显优于传统电子游标卡尺测量法,且变异系数均小于传统的卡尺测量,效率是游标卡尺的17~19倍,采用本设计的橡胶树树皮厚度仪在测量精密度、稳定性、效率等方面均明显优于传统测量方法。该测量仪不仅结构简单,便于携带,而且成本低、易操作、使用方便,测量树皮厚度迅速准确,测量方法便捷,测量结果显示直观,将对中国生态仪器的研究有着重要的推进作用。

参考文献:

[1] 何焯亮,王 涛,成满平.可调节式橡胶树割胶机的设计[J].湖北农业科学,2014,53(17):4195-4198.

[2] 祁栋灵,王秀全,张志扬,等.世界天然橡胶产业现状及科技对其推动力分析[J]. 热带农业科学,2013,33(1):61-66.

[3] 王晓林,蔡可旺,姜立春.落叶松树皮厚度变化规律的研究[J].森林工程,2011.2(27):8-11.

篇4

关键词:控制系统;ATmega128;粮食水分测量仪;AVR单片机

中图分类号:TP301文献标识码:A文章编号:1009-3044(2012)16-3998-02

Researches on the Technology of Grain Moisture Measurement Based on 555 Integrated Circuit

WAN Zhi-qiang1, DONG Yu-de1, ZANG Jun1, YANG Xian-long2,YE Fei2, SHI De-cai2

(1.School of Mechanical & Automotive Engineering, Hefei University of Technology, Hefei 230009, China;2.QuanJiao JinZhu Mechani? cal Manufacturing Co., LTD, Chuzhou 239500, China)

Abstract: In order to quickly and accurately detect the food contained in the water, and also to better storage and maintain commissariat to various physiological properties and eating quality .A method based on the 555 integrated circuit of grain moisture detection is used in this paper,containing some moisture of grain is equivalent to corresponding dielectric constant,it can produce a different frequency signal in composed of 555 chips moisture detection circuit.The grain moisture detection method reported in this paper is based on this principle to achieve. This paper has focused on the 555 integrated circuit of grain moisture detection circuit principle, and finally the final effect dia? gram has been gived.

Key words: control system; ATmega128; grain moisture measurement; AVR microcontroller

传统的粮食水分检测方法,由于测量的周期较长,难以满足在线测量和精确测量的要求。当前粮食水分检测方法原理上大概有:电阻法、电容法、微波法、核磁共振法等[1]。微波法和核磁共振法结构复杂,成本较高,不能满足检测对象的专用性[2];电阻法和电容法原理简单、测量结果准确,同时也有抗干扰性差等缺点,但成本低廉,硬件和软件都易于实现。文中所提出的基于555集成电路的粮食水分检测技术,正是基于电容法原理而实现的。

2.1主控制芯片

系统的主控制芯片采用的是爱特梅尔公司(ATMEL)生产的ATmega128控制芯片。ATmega128单片机的最大特点是处理速度快,端口资源丰富,可以提供多达64个端口。这就可以为粮食水分测量系统提供各自独立的端口资源[4]。

2.2温度传感器

温度传感器采用的是美国DALLAS公司生产的数字温度传感器DS18B20。该传感器结构简单,性能可靠,采用“一线总线”的结构特点,可用一根I/O数据线既供电又传输数据。与ATMEL128微处理器连接时仅需要一条口线即可实现微处理器与DS18B20传感器的双向通讯[5]。

整个粮食水分测量控制系统由主控制板、温度和湿度电路板、电源和电机电路板、按键电路板共4快电路板组成。整个粮食水分测量仪实物图如图2所示。

粮食水分测量仪控制系统整个工作流程是:在给控制系统接上电源并开机后,控制系统首先开始自检并进行参数的初始化,分配对应的端口地址,按照设置好的测量参数,分别采集温度信号和湿度信号,并把采集来的信号进行处理,把测量结果显示在液晶显示器上,然后根据各个功能按键的指令,执行相应的测量功能。至此,粮食水分测量仪的整个控制系统便开始进入正常工作的状态。系统的主流程图如图3所示。

该文分析了基于555集成电路的粮食水分检测技术,提出了采用电容法检测原理,并给出了电路检测原理图。在此基础上,完成了硬件电路设计。由于影响粮食水分测量的因素较多,测量时因充分考虑各种因素带来的影响。该文在大量实验数据的基础上,提出了粮食水分含量、温度、重量等几个参数的关系。通过实验室大量实验表明,该测量仪具有结构简单、精度较高等优点。目前由于程序的单一性,对稻谷水分可以实现较为精确的测量。下步随着程序的不断完善,可以测量更多品种粮食的水分(高粱、小麦、大豆等)。

[1]张永林,张胜全,刘文生.粮食水分在线测量评述[J].武汉工业学院学报,2003,22(4) .

[2]金永君,艾延宝.核磁共振技术及应用[J].物理与工程,2002,12(1):47-48.

[3]沈建良,赵文宏,贾玉坤,等.ATmega128单片机入门与提高[M].北京:北京航空航天大学出版社,2009.

篇5

关键词:非接触式智能IC卡;谐振频率;LCRMeter;频谱分析仪

1 引言

近年来,大到金融、公共交通和社会保障,小到图书馆、校园和门禁等,智能卡的应用领域日益多元化,相关的智能卡设计、生产企业越来越多。由于智能卡被完全密封,对其整体电气参数L、C、R的测量造成了困难,而谐振频率作为能够反映智能卡天线端口部分电气参数的重要指标,被各企业及研发单位广泛用于设计或生产参考,长期以来被大量使用。但到目前为止,对于谐振频率的测量方法,业界尚无统一标准。同时,业界在提及谐振频率值的时候,往往忽略其测量方法以及明确的误差范围,因此在智能卡测量领域,谐振频率这一参数的真实性和可靠性长期被忽视。

2 谐振频率测量方法概述

以符合ISO/IEC14443标准的智能卡为例,协议规定了通信用载波频率为13.56 MHz,但对智能卡本身的谐振频率未规定标准值,因此,客观上造成了目前流通的智能卡谐振频率的多样性。目前,按照智能卡的形态,业界常用的智能卡谐振频率的测量方法主要有两种:

1)公式计算加仪器测量。(测量出基本参数值,代入公式计算谐振频率)

2)频谱分析仪或网络分析仪配合自制装置测量。(直接测量密封智能卡的谐振频率)

2.1 公式计算法

智能卡在物理结构上,主要由三部分组成,1:IC芯片,2:耦合天线,3:封装材料,如图1所示,其中封装材料通常为绝缘材质,不引入电气参数,故本文不做深入分析。智能卡的谐振频率fres公式如下:fres=■,可见,fres取决于等效电路中的电感值和电容值。

图1中,虚线La/Lb右边,为IC芯片端口部分与谐振频率相关的电气参数,Rab为IC芯片端口电阻值的总和,Cic为IC芯片端口电容值的总和,Cmount其含义为IC芯片封装成模块时引入的电容值,如芯片不需要进行模块封装,则可忽略Cmount。虚线左边,为耦合天线部分与谐振频率相关的电气参数,Lcoil为耦合天线的电感值,Rcoil为耦合天线的电阻值,Ccoil为耦合天线的电容值,Cpack其含义为耦合天线在制卡过程中引入的封装电容值,其值与制卡过程中多种因素相关,视具体情况而定。依据图1的等效电路结构,我们将智能卡fres的计算公式扩充如下:

当我们有了详细的计算公式,是否就可以计算出准确的fres呢?实际情况并非如此。接下来,我们介绍各L、C参数的测量方法,以及误差来源。

目前IC芯片较为常见的模块封装形式有XOA2和COB两种,而且由于Cmount会受到各模块加工厂的技术水平、用料以及静电防护等综合因素的影响,所以各模块加工厂出产的模块其Cmount存在差异,且无法给出准确值 ,至此,用智能卡的fres计算公式引入了第一个参数误差;同时在智能卡的制卡环节,由于Cpack会受到各制卡厂的技术水平、用料以及加静电防护等综合因素的影响,所以各值卡厂出产的卡片其Cpack也存在差异,且无法给出准确值,由此引入了第二个参数误差。在实际计算中,上述两个参数通常采用经验值,由此计算得到的fres就会存在误差。因此要求我们在使用fres的时候,需明确其误差范围。特别要强调的是,对于不同的条件下加工得到的智能卡,上述两个参数的经验值是不可以通用的。

用Agilent 4285A(LCR Meter)配合测量夹具Agilent 16047E,对等效电路中的Cic、Lcoil和Ccoil进行测量。由于耦合天线和IC芯片的寄生参数都会给测量结果带来误差,所以选择合适的等效电路模型,可以有效降低寄生参数的影响。(测量步骤略)通过测量得到Lcoil和Lm,代入公式计算出耦合天线的Ccoil。

我们对如图2所示带有模块底座的耦合天线样本进行了测试,为了说明模块底座对测量结果的影响,我们分别测量耦合天线带有模块底座与去除模块底座后的Lcoil和Ccoil,如表1所示(表中数据均为测量了10次以后的平均值,有效位数保留到小数点后2位,下同)。比较表1的数据可以发现,该模块底座的存在对该耦合天线样本的Lcoil无影响, 但会使Ccoil增加0.16 pf。

接下来,我们讨论如何测量IC芯片的端口电容Cic,样本如图3所示,选用的芯片为NXP S50,左边为模块底座(同图2中的底座模块),右边为完成完成模块封装(XOA2)后的样本外观,所以下文中得到的电容值构成为“Cic+ Cmount(Cmount中包含了C模块底座)”。

由表2可见,测量频率对于Cic+ Cmount之和的影响很小,但不同的测量电压,对于Cic+ Cmount之和的影响很大,主要是因为Cic是各部分电容的总和,当测量电压从小到大增加时,Cic随着IC芯片内部电路的逐渐开启而减小,当测量电压增加到IC芯片电路能够正常工作时,Cic将维持稳定。因此,以测量频率13.56 MHz为例,测量电压从0.5Vrms增加至2Vrms的过程中,IC芯片会处于3 种状态,第一,IC芯片完全不工作(0.5Vrms),第二,IC芯片端口电路部分开启(1~1.5Vrms),第三,IC芯片端口电路全部开启(2Vrms)。

不同的测量电压条件,反映到谐振频率中又是如何?我们还需要对特定环境下加工的Cmount和Cpack给出经验值,由于本文在IC芯片电容的测量结果中已经包含了Cmount,所以此处仅需给出Cpack,其经验值为1.5 pf,然后分别将13.56 MHz频率下,将各电容值和电感值带入公式进行计算,可得到表3。

可见从0.5Vrms至2.0Vrms,fres出现了约0.83 MHz的波动,考虑到计算参数还中包含了经验值Cpack,一方面经验值的估算是否准确尚存疑问;另一方面测量值Ccoil、Lcoil和Cic+Cmount,目前业界尚无统一的测量方法,不同测量条件下,得到的结果相去甚远;更有甚者,在fres的计算中直接忽略了Cmount和Cpack两个参数。因此,同样是采用计算公式,面对相同的样本,大家得到的fres很难达到统一,那么我们在使用fres进行设计、验证、生产时不得不小心谨慎,避免由于计算结果的不准确产生对产品特性的误判。

2.2 使用仪器及相应测量装置,直接测量谐振频率

当我们的测量样本为密封状态的智能卡时,目前业界主要采用如下三种测量方法进行智能卡谐振频率的测量:

1:带跟踪信号发生器(RF输出)功能的频谱分析仪,配合自制夹具。

2:不带跟踪信号发生器的频谱仪(成本较低),配合信号发生器(相当于频谱分析仪的跟踪信号发生器)及自制夹具。

3:矢量网络分析仪,配合自制夹具。

上述三种测量仪器,原理基本相同,即在某个频率区间内以额定的功率发射信号,无谐振时,在测量仪器的屏幕上显示的功率曲线为一条直线,当某个频率恰好与待测智能卡的fres相吻合时,测量系统就会产生谐振,使得输入端检测到的功率值达到最大,此时观察测量仪器的屏幕会出现一个波峰(或者波谷),该波峰对应的频率值即被称为智能卡的fres。下文中以频谱分析仪HP8591E为例介绍第一种测量方法。

具体测量方法如下:

1)在HP8591E的输出端和输入端各接一个线圈(天线),将两只线圈以水平方式上下叠加,制做成固定的测量夹具(如图4所示,图中智能卡样本为上海公交卡)。

2)然后设定起始频率和截止频率。

3)设定发射功率,RF端有功率输出。

4)然后将待测智能卡放置在夹具上方。(智能卡与天线的间距小于1 cm)

5)按PK SEARCH键,频谱仪界面就会将MARKER点标记到频谱中功率的最高点,如图5所示。此波峰点对应的频率即为智能卡的fres。

在了解了测量方法后,我们选取了部分目前上海市场中较常见的智能卡作为测量样本,如图6所示(包括上海市民卡1张、上海公交卡2张、上海地铁单程票2张、世博海宝交通卡1张、杉德万通卡1张和华虹餐厅就餐卡1张)。

在测量前,我们需要设定发射天线的功率值,为保证测量到的fres能够真实反映各种智能卡的电气特性,我们设置的起始频率和截止频率范围是10 MHz 至20 MHz,设置的发射天线功率值通常在10 dbm以下,或者是控制输出电流小于等于20 mA。在上述测量条件确定以后,我们得到了每张智能卡的fres。

表4中谐振频率的测量结果,验证了前文中提到的,目前流通的智能卡谐振频率的多样性。但本文强调的重点在于,我们采用上述方法,测量fres得到了表4中的结果,那么同样的样本,不同的测量仪器,谐振频率的测量结果会相同吗?对此,我们以上海公交卡为样本,在如图7所示的测量仪器及配套的测量夹具上进行了测量,测量原理同前,读取仪器屏幕中波峰值对应的频率点即为智能卡的fres(如表5所示)。但因为目前业界对测量夹具中天线的线径、匝数、面积、间距、材料和相对位置等参数尚无统一的规格标准,因此使用图7中的测量夹具时,智能卡需要放置于两个天线之间。(我们称该装置为“方法4”,以区别于2.2节开始时提到的那三种方法。)

通过对表5的测量数据的分析,不难发现,对于上海公交卡1,使用方法1和方法4测量到的fres差值达到了2.02 MHz,波动比例分别达到12%和11%,,而对于上海公交卡2,fres差值达到了 1.7 MHz,波动比例分别达到10%和9%。至此,回答了前文中提出的疑问,同样的智能卡在不同的测量方法下,fres测量结果相差极大,面对这样的测量结果,显然缺乏进行比较的基础。此时,即使我们加入了测量方法的描述,但是由于测量仪器的不同,测量夹具不规范,很显然,单纯的讨论fres是没有意义的。

那么同样的样本,采用同样的测量仪器,但是不同的测量方法,fres的测量结果会相同吗?我们仍以上海公交卡为样本,采用方法一及其配套测量夹具,仅改变测量方法中的第4点,即待测智能卡与测量夹具的间距,然后测量fres。如表6所示,以样本与测量夹具的间距作为变量,随着样本远离测量夹具,得到的fres呈现单调下降趋势。尽管在表6中fres从 0 mm至20 mm仅降低了0.35 MHz,该差值的绝对值并不算大,但是亟待确认的是,在什么样的测量间距下,得到的fres才最接近真实值?另外,测量环境的射频噪声对fres的影响也不容忽视,如果测量环境附近有高频信号发射装置,或者有大的金属物体,都会对测量结果造成影响,作为实验室测量环境应该避免射频噪声的影响,本文对此不再展开。

篇6

不确定度的含义是指由于测量误差的存在,对被测量值的不能肯定的程度。反过来,也表明该结果的可信赖程度。它是测量结果质量的指标。不确定度愈小,所述结果与被测量的真值愈接近,质量越高,水平越高,其使用价值越高;不确定度越大,测量结果的质量越低,水平越低,其使用价值也越低。在报告物理量测量的结果时,必须给出相应的不确定度,一方面便于使用它的人评定其可靠性,另一方面也增强了测量结果之间的可比性。检测标准为《工业企业厂界环境噪声排放标准》(12348-2008),不确定度按照JJF1059-1999进行评定。工作温度-10℃~50℃,相对湿度20%~90%RH,某企业厂界。检测仪器为HS5670B型积分平均声级计。

2测量原理和数学模型

2.1测量原理

由传声器将声音转换成电信号,再由前置放大器变换阻抗,使传声器与衰减器匹配。放大器将输出信号加到计权网络,对信号进行频率计权(或外接滤波器),然后再经衰减器及放大器将信号放大到一定的幅值,送到有效值检波器(或外按电平记录仪),在指示表头上给出噪声声级的数值。声级计中的频率计权网络有A、B、C3种标准计权网络。A网络是模拟人耳对等响曲线中40方纯音的响应,它的曲线形状与340方的等响曲线相反,从而使电信号的中、低频段有较大的衰减。B网络是模拟人耳对70方纯音的响应,它使电信号的低频段有一定的衰减。C网络是模拟人耳对100方纯音的响应,在整个声频范围内有近乎平直的响应。声级计经过频率计权网络测得的声压级称为声级,根据所使用的计权网不同,分别称为A声级、B声级和C声级,单位记作dB(A)、dB(B)和dB(C)。

2.2数学模型

被测量地点的噪声值为:Lc=Li×fmen×fz。式中Lc为噪声测量值;Li为积分平均声级计显示值,单位:dB;fmen为实验室人员对测量结果的影响引入的修正因子;fz为环境条件对测量结果的影响引入的修正因子。上述fmen、flab两个因子的数学期望值均为1,即:E(fmen)=E(flab)=1。2.3测量不确定度的来源不确定度来源主要包括以下方面:重复测量的重现性带来的不确定度、测量仪器的计量性能局限性引入的不确定度、标定仪器所用的标准电容传声器引入的不确定度及测量人员、环境引入的不确定度。由于本测量所用的方法为国家标准方法《工业企业厂界环境噪声排放标准》(12348-2008),故不考虑方法本身的误差,因此在测量不确定度评定中只需考虑与测量过程有关的不确定度分量。因为只有满足环境条件、具备能力资质的实验人员才能进行测量,测量人员、环境条件对测量结果的影响的数学期望值均为1,可不引入。

3测量不确定度的评定

3.1A类不确定度

重复测量带来的不确定度属于A类不确定度,对同一地点进行平行测量10次,结果见表1。X的最佳估计值可以用10次测量结果的平均值来表示:X=∑10i=1Xi10=47.1(dB),标准不确定度(平均值的实验标准差):Li=∑10i=1(Xi-X)210(10-1槡)=0.08692,相对不确定度为:Urel1=L1X=0.001845。

3.2测量仪器的计量性能局限性引入的不确定度

测量仪器的计量性能局限性引入的不确定度属于B类不确定度。仪器的测量范围为25~135dB,最大允许误差为2.0dB,取均匀分布(如果对影响量的分布情况没有任何信息时,则较合理的估计是将其近似看作均匀分布)。L2=2.0/135槡3=0.0086,则相对不确定度为:Urel2=L2135=0.0086135=0.0000637。

3.3标定仪器所用的标准电容传声器引入的不确定度

标定仪器所用的标准电容传声器引入的不确定度属于B类不确定度,根据黑龙江省计量检定测试院出具的检定证书,其不确定度为:L3=0.1dB,测量范围为:10~20000Hz,则相对不确定度为:Urel3=L320000=0.0000005。

3.4测量结果的合成标准相对不确定度

由于3.1、3.2和3.3之间不存在相关性,故合成相对标准不确定度可表示为:Urel=Urel12+Urel22+Urel3槡2=0.00185,合成标准不确定度为:U=Urel?X=0.09。

3.5扩展不确定度:

取包含因子k=2,则扩展不确定度为:U(p)=k?U=0.18。测量结果为p=47.1±0.18dB。

篇7

关键词:电压互感器铁磁谐振措施

一.引言

互感器是一种利用电磁原理进行电压、电流变换的变压器类设备,在电力系统广泛被使用,它是将电力系统一次回路中的电量信息按一定的比例关系传递到二次回路提供给测量仪表和继电保护装置等二次设备,对系统进行监视、测量和保护。电压互感器广泛应用于电力系统中,主要用于测量和继电保护。通过电压互感器将高电压按一定比例变成低电压,以便进行测量和监视,同时,由于电压互感器自身的特点,可以使电力系统二次侧与一次侧隔离,降低了对测量仪表和继电器的绝缘强度要求,使测量仪表和保护装置标准化、小型化,并使其结构轻巧,便于屏内安装。

二.电压互感器的基本知识

电压互感器是将电力系统的高电压变换成标准的低电压(或)的电器。它与测量仪表配合时测量电压和电能,与继电保护装置配合时则可对电力系统进行继电保护。电压互感器有电磁式和电容式之分,电磁式电压互感器实际上就是一种小容量、大电压比的降压变压器,因而其基本原理与变压器没有任何区别。它的一次绕组与电源、二次绕组与负载都遵守并联接线原则。

电压互感器二次绕组不能短路运行,因为电压互感器要求变换电压准确,通常内阻抗很小,短路阻抗压降很小。短路时二次侧产生很大的电流,电压互感器有烧坏的危险。由于电压互感器一次侧与高电压直接连接,若在运行中互感器的绝缘被击穿,高电压即窜入二次回路,将危及二次设备和人身安全,所以二次侧绕组必须一端接地。

三.铁磁谐振产生的原因

在中性点不接地系统中,正常运行时,由于三相对称,且电压互感器的励磁阻抗很大,大于系统对地电容,两者并联后可等值为某电容c,从而系统的对地阻抗呈现容性。在系统谐振时,电压互感器将产生过电压使电流激增,此时除了造成一次侧熔断器熔断外,还将导致电压互感器烧毁。个别情况下,还会引起避雷器、变压器、断路器的套管发生闪络或爆炸。

造成铁磁谐振的原因有很多,下面简单介绍一下:

⑴单相接地,使健全相的电压突然升高至线电压;

⑵由于雷击或其他原因造成线路瞬时接地,进而引起系统单相弧光接地,使健全相电压突然上升,产生很大的涌流;

⑶在电压互感器突然合闸时,其一相或两相绕组内出现巨大的涌流;

⑷电压互感器的高压熔丝不对称故障;

⑸关合闸时三相不同期等,都可造成电压互感器三相铁心出现不同程度的饱和,系统中性点出现较大的位移,位移电压可能是工频,也可能是分频或高频,饱和后的电压互感器励磁电感变小,此时若系统的对地电感与对地电容相匹配,就形成三相或单相共振回路,可激发各种铁磁谐振过电压。

工频和高频铁磁谐振过电压的幅值一般较高,可达额定值的3倍以上,起始暂态过程中的电压幅值可能更高,危及电气设备的绝缘。分频铁磁谐振可导致相电压低频摆动,励磁感抗成倍下降,过电压并不高,感抗下降会使励磁回路严重饱和,励磁电流急剧加大,电流大大超过额定值,导致铁心剧烈振动,使电压互感器一次侧熔丝过热烧毁。电网发生铁磁谐振过电压较明显的现象为系统有接地信号,电压表计指针不停地摆动,电气设备有较强烈的电晕声。

四.电压互感器的谐振措施

1.pt中性点经消谐器和小电阻接地

中性点串入的电阻等价于每相对地接入电阻,能够起到消耗能量、阻尼和抑制谐波的作用。在线路单相接地时,由于中性点对地带有一定电位,故能相应减少非故障相pt绕组的电压,使pt的饱和程度降低,不至于发生铁磁谐振。在线路出现较长时间单相接地时,消谐器上将出现千余伏电压,电阻下降,使其不至于影响接地指示装置的灵敏度,同时非线性电阻片的热容量相当大,可满足放电电流的要求。

2.改变接线方式

在中性点加pt,使得系统零序阻抗增大,各pt在故障下承受较小的电压,该电压不至于使pt铁芯饱和,也不会给pt高压保险造成冲击。

3.互感器的选择

r>

选用励磁特性和伏安特性较好的电磁式电压互感器或改用电容式电压互感器。

4.消弧线圈的安装

选择消弧线圈安装位置时,应尽量避免由于电网运行方式的改变而使部分电网失去消弧线圈。

5.互感器的设计

在设计互感器线路时,减少同系统中电压互感器的组数和中性地接地组数,增大系统感抗。对于高压侧中性点经隔离开关接地的电压互感器,当相邻母线并列运行时,将其中一组电压互感器中性点隔离开关拉开,有利于增大系统感抗。

6.pt开口三角绕组接电阻或分频消谐装置

由于电阻接在开口三角绕组两端,必然会导致一次侧电流增大,也就是说pt的容量要相应增大。从抑制谐波方面考虑,r值越小,效果越显著,但pt的过载现象越严重,在谐振或单相接地时间过长时甚至会导致保险丝熔断或pt烧毁。要很好地抑制铁磁谐振,降低pt一次侧电流,同时亦保持了接地指示装置对零序电压幅值和相位的灵敏度,其优点相当突出,故可采了如下措施:

⑴长远来说,将用单相pt替代消谐器串接在中性点上,目前暂不更动以继续观察消谐器的运行效果。

⑵在新变电站安装时采用抗谐振型pt。

参考文献:

[1]吕俊霞电压互感器常见故障的处理方法[j]电工文摘2009.6

[2]刘议华,顾皓亮,吴晓华,翁顶立电压互感器的运用及常见问题分析[j]低压电器2011

篇8

中图分类号:TN710-34文献标识码:A

文章编号:1004-373X(2010)18-0028-02

Design and Realization of Intelligent Capacitance TesterBased on Single Chip Microcomuter

XU Si-cheng

(Department of Mechanical and Electrical Engineering, Henan Quantity Engineering Vocation College, Pingdingshan 467002, China)

Abstract: A new scheme for design and implementation of the intelligent capacitance tester is proposed based on the analysis and comparison of traditional capacitance measuring instrument. Taking MCS-51 SCM as a control core of the instrument, the instrument was realized in combination with multichannel harmonic oscillator, multi-way switch and fewer external resources, and the measurement process intellectualization, simple structure, low cost and digital display were achieved. The system testing and application prove that the system has reliable performance, high accuracy of measurement, and achieves the desired effect of the design.Keywords: single chip micro-controller; intelligent capacitance tester; multivibrator; digital display

0 引 言

测量电容元件集中参数值的仪表种类较多,方法也各有不同,但都有其优缺点。一般的测量方法都存在计算复杂,不易实现自动测量,而且很难实现智能化的不足。该设计打破了传统的设计模式,首先把较难测量的电容元件参数利用555定时器构成的多谐振荡器转换成简易测量的频率信号[1-2],然后使用单片机计数后再运算求出电容值,最后送数码显示电路,实现了智能化测量,避免了由指针读数引起的误差。

1 电路的设计与实现

1.1 电路设计方案及说明

系统分为测量电路、通道选择和控制电路三大部分[3],如图1所示。测量电路的核心是由555定时器[4]构成的多谐振荡器,通道选择由集成数据选择器实现,控制通道由MCS-51[5-6]构成。根据所选通道,通过P0.3口和P0.4口向模拟开关发送两位地址信号,取得振荡频率,然后根据所测频率判断是否转换量程,或者是把数据进行处理后,得出相应的参数值。

1.2 各部分电路设计

1.2.1 电容测量电路

电容的测量采用脉冲统计法[7],如图2所示。由555电路构成的多谐振荡电路,通过计算振荡输出的频率来计算被测电容的大小。555定时器接成多谐振荡器的形式。该电路的振荡周期为:

T=T1+T2=Cx(ln 2)(R+2R3)(1)

有:

fx=1/T=1Cx(ln 2)(R+2R3)(2)

所以:

Cx=1/T=1fx(ln 2)(R+2R3)(3)

图1 系统硬件设计

为了使振荡频率保持在这一段单片机计数的高精度范围内,在选择合适R的前提下,所测电容分为两档:

(1) 当0.001 μF≤Cx≤0.1 μF,且P3.0接高电平,P3.2接低电平时,R=R1=R3=483 Ω,C3取0.01 μF。由式(2)可知,对应频率fx的范围为10 kHz≤fx≤1 000 kHz,所以Cx=13fxR1ln 2。

(2) 当0.000 01 μF≤Cx≤0.001 μF,且P3.1接高电平,P3.3接低电平时,R=R2=R3=48.3 kΩ,同样C3取0.01 μF。由式(2)可知,对应频率fx的范围为10 kHz≤fx≤1 000 kHz,所以Cx=13fxR2ln 2。

图2 电容测试电路

1.2.2 多路选择开关电路

利用74LS253实现测量类别的转换,74LS253是双四选一的模拟开关选择器件[4]。当选择了某一通道的频率后,输出频率通过P3.4作为CPU定时器的时钟源,并开始计数(P3.5悬空),当计数后读出计数器的值,除以24就得到了被测C所对应产生的频率,通过计算得到要被测值,如图3所示。

图3 选择电路

1.2.3 数码管显示电路

图4是四位LED静态显示驱动电路。

该电路具有锁存、译码、驱动功能的CD4511[4]作为锁存/译码/驱动电路,笔段测试输入LT及消隐输入BI接高电平(无效),锁存输入端LE分别接P1.7,P1.6,P1.5,P1.4。当LE为低电平时,译码输出由ABCD输入端编码决定;当LE由低电平变为高电平时,锁存输入端ABCD的状态,译码输出也相应地保持不变,且具有超量程显示功能[3,8]。

图4 四位LED静态显示驱动电路

图4中数码管显示显示内容如图5所示。

图5 内容显示

2 系统测试及整机指标

为了检测该仪表的整机性能,该表和DT9508B型数字万用表的实测数据如表1所示。

表1 测试数据pF

电容(理论值)万用表读数本仪表读数

7066.767.8

400420410

850810821

5 0004 8104 870

20 00020 60020 400

80 00076 80077 500

经检测该仪表指标达到了如下要求:

(1) 测量范围:0.000 01 μF≤Cx≤0.1 μF;

(2) 测量精度:±5%;

(3) 制作4位数码管显示器,显示测量数值,且能超量程显示。

3 结 语

与传统的电容测量仪表相比,基于单片机技术简化了电路板的空间,提高了系统设计的可靠性,实现了测量过程的智能化[9-10]。经实际运行检验,仪表性能稳定可靠,测量精度高,响应速度快,且基本不受电源波动的影响,抗外界电磁干扰能力强,受周围外界环境的影响小,因此有着广泛的应用空间。

参考文献

[1]阎石.数字电子技术基础[M].上海: 高等教育出版社,2006.

[2]薛燕红.传感器自动检测系统的设计与实现[J].电子测量技术,2007(5):196-199.

[3]何克忠.计算机控制系统[M].北京: 清华大学大学出版社,2004.

[4]康华光.电子技术基础[M].北京:高等教育学出版社,2006.

[5]李刚民.单片机原理及实用技术[M].北京: 高等教育学出版社,2008.

[6]崔华,刘高.单片机原理实用技术[M].北京:清华大学出版社,2004.

[7]杨静.电子设计自动化[M].北京:高的教育出版社,2006.

[8]新型集成电路简明手册及典型应用[M].西安:西安电子科技大学出版社,2005.

篇9

关键词:电流互感器;特点;故障

电流互感器是提供保护、测量用二次电流的一种重要电气设备,其一次侧与一次高压设备相连,二次侧与二次设备相连,它不仅能使测量仪表和继电器保护等二次电气设备与高压电器装置有效的隔离,保证工作人员的安全,还能使测量仪表和继电器标准化和小型化,并可采用小截面的电线、电缆进行远距离的测量;当高压侧发生断路时,电流互感器还能保护测量仪表的电流线圈不受大电流的损害。

1 电流互感器特点

电流互感器一般有电磁式与电容式两种形式,它的一次绕组直接串连在电力线路中,匝数很少,一次绕组中的电流完全取决于被测线路的电流;二次绕组的匝数较多,串接在测量仪表或继电保护回路里。电流互感器在工作时,它的二次回路始终是闭合的,但因测量仪表和继电保护装置的串连线圈阻抗很小,电流互感器的工作情况接近短路,并且它的一次电流与二次回路的阻抗无关。电流互感器的二次侧额定电流一般为5A或1A。运行中的电流互感器二次回路不允许开路,因为二次侧开路会产生很高的电压,直接影响设备和运行人员的安全。为了保证工作人员在接触测量仪表测量仪表和继电器时的安全,电流互感器二次侧必须可靠接地,通常开断电流互感器的二次回路前,应先将其二次端子用铜线短接。

2 电流互感器故障类型

⑴过热。电流互感器发生过热、冒烟、流胶等现象,其原因可能是一次侧接线接触不良、二次侧接线板表面氧化严重、电流互感器内匝线间短路或一、二次侧绝缘击穿引起;⑵二次侧开路。此时电流表突然无指示,电流互感器声音明显增大,在开路处附近可嗅到臭氧味和听到轻微的放电声;⑶内部有放电声或放电现象。若电流互感器表面有放电现象,可能是互感器表面过脏使得绝缘降低。内部放电声是电流互感内部绝缘降低,造成一次侧绕组对二次侧绕组以及对铁芯击穿放电;⑷内部声音异常。原因有:电流互感器铁芯紧固螺丝松动、铁芯松动,硅钢片震动增大,发出不随一次负荷变化的异常声;某些铁芯因硅钢片组装工艺不良,造成在空负荷或停负荷时有一定的嗡嗡声;二次侧开路时因磁饱和及磁通的非正弦性,使硅钢片震荡且震荡不均匀发出较大的噪声;电流互感器严重过负荷,使得铁芯震动声增大;⑸充油式电流互感器严重漏油。当电流互感器在运行中发现有以上现象之一者,应转移负荷,立即进行停电处理。

3 电流互感器开路故障

电流互感器开路现象:回路仪表指示异常,一般是电流表指示降为零,有功、无功表表的指示降低或有摆动,电度表转慢或停转。如表计指示时有时无则可能处于半开路状态;电流互感器本体有异常响声或震动不均匀、严重发热、冒烟等现象,当然这些现象在负荷较小时并不明显;电流互感器二次端子、元件线头有放电、打火现象。

故障处理:发现电流互感器二次开路,应先分清故障属哪一组电流回路、开路的相别,对保护有无影响。尽量减小一次负荷电流。若电流互感器严重损伤,应转移负荷停电检查处理;尽快设法在就近的试验端子上,将电流互感器二次短路,再检查处理开路点。短接时,应使用两好的短接线,并按图纸进行,穿绝缘靴,带绝缘手套。若短接时发现有火化,说明短接有效。故障点在短接点以下的回路中,可进一步查找。若短接时没有火化,可能短接无效。故障点可能在短接点以前的回路中,可以逐点向前变换短接点,缩小范围。为了减少电流互感器开路时间,最好先从电流互感器端子箱排处短接。

4 电流互感器运行维护

电流互感器的运行过程中,运行人员要定期对其进行维护检查,通常采用目测、耳听和鼻嗅三种方法进行检查,具体检查内容有:⑴目测。接线端子是否过热、变色。一二次回路接线应牢固,各接头无松动现象。油位是否正常,有是否变色,油位计是否渗漏油。套管是否清洁,有无裂纹和闪烙痕迹检查二次侧接地是否牢固,二次侧的仪表等接线是否紧密,检查二次端子是否接触良好,有无开路放电或打火。检查端子箱是否清洁,有无杂物;⑵耳听。是否有异常音响,电流互感器有无由于固定不紧而产生较大的嗡嗡声,有无由于二次开路产生异常声响等;⑶鼻嗅。是否因有过负荷而产生的焦糊味,是否有由于接线端子接触不良引起放电产生的臭氧味等。

[参考文献]

篇10

关键词:C8051F360;并联谐振;RMS;DDS

1系统总体设计

利用并联谐振法,基于DDS技术的高性能、高分辨率、高稳定度的信号源,能较好的解决频率稳定性的问题,通过合理的程序编写,能较好的解决测试时间长的问题,完全可以构成高性能RLC测量仪,故采用本方法。系统总体原理框图如图(1)。

图1 系统总体结构

2硬件电路设计

2.1 DDS信号源

采用AD9833产生正弦波,频率范围为1Hz~1MHz。通过SPI串行接口与单片机相连,通过写28位频率字改变输出频率。当外部参考时钟为25MHz时,输出信号可以达到小于0.1Hz的分辨率。AD9833产生的信号通过两级放大,与电压跟随器,恒压输出到测试接口。

2.2 测试接口

通过两个继电器的开合,使电路处于测电容状态和测电感状态,继电器的控制由单片机的一个I/O口控制。当测量电容时,取2mH标准电感,电容的测量范围为100pF~10000pF,误差

2.3 AD637(RMS)

AD637属于高准确度的单片真有效值/直流转换器。输入电压有效值0~2V时,最大非线性误差

3软件流程设计

程序主要实现电容电感测量的功能,通过按键来判断是测量电容还是电感,通过P2.6通断继电器即可。通过写频率字给AD9833,产生正弦波。从频率为0Hz,步进为10000Hz开始步进,判断电压与前一电压的大小,来确定是否谐振频率落在这一步进范围内,若超出范围,则换成下一步进值,分别为1000Hz、100Hz、10Hz。通过循环操作找到电压最大时的频率值,换算显示。

4测试方法

用示波器观测AD9833信号发生器输出的波形,从实际测得的波形可以看出,实际波形的频率与设置频率是否一致。再测试AD637,给其输入由信号发生器产生的标准正弦波,由AD采集显示,是否与预计的有效值电压一致。最后接入已知电容和待测电感,以及已知电感和待测电容分别进行多次测量,将测量值填入下表,计算相对误差,比较分析。测量数据的相对误差都

实际值