开关电源变压器范文

时间:2023-04-10 10:12:22

导语:如何才能写好一篇开关电源变压器,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

开关电源变压器

篇1

【关键词】高频 开关电源 变压器 优化设计 应用

电源变压器具备的主要功能是隔离绝缘、传送功率以及变换电压。电源变压器是一种主要软磁电磁元件,被广泛运用于电力电子技术和电源技术中。开关电源变压器是开关电源的核心部件,能够转换和传输能量。此外,在开关电源变压器的开关电源中,主要的体积与重量占有者,也是发热源,可以使得开关电源向小型轻量方向发展,并且实现平面智能等目标。因此,开关电源的高频化是重中之重。

1 高频开关电源变压器的主要构成以及分类

通常从广义角度而言,凡是将半导体功率的开关器件作为开关管,经对开关管,进行高频开通,或者是进行关断控制,均会促使电能形态向其他电能形态装置转化,即开关转换器。开关电源是指将开关转换器作为主要组成部件,通过采取闭环自动控制的方式,实现输出电压保持稳定的目标,并且实现在电路中增加保护环节电源。高频开关电源是指采用高频DC/DC转换器,作为开关电源工作状态下的开关转换器。

高频开关电源的基本路线主要是由开关型功率变换器,整流滤波电路,交流直线转换电路及控制电路几部分组成。高频开关电源变压器分为他激式和自激式、隔离式和非隔离式、硬开关以及软开关几类。

2 高频开关电源变压器的优化设计

2.1 设计参数选取

高频变压器的设计参数彼此联系,所以,在具体设计时,针对各个参数应该在合理范围内进行有效折中。基于各类应用场景应当首,首先符合占支配地位的重要影因素,其次权衡剩余其他参数带来的影响。因为各参数间紧密联系,在设计时,想把一切参数均达到最佳基本上不太可能。如变压器体积和效率二者之间存在的矛盾,漏感合分布电容二者难以同时减小。所以,在高频开关电源变压器优化设计的整个过程中,本文选取了三个相对比较重要的参数,以此展开分析。

2.1.1 温升

在变压器具体工作的整个过程中,铁芯和绕组中的损耗必定会产生一定热量,从而促使变压器温度逐渐升高,与此同时,这些热量通常会采取辐射和对流的方法,在周围环境中相互传递。因此,应该有效控制温升,进而以防绕组被烧,或者是防止变压器热击穿、防止磁芯性能下降的现象出现。并且,在计算变压器的温升时,通常是会将磁芯和绕组的损耗归在,假设热量经过磁芯与绕组后,整个表面积会发生均匀消散的现象。

2.1.2 分布参数

高频变压器的主要分布参数通常是漏感、分布电容。在高频下,分布参数对开关电源性能会产生关键影响。在开关式的变换器上,漏感可以致使电压尖峰,此时电路中的部分器件会受此影响,发生不必要的破坏。同时,分布电容可能会引起电流尖峰,且可以大幅度延长充电时间,从而开关和二极管会受此影响,发生大规模损耗,进而降低变压器效率及可靠性。因此,在这样的工作模式种,需要尽量降低变压器的分布参数。此外,对于谐振式的变换器而言,能够吸收、利用变压器分布参数。所以在这种模式下,要求必须准确设计分布电容和漏感的值。

2.1.3 损耗与效率

本文将输入功率和输出功率二者的差视为变压器功率损耗值,并且,将其分成两个分量,即绕组损耗和磁芯损耗。通常,在额定电压运行的条件下,随着负载电流的不断变化,铁损不会发生变化,所以铁损也被称作是不变损耗。如果忽视励磁电流,铜损和负载电流的平方成正比,所以铜损也被称作是可变损耗。笔者对变压器分别进行了两项实验,即短路试验实验和空载实验,在额定电压下,分别测得铁损耗和额定负载下铜损耗,结果得出铁损在正常工作时依旧保持不变,而随着负载的变化,铜损会发生一系列变化。

2.2 优化目标

高频开关电源变压器优化的目标是尽量使变压器体积向更小的方向发展,因为只有重量达到更轻,频率达到更高,才能保证温升,从而使得分布参数和绝缘满足设计的前提条件。为将变压器的效率实现最大化,需要注意的是,在设计的过程中,应该遵循以下两个基本原则:

(1)保证变压器的铜损和铁损二者相等。

(2)保证在初次绕组时,变压损耗相呈相等状态。

此外,为使得变压器的体积尽量缩小,在设计时必须采用合适的磁芯和绕组结构,以此保证设计的正常进行。

2.3 优化设计方法

现阶段,纳米晶带材的可用磁心结构主要分为矩形与环形。在磁心结构确定后,根据变压器自身指定的工作条件,初级绕组匝数和绕组结构直接决定了变压器的磁芯截面积大小,绕组尺寸和磁心的窗口面积。因此,对于矩形和环形这类磁心结构,一般是需要对不同层次和匝数下,变压器的体积、重量以及损耗等进行具体的比较,进而对高频开关电源变压器采取更加优质的设计方案。

3 高频开关电源变压器的应用

通过将本文的设计进行应用分析可后可知,在变压器功率相同时,矩形磁心比环形磁心更紧凑,主要原因是:

(1)环形变压器通常是会占用部分磁心,从而使变压器保持固定状态,但是矩形变压器可以利用下侧磁心,进而实现固定变压器的目标。

(2)环形变压器的绕组内侧长度,会极大降低磁心窗口实际利用率,以使变压器的中心出现较大冗余空间,但是矩形变压器的磁心窗口利用率通常不会受到任何的影响。

参考文献

[1]甘焯欣.高频开关电源变压器优化设计分析[J].电子制作,2016(02):28.

[2]宣炯华,罗中良,陈治明,邓雪晴.开关电源高频变压器超声波测量装置设计[J].现代计算机,2014(12):48-51.

[3]张学廷.如何进一步优化高频开关电源变压器[J].科技创新与应用,2015(03):122-123.

[4]周兴明,朱锡培.开关电源高频变压器电容效应建模与分析[J].电子世界,2014(10):482.

[5]杨旭峰,韩闯,李彦斌,YANGXu-feng,HANChuang.关于开关电源变压器变换效率优化设计[J].计算机仿真,2015(10):149-153.

[6]王晓毛,梅桂华,谢应耿.基于高频开关电源的反向注入式直流平衡装置的研究及应用[J].电力系统保护与控制,2015(08):139-144.

作者简介

常乐(1984-),女,山西省晋中市寿阳县人。现为山西职业技术学院本科硕士讲师。主要研究方向为应用电子、通信工程。

篇2

【关键词】变压器耦合并联型;开关电源;检修

彩色电视机的电源系统包括开关稳压电源和行输出变压器脉冲整流电源两大部分。开关稳压电源具有效率高、重量轻、稳压范围宽、稳定性和可靠性高、易于实现多路电压输出和遥控开关等优点。按稳压控制方式分调宽式和调频式,按开关变压器与负载的连接方式分为串联型和并联型,按振荡启动方式分为自激式和他激式。不同类型的开关电源电路,工作方式不同,在电路结构上会有较大的差异。而且开关电源电路的损坏在彩电维修中占有很大的比例。现具体讨论变压器耦合、并联输出、自激式、调宽稳压型开关电源的检修注意事项和检修方法。

一、检修注意事项

由于开关电源工作在高电压、大电流的情况下,所以为了实现安全、快速的检修,必须注意以下几点:

1、为了避免事故发生,检修时必须才取必要的措施。在被检测电源输入端外接1:1隔离变压器,将检修整机与电网火线隔离开来。另外最好把工作台铺上绝缘胶垫。

2、检修时应注意人身、仪器的安全。由于“热底板”存在着与电网火线相通的可能,因此应注意电源部分“热底板”和“冷底板”的区域范围。

3、市电输入回路的延时熔丝管或供电回路的保险电阻烧坏,不能采用导线短接的方法进行检修,以免扩大故障范围。

4、开关电源未起振时,大部分彩电的300V供电的滤波电容会在关机后存储一定的电压,必须先将存储的电压泄放掉后再检修,以免损坏测量仪表或扩大故障范围。

5、检测开关电源不同部位的电压时,要选择好接地线。即测开关电源初级部分的关键点电压时,应选择300V供电的滤波电容负极为“地”,而测开关电源输出端电压时,应该以高频调谐器外壳或与其相通的部位为“地”,否则会导致所测电压不准。

6、开关管击穿后,必须检查故障确定原因后再通电试机,以免更换后的开关管再次击穿。

7、检修过压保护电路动作的故障时,不能轻易脱开保护电路进行检修,以免扩大故障范围。

8、需要暂时断开负载,以判断故障是在负载的行输出级还是在开关电源部分时,必须在开关电源的输出端接上一个假负载才能开机。假负载需接在B+电压的滤波电容两端或B+供电的整流管负极与地之间,而不能接在B+整流管正极与地之间。当采用断开稳压电路检修时,应在交流电压输入端串接一个100W灯泡降压,防止输出电压过高而烧坏元件。

二、检修时的检测要点

不同类型的开关电源电路,由于工作方式的不同会在电路结构上有较大差异,但基本工作原理和方框结构比较相近,检测要点也基本相同。

1、输入端“交~直变换”的检测要点

输入端的“交~直变换”是指220V输入回路、整流、滤波这部分电路,它的任务是把220V的交流电压变换成直流电压,输送到开关管的集电极。因此,通过检测开关管集电极上有无250~340V左右的直流电压,来判断这部分电路工作是否正常。若此电压为零,表明电路出现断路故障,应先对其进行检修,使其达到正常后,才能检修其他电路。

2、开关振荡电路的检测要点

开关振荡电路是开关电源的关键部位,它包括开关变压器(主要是初级绕组和正反馈绕组)、开关管、启动电路和正反馈电路。

(1)开关振荡电路是否起振的判断方法如下:

1)直流电压检测法:检测开关管基极有无0.1~0.2V的负电压,有负电压即表示已经起振。

2)“dB”电压检测法:用万用表的dB挡检测开关管基极或集电极有无dB电压,有dB电压表示已经起振。如万用表没有dB挡,可在表笔上串联一个0.1μF/400V的无极性电容后,用交流电压挡去测量。

3)示波器观察法:用示波器观察开关管基极或集电极有无开关脉冲信号。注意:用示波器检测时,必须在220V输入端加接1:1隔离变压器。

(2)若通过以上检测确定开关振荡电路没有起振,则应重点检查以下电路:

1)启动电路是否开路。检查方法十分简单,用万能表的直流挡位测量开关管的B极,在开机瞬间如开关管B极电压有跳变则说明启动电路正常,如果按动开关时表笔没有摆动则说明启动电路开路了。

2)正反馈电路中有无元件开路或短路。检修时,只要对正反馈回路中的阻容元件测量或采用代换法就可以查找出故障根源。

3)由取样绕组、取样比较、误差放大和脉冲宽度调节电路组成的稳压电路是否有故障。必要时可暂时断开稳压控制电路,使振荡器单独起振。

4)保护电路是否有故障,必要时可断开保护电路。

3、输出端“交~直变换”的检测要点

输出端的“交~直变换”是指开关变压器次级绕组输出的脉冲电压经整流、滤波后形成的直流输出电压。一般开关电源有多路直流输出电压,检测各路输出的直流电压值,可以判断开关电源的工作是否正常。

4、稳压控制电路的检测要点

稳压控制电路一般包括取样绕组、取样电路、基准电压、比较放大、误差放大和脉冲控制电路几个部分。它的任务是通过自动调整开关管的导通时间,从而调整高频脉冲的占空比,使输出电压稳定在负载所要求的电压值上。检测稳压控制电路的方法是用万用表检测输出端的直流电压,然后微调稳压电路中的可调电阻,看输出端的电压能否变化,能否重新稳住,从而判断整个稳压电路中是否正常。

三、常见故障的检修方法

1、保险丝熔断

开机就烧保险丝,且烧断的保险丝内部呈现出黑色烟雾状,表明电路中有严重的短路性,且一般都发生在开关电源本身,这时应检查消磁电路、整流、滤波电路或是开关管等重要元件是否被击穿了;如果烧断的保险丝还呈透明状,通常是电流过载而造成的,多数为行输出有短路性故障。

维修方法:先采用串联灯泡法简捷地判断出是开关电源本身故障还是行输出电路的问题:在交流输入端串入一个100w/220v的灯泡,开机观察现象。如果在正常情况下,接通电源后,灯泡会瞬间很亮,随后变成暗光;如果灯泡没有发光,则说明是保险丝或是电源开关损坏;如果灯泡在瞬间很亮后就再没有发光了,则表明消磁之前的电路正常,应把重点放到整流以后的电路;如果灯泡长时间保持很亮,则说明电源部分有短路性故障,应着重检查整流电路和稳压电路;如果灯泡亮了一下,随后又变得较亮,则很大可能是行负载有短路,这时可对行输出电路进一步检查。

如果判断出是开关电源本身故障。先用观察法检查电路上有没有烧焦或是炸裂的元件,闻一闻有没有异味。经看,闻之后,再用万用表进行检查。首先测量一下电源输入端的电阻值,若太小,则说明后端有局部短路现象,然后分别测量四只整流二极管正、反向电阻和限流电阻的阻值,看其有无短路或烧坏;然后再测量一下电源滤波电容是否能进行正常充放电,再就测量一下开关管是否击穿损坏。需要说明的一点是:因是在路测量,有可能会使测量结果有误,造成误判。因此必要时可把元器件焊下来再进行测量。

2、无直流电压输出

如果保险丝是完好的,在有负载的情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路,短路现象,过压,过流保护电路出现故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。

维修方法:首先,用万用表测量开关管集电极有无300V直流电压,若没有应往前查交流输入,保险丝、整滤波等电路是否正常;若集电极电压正常,则检查开关管b极电压。测开关管b极电压或者在关机瞬间,用指针万用表R×lΩ挡,黑笔接b极,红笔接整流滤波电容负极(热地),听电源有启动声音,说明电源振荡电路正常,仅缺乏启动电压,是启动电阻开路或铜皮断。若无启动声,在测be结后,迅速将表转到电压档,测c极电压是否快速泄放。若是,说明开关管及其放电回路均正常,正反馈电路存在故障,包括反馈电阻、电容、续流二极管、正反馈绕组及其开关管故障。若c极电压仍不泄放,说明开关管及其回路有开路故障或b极有短路接地故障。

3、有直流电压输出,但输出电压过高

这种故障往往来自于稳压取样和稳压控制电路出现故障所致。在开关电源中,直流输出、取样电阻、误差取样放大管、光耦合器、脉冲控制电路等电路共同构成了一个闭合的稳压控制环路,任何一处出问题都会导致输出电压升高。

维修方法:由于开关电源中有过压保护电路,可以通过断开过压保护电路,使过压保护电路不起作用。用分割法以稳压环路中的光耦为分水岭,对电路实行分割,确定故障范围。将光耦件热地端的两控制脚短路,观察B+变化,B+严重下降或停止输出,说明热底板部分正常。故障点在B+取样电路及光耦;变化不明显或无变化,说明热底板部分有故障,要仔细检查此部分的脉冲控制电路。检查脉冲控制电路可采用调整交流电压法:用交流调压器调整交流输入电压,监测+B输出电压。然后测脉宽调整电路中各级三极管的b、e、c极电压、光耦端子间压降变化,看其是否与稳压原理相符或变化趋势一致。测到某一点与稳压原理应得值相反,说明被测点的这一级有故障,应逐一检查相关元件。注意振荡定时电容容量下降也会使输出电压过高。

对于具体的开关电源电路故障现象,可因故施修、因机施修,灵活掌握,采用不同的检修方法和步骤,以达到准确、快速、高质量地完成检修任务为目的。无论采取何种方法和步骤,原则是不能造成稳压电路开路、开关管失控,引起开关电源输出电压升高,造成大面积元件损坏,反而将故障扩大。如果掌握了开关电源各电路和元件发生故障的规律,就能够迅速地排除各种故障。

参考文献

[1]章夔.电视机维修技术[M].北京:高等教育出版社,2004.

[2]詹新生.彩色电视机检修与技能实训[M].北京:化学工业出版社,2008.

[3]梁建华.电视机维修技术[M].北京:中国劳动社会保障出版社,2008.

作者简介:

篇3

【关键词】纳米晶;软磁材料;铁芯;铁基合金

引言

八十年代以来,由于计算机网络和多媒体技术、高密度记录技术和高频微磁器件等的发展和需要,越来越要求所用各种元器件高质量、小型、轻量,这就要求制造这些器件所用的软磁合金等金属功能材料不断提高性能,向薄小且高稳定性发展[1]。正是根据这种需要,1988年日本的Yoshizawa等人首先发现,在Fe—Si—B非晶合金的基体中加人少量Cu和M(M=Nb,Fa,Mo,W等),经适当的温度晶化退火以后,可获得一种性能优异的具有b.c.c结构的超细晶粒(D约10nm)软磁合金[2]。这时材料磁性能不仅不恶化,反而非常优良,这种非晶合金经过特殊的晶化退火而形成的晶态材料称为纳米晶合金。其典型成份为Fe73.5CuNb3Si13.5B9,牌号为Finemet。其后,Suzuki等人又开发出了Fe—M—B(M=Zr,Hf,Ta)系。到目前为止,已经开发了许多纳米晶软磁材料,包括:Fe基、Co基、Ni基[3]。由于Co基和Ni基易于形成K、λs、同时为零的非晶态或晶态合金,如果没有特殊情况,实用价值不大。故本文主要介绍铁基纳米晶软磁合金。铁基纳米晶合金是以铁元素为主,加人少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为l0—20纳米的微晶,弥散分布在非晶母体上,被称为微晶、纳米晶材料或纳米晶材料。纳米晶材料具有优异的综合磁性能:高饱和磁感(1.2T)、高初始磁导率(8万)、低Hc(0.32A/M),高磁感下的高频损耗低(P0.5T/20kH=30W/kg),电阻率为80微欧厘米,比坡莫合金(50—60微欧厘米)高,经纵向或横向磁场处理,可得到高Br(0.9T)或低Br值(1000Gs)。是目前市场上综合性能最好的材料。

1 纳米晶软磁合金的性能

1.1 软磁合金的磁特性

对于纳米晶软磁合金,按性能要求,常分为高Bs型、高0型等。

(1)高型纳米晶合金,其成份至今局限于FeSiB系。以FeCuNbSiB系磁性最佳,其性能参数达到:在磁场0.08A/m下,相对磁导率达14万以上,矫顽力最低已达0 .16A/m,饱和磁感Bs高达135T,在频率lOOkHz和磁感0.2T下铁损低达250kW/1T。值得研究的是饱和磁致伸缩系数21×10-6,而不是0左右。

(2)高Bs型铁基纳米晶合金,其Fe含量在88at%以上,Bs值可达16~1.72T,典型成份为FeMB(M=Zr,Hf等)。对于FeZrB系合金,典型成份为Fe73.5CuNb3Si13.5B9,经600℃退火1h,其Bs=166T,j(1kHz)=24000。对于FeHfB系,典型成份也是FeHf7B2在600退火1h,其Bs=1 6T,(1kHz)=18000。另外,对于Fe—P—C系合金,以Nd作为添加元素也可获得高Bs的铁基软磁合金。FeCuNbSiB系纳米晶合金是综合性能优秀的典型合金。曾将FeCuNbSiB系纳米软磁合金与其它软磁材料的磁特性进行过对比,发现其它各类软磁材料都是在一两项性能方面具有优势。

2 非晶纳米晶软磁材料的应用

鉴于非晶纳米晶软磁材料的优异特性 ,可应用于电子仪器设备中的大功率中高频变压器、高频开关电 源、电磁兼容器件、高精度电流互感器、高频电流取样器、磁传感器等器件中

2.1 大功率中高频变压器

在 20~50 kHz频率范 围内的变压器 ,以往一般采用铁氧体做变压器磁芯 ,由于制造工艺的限制 ,大功率变压器所需要的磁芯很难解决 ,不得不使用几个磁芯。纳米晶软磁材料具备的优异性能,为高频变压器 的小型化 、轻量化提供了理想材料。用纳米晶软磁材 料制造的变压器具有以下优点: 功率大:当 10~20 kW时,功率密度可达到 15~ 20 kW/kg;漏感小 :一般小于5 H;效率高:可达到 90%以上;体积小、质量轻:15 kW变压器的质量仅为 3 kg左右,体积比铁氧体降低 50%;温升小 :由于纳米 晶软磁材料的低损耗,可大幅度降低发热,从而提高变压器的使用可靠性。

2.2 高频开关电源

纳米晶软磁材料的薄带厚度和电阻率决定其最佳应用频率范围在 kHz频带,这正好与目前的高频开关电源频带相同,高频开关电源就成了应用非晶纳米晶软磁材料应用的重要领域。高频开关电源中使用的磁性器件较多。这些磁性器件均为开关电源的核心元件,如功率变压器、电流互感器、共模电感、扼流圈、滤波电感、可饱和电感、尖峰信号抑制器 和抗噪声干扰器等。 我国已开发出多种规格的非晶纳米晶材料的 O 型 、C型、CD型等器件应用于开关电源变压器的磁芯,并广泛应用到了中频电源 、逆变电源 、程控交换机及逆 变焊机等的电源变压器。这些产品的成功推广应用,有效地提高了非晶纳米晶软磁材料及器件的技术与生产水平。

2.3 电磁兼容器件

在现代电子设备设计中,EMC(电磁兼容)与 EMI(抗电磁干扰)已越来越引起人们重视,解决这些问题的关键元件之一即是电感器件。对EMI器件中使用的 电感器设计,人们在磁芯材料选用上曾做过很多探讨。选用价格低的硅钢和铁粉芯,其频率特性不佳,易发热,影响开关管工作;使用常规高性能铁氧体材料,其饱和磁感应强度和居里点低,需要增大磁芯尺寸与加大气隙;选用坡莫合金铁芯,成本则较高,而且大电 流条件下使用时的性价比更高。因为这种电感器的工作频带在 kHz级,非晶纳米晶材料正适合用于此频 带。现在,通过改进工艺加工技术和热处理技术,研制出了有效磁导率从几十到几万的系列材料,可以满足不同的电感器件需要。

2.4高精度电流互感器

对于大电流、高精度的电流互感器,磁芯材料的磁特性是产生误差的一个很大的影响因素。以往较常用 的材料是坡莫合金,但坡莫合金高昴的价格限制了其大规模应用,纳米晶软磁材料是 目前最为理想的制造 大电流、高精度电流互感器磁芯的材料。纳米晶软磁 材料的高磁导率 (初始磁导率 ≥60000)和低损耗特性很好地满足了电流互感器的精度要求磁芯材料的温度稳定性对测量精度有很大的影响。对纳米晶软磁材料进行温度稳定性研究发现,在工作磁感应强度低于0.8T、使用温度低于 120℃时,磁芯的值随温度的升高而略有增加 ,这有利于减小互感器的测量误差。近几年来,国内有关单位开展了电流互感器纳米晶软磁磁芯的研制生产工作,所生产的纳米晶软磁电流互感器不仅质量要比坡莫合金轻 1/3, 而且精度可达 0.2S级水平。

2.5 高频电流取样器

高频电流取样器由于其使用频带宽、测量精度高, 用常规软磁材料难于满足其全频段幅值和相位的高精度测量,通常用适合于不同频段的几种软磁材料制作 电流取样器,进行分频段测试,这不但大幅度地增加了测量仪器的质量和体积,设备操作不便,且对测试精度 有着较大的影响。通过对纳米晶软磁材料的成分及处理工艺进行设计和调整,用该种材料制备的纳米晶软磁磁芯制作高频电流取样器,其性能与国外同类产品相当。

2.6巨磁阻抗传感材料及器件

材料的交流阻抗随外加直流磁场的改变而变化的特性称为磁阻抗效应。最初对这一效应研究得最多的是具有零或负磁致伸缩系数的钴基非晶态软磁合金细丝,随着研究的深入以及新型纳米软磁材料一铁基纳米晶软磁合金的研制成功,由于其具有非常优异的软磁性能,是研究 GMI效应的最佳材料,正日益受到国内外学者的重视。当这种细丝通以高频电流时 ,丝两端感生的电压振幅随沿丝长方向所加外磁场强度的改变而变化,这种变化无磁滞效应,而且响应快 、灵敏度高,这种特别大的磁阻抗效应即为巨磁阻抗效应(Giant Magneto—impedance)。它的灵敏度一般情况下可达 0.25%/(A·m ),比传统的霍尔元件高出两个数量级,同时比最近几年才发展起来的巨磁电阻效应 (Giant Magneto—Resistance,GMR)还高一个数量级,巨磁阻抗效应一般简写为 GMI。

参考文献:

[1]卢志超,周少雄.非晶合金发展的历史、现状与展望.

篇4

【关键词】LED筒灯;驱动电源电路;反激式;BP3105

1.引言

在全球能源日益短缺、环保要求不断提高的情况下,LED灯具正逐渐成为当下及未来照明市场的发展方向。LED照明具有光效高、易控制、寿命长、节能环保等显著优势,是人类继白炽灯、荧光灯之后新的照明革命。目前LED灯具已广泛应用于室内、室外、景观照明,在室内照明LED灯具中使用较普遍的是筒灯、射灯、平板灯、球泡灯。随着LED技术的迅猛发展,LED在照明市场被业界认为在未来10年成为最被看好的市场以及最大的市场,LED灯具也将是取代白炽灯、荧光灯的最大潜力商品。

2.LED筒灯市场分析

筒灯是在工程建设中用量最大的室内工程灯具,它广泛用于在商场、宾馆、写字楼和家庭装修中,它是一种点光源灯具,通常是嵌入在天花上作为空间照明使用。筒灯的光源主要是节能灯、LED两大类。相比较而言,LED除了价格较贵外,其他主要性能都明显高于节能灯,例如光效方面:螺旋节能灯为60lm/W、2010白光LED为120lm/W;寿命方面:螺旋节能灯

筒灯根据安装方式主要分为嵌入式和明装式,其中嵌入式占据近95%的市场;根据灯杯尺寸主要可分为2.5、3、4英寸(民用)和3、4、5、6、8、10英寸(工程),其中4英寸使用最多;根据结构可分为自带控制装置式(即一体式)和控制装置分离式,其中一体式LED筒灯市场很少见。

3.LED筒灯设计方案

结合市场分析和成本控制,本设计任务确定为一款4英寸一体式LED筒灯。主要光电性能符合国家《LED筒灯节能认证技术规范》CQC3128-2010。

3.1 LED筒灯技术参数

功率:一般市场常见4英寸筒灯匹配紧凑型节能灯功率为9-15W左右,根据工程常规通用换算公式LED1W=节能灯1.5-2W,确定本设计输出功率为10W。

功率因数≥0.8,电源效率≥80%,初始发光效率≥80lm/W。

3.2 LED筒灯总体结构设计

LED筒灯由以下几部分组件构成,总体结构图如图1所示。

(1)外壳:由反光杯和散热器构成。散热器选用散热良好的车铝型材构成,选用常见的太阳花形式。散热器底部通过导热硅脂在外侧与反光杯底部紧密连接,反光杯底部内侧与LED光源的铝基板通过导热硅脂紧密相连。

(2)灯罩:选用亚克力导光板,其具有超薄、亮度高、导光均匀、节能环保、无暗区灯特点,配合多颗均匀散布的小功率LED灯珠,使灯具发光更加均匀,没有光斑。

(3)LED光源:由铝基板(MCPCB,35μm铜层及1.5mm铝合金)和30个标称0.32W的LED灯珠组成,避免了使用少量大功率灯珠带来的发光不均匀的弊病。选用30颗首尔STW8Q14BLED灯珠组成10串3并的结构。STW8Q14BLED典型光电参数:色温2600-7000K,光通量30.5lm(2600-3700k),32lm(3700-7000k),正向电压降VLED=3.2V,正向电流ILED=110mA,结温RJC=18℃。LED的散热垫与PCB的敷铜层采用回流焊焊在一起。

(4)驱动电源:因为单个LED工作电压为低电压,且工作电压范围很窄,通常不能直接供电,否则极易损坏。本设计选用恒流驱动,可以避免LED灯珠正向电压变化所导致的工作电流变化,从而提高LED发光的光视效能和稳定度,延缓光衰。所以采用恒流驱动芯片,电源沿用常用的单开关反激式电路。驱动电路板设计成环形,外装塑料外壳,与灯具外壳固定相连,散热器从其中间穿过,构成一体式结构。

4.电路设计

4.1 BP3105芯片简介

BP3105是一款高精度的LED恒流控制芯片,适用于输入全电压范围的反激式隔离LED恒流电源。采用原边反馈模式,无需次级反馈电路,也无需补偿电路即可实现恒流,系统成本低。芯片内带有高精度的电流取样电路,使得LED输出电流精度达到±3%以内。BP3105采用小体积SOT23-5封装,管脚封装图见图2。其中GATE为外接NMOS管驱动端;CS为电流采样端,采样电阻RCS接在CS与GND之间;FB为辅助绕组的反馈端。BP3105具有多重保护功能,包括LED开路保护、LED短路保护、芯片过温保护、过压保护、欠压保护、FB短路保护等。当Vcc电压高于16V时,芯片关断外部功率管,芯片自动重启直到外部过压状态解除;Vcc内部自带19V钳位电路,以防止异常条件下芯片损坏。芯片内部热保护电路检测结温度。过热保护阈值设置在160℃,迟滞为30℃。当结温度超过阈值(160℃)时,将关断功率MOSFET,直到结温度下降30℃后,MOSFET才会重新使能。当输出出现LED短路或LED开路时,系统将自动进入低功耗模式,同时不断检测负载状态,直到故障解除。当故障解除后,系统自动恢复正常工作。

4.2 驱动电路设计

LED筒灯驱动电路见图3和图4。其中图3为输入EMI滤波电路和桥式整流电路,图4为基于BP3105芯片的恒流驱动电路。

图3中F1为保险丝,起过流保护作用;RV为压敏电阻,起过压保护作用;D1-D4为桥式整流电路。Ld1、Ld2、C1、C2组成EMI低通滤波器,Ld1=Ld2,C1=C2,用于共模方式的EMI抑制。共模电感Ld1、Ld2对称地绕在同一磁芯上,在正常工作电流范围之内,由于磁性材料产生的磁性互相补偿,从而能避免磁饱和,对共模干扰信号呈现高阻抗,而对差模信号和电源电流呈现低阻抗,这样就保证了对电源电流的衰减很小,而同时又抑制了电流噪声。EMI滤波器既抑制了来自电网的电磁干扰,同时对驱动电源自身产生的电磁干扰也起衰减作用,以保证电网不受污染。

图4中C1、C2、R2、D5-D7构成逐流滤波无源功率因数校正电路,C3作为直流端滤波电容。加入逐流电路后在每半周期内,将交流输入电压高于直流输出电压的时间拉长,图3中整流二极管D1-D4的导通角就可以增大达到120度以上,交流电源输入电流为零的死区时间则缩短,电流波形也更趋接近正弦波,减小了电流畸变因子,从而提高电路输入功率因数,由0.6变到0.9,同时降低输出直流电压,至少比桥式整流电容滤波电路的直流输出电压低15%。经过逐流电路后,由T1、Q1、D7、C6构成的反激式开关电源电路完成隔离输出和变压功能,控制芯片IC1实现反激式开关电源电路的开关控制功能。反激式开关电源电路具有电路结构简单、安全隔离、成本低的优点,特别适合小功率LED驱动电源的要求。D6、R6、C5构成反激式开关电源电路的吸收电路,在开关Q1关断后,吸收开关上的尖峰电压。

BP3105芯片仅需要25uA的启动电流,系统上电后启动电阻R5对电容C4进行充电,当电压达到芯片开启阈值14V时,芯片内部控制电路开始工作。系统启动后,其由辅助绕组对Vcc端进行供电。芯片逐周期检测变压器主级侧的峰值电流,CS端连接到内部的峰值电流比较器的输入端,与内部500mV阈值电压进行比较。当CS外部电压达到500mV时,功率管Q1关断,系统工作在电感电流断续模式。BP3105芯片通过FB来反馈输出电流的状态,FB的阈值电压设置在1V。R9、R10为反馈网络的检测电阻可以设置到300KΩ~750KΩ,同时利用分压可以进行线电压补偿。变压器T1主级侧峰值电流:Ip=500(mV)/RCS,实际为了便于调整阻值,RCS用两个电阻R3和R8并联。

4.3 变压器设计

根据BP3105芯片使用要求,系统工作在电感电流断续模式,最大占空比为Dmax=0.42,中心工作频率f=44KHz(在40KHz~48KHz之间便于通过EMI测试)。输入直流平均电压为200-280V,输出直流平均电压Uo=VLED*10=32V,输出直流平均电流Io=ILED*3=330mA。

(1)确定变比

假设工作在断续临界点,最大占空比情况下,根据伏秒积分为零的公式(1)可算出变比,取7。其中Np 是变压器初级的匝数,Ns 是变压器次级的匝数,TR为次级电流流通时间。

(1)

(2)确定初级电感量

根据次级电流公式(2)和磁势平衡公式(3),可以算出变压器原边峰值电流Ip=180mA。公式(4)为临界连续时原边电感量计算公式,其中电源效率取0.7,在断续工作状态下,电感取值应小于该计算值。根据实际实验结果,变压器初级电感量定为1.7mH。

(2)

(3)

(4)

(3)确定绕组匝数

根据输出功率10W选择变压器E19磁芯,4+3引脚骨架,变压器骨架尺寸见图5。铁芯材料选常用的PC40锰锌铁氧体,Bs=3000G,Br=95G,Ae=0.23cm2。根据公式(5)确定初级绕组匝数,其中ΔB=Bs-Br,余量系数F取0.6。最终选择N1初级绕组(4、5引脚)167匝,线径0.25;N3次级绕组(6、7引脚)24匝,线径0.15;N2反馈绕组(1、3引脚)66匝,线径0.35。绕组之间覆盖2层聚酯膜。

(5)

5.散热器设计

在热的传导过程中,各种材料的导热性能不同,即有不同的热阻。热阻越小,其导热性能越好。太阳花形散热器是LED筒灯广泛采用的一种散热形式。设Y为最优翅片长度,X为芯片功率,根据线性拟合公式Y=4.0333(X-12)+34.422nn,可以计算出最佳翅片长度为26.355mm。翅片厚度的增加,并不能有效增大翅片散热面积,相反却会造成散热器重量的增加,提高成本。但考虑到散热器翅片采用挤压工艺成型,对厚度有一定下限要求,在保证大于1mm前提下,尽量减薄以降低散热器的制造成本。根据计算经验,翅片间隔需要大于4mm,才能保证自然对流的顺利进行。本设计采用一体化结构,散热器放从环形驱动电源中间穿过,外形图见图6,总直径只能限制在70mm内,本设计中所用太阳花散热器翅片长20mm,厚1mm,数量36*2=72,翅片间隔3mm。

6.测试结果分析

使用远方电参数测试仪、积分球对整灯进行测试。

光电实际测试结果:功率因数=0.9,实际输出功率=10.2W,电源效率=80%,初始发光效率=82lm/W,全部符合设计要求。

温度测试结果:环境温度TA=25℃,LED散热垫的温度TC=70℃。LED工作状态:VLED=3.2V,正向电流ILED=110mA,极限工作结温TJmax=125℃。TJ=RJC(VLED×ILED)+TC=18℃/W(3.2V×110mA)+70℃=76.3℃

7.结论

文章结合LED照明发展现状,设计了一种基于BP3105恒流驱动芯片的小功率LED筒灯。本设计把控制电源设计成环形,与灯具外壳连接在一起形成整体,这种一体式的结构非常方便用户安装;利用多颗小功率LED灯珠构成灯盘,配合导光板,很好地实现了光源的均光性;利用逐流电路提高功率因数到0.9;利用恒流芯片构成的反激式开关电源结构简单,性能稳定,成本较低。经测试光效达82lm/W,灯具内部LED散热垫温度70℃,可以大大延展寿命。目前经过小批量试产的产品应用情况良好,验证了设计方案的可行性和正确性。

参考文献

[1]曹白杨.电子产品设计原理与应用[M].北京:电子工业出版社,2010.

[2]杨恒.LED照明驱动器设计步骤详解[M].北京:中国电力出版社,2010.

[3]刘胜利.高亮度的LED照明与开关电源供电[M].北京:中国电力出版社,2010.

[4]郭庆明,何云峰,王昌明,张爱军.单端反激式开关电源变压器[J].电子设计工程,2010(5):165-168.

[5]周翠娟.节能灯具设计中的关键技术研究[D].上海:上海交通大学,2008.

[6]阎军,孙兴盛,王乜,王舒,毛火华,刘书田.半导体照明灯具典型散热结构分析与优化[J].固体力学学报,2010(12):291-293.

[7]James Brodrick,李雪.LED筒灯的近期性能评估[J].中国照明电器,2008(12):35,28.

[8]CQC3128-201.LED筒灯节能认证技术规范[S].北京:中国质量认证中心,2010.

篇5

>> 意法半导体的高集成度硬盘电机控制器芯片 选择高集成度DSP的关键因素 欧胜高集成度电源管理方案 提高电气设备试验仪器集成度关键技术的研究 一种高集成度 GPS 记录仪一体机的研究 飞塔FortiGate 1000A:功能集成度高 SMSC推出高集成度三频无线耳麦音频处理器 从头到尾构建混合信号高集成度系统(SoC)的步骤(6):布局 从头到尾了解混合信号单片高集成度系统(SOC)设计(1) 手机超薄高集成度对主板DFX的挑战 寸金寸土的空间 就买高集成度小板 打入工业和医疗市场的高集成度电源IC 使用高集成度DSP时必须考虑的关键问题 顺应高集成度发展趋势,SoC和SiP各显神通 多模市场需要灵活、高集成度RF解决方案 ADI推出高集成度电源管理IC-调节器/LDO 蓝牙芯片:致力于高集成度与低功耗 矿用电机常用故障检测技术研究 直线电机伺服控制技术研究 电机集群控制技术研究 常见问题解答 当前所在位置:

关键词:永磁同步电机;DC/DC;控制策略

1 驱动电机控制原理

永磁同步电机转子为永磁体,采用旋转变压器作为电机位置传感器,以电机相电流作为反馈量,控制方式为转矩闭环控制,控制系统原理如图1所示。

高压直流电源经电机控制器DC/AC变换为电压幅值和频率可调的三相交流电,驱动永磁同步电机运转:同时,通过检测当前的转子位置信号和对电机的相电流进行实时采样,并送入电机控制单元。电机控制单元通过CAN总线与整车控制器进行通信,从整车控制器获得当前转矩指令、运行模式和旋转方向,并根据反馈得到电流和电机位置信号,控制电机控制器产生所需要的三相交流电,从而实现电机正常运行。

2 控制器硬件功能描述及组成

2.1电机控制器具有如下功能

(1)过流、过压、过温、欠压、超速、电源极性连接错误等保护功能;

(2)转矩监控功能;

(3)具有CAN电路接口用于通讯,232通讯接口用于程序烧写、监控和标定:

(4)控制永磁同步电机运行。

2.2控制器硬件组成

控制器硬件主要由低压DC-DC控制电源单元、DSP控制单元、功率变换单元、接口电路、检测单元(温度传感器,电流传感器)构成。控制器硬件结构框图,如图2所示。

2.3 DC-DC控制电源单元

DC-DC控制电源在宽范围输入电压下,为DSP及驱动电路和控制电路提供多路相互隔离的电源。根据控制器实际需求,DC-DC控制电源采用多个反激式开关电源来满足需求。

2.4 DSP控制单元

DSP控制单元以驱动S320LF2407为主控芯片,采用永磁同步电机变压变频矢量控制方法,实现对永磁同步电动机的转矩闭环控制。

DSP控制单元主要功能包括:控制算法的实现:SVPWM信号的产生:电流、电压及温度信号的采样与计算:电机转子位置与转速的检测与计算:通过CAN总线通讯接收整车控制命令;各种保护功能(欠压,过压,过流,过温等)的实现。

DSP控制单元的电路主要包括:时钟电路;复位电路;JTAG接口电路:外部中断电路、PWM驱动控制电路:AD采样电路、旋变信号检测电路;CAN/232接口电路;D/A转换电路;外扩EEPROM电路;I/O控制电路等。

2.5功率变换单元

控制器的功率变换单元由直流滤波电容、大功率器件IGBT及其驱动电路构成。

功率模块驱动电路主要接受DSP开关信息并反馈相关信息(保护信号);放大开关信号并驱动IGBT;提供电压隔离和保护功能。控制器驱动电路以隔离型驱动芯片为核心,对控制单元提供的PWM信号进行隔离放大,驱动大功率器件IGBT,实现D C-AC转换。控制器采用英飞凌的FS400R07AIE3(400A/650V, PinFin结构)作为大功率开关器件。直流滤波电容采用国内领先的AAEV42872膜电容,配套与IGBT模块组成模块式结构。

2.6检测电路

检测电路主要包括电机相电流(A/C相)、母线电流、母线电压、电机温度、控制器温度及电机位置和速度进行实时检测,并将采集到的信息送给DSP控制单元,是电机驱动系统可靠运行的保证。

3 控制器关键器件选型

3.1 DSP控制单元

电子控制技术已从模拟控制发展到以集成度高的微处理器为核心的数字控制,与传统的模拟控制技术相比,数字控制拥有以下优点:

(1)体积小、重量轻、能耗低,硬件成本低:

(2)硬件线路连接少、无故障工作时间长、可靠性更高:

(3)受温度及其它参数变化影响小;

(4)提高了整个系统信息存储、监控、诊断及实时性的能力:

(5)可以通过软件编程实现复杂的算法功能,使系统具有较高的适应能力,容易应用现代控制理论,提高了系统的综合性能。

以电力电子控制技术的数字化发展作为条件,电机控制系统在硬件结构上也发生了很大的变化。尤其是DSP的出现和快速发展,既简化了电机控制的硬件结构,同时还实现了电机控制的高性能、低成本和高可靠性。本系统选用了TI TMS320LF 2407DSP作为主控制器芯片。

3.2功率变换单元

功率变换单元的驱动电路选用汽车级隔离型IGBT驱动芯片,能够实现对SVPWM信号的放大,强弱电的电气隔离以及IGBT短路保护等功能。

IGBT(Insulated Gate BipolarTransistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的车用电机及其控制系统应用领域。

本系统功率模块选用英飞凌汽车专用IGBTFS400R07AIE3(400A/650V, PinFin结构)作为大功率开关器件,如图3所示。

3.3滤波电容

电机控制器直流滤波电容主要是用于滤除lOkHz的高频纹波,瞬时功能及谐波补偿等作用。要求直流滤波电容具有高的有效值电流和抗浪涌能力,以及紧凑的体积。

膜电容具有介电常数较高、体积小、容量大、稳定性较好的特性,能够承受高的有效值电流,能承受两倍于额定电压的过压,能承受反向电压,能承受高峰值电流,拥有较长的使用寿命。与电解电容相比,实现相同的功能,其所需的容值要远远低于电解电容,可以大大减小系统的体积。

4 驱动电机的选型

由于新能源轿车频繁启动及加减速,低速大扭矩,高速高功率运行工况特点,对驱动电机技术要求总体归纳如下:

(1)满足电池能量利用最大化:要求高效率及宽效率区间特点,布置空间体积最优,重量轻量化的高密度要求;

(2)满足动力性能要求:需要高速宽调速性能,大启动转矩及强过载能力,快速转矩相应及高速高功率特定;

(3)满足整车舒适性、可靠性要求:电机转矩波动小、控制成熟、电机结构简单、可靠;

(4)满足成本要求:需要电机制造工艺简单,价格合理。

国内永磁同步电机技术不断发展,中国稀土资源也相对丰富,永磁同步电机满足新能源轿车技术需求的全部要求:具有高效、高功率密度、高转矩密度、控制成熟、具有较宽效率区间和调速性能等技术特点,相对于直流电机结构简单、可靠、制造工艺成熟、工艺简单、成本适中。

本文描述驱动电机基于以上特点,采用永磁同步电机方案,基于成熟车型电机V型磁钢冲片平台进行扩容设计,具有技术平台成熟,成本控制能力强等特点。

5 控制器接口电路

永磁同步电动机控制器有两个接口电路(完全相同),使用23PIN的AMP接插件与整车及电机相连,提供控制电源、CAN通信、RS232下载等功能。

RS232接口电路,如图4所示。

6 电磁兼容性设计

控制器EMC设计主要从强电、弱点、结构三部分开展工作。

6.1强电部分

(1)电机三相动力电缆采用屏蔽电缆,电机和控制器两端接地屏蔽;

(2)正负母线与机壳见加Y电容,消除共模干扰,正负母线加X电容消除差模干扰:

(3)正负采用叠层母排,降低线路寄生电感。

6.2弱电部分

(1)电源输入/输出增加滤波电路:

(2)开关电源变压器设计尽量减小分部电容;

(3)所有输入/输出信号增加滤波电路:

(4)CAN通讯采用隔离电路,采用典型CAN接口电路,并使用双绞线。

6.3结构部分

(1)箱体采用封闭式,对控制器进行整体屏蔽;

(2)控制器内部强弱电路分开布置,避免相互干扰;

(3)优化线束布置,避免交叉造成相互干扰。

7 永磁同步电机控制技术

对于转子磁钢内嵌式永磁同步电机控制,基速以下采用最大转矩/电流比控制,基速以上采用恒功率弱磁控制,如图5所示。

图5中交流永磁电机最佳电流矢量控制策略的基本思想如下:

(1)区间ω≤ω1,时,定子电流矢量规定在A1点,电机采用最大转矩/电流比控制,电机以最大恒转矩运行。此时,定子电流满足:|is| =ilimilim,为电流极限圆半径;定子电压满足:|μ|≤μlim,μlim为定子相电压极限值:

(2)区间ω1

(3)区间ω>ω2:时,电流矢量沿着最大功率轨迹从A2移动至A3点,此时转速为理想的极限转速。此时,|is|=ilim,|μ|≤μlim。

由上述分析可以看出,定子电流最佳控制过程中,电机处于驱动工况下的的定子电流运行轨迹为OA1A2A2。

基于电压前馈的永磁同步电机矢量控制基本框图如图6所示。

图6中,给定电机的输入电流,由最大转矩一电流控制策略给出d、q轴电流,同时与弱磁电流进行运算产生给定的d、q轴给定电流。给定的电流与反馈的电流比较,经过PI调节器的作用产生给出的d,q轴电压经过变换产生电机的三相电压对电机进行控制。由于采用了转子磁场定向的矢量控制,可直接实现电机的转矩,实现四象限的运行。电流控制策略依照不同输入转矩需求和当前转速状态,按照图6所示的交流永磁电机电流最优控制方法,计算得到各个转速和转矩需求下的id和iq电流值,并作为指令值控制实际输出电流。

当车载动力电池电压随着负载、SoC状态发生变化时,Udc发生变化,电压控制量Uslw随着变化,通过电压闭环调解,使得电机输出能力随着电压变化而改变。基于直流母线电压可变得永磁电机控制以交流电压输出恒定为控制目标,使得电机在弱磁运行情况下输出电压恒定,充分发挥电机输出能力。Uslw经与实际电机电压的比较,通过PI调节输出电流补偿量,补偿电流控制策略中的id电流。