数字电路实验范文

时间:2023-03-29 07:59:01

导语:如何才能写好一篇数字电路实验,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数字电路实验

篇1

关键词:数字电路实验设计;实验过程

本文从提高教学效率、能力培养、学习兴趣三个方面对中职教育的数字电路实验环节进行了相关的设计。以期能够对我国数字实验教学环节中存在的相关问题在一定程度上进行解决。

一、精选教学内容,提高教学效率

“兴趣是最好的老师。”在数字电路教学中,经常会存在很多理论性的东西,这种理论性特别深的东西,对于学生来说,直接以普通的“课堂知识传授”方式进行教学,效果并不理想。好的教学内容能够培养学生的适应能力,因此,作为老师,应该精选教学内容,从而提高教学的效率,及时对实验内容进行充实、重组和更新。在实际的教学过程中理论联系实际,重视实例的讲述,让学生在具体的实例中了解相关理论的内涵。对于整体教学任务的讲述,教师可以把教学任务设计成一个或多个具体的、与实际相关联的技术支持点,从而将枯燥的知识转变为生动的技术实现,有利于学生理解和掌握所学知识,培养学生的创新应用能力。它将对学生的学习兴趣和学习效果都带来重大的影响。

二、用“设计性实验”取代“验证性实验”,以能力培养为根本目标

在数字教学的实验环节,常用的教学方式是由教师给出实验的准备、操作以及可能出现的结果,由学生来进行相关操作,这种机械化的教学方式,对于学生来说只是进行验证,不能激发学生的创新能力,造成学生“认死理”的现象比较严重,即只知对错,对于其他的开放性的实验环节没有思考。这种情况下,老师可以通过给出任务的方式,让学生自学,借助自身的创造力,发挥各自潜能,完成指定的任务,从而巩固和加深学生对理论知识的理解。这样学生经过对所接受的任务进行具体分析,可以掌握任务所涉及的内容、所需知识要点和难点,初步设立一个解决任务的大致步骤。同时经过借助图书资料、网络、其他人的思路和想法等汇总,确定具体的实验方案。在实验方案真正实施的过程中,学生的综合应用知识的能力将进一步得到锻炼。

三、用网络手段,发挥现代教育技术优势

随着我们科技的迅猛发展,用网络实施教学已经成为“数字电路实验”教学改革的内在需求。适当地利用网络、多媒体发挥现代教育的技术优势,使得我们的教学方式可以得到相应改善。作为老师可以建立一个相关的教学网站,将数字电路试验相关的课件、实验内容、教学计划全部到网站上,供学生查阅下载。学生还可以直接在网络上进行相关的测评,对老师的教学环节中的相关问题进行咨询,同时还可以提出建议,这样可以避免师生当面交流中存在的一些问题,比如:有的学生比较害羞、有的学生不敢向老师提出问题、不敢直接向老师质疑,等等。

四、改革考核方式,激发学习兴趣

课程考核是教学的环节之一,一个学生的整体表现将在课程的考核中得到充分体现。传统的考核多是以平时成绩+考试成绩来评定的,这样的考核方式存在平时成绩的不公平性和不公正性,以及期末考试的突击性的弱点。再加之应试教育的影响,我国的学生普遍比较重视成绩的高低,不把实践作为主体,只求一味地提高学习成绩,不注重实验过程和能力的提高。从而使得学生始终处于教学实践的客体地位,不利于发挥学生的能动性。为了避免这样的情况发生,可以将学生的最终考核分为三个部分,即实验预习、实验操作和实验报告三部分。在实验预习这一块中,可以预设分值为30分,其中包括对于实验原理、实验电路图、实验步骤拟定、数据记录表格设计等的预习,可以说这一部分是学生对数字电路实验的态度得分。在实验操作部分,预设分值为40

分,其中包括设备操作方法、实验结果的正确性、排除故障的能力等项目,这一部分就是学生在实际学习中的基本功。在接下来的实验报告中,预设分值为30分,其中包括实验原理与电路图、实验内容和过程的陈述、实验数据记录和处理、实验结果、实验方案的总结以及心得体会等部分。在为学生计算总成绩时,不要按照那种A、B、C、D等级的方式来划分,而是按照具体成绩来定,但是导向是让学生把主要精力放在平时的实验课题上,放在能力培养上,而不是在最后的考试中“押宝”,这样有利于培养良好的学风。通过这样的考核方式可以使学生的学习积极性得到了极大的提高,投入实验的时间增多了,动手能力增强了,实验操作以及实验报告的质量有了明显的提高。

我国数字电路实践教学在人才培养中有着基础性的作用,数字电路实验课的教学质量直接影响学生的学习积极性及学习效果。只有将电子科学技术发展的新变化、新趋势不断地融入数字电路实验教学实践中去,同时不断创新、不断接受外来挑战,才能够起到培养学生能力的最终要求,才能够适应社会对电子人才的需求。

参考文献:

[1]卢庆利.数字电路实验教学的发展趋势[J].实验室研究与探索,1997.

篇2

“数字电路”是我院电子类专业一门重要的、实践性很强的技术基础课,它包括课堂教学、实验教学、课程设计等多种教学环节。通过本门课程的教学,除了使学生掌握数字电路的基本理论、基本知识和基本方法以外,还要求其具备实验研究和工程设计能力[1]。

数字电路实验在数字电路教学中占有非常重要的地位,可以加强学生对理论知识的理解和掌握,培养学生的工程设计和实际动手能力。传统的数字电路实验仍然采用数字电路实验箱开展实验教学工作,有很多的局限性,为了适应新的形势要求,改革教学模式,创造更好的实验教学环境,以激发学生的创造性,提高学生的综合动手能力,逐步将虚拟电子仿真软件Multisim[2,3,4]应用于数字电路的实验教学中。

下面对传统的实验教学方法和基于虚拟仿真的实验教学方法进行具体分析和比较,

1 传统的实验教学

目前,传统的数字电路实验室采用数字电路逻辑实验箱开展实验教学工作,围绕 74 系列芯片进行内容设计,主要涉及的实验包括TTL 集成门电路测试、数据选择器的应用、触发器及计数器的应用等。

下面以74LS08与门为例进行实验设计并分析如下。

1.1 74LS08引脚图

74LS08为2输入四与门,其引脚图如图1所示。

1.2 真值表

真值表显示,当输入A、B有一个为低电平时,输出即为低电平;当输入A、B全为高电平时,输出为高电平。

1.3 实验内容

(1)根据74LS08的引脚图连接线路。由引脚图可知,74LS08有4组2输入与门,可以任意选择一组与门进行实验。将输入两个端子连接在可以控制高低电平的输入端,如果输入为高电平,则灯亮,低电平则灯不亮;将输出端连接在可以由灯的亮和灭来显示输出电平的一端,如果输出为高电平,灯亮,如果输出为低电平,灯不亮。

(2)根据真值表测试74LS08与门的功能。

(3)实验分析。根据测试结果,可以看出,输入端只要有一个为低电平,灯就不亮,只有两个输入端全为高电平的时候,灯才亮,结果与真值表保持一致,满足了与门的功能。

2 虚拟仿真实验教学

随着电子技术产业的高速发展,新器件、新电路不断地涌现,现有实验室的条件已经无法满足各种电路的设计和调试的要求,这在一定程度上影响了数字电路相关实验教学的效果,而且影响了高校对学生创新能力的培养。此时,在实验教学中引入具有强大分析、仿真电路功能的电路仿真设计软件Multisim,可以较好地解决这一问题[5]。

基于Multisim的仿真实验主要包括门电路功能测试、组合逻辑电路分析、半加器逻辑功能测试、计数器、555定时器的应用等。现以74LS00与非门为例进行实验设计与分析。

2.1 引脚图

74LS00为四组 2 输入与非门,其引脚图如图2所示。

2.2 真值表

真值表显示,当输入A、B只要有一个为低电平,输出即为高电平;当输入A、B全为高电平时,输出为低电平。

2.3 实验电路

在Multisim中的创建的仿真电路如图3所示。

2.4 实验说明

(1)放置74LS00:

用打开选择相应的元件,然后放置。“QUAD 2-INPUT NAND”四-2输入与非门。

(2)放置开关:

用第二个按钮,选择SWITCH,然后选择相应的开关,进行放置。

(3)放置电源VCC:

选择第一个按钮,选择VCC。放置接地,同样选择第一个按钮。

(4)放置万用表:

选择右边数列按钮的第一个,既是万用表。然后放置。

(5)放置灯泡:

选择指示器按钮,选择LAMP,然后选择合适的灯泡,放置。

2.5 功能测试

(1)测试表:

测试表如表4所示。

(2)分析:

从测试表可以看出,当输入端有一个为0时,输出就为1,灯泡就亮,当输入全为1时,灯泡不亮。测试结果与真值表保持一致,满足与非门的逻辑功能。

3 两种实验教学方法的比较

我院数字电路课程是电子类专业的专业基础课,对于两种实验教学方法,学生在具体操作的时候,每一种方法都有各自的优点。从教师的层面分析,传统的基于实验箱的教学方法在具体实施时,教师需要收集好实验需要用到的元器件,然后设计实验线路,课堂上连接线路给学生看,对元器件的功能及线路的功能都要给学生进行讲解。由于实验线路连接比较直观,讲解的工作量不大。对于虚拟仿真实验的教学方法,由于涉及到一种新的软件,首先对软件的功能和具体操作流程都要进行详细讲解,在具体操作时,每一个步骤,每一个元器件的选择和连接都要详细说明,讲解的工作量较大。在具体的实验过程中发现,传统的实验方法和虚拟仿真的实验方法,由于各自有自己的优点,在一定程度上都可以激发学生的兴趣,提高学生的动手能力。在此基础上,相比较而言,虚拟仿真的实验方法功能更强大,学生的可操作性更强。

通过分析,我们可以看出,用两种实验教学方法,都可以达到教学目的,但是从培?B学生的动手能力和设计能力上出发,可以考虑两种实验教学方法相结合,将实验学时分成两部分,一部分时间让学生通过实验箱进行实验,一部分时间让学生利用计算机进行虚拟仿真实验。这样可以让学生更全面的了解实验内容,增强设计和分析能力。

篇3

关键词:: 数字电路;实时连续仿真; 时间片分割

引言:

电路虚拟实验作为虚拟实验的组成部分,正在由以仪器仪表为测量工具的传统分析方法逐步向以计算机为工作平台的虚拟分析方法过渡,同时由于社会对网络教育的强烈需求和相关技术的快速发展,使得虚拟电路实验和远程教育日益结合,成为网络虚拟现实研究的新热点。通过对相关技术进行了可行性分析,结合多年的教学实践经验,开发了虚拟电路实验平台,系统分为客户端的用户界面层、服务器仿真引擎的数据处理层、仿真层以及客户端和仿真引擎之间的传输层。其中实时连续仿真则是在开发的过程中遇到的一个技术难点。由于实时性和多用户同时仿真的需求,系统在后台采用了分割时间片的技术,并根据电路状态的连续性,在时间片的结束点保存电路状态,在开始点重置电路状态,从而支持实时连续的远程电路实验。

一 虚拟实验的研究现状

虚拟实验分为有实验室支撑的实验模式和没有实验室支撑的实验模式。前者是一种"虚拟仪器版面一硬件设备"操作的模式。后者没有真实的实验室作为支撑,全部使用仿真技术、虚拟现实技术以及网络技术等高科技手段创造虚拟实验环境,实验者像在真实的环境中完成实验的各个环节,比前者更经济,更容易建立实验系统,也更方便实验者,是目前乃至今后的主要发展方向。电子电路虚拟实验作为虚拟实验的组成部分,也得到了快速的发展。而针对远程教学的仿真软件,或者着重于多媒体演示,功能简单,交互性差,或者没有强大的后台支持。远程教学仿真软件不能利用单机版的仿真软件,建立功能强大,交互性强,能够实时连续仿真的远程虚拟实验平台,使得远程实验教育难以得到有效发展。

二 虚拟电路实验平台的系统构架设计

要设计的"虚拟电路实验平台"系统,硬件构架采用b/s结构,用户通过装有flash插件的浏览器与实验平台交互,搭建电路,并观察输出结果。用户信息和实验信息保存在mysql数据库中,后台的核心xspice仿真软件,进行仿真计算。系统的软件构架设计如下:1)界面层采用多媒体技术构造实验板及各种元器件,用来与用户交互并显示仿真结果。2)传输层通过socket传输xml格式的实验数据,实现客户端与仿真引擎的数据交换。3)数据处理层解析xml格式的用户实验操作的数据,并转换为.cir文件所需的语法格式;构造xspice所需的仿真输入文件(.cir);分析xspice仿真后的输出文件(.out),提取实验所需数据; 以xml格式封装仿真数据,准备发送。4)仿真层调用xspice进行仿真计算。xspice是一个优秀的电路仿真软件,它把cir文件作为仿真参数文件输入,由仿真程序运算后得到仿真结果,输出到out文件。

三 实时连续仿真技术的实现

在基于仿真的远程电路虚拟实验系统中,往往需要使用电路仿真软件,如spice、xspice等,通过它们的瞬态仿真功能获得电路输出数据,先仿真电路状态变化的全过程,再输出全部仿真结果。在电路实验中,模拟电路虚拟实验往往瞬间就可以达到稳定状态的,之后电路状态就不再变化。像这样的电路,在进行仿真的时候可以只显示电路达到稳定之后的状态,也就是只显示一次。正好符合spice、xspice等仿真软件的要求。类似的还有自动脉冲输入的数字电路。下面以接有自动脉冲输入的时序逻辑电路为例,讨论实时连续仿真技术。

1.分段仿真原理。真实情况下的实时连续仿真,实验者只要按下仿真开关,电路就会源源不断地把数据显示在界面上。但是仿真引擎使用的xspice并不是一个实时连续仿真软件,在使用xspice进行电路瞬态仿真计算的时候,必须等到xspice仿真结束才能得到仿真结果,进而分析显示。而xspice的这种功能特性与虚拟实验中所要求的连续不断地计算并显示电路输出数据,并能根据用户的交互实时作出响应是有矛盾的。为此,可以采用分段仿真的方法,即设定一仿真时间段tb,仿真引擎让xspice每次瞬态仿真只计算tb 时间长度的电路输出数据,然后将数

据发送到客户端,客户端则按照结果数据中的时间戳在相应的时间点上改变显示输出。等到tb时间之后,客户端得到的数据显示完毕.仿真引擎再计算下一个tb 时长度的电路数据并发送给客户端。

在电路实验教学中,多数电路并不复杂,输入时钟信号的频率也不太高,因此基本可以满足这一要求。仿真引擎每次仿真一个时间片的数据,并把它传送给客户端,客户端以仿真结果中的时间戳为序,把数据保存在一个fifo队列中,然后根据时间戳依次从队列中取出数据进行显示。当客户端发现队列中的仿真数据即将被显示完时,就发送一个队列空的请求到仿真引擎。考虑到网络传输时间和仿真程序的运行时间的消耗,客户端发送继续仿真的请求需要有一个时间上的提前量,尽量避免出现冒泡fifo队列已空,而客户端还未收到仿真引擎的下个时间片的仿真结果,导致显示出现停顿的情况。

2.电路状态重置。由于时序电路的输出是由电路的输入和当前状态决定的,因此在进行分段仿真时,必须保存每个时间片结束时的电路状态,并在下一个时间片的仿真开始时用它来设置电路的初始状态,从而可以保持在整个仿真过程中电路状态的连续。可以把第i个时间片的t时刻的电路状态表示为:

sit=[αφ],i∈[i,+∞],t=[0,tb]其中 α=[α1,α2,…,αn]t 为各触发器状态,n为电路中的触发器数,φ= [φ1,φ2,…,φm ] 为各输入时钟脉冲源的相位,m为电路中的输入源数。那么时间片i中,t时刻的电路状态与0时刻电路状态的关系是:sit=f(si0,t),其中f是由实验电路决定的状态变换函数。

3.用户交互。上述仿真算法中,整个仿真过程被分割成一个个时间片来分段仿真,每一个时间片的仿真结果是在认为这个时间片内没有用户交互,实验电路的结构和参数没有发生变化的情况下得到的。然而,用户有可能在一个时间片的任何时刻对实验电路进行操作,例如调整了信号发生器的信号输出频率或者幅度、按下了电路板上的按钮等。在发生了用户交互的情况下,由于电路已经发生了变化,有可能导致电路的输出也发生变化,因此这个时间片中剩余的还没有显示的数据就将成为无效数据。所以当发生用户交互时,客户端需要清空未显示的数据队列,向仿真引擎发送交互请求,并传送交互时间t1,仿真引擎根据发生交互的时间点,可以根据当前时间片的输出数据计算出t1时刻的电路状态st1i,其中i是发生交互的时间片编号。

四 结束语

篇4

关键词:FPGA VHDL 模N计数器 数字电路实验教学

1.引言

随着微电子技术的高速发展,集成电路设计也不断向超大规模、超高速和低功耗的方向发展。传统数字电路课程设计在许多方面都滞后于现代数字电路设计形势的发展,如效率低、损耗大、电接触不稳定、实验装置缺乏稳定性和灵活性,成为创新和应用型人才培养的阻力,而FPGA具有设计技术齐全、效率高、易仿真、可移植性高等优点[1],通过对芯片的设计来完成大规模数字系统,可以很好地解决上述问题。

2.FPGA概述

2.1FPGA的概念。

FPGA(Field Programmable Gate Array)又称现场可编程门阵列是大规模集成电路技术发展的产物,属于ASIC(专用集成电路)器件中的一种,具有可编程的特性和实现方案容易改动等特点。FPGA采用的是SRAM(静态随机存储器)来构成逻辑函数发生器,一个N输入的LUT(可编程的最小逻辑构成单元)可以完成N个输入变量的逻辑功能,更适于完成触发器丰富的时序逻辑电路。在现代集成电路设计中,数字系统所占的比例越来越大,FPGA设计开发周期短、集成度高、设计制造成本低、开发工具先进,将发挥越来越重要的作用[2]。

2.2VHDL介绍。

利用系统可编程逻辑器件FPGA芯片进行数字系统设计时,是以硬件描述语言作为设计语言,目前最主要的硬件描述语言是:VHDL(Very High Speed Integrated Circuit HDL)和Verilog HDL。VHDL发展得较早,语法严格,主要利用软件编程的方式来描述数字系统的结构、数据流、行为。该语言具有功能强大的语言结构,具有多层次的设计描述功能,与传统的门级描述方式相比,它更适合大规模系统的设计。

3.在数字电路课程设计中引入FPGA的必要性

将FPGA引入数字电路课程设计中是一种全新的实验手段,可以不断修改电路和参数,及时观察输出结果,有效加深了学生对电子线路本质的理解,提高学生现代化电子设计能力,激发学习兴趣。在数字电路实验教学中引入FPGA有以下优势。

3.1实验项目增加,效率提高。

传统数字电路的实验项目较少并普遍采用的是常规逻辑器件连接起来构成不同功能的电路。由于电路板硬件决定了实验项目不能随意更改,功能单一,不利于学生综合电路设计能力的提高。较复杂的实验学生很难在2个课时内做完。采用FPGA技术,增加了综合性实验,学生只需学会EDA工具软件的使用方法,就可以在2个课时内完成更多的实验项目。

3.2实验难度降低,成功率提高。数字电路实验主要装置是面包板或实验箱。面包板连线时容易出现导线接触不良、线路干扰等不稳定的因素。实验箱虽然稳定,但实验使用的逻辑器件功能较为单一,难以实现复杂的数字电路。采用FPGA设计硬件电路,对于比较复杂的硬件实验,不必编写逻辑表达式和真值表,降低了设计难度,缩短了设计周期。也不必用通用的逻辑元器件来构成逻辑电路,而是直接用语言描述其功能,根据电路的不同需要自行设计专用功能模块,从而实现了“软”硬件设计,降低了研发成本。程序具有良好的可读性,支持对已有设计的再利用。并且电路的设计更加合理,提高了实验成功率,体积和功耗也大为减小。

3.3提高了学生的实践和动手能力。采用FPGA做数字电路实验,对同一电路模块的设计有了多种不同的计方案。如采用不同的门电路或者使用语言对电路的功能进行描述,得到功能模块。此模块还可被调用,使设计更具灵活性。

4.现场可编程门阵列在EDA设计中的应用实例

下面我以设计模为N的计数器电路课程设计为例,介绍使用FPGA在数字电路设计中新的设计思路。

在对计数器电路进行设计中,传统的电路设计是用集成计数器构成,如图1所示。

但是当模N比较大或者想改变N的值的时候,会感到物理硬件连接和改动起来非常麻烦,而利用FPGA的可编程的特性,采用VHDL可以方便快捷地实现任意模N的计数器,并且容易发现结构设计上的失误,提高了设计的成功率。

上述电路采用VHDL语言描述如下。

…………

由程序可以看出,利用模12计数器的程序,只需修改计数器的状态数,就可以实现任意模N计数器。通过上述电路设计的学习,学生逐渐学会用VHDL语言设计电路,体会到用VHDL语言来描述复杂的控制逻辑具有简洁明了、良好的可移植性,以及不依赖特定器件的优点。提高了学生自己研究问题和解决问题的能力,培养了学生的创新意识,取得了良好的教学效果。

5.结语

随着FPGA的普及和知识产权核IP日益重视,电子产品设计中的硬件将不再是主导因素,而是全面转向软设计,使得板级设计更加简单和模块化。为了培养能适应电子技术发展趋势的创新型和应用型人才,将FPGA技术引入数字电路实验教学中,能很好地锻炼学生的综合设计开发能力和动手能力,激发他们的学习兴趣,节约实验成本,提高教学质量和设计效率。因此,将FPGA技术应用于数字电路设计必将成为今后数字电路实验教学与课程设计教学改革的新方向。

参考文献:

[1]刘廷文,唐庆玉,段玉生.EDA技术是实现电工学研究型教学的良好手段[J].实验技术与管理,2006,23,(8):65-68.

[2]艾明晶,康光宇.EDA教学实验平台的设计与实现[J].计算机应用,2002,(10):23-24.

篇5

>> 基于研究性教学的数字电路与系统实验教学改革 数字电路课程教学方式改革的探讨 数字电路课程的教学改革与研究 脉冲与数字电路课程教学模式改革探讨 数字电路课程教学方法研究 数字电路实验课程教学方法的改进与探讨 中职学校提高《数字电路》课程教学质量的探讨 中职《数字电路制作与调试》课程教学评价方案的探讨与实践 数字电路课程的任务驱动教学初探 数字电路课程的教学案例分析 谈“数字电路”课程的教学改革 数字电路课程教学体会 基于项目教学模式的数字电路课程设置研究 如何提高《数字电路》课程教学质量的研究 项目驱动法在数字电路课程教学中的研究与应用 数字电路课程改革的思考 数字电路教学体系改革的研究 数字电路教学架构的与时俱进 基于项目教学的高职电子产品数字电路分析与制作课程教学研究 《数字电路与逻辑设计》课程教学内容及方法的改革与研究 常见问题解答 当前所在位置:.

[2] 郑宝周,李富强,吴莉莉,等. “模拟电子技术”理论课的研究性教学探讨[J]. 科技信息,2009(11):469.

[3] 刘宝存. 美国研究型大学基于问题的学习模式[J]. 中国高教研究,2004,(10):61-62.

[4] 郑金洲. 案例教学指南[M]. 上海:华东师范大学出版社,2000:20-21.

[5] 阎石. 数字电子技术基础[M]. 5版. 北京:高等教育出版社,2006:1-2.

[6] 侯建军. 数字电路实验一体化教程[M]. 北京:清华大学出版社.2005: 66-77.

The Exploration of Study-based Teaching Applying in Digital Circuit Course

ZHANG Dan, CHENG Shu-wei, JIE Long-mei

(Colloge of Computer Science & Information Technology, Daqing Normal University, Daqing 163712, China)

篇6

【关键词】虚拟仿真;数字电路;课程改革;教学方法

【中图分类号】G420 【文献标识码】B 【论文编号】1009―8097(2010)07―0147―04

一 前言

数字电子技术是计算机及通信类专业的重要的专业基础课,其中关键的环节就是培养学生的实践能力和解决问题的能力,因此,生动形象的课堂教学和全面的实验体系对教学效果和知识的应用能力有着非常重要的作用。然而,由于实验仪器的的老旧,数量有限,使得实验的开出率以及实验内容的扩展都受到限制。为顺应现代教育的发展,实施的现代化远程开放教育,将计算机虚拟仿真技术应用于数字电路教学中。其中理论教学结合多种教学方法和现代化的教育技术,将基础知识和理论形象地表现出来,有助于学生理解。课堂教学和实验教学都利用计算机虚拟仿真软件将所学理论联系实际,并加以应用,在此研究基础上提出了基于虚拟仿真技术的所有电子技术课程教学的新模式。

二 计算机虚拟仿真技术

虚拟现实(Virtual Reality)技术,简称VR,涉及计算机图形学、人机交互技术、传感技术、人工智能等多个领域。它由计算机硬件、软件以及各种传感器构成的三维信息的人工环境――虚拟环境,可以逼真地模拟现实世界(甚至是不存在的)的事物和环境,人投入到这种环境中,立即有“亲临其境”的感觉,并可亲自操作,与虚拟环境进行交互[1]。

计算机虚拟仿真技术,是在多媒体技术、虚拟现实技术与网络通信技术等信息科技迅猛发展的基础上,利用计算机技术将仿真技术与虚拟现实技术相结合,是一种更高级的仿真技术。虚拟仿真技术以构建全系统统一的完整的虚拟环境为典型特征,并通过虚拟环境集成与控制为数众多的实体。实体可以是模拟器,也可以是其他的虚拟仿真系统,更多的是计算机。实体在虚拟仿真软件所提供构建的环境中相互作用,以表现客观世界的真实特征。虚拟仿真技术的这种集成化、虚拟化与网络化的特征,可以满足现代教育的发展需求[1]。

三 课程教学的若干问题及改革研究

对于理论教学环节,首先是教学内容陈旧。当前大中专院校所用的教材内容都是十几年前的,即便是近几年出版的教材,也只是内容的深浅不同,体系结构基本相同。比如教材中主要说明的74LS系列的芯片在目前实际应用中已经被淘汰,真正是学的没用,用的没学。现在的学生在学习中,非常关注所学知识的实用性,如果不能学以致用,就影响到学习兴趣和学习积极性。因而在课程教学中要及时更新教学内容,讲解传统芯片的同时多介绍一些现在普遍使用的芯片,当然也要根据学生学习程度,最大可能激发学生的兴趣[3]。

其次是教学方法。常用的教学方法无非就是这几种:讲授法、讨论法、谈话法、阅读指导法。根据课程的特点和教学要求,不能一成不变的套用传统的教学方法。这些方法对有些课程很有效,但是对计算机课程不一定全部适合,因此需要探索适合本课程需求的新的教学方法。笔者在教学中通常有如下几种方法:讲授法,这是传统的教学方法,教师口述基本事实、原理和推理过程。部分定理,原理及产品采用讲授法。例举法,就是以典型例题说明某个定理或元件的应用,这是本课程用的最多的一种方法。在数字电路课程中有很多芯片的实际应用,有些是针对某部分内容的很典型的例子,这些例子对于学生理解和掌握此部分知识非常有用。任务驱动法,就是教师布置一些运用某个知识点的题目,要求学生在课堂上有限的时间里做出来,并检查完成情况。这样学生对该节课所学知识从理论到应用有了一个全方位的认识,而且对每个知识点掌握得都比较透彻,这是近年来比较流行的一种教学方法,也是计算机专业课程特有的一种教学方法,对提升教学效果有显著作用。

再次是教学手段,不是单纯的使用多媒体课件,而是结合计算机专业特点引入现代化教育技术和手段,很多典型例题用计算机仿真软件在课堂验证,让学生直观形象地了解电路的工作情况,从而掌握电路或芯片的应用。

对于实验教学环节,首先是实验设备简陋。很多高校数字电路实验设备包括我校仍然使用老式实验箱,即由固定数字电路芯片搭建的实验,学生只能按实验教材设计的实验按步骤做固定的实验,实验内容都是以芯片讲解为主,目的是对芯片功能进行验证。因此学生把实验课当完成任务,实验环节没有促进教学,相反影响了教学效果。很多新的芯片不能认识和实践,使得实验教学方法与实际应用的要求严重脱节。其次在实验教学过程中,由于实验设备老化,个别元件被损坏或接触不良,导致学生实验中,出现一些问题,电路连接完全正确,但是就是得不到正确结果,结果费了很多时间去排除故障,这样做实验当然激发不了学生的兴趣,相反还会阻碍他们进一步探索。再次,由于实验条件的限制,实验项目只能停留在验证性实验层次,学生的设计能力和综合应用能力都得不到提高,利用电子电路的计算机虚拟仿真软件multisilm10就可以解决这个问题,利用这个软件可以自行设计集成电路,综合应用各种芯片,完成所有的数字电路实验[4]。在教学实施中,根据学生情况分验证性实验、设计性实验和综合性实验三个层次完成实验教学目标。

四 计算机虚拟仿真技术在课程教学中的应用

1 课堂教学中的应用

在课堂讲到门电路的工作原理或集成电路的应用时,可以现场用计算机仿真软件演示电路的工作过程,使学生更好地理解门电路的工作原理和芯片的工作情况。从而掌握电路的应用。这样,教学过程是由原理到应用,由简单到复杂,由抽象到现实,循序渐进地完成理论知识的学习。数字电路的基本单元是门电路,那么理解其工作原理非常重要,但是此部分对于大部分同学来说都是难点,如何突破这个难点呢?利用软件建立仿真电路,真实地展现输出电压随输入电压的变化情况,就会获得很好的效果。下面是利用仿真软件说明TTL与非门工作原理的课堂实例:

(1) Vi=0V,输入接低电平。那么Q1导通,Vb1=0.8V,Ib5

(2) Vi=3.6V,输入高电平。那么Q1的发射极电流从发射极(0.852mA)流入,从集电极流出,Q1的发射极和集电极倒置状态。Vb1=2.443V,Vb5=0.843V,Vbc1+Vbe2=2.443-0.843=1.6V,导致Q2、Q5导通。由于Vc2=0.886V,Q4、Q5截止。输出Vo=0.018V。其电路仿真如图2:

2 实验教学中的应用

大学生需要有独立的设计能力和对电子器件的综合应用能力,这就决定了本课程的实验体系应该是三个层次,在简单的验证性实验的基础上必须开设有创造性的设计性实验和综合性实验。然而实验室有限的数字电路实验箱只能做几个简单的验证性实验,无法满足设计性实验和综合性实验的设备要求。但是,利用电子电路的计算机仿真软件就可以扩展实验室,提供所需要的一切电子元件和芯片,搭建任意难度,任意复杂的电路,并验证其正确性。同时利用仿真软件的可配置性,配合适当的电路可做出多种不同的应用。在实验课程中,提前给出了三种实验的一些题目和内容,要求验证性实验必须都完成,设计性实验可选做一至两个,综合性实验选做一个。下面简要说明学生利用仿真软件选做的数字电子钟逻辑电路的设计实例。

要求用中、小规模集成电路设计一台能显示日、时、分秒的数字电子钟,选用器材主要有:安装有仿真软件的计算机若干台,集成电路(CD4060、74LS74、74LS161、74LS248),晶振、电阻、电容若干,数码显示管,三极管、开关若干。

提示设计方案,包括数字电子钟的电路框图和四个主要模块的实现细节,学生依据电路框图和提示信息设计逻辑电路图,并将其在虚拟实验环境中用仿真电路实现。下面给出数字电子钟的电路框图。

篇幅所限,参考电路就不给出,但是通过这个实例可以看出虚拟仿真技术在课程实验中的重要作用。不但节省很多设备购置费用,不受地点和环境的限制,而且和真实实验具有相同的效果。既然如此,为什么不广泛应用呢?

五 总结

论文对数字电子技术课程教学提出很多问题,在实际的教学实践中对这些问题进行了探索,将计算机虚拟仿真技术引入教学中,采用现代化教育手段进行课程改革。课堂教学提出了很多适合本课程并行之有效的教学方法,重要电路工作情况的计算机仿真演示,部分例题的计算机仿真验证,增强其直观性和真实性,加强学生的理解。实验教学也利用计算机仿真软件,采用虚拟实验和真实实验相结合的方式,扩充建立了虚拟实验室,扩展了实验内容,在无需花费很大代价的情况下,满足了设计性实验和综合性实验的条件,从而完成三个层次实验体系的建设。在本文的研究基础上,可将虚拟仿真技术推广应用到所有电子技术课程教学中,引发电子技术课程改革的新局面。

参考文献

[1] 吕,邓春健等.利用EDA技术全面改进数字电路课程教学[J].福建电脑,2008,(6).

[2] 刘静,边晓娜等.基于EDA平台的虚拟电子实验研究与实践[J].计算机教育,2007,(7).

[3] 黄培根等著.multisim 10 计算机虚拟仿真实验室[M].北京:电子工业出版社,2008.

[4] 黄荻.融入EDA技术,深入数字电路课程改革[J].中国现代教育装备,2008,(2).

[5] 江晓安等编著.数字电子技术[M].西安:西安电子科技大学出版社,2002.

[6] 房建东,李巴津等.关于改进电子技术相关课程教学的思考[J].内蒙古工业大学学报(社会科学版),2004,(1).

篇7

关键词:时间数字转换;环形门延时链;现场可编程门阵列;集成电路设计

Design of Digital TDC Circuit Based on the Gate Time Delay

LI Da-peng1, XU Dong-ming1 , CHEN Wen-xuan2

(1.Xi‘an University of Posts and Telcommunications Xi‘an 710061,China;

2.Xi‘an Supermicro Electronics Co., LTD Xi‘an 710061,China)

Abstract: In order to improve the measuring range of the TDC circuit and its resolution ,to ensure that the measuring results are correct and effective ,this paper puts forward a kind of digital TDC circuit design method. It can reduce the circuit scale and can be easily ported to other systems. This paper uses the language of Veriolg HDL to design the circuit in RTL level and passes the timing simulation and FPGA verification at last. It achieves the requirements of wide range and high precision by using the gate time delay method and reduce the logic resources consumption. The count results are correct and stable.

Key words: TDC; RDL; FPGA; IC design 1引言

时间数字转换(TDC)技术在航空航天、测距、计量、测量等领域中有着重要的地位和广泛的应用。现有的时间数字转换电路可分为模拟、数字和数模混合三个类别。基于模拟技术实现的TDC电路暴露出了其工作不稳定、易受外界噪声、温度和电压干扰等缺点,导致其测量结果出现较大的误差,不适用于大量程高精度的测量[6],限制了这种技术的发展。随着数字集成电路技术和CMOS工艺的快速发展,数字技术实现的TDC电路具有工艺简单、造价低、可移植性好、工作稳定、电路面积小等优点,很好地解决了上述问题,有效地提高了测量精度,扩大了测量范围。本文提出一种基于门延时线的全数字TDC电路的设计方案,并通过ModelSim SE 6.2b软件和FPGA芯片对该设计进行时序仿真和硬件测试验证,介绍了该方案的详细设计过程。

2TDC测量原理

TDC是时间测量的基本手段和常用技术,其测量原理是将携带时间信息的模拟信号转换为数字信号,从而完成时间信息的测量。数字TDC电路是以信号通过内部门电路的传播延迟来进行高精度时间间隔[4]测量的。换句话说,就是它计算了在一定的时间间隔内START测量信号在延时单元中通过反相器的个数,利用信号通过逻辑门的绝对时间延迟来精确量化时间间隔。图1显示了这种TDC测量时间的主要构架。

TDC测量的时序如图2所示:当系统初始化结束后、START信号有效时,启动精细计数器单元和粗值计数器单元,开始计数,此时锁存器单元不锁存数据。当STOP通道接收到了STOP信号,STOP通道里面的寄存器就会记录下STOP信号进入TDC时START信号经过反相器的个数。锁存器里保存的数据将作为精细计数部分的结果。START信号和STOP信号之间的参考时钟有效沿的个数将作为粗值计数器的结果,表示START信号在环形延时线中所走过的圈数。由两个计数结果和单个非门的延迟时间可计算出一次测量的时间间隔。这个测量结果往往存在较大的误差,通常的处理方法是通过对TDC电路的校准来补偿由温度和电压变化而引起的误差。校准是通过测量一个和两个参考时钟的时钟周期完成的。经校准后的测量结果如表达式(1)所示:T=Tref(Cc+(Fc1+Fc2))/(Cal2-Cal1) (1)。式中Tref为参考时钟的时钟周期,Cc为两次测量之间看考时钟的周期数,Fc1为START信号到相邻参考时钟上升沿的间隔时间,Fc2为STOP信号到相邻参考时钟上升沿的间隔时间,Cal2为两个校准时钟的时钟周期,Cal1为一个校准时钟的时钟周期。

3整体电路设计

目前,实现TDC的技术有时间放大、游标卡尺、电流积分等多种技术,基于延时线的TDC技术[5]利用的是精细计数与基于时钟的粗计数相结合的测量组合技术,测量精度可达到单个门的延时。

该TDC电路的原理如图3所示。该图包含了图1的前三部分。该电路由环形门延时电路、锁存器及异或电路和编码器电路组成。

3.1 环形门延时电路

环形门延时电路[3]就是一个环形的延时线,它的功能是记录START信号在该电路中的位置。传统的线形延时线只适合小量程的测量,而对于大量程高精度的测量来说,线形延时电路所需的门电路的数量增大,导致电路规模庞大,测量结果不准确。将电路的首尾相接组成环路,利用环形延时的方式控制了电路的规模。该电路的第一个反相延迟采用的是二输入的与非门,其中的一个端口与环形延时电路最后一个非门的输出端相接,另一端接START信号,这样处理可以让START信号对整个测量进行很好的控制。当初始化结束后,START信号到来时,开始测量。START信号在环形延时线中进行延迟传输,由于偶数个非门的输出端口再接一个反相器,这样环形延时电路最后的输出端可进行并行延时输出,将结果写入锁存器及异或电路的寄存器当中,记录START信号走过的位置信息和走过的非门个数。当STOP信号到来时,START信号到达的非门的输出会与START信号同相,完成了START信号在该电路中的延迟传输。

3.2 锁存器及异或电路

锁存器及异或电路的功能是锁定START信号在环形门延时电路中所到达的位置和走过的非门个数,并将锁存器记录的信息送给异或门组电路进行处理,将异或门电路的输出信息送给下面的编码器电路。锁存器使用的触发信号与停止信号相同,即STOP信号,这样处理保证了锁存器的工作与时间测量是同步进行的。

常用的锁存器电路如图4所示,它使用了一系列D触发器,同时使用同一个STOP信号作为驱动信号,而本部分电路定义和使用了一个总线结构的存储器来锁定START信号的位置和记录相关信息,这样做减少了D触发器单元的使用,避免初始化过程和测量过程中出现意外的结果,提高了测量的准确性。

3.3 编码器电路

编码器电路的功能是对锁存器及异或电路的输出进行编码。在前一部分电路中,START信号到达的那个非门所对应的异或门的输出为1,其它的异或门的输出都为0,这样可用一个编码器电路对异或门组电路的输出信号进行编码,通过编码器输出的编码可以快速准确地确定START信号所到达的位置和在环形门延时电路中走过非门的个数。同时,编码器电路的编码结果将作为精细计数的结果,也作为总计数值的低位输出值。

3.4 粗计数器电路

粗计数器电路的功能是对START信号之后的参考时钟进行计数,STOP信号也是其停止信号,使用锁存器及异或电路的部分存储单元记录计数的结果,保证计数器输出的准确性。该电路的输出作为总计数值的高位,与编码器的编码结果即低位输出值和起来即为总计数值,将得到的总计数值与单个非门的延迟时间相乘,经校准后得到最后的测量结果,这样就完成了一次TDC的时间测量。

4仿真验证

本设计采用Verilog HDL语言对TDC电路进行了RTL级的描述[1],用ModelSim SE 6.2b对设计进行了仿真,经过FPGA验证[2]后,各功能都得到正确的实现。图5给出了TDC电路部分RTL级仿真波形。经过FPGA验证,测量范围可达到1.2μs,测量精度可达到60ps。

5结束语

本文结合目前TDC测量电路的设计方法,详细地提出了一种大量程高精度数字TDC电路的设计方法。该方法巧妙地运用调用模块和使用总线结构的思想,快速准确地实现了数字TDC电路的测量。随着TDC电路的不断发展和完善,如何实现大量程和高精度的准确测量成为今后发展的趋向。本文在详细设计的基础上,给出了时序仿真波形,经过验证,满足设计要求。

参考文献

[1]夏雨闻.Verilog数字系统设计[M].北京: 北京航空航天大学出版社,2008.

[2]乔庐峰.Verilog HDL数字系统设计与验证[M].北京: 电子工业出版社,2009.

[3]余冬菊 苏玉萍 郑琼琼. 基于FPGA的数字TDC设计[J].中国科技信息,2008(8):122-123.

[4]罗尊旺.一种基于TDC的时间间隔测量方法的研究[D].西安:西安电子科技大学,2009.

[5]丁建国 沈国保 刘松强.基于数字延迟线的高分辨率TDC系统[J].核技术,2005,28(3):173-175.

[6]张延 黄佩诚.高精度时间间隔测量技术与方法[J].天文学进展,2006,24(1):1-15.

作者简介

李大鹏,硕士生,通信专用集成电路与系统设计;

篇8

关键词:数字;集成电路;构成;系统;测试技术

高新技术的快速发展,带来的是产品质量的提升和成本的降低。对于现阶段的工作而言,测试的具体流程、测试的具体方法,都对产品的质量和成本产生了较大的影响。数字集成电路系统作为现阶段的主流系统,其基本的构成涉及功能的实现,其测试技术的进步涉及产品的质量和生产效率。为此,在分析数字集成电路系统的过程中,需要在不同的模块,投入相应的时间和精力,完成系统的阶段性进步。在此,本文主要对数字集成电路系统的基本构成与测试技术展开讨论。

1数字集成电路系统基本构成

数字集成电路系统在目前的应用是比较广泛的,其在很多方面都具有较大的积极作用。随着时间的推移,现有的数字集成电路系统,集合了过去的很多优点,在多方面均表现出了较大的积极作用。从构成来看,数字集成电路系统主要是将元器件以及连线,有效地集成于同一个半导体的芯片之上,从而完成的数字逻辑电路或者系统。在划分数字集成电路系统的过程中,可根据数字集成电路中,包含的具体门电路、具体的器件数量,划分为小规模的集成电路、中规模的集成电路、大规模的集成电路等。

数字集成电路系统在组成方面主要包括2个内容,分别为组合逻辑和寄存器(触发器)。组合逻辑经过分析后,发现其是由基本门组成的一系列函数,在输出的工作中,仅仅与当前的输入具有密切的关联。倘若表现为组合逻辑,那么在运行的过程中,就只能完成逻辑的运算。在时序电路方面,除了包含基本门之外,还包含存储元件用例,保存过去的信息。因此,时序电路的稳态输出,不仅仅与当前的输入具有密切的关系,同时还与过去的输入所形成的状态具有比较密切的关系。在时序电路方面,其在有效完成逻辑运算的同时,还可以将具体的处理结果进行暂时的存储,以此对下一次的运算提供便利。

2数字集成电路系统测试技术

对于数字集成电路系统而言,其在目前的发展中,除了基本构成不断丰富外,测试技术也在很大程度上取得了提升。目前,数字集成电路系统的测试技术广泛应用于各个领域,不仅获得了较多的数据和资料,同时在多方面实现了数字系统本身的进步。

2.1功能测试

在数字集成电路系统的测试技术当中,功能测试是比较重要的组成部分,其在很多方面都具有较大的积极作用。从客观的角度来分析,功能测试的实施,其目的在于验证电路的设计和使用是否完成了预期的效果。功能测试在开展时,其基本过程如下:(1)从输入端施加若干的激励信号,也就是常说的测试图形。(2)在操作当中,需要按照电路规定的具体频率,有效地施加到被测试的器件当中,这一操作需要仔细进行,避免出现任何形式上的纰漏。(3)要根据两者的相同情况、差异情况等,对具体的数据和信息进行分析,以此来更好地判定电路功能是否达到了正常的状态。

测试图形在应用过程中是检验器件功能的重要途径,获得了业内的高度认可。从理论上来分析,一个比较好的测试图形,本身所具有的特点是非常突出的:(1)测试图形必须具有较高的故障覆盖率,这样才能更好地测试不同类型的故障。(2)测试图形必须具有较短的测试时间。以往的测试花费大量的精力和时间,得到的结果却不精确。因此,针对测试图形的测试时间,要求是比较严格的。(3)测试图形必须针对被测器件的故障、工艺缺陷进行检测,提高被测器件的功能测试准确度。

由此可见,在功能测试过程中,测试电路的具体质量,会与测试矢量的精度具有比较密切的关系。例如,组合电路测试生成算法,其主要包括穷举法、代数法等等。可根据实际的需求,选择合理的方法来完成。

2.2直流参数的测试

数字集成电路系统的测试技术还能够针对较多的重要指标,完成相应的测试工作。直流参数的测试是目前比较关注的问题。从测试技术的角度来分析,直流测试是用来确定器件点参数的稳态,确保器件可以更加稳定的运行。从方法上来分析,直流参数的测试方法比较多样化,目前常用的包括接触测试、漏电电流测试、转换电平测试等。

接触测试在应用过程中,虽然操作比较简单,但需要在细节上有所把握。例如,该测试在具体的应用当中,需要充分的保证测试的接口与器件可以正常的连接。同时,在测量输入和输出方面,应根据管脚保护二极管的具体压降情况,观察连接性是否达到了标准的要求。如果要求未满足,则要重新连接。

漏电测试是一种比较特殊的测试方法,其在应用过程中表现出了很大的优异性。在实际的工作当中,漏电流的出现,主要是由于器件内部和输入管脚之间出现了问题,多数情况下,二者的绝缘氧化膜在生产过程中,表现为特别薄的状态,进而引起了类似短路的情况。最终,导致电流通过,形成漏电流。漏电测试的方法会针对该项参数的具体测试,以此来更好地对器件输入、输出的负载特性进行较好的分析,实现从源头测试。

转换电平测试在目前的应用中,隶属于针对性较强的一类测试方法。转换电平测试在应用当中,会通过反复的运行功能测试的方法,针对导致功能测试失效的临界电压值进行测试和分析,确定转换电平。从技术上来分析,转换电平测试的应用,在很多方面都充分反映了器件抗噪声的能力水平,是一项非常重要的测试技术。

2.3交流参数的测试

数字集成电路系统在现阶段的研究中,获得了很多的积极成果,将成果广泛应用,实现了测试技术的较大提升。交流参数的测试,是数字集成电路系统测试技术的重点表现,其在很多方面都是非常重要的一项指标。

从具体的测试层面来分析,交流参数的测试工作主要是测量器件晶体管转换状态时所表现出的时序关系。执行该项测试的目的在于,确保器件能够在规定的时间内发生正常的状态转换。操作过程中,比较常用的交流测试方法、包括传输延时测试的方法、建立和保持时间测试的方法等。

3测试技术的应用

数字集成电路系统在基本构成获得不断的深化后,测试技术也获得了较大的提升。二者互相辅助造成了良性循环,并且创造出了较大的价值。相对而言,测试技术在获得了深化后,应在具体的应用上作出足够的努力,仅仅在理论上进行研究,并不能创造太多的价值。我国目前对技术的研究是非常重视的,很多工作都达到了较为重要的阶段。数字集成电路系统测试技术作为影响多领域发展的重点技术,必须得到广泛的应用。

例如,现在使用的泰瑞达(Teradyne)公司生产的J750,HILEVEL生产的ETS770。这些都是非常先进的半导体自动测试系统。其中泰瑞达可为半导体电路提供测试解决方案,它拥有模拟、混合信号、存储器及VLSI器件测试所有领域的测试设备。并且该机器是低成本高性能并行测试机,采用windows操作系统,人机界面友好、简单;基于板卡的硬件架构,维护性好;配上MSO,基本能满足SoC的测试需求,有着较高的测试性价比。而HILEVEL生产的ETS770的优点是器件可以通过测试小板很方便地与测试系统相连,并且可以实现对芯片进行快速的逻辑功能验证,测试编程界面全为窗口式,快速简捷,易于掌握。总之,每个测试系统都有各自的硬件配置和程序开发环境,需要测试工程师根据每个测试器件的逻辑结构和电特性制定合理的测试流程,最大限度地发挥每个测试系统的资源优势。

由此可见,数字集成电路系统测试技术在应用层面,表现出了较大的积极作用,总体上创造出的价值是非常值得肯定的。今后,应该在多方面针对数字集成电路系统的基本构成,针对测试技术,开展深入的研究。一方面要不断地健全数字集成电路系统的基本组成,丰富内容;另7y面需健全测试技术体系,从多个方面来提高技术的功能性和可操作性。

篇9

一、元数据自动采集需求分析

元数据是描述文件背景、内容、结构及其整个管理过程的数据。不同于传统意义上的着录,元数据内涵更丰富,功能更全面,要求更严格,不可能由档案管理人员在文件归档后进行着录,更不可能由形成机构文件管理人员或业务人员手工录入。元数据需要全程规划,需要嵌入系统,需要实时自动采集,需要真实、动态地再现电子文件管理的背景信息及过程信息。实现元数据自动采集,是元数据自身管理的要求,也是形成机构实际业务的需求。

(1)元数据管理要求

国际标准《信息与文献电子办公环境中文件管理原则与功能要求》(ISO 16175 1-3)一再强调,文件管理元数据(metadata)包括“识别、认证文件和文件背景关联等信息以及生成、管理、维护和使用文件的人员、流程和系统的信息,文件管理政策”。只有伴有界定了关键特征元数据的文件才是真实有效的文件,这些特征必须被清晰地记录下来。元数据在文件捕获点上对文件进行详细说明,固化文件与其业务背景的关联,对文件实施管理控制。在整个生命周期中,新的元数据不断伴随业务的开展、提供利用而持续增加,以长期保证真实性、完整性、可靠性、可用性,使得对文件的管理成为可能。

在电子文件管理系统中必须实现元数据的有效管理。电子文件管理系统(ERMS)作为专门用于对文件的维护和处置予以管理的系统,具有如下属性:在背景中生成文件;管理和维护文件;依据要求的时间长度维护文件;文件管理元数据要可以设定。

作为描述文件背景、内容、结构及其整个管理过程的数据,元数据最大的特征是动态性,动态地再现文件生成、流转、管理的全过程,在整个生命周期中为电子文件(包括由此转化而成的电子档案)的真实、完整、可靠、可用保驾护航。元数据的重要价值在于还原文件的背景信息,反映其所生成的政策法规和技术环境,显示与其他文件以及业务行为责任者等的各种关系,克服电子文件虚拟存在的局限。可见,元数据记录和反映的这些错综复杂、动态变化的信息已经无法仅仅依靠手工进行记录,必须嵌入系统,由系统自动判断、计算与识别,实现系统自动采集元数据是元数据自身管理的要求。

(2)机构业务需求

电子文件的特点决定了对元数据的采集必须前置,由前端形成机构伴随业务活动的开展和其间文件的形成进行采集与管理。《文书类电子文件元数据方案》(以下简称《元数据方案》)给出了88项元数据元素,其中80%需要形成机构进行采集,而且过程性元数据需要反复着录,侧重记录电子文件生成的技术环境与业务过程信息,所涉问题难度大且较复杂。特别是《元数据方案》中规定的一些元数据项存在“宏观”或“笼统”的情况,比如元数据中“日期”项,如不结合文件生成、运转、处置的流程予以细化,则无法确定采集节点和采集方式;仅从文件生成流程来看,面临着起草、会商、审核、签发等诸多“日期”,哪些日期最为关键、哪些应作为元数据予以采集、在文件生命周期中是否重复元数据以及如何采集等,都需要结合机构业务流程和相关规范深入研究,并实施精细化管理。对文件形成机构(即业务机构)而言,因为元数据管理而徒增繁重手工着录工作量,造成人力物力财力的巨大浪费,进而影响机构工作效率与绩效。需要指出的是,元数据并不是独立的,而是与机构自身电子文件管理基础密不可分。没有科学的电子文件、档案一体化全程管理流程,没有完备的电子文件元数据管理功能要求,便无法构建完善的元数据管理方案。因此,本文的研究内容是综合性的,从狭义来讲是电子公文元数据自动采集方案;从广义来讲是机构电子文件管理方案。

二、元数据自动采集原则

(1)基于档案管理的基本原则

1.来源原则。元数据采集虽然通过对电子文件信息加以采集、提炼、分析和组织,揭示文件、档案的内容及其产生规律,但是仍然以尊重档案的本质属性和规律为前提,在采集时注重体现电子文件来源,使机构中同一来源的电子文件通过元数据采集得到集中反映,使元数据与档案的来源相联系,以此通过元数据揭示同一来源的档案、文件之间的各种联系,为档案、文件的理解与利用提供来源方面的背景信息。

2.有机联系原则。有机联系原则也是档案管理的基本原则,是指系统中文件及组成系统的诸要素之间需保持时空上的相互联系。由于电子文件是以二进制代码的形式分散存在于计算机之中,因此保持文件之间的有机联系显得尤为重要,而要保持这种有机联系,必须依赖于元数据。以此原则为导向的元数据采集实质上就是电子文件信息的系统化增值过程,其目的是把分散的文件信息转化为互相联系、系统的信息流,形成!更高级的信息产品,满足用户的特定利用需求。通过元数据采集与管理过程,使大量文件特征信息加以系统化和组织化,有效控制档案、文件信息揭示的数量和质量,克服档案、文件查询和利用的困难,提高检索效率,节省查询成本和精力耗费,实现价值增益。

篇10

关键词:计算机专业 课程进度 数字电路与设计

中图分类号:G642.0 文献标识码:C DOI:10.3969/j.issn.1672-8181.2013.15.132

“数字电路与逻辑设计”是电气信息类专业一门重要的专业基础课。该课程是后续专业基础课和专业课的先修课程和基础,是学生开展课外科技创新活动的必备知识,是解决工程实际问题的重要理论和方法,结合目前的实际情况,对数字电路与逻辑设计教学进行改革。

1 数字电路与逻辑设计的本质

数字电路与逻辑设计是计算机科学与技术必修的一门重要课程。该课程中介绍了与数字系统相关的知识,体系等。设置这门课程的重要性在于让学生能够更好地了解数字计算机和其他系统的基本逻辑电路,能够熟练运用课程中所学到的知识并在实际操作中对案例进行分析,客观地提出要求。

通过这门课程的系统学习,可以加强同学的逻辑思维能力,落实到具体工作中,可以解决具体问题,可以对系统硬件进行检测,并有一定的创新能力。数字电路课程教学之所以进行改革是为了提高学生对计算机硬件设施的了解,为日后的学习做铺垫。我们从计算机科学的角度划分,可以把其课程分为:分析电路,数字电路与逻辑设计,微机原理等。从这些课程不难看出,数字电路与逻辑设计起的是承上启下的作用。

2 电子技术的广泛应用加快了数字电路的发展

现阶段,是科技的时代,电子技术已经应用广泛,电子元素是计算机和电路不可缺少的构成元素。国民经济和国防各领域的逐渐渗透,使得数字电子技术在相关专业的地位越来越重要。通过探讨,认为要对以前的教程进行革新,减少理论性过强的内容,着重掌握数字集成电路器的特性与实际运用,将重点放在学生的实际操作上面。

此外要加强创新能力的培养,引导学生们多进行课外实践活动,让学生们把课堂上所学的知识用于实践,这样让学生们在实践中总结理论知识,有利于学生们知识的全面掌握。多媒体技术可以形象并明了地展示复杂的图表,便于老师课堂上的教学,还方便了学生们观看和理解。更重要的一点是,它节约了课堂信息量,增加了课堂上的教学内容。以培养学生创新精神和实践能力为主线,坚持“三个结合”,实现“二个转变”,达到“一个提高”。坚持实践内容与理论知识相结合,创新实验与科学研究相结合,课堂教学与课外实验相结合;实现由基础验证性实验向综合设计性实验转变,由传统型实验向创新型实验转变;达到学生实践能力和创新精神的提高。提高教学的工作环境,利于开展实践教学,从而有利于人才的培养和教学质量的提高。围绕实践这个中心,增加新的教学内容,根据电子信息技术的专业特点,制定科学的实验课程,在内容中多以实验为主,增加教学模板,提高教学方法,总结出一套科学性、系统性的教学体系。

3 数字电路教学的改革方向

由于数字电路与逻辑设计的实践性很强,所以,在实际的教学改革中要做到周全考虑,针对各项内容都要做出调整。还需要注意的是,做到书本上所学的知识配套进行实践。理论结合实际,多结合实际情况进行训练。其内容包括:工具运用能力,绘制电路,电路分析能力,项目综合能力等。

3.1 课程体系的调整

为了更好地适应电子科学技术的发展,要优化课程结构的总体要求出发,进行模块化的设计,使数字电路与逻辑课程内容体系具有系统性,科学性,先进性等。

数字电路与逻辑设计基础从课程内容上被分为两大块。数字电路介绍了数字系统的组成,数字信号的特点等;在内容上先逻辑电路,逻辑部件,先单元电路后系统电路等等。数字电路多以理论为重点,在讲解中多涉及外部逻辑功能。数字电路部分多以运用为主。这样的课程组合可以让学生对数字电路更加了解。

3.2 教学内容的调整

数字电路与逻辑设计的课程很多,为了让学生在有限的实践内把课程学好,要求教师掌握基本理论的同时有效地组织课程教学。在介绍运用时,要根据其不同的侧重点进行分析。实验教学从随堂实验到改革教学后进行独立实验,这其中包括验证性实验等。

通过有效的组织,可以增加学生们的实践操作,调动学生们的积极性,从而有助于知识能力的提高。

3.3 加大实践的内容与次数

数字电路与逻辑设计在教学中需要增加实践内容,这有利于课程的安排,更提高了学生们的动手能力。在实践中发挥良好的教学效果,要合理地拆分实践内容:①基本实验;②设计实验。我们来了解一下这两种实验的概念:基本实验室使用电子仪器的能力;而设计实验则是为了实现逻辑功能,而采用的是数字系统。在设计实验中鼓励学生自拟实验的项目,并将课外活动结合进来,使学生的思维更加广阔。

目前的电子大赛就是为高校的改革服务,它是结合了电子信息的专业内容,这种比赛在教学改革中起到了引导的作用。这十多年来,在全国开展了很多电子计算机的竞赛,这些竞赛对高校体系改革帮助十分明显,它有助于有才能的年轻人展示自己的能力与专业水平。在电子竟赛出题中增大数字电路EDA的内容可以引导高校建设EDA的实验室,例如:SOPC(系统集成芯片)是我国“十一五”制定的重大专项,目前全国已在12个高校中成立了集成电路人才培养基地。

4 结语

现阶段是电子化的时代,科学的进步带动了电子技术的广泛应用。大量的可编程器件被采用,这使得传统的数字逻辑方法明显变化。计算机的应用范围越来越高,使得人们对计算机的认识逐渐深刻,计算机的设计理念开始突破原有的范围。数字电路与逻辑设计在各种现代技术的合力推动之下,得到了明显的提升,可以做到使学生紧跟在市场的前沿。所以,数字电路和逻辑设计的改革加快了这门科学的发展,提高了学生们解决实际问题的能力,给学生们的就业和发展打下了坚实的基础。

参考文献:

[1]李晓辉.数字电路与逻辑设计[J].

[2]曹魏,徐东风.计算机教育[J].