数字集成电路范文

时间:2023-03-23 17:54:50

导语:如何才能写好一篇数字集成电路,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数字集成电路

篇1

数字集成电路低功耗优化设计

随着科技的不断发展和进步,在集成电路领域当中,数字集成电路的增长速度飞快,在各种新技术的应用之下,集成电路系统的集成度和复杂度也有了很大的提升。对着移动设备、便携设备的广泛应用,使得数字集成电路面临着越来越严峻的功耗问题。因此,在数字集成电路的未来发展当中,低功耗优化设计已经成为一个主要的发展趋势,在数字集成电路的工艺制造、电路设计等方面,都发挥着巨大的作用。

一、低功耗优化设计的方法和技术

对于可移动、便携式的数字系统来说,功耗具有很大的作用。因此在设计数字电路的时候,应当分析其功耗问题。在设计数字集成电路的过程中,要对功耗、面积、性能等加以考虑。而在这些方面,存在着相互关联和约束的关系。因此,在对数字电路性能加以满足的前提下,对设计方案和技术进行选择,从而实现低功耗优化设计。具体来说,应当平衡性能、面积、功耗方面的关系,防止发生浪费的情况。对专用集成电路进行高效应用,对结构和算法进行优化,同时对工艺和器件进行改进。

二、数字集成电路的低功耗优化设计

1、门级

在数字集成电路的低功耗优化设计中,门级低功耗优化设计技术具有较为重要的作用,其中包含着很多不同的技术,例如路径平衡、时许调整、管脚置换、们尺寸优化、公因子提取、单元映射等。其中,单元映射是在设计电路中,在逻辑单元、门级网表之间,进行合理的布局布线。公因子提取法能够对逻辑深度进行降低、对电路翻转进行减小、对逻辑网络进行简化从而降低功耗。路径平衡则是针对不同路径的延迟时间,对其进行改变,从而降低功耗。

2、系统级

系统级低功耗优化设计当中,主要包括了软硬件划分、功耗管理、指令优化等技术。其中,软硬件划分主要是对硬件和软件在抽象描述的监督,对其电路逻辑功能加以实现,通过对方案的综合对比,选择低功耗优化设计方案。功耗管理是针对电路设计不同的工作模式,将空闲模块挂起,从而降低功耗。而指令优化则包含指令压缩、指令编码优化、指令集提取等,通过对读取速度、密度的提升,使功耗得到降低。

3、版图级

在版图级低功耗优化设计中,需要对互联、器件等同时进行优化,对着集成电路工艺的发展,器件尺寸的减小,功耗也就自然降低。同时由于具有更快的开关速度,因此可以根基不同情况,在电路设计中选择合适的器件进行优化。而对于系统来说,互联作为连接器件的导线,对于系统性能也有着很大的影响。在信号布线的过程中,可以增加关键、时钟、地、电源等信号以及高活动性信号的横截面,从而降低功耗和延时。

4、算法级

在算法级低功耗优化设计当中,需要对速度、面积、功耗等约束条件加以考虑,从而对电路体系编码、结构等进行优化。在通常情况下,为了提升电路质量、降低电路功耗,会采用提高速度、增加面积等方法来实现。算法级低功耗优化设计与门级、寄存器传输级不同,这两者都是对电路的基本结构首先进行确定,然后对电路结构再进行低功耗优化调整。在算法级低功耗优化设计当中,主要包括并行结构、流水线、总线编码、预计算等技术。

5、电路级

在电路级低功耗优化设计中,NMOS管阵列构成的PDN完成了逻辑功能,其中只需要少量额晶体管,具有较快的开关速度,同时由于具有较低的负载电容,不存在短路电流。在电源与第之间,没有电流通路,因此不会产生静态功耗,对于总体功耗的降低有着很大的帮助。同时,在应用的异步电路当中,在稳定状态时,输入信号才会翻转,从而避免了输入信号之间的竞争冒险,也避免了功耗浪费。

6、工艺级

在工艺级低功耗优化设计中,主要包括按比例缩小、封装等技术。随着技术的发展,系统拥有了更高的集成度,器件尺寸得以减小、电容得以降低,在芯片之间,通信量也有所下降,因此功耗也能够得到有效的控制。其中主要包括了互连线、晶体管的按比例缩小。芯片应当进行封装,充分与外界相隔离,从而避免外界杂质造成腐蚀,降低其电气性能。而在封装过程中,对于芯片功耗有着很大的影响。通过合理的进行封装,能够更好的进行散热,从而是功耗得到降低。

7、寄存器传输级

在设计数字集成电路的过程中,寄存器传输级是一种同步数字电路的抽象模型,根据存储器、寄存器、总线、组合逻辑装置等逻辑单元之间数字信号的流动所建立的。在当前的数字设计中,工作流程是寄存器传输级上的主要设计,根据寄存器传输级的描述,逻辑综合工具对低级别的电路描述进行构建。在寄存器传输级的低功耗优化设计当中,主要包括了门控时钟、存储器分块访问、操作数隔离、操作数变形、寄存器传输级代码优化等方法。

随着科技的不断发展,在当前社会中,越来越多的移动设备和便携设备出现在人们的生活中,因此,数字集成电路也正在得到更加广泛的应用。而在电路设计当中,功耗问题始终是一个较为重点的问题,因此,应当对数字集成电路进行低功耗优化设计,从而降低电路功耗,提升电路效率。

参考文献:

[1]桑红石,张志,袁雅婧,陈鹏.数字集成电路物理设计阶段的低功耗技术.微电子学与计算机,2011(04).

[2]邓芳明,何怡刚,张朝龙,冯伟,吴可汗.低功耗全数字电容式传感器接口电路设计.仪器仪表学报,2014(05).

篇2

关键词:数字IC芯片;软故障;硬故障;外部电路

数字集成电路现广泛应用于自动控制、信号处理、计算机和广播电视设备等电子领域,检查数字集成电路故障,要确认是数字集成电路本身故障,还是元器件故障,需从各个方面来观察集成块工作状态是否正常,以便正确、有效地判断故障的所在。数字IC芯片主要有TTL和CMOS两大类,它们的故障现象各式各样,下面就各种数字IC芯片的故障现象作一个归纳。

一. 数字IC芯片的软故障

(1).芯片的速度不好。一个芯片的执行速度是指一组正确的输入经过芯片之后得到一组正确并且稳定的输出所需要的时间。这个时间由几个部分组成:输入信号有效电平(低电平或高电平)达到稳定并送入芯片所需要的时间;信号在芯片内部通过逻辑变换,传输所需要的延时时间;输出信号开始输出并达到稳定电平所用的时间。如果某个芯片的门延时过长,产生的信号虽逻辑上正确,但较长时间后电平仍不稳定,或者不满足时序要求,有所偏移,便会产生不稳定性故障或随机故障。

(2).芯片的驱动有力差。一个普通的TTL芯片和TTL芯片接口兼容的芯片均有其“扇出”约定,即一个芯片可直接驱动的TTL芯片的个数。通常的TTL芯片的扇出值为8,如果在电路设计时未注意芯片的内部工作特性,造成芯片的扇出值不满足额定指标,就会造成如下故障:系统或某个局部电路在连接设备较少时系统完全正常,但随着设备的增加系统的工作会不正常,甚至根本无法工作。

(3)抗干扰能力较差。如果在设计系统时板体的布线和芯片安排不合理,便极易产生这种故障。例如,芯片的电源线和地线在板体上的布线宽度过小、线与线之间的距离过近(线间的干扰与传输的信号频率及信号强度呈指数关系)或芯片的性能不好,均会造成抗干扰能力差。出现这种故障时,轻者当系统接近干扰源时故障发生频繁,而远离干扰源或在系统与干扰源之间加入一个金属屏蔽层时,故障次数减少或消失;较严重者必须在电路中设法加入抗干扰的滤波电容、焊接“明线”加粗板体上的布线。

(4)热稳定性不好。所谓热稳定性不好是指机器在开始时运行完全正常,而运行一段时间后,即当机器内部的温度升高或者室内温度升高后,便出现故障;将机器关好,冷却一段时间后再开机,机器又可正常运行,之后故障再出现。热稳定性不好在以分离元件为主的设备中出现较多,在以集成电路为主的设备中相对较少,如果使用的测试检查手段正确,检查也不困难。此外,也有“冷稳定性”不好的现象,即当温度低时机器故障出现,而温度升高时机器才可正常工作,我们也将这种现象归为热稳定性不好。

(5)芯片之间匹配性差。由于在各种集成电路芯片设计时已经考虑屋不同类型的芯片之间接口信号的兼容性,所以通常不同的芯片之间的连接并无繁杂的要求或约定。但一个芯片产生的输出信号要去驱动另一个或几个芯片时,信号在传输过程中会有微小的抖动。如果在电路设计时未考虑到这种抖动,则会因信号的抖动而产生故障。产生这种故障时,输出芯片和输入芯片本身均无故障,如将其放在电路及芯片完全相同的另一个板上,可能完全正常。我们称这种故障为芯片间的匹配性故障。

二.数字IC芯片的硬故障

我们把各种芯片(中小规模的TTL芯片、大规模集成电路芯片和门阵芯片)的逻辑功能错称为硬故障。如果该芯片的功能是正常的,则一组正确的输入信号通过芯片必产生与其对应的输出信号。反之,如果这个芯片对于正确的输入信号得不到正确的输出结果,则称这种故障为逻辑功能错或逻辑错。一个芯片出现这种故障,其原因有可能是芯片内部的组件有错、组件间连接布线短路或开路、内部逻辑电路与芯片的输入/输出引脚脱焊等。因芯片内部结构很复杂,一般很难通过输入/输出逻辑错误找出芯片内部什么地方出现故障,但是由于其故障现象比较明显,因此这种故障的检查比较容易。数字IC硬故障又分为两类:由数字IC的内部电路故障引起的逻辑功能错和由数字IC外部电路故障引起的逻辑功能错。

1. 数字IC的内部电路故障:

a. 芯片击穿。所谓芯片击穿是指芯片的某一对或某一组输入/输出引脚之间呈现完全导通(短路)状态(无论芯片的内部逻辑关系如何,均不应有输入/输出脚之间完全导通现象),有时则表现为个别引脚或多个引脚与电源引脚或地线引脚直接导通。

b. 引线开路,在数字IC内部控制电路的故障中,封装内连接线开路是最常见的形式之一。如果输入引线断开,则表现为功能不正常,如果这些输出进入到三态总线,将引起逻辑混淆。

c. 引线短路。数字IC电路内部另一种常见硬故障是引线对地短路。

2.数字IC外部电路故障。

篇3

关键词:RFID;ISO/IEC 14443-A;电子标签;DES

Digital Integrated Circuit of Passive Tag Based on the Protocol of 14443-A

YU Wulong,MENG Ying

(School of Information Science and Technology,huhai College of Beijing Institute of Technology,huhai,519085,Chinaオ

Abstract:According to the protocol of IS0/IEC 14443-A,the circuit design and function test of the passive tagare finished.As a result,the balance among area,speed and power consumption is achieved.Based on the technics of 0.35 μm,the result indicates the area of 36 877.75 μm2 and the power consumption of 30.845 8 mW completely meet the performance requirement of chip.

eywords:RFID;ISO/IEC 14443-A;electronical tag;DES オ

在无线通信中数据的传输在空间进行,因此无源电子标签的数据通信涉及通信和信息安全等技术,其中信息的安全性是无源电子标签设计时需要解决的核心问题。适应于无源电子标签的通信协议有多种,其中ISO/IEC 14443协议是目前应用较广的协议[1]。本文采用这一协议在安全性设计基础上,完成无源电子标签数字集成电路芯片的设计。

1 芯片的电路结构

根据ISO/IEC 14443-A协议对标签通信的规定,本文设计的无源电子标签数字电路芯片的结构如图1所示,主要由通信安全、信息安全、存储以及控制等4个单元组成,图1同时给出各个单元中所需子电路模块的组成结构。

由于电子标签采用的半双工通信方式,为减小芯片面积,本文采用复用的方法对各单元的子电路模块进行设计。在信道层次上,将加密/解密子电路模块复用,将校验码的生成和校验子电路模块复用;在子电路模块内部层次上,将计数器以及锁存器等电路复用。

电子标签以被动方式通过天线的感应获得能量,如果电路的功耗过大,将出现能量不足和信号不稳定等状态,因此本文采用门控时钟技术和控制电路节点跳变方法降低所设计电子标签的功耗。在结构层次上,以门控时钟取代原始时钟,为子电路模块提供时钟信号;在子电路模块内部层次上,控制电路系统内部各触发器和锁存器输出的跳变次数。

2 控制单元以及存储单元

考虑到系统任务的复杂度,控制单元调度任务的工作由主控制和从协议控制2个子电路模块协同完成。主控制子电路模块用于协调通信安全、信息安全以及存储等单元中各子电路模块,为从协议控制子电路模块做准备;从协议控制子电路模块用于完成预设的通信方案。

由于本文设定标签接收和发送的最大字节数为32位,而各子电路模块的接口总线为8位,为了协调电路系统发送存储数据和加密操作的时序,控制单元设置了一由28个字节构成的寄存器组,作为虚拟RAM,以暂存数据。

标签操作的数据存放在存储单元的E2PROM电路中,为了与总线接口配合,存储单元中包含了接口电路,以完成控制单元与E2PROM之间的总线转换。

3 通信安全单元

在无线通信过程中,由于信号容易受到突发的偶然因素和系统本身使用特点的影响产生干扰[2],考虑到电子标签的半双工通信方式及其成本,本文在通信安全单元的设计中,采用数据编码技术、信道编码技术和防冲突访问控制等3种技术进行检错。通过改进米勒码解码器对接收信号进行解码,并以曼彻斯特码编码器对发送信号进行编码。

通信安全单元既需要生成信道循环冗余校验码和奇校验码,又要对接收的信道校验码进行校验,这2个功能具有相同的电路结构,数据以比特流的形式传输,因此可采用功能复用方法设计循环冗余校验和奇校验模块子电[LL]路。本文同时基于面向位冲突帧的树型搜索算法的防冲突访问机制[3],设计防冲突访问控制子电路模块。

4 信息安全单元

对无源电子标签信息的安全性造成威胁的因素有人为和客观2种,结合本文研制的电子标签存储的数据量较少特点,信息安全单元可采用如下技术设计:

(1 采用基于DES(Data Encryption Standard)密码体系的CFB方式设计加密协处理器,使有效数据加密后才在信道中传输;

(2 采用基于DES密码体系的三重相互认证机制,使阅读器和电子标签可分别确认对方操作的合法性。

[BT3]4.1 密码体系的优化设计

DES密码体系CFB方式的设计核心是加密函数,其结构以及优化方案可由图2所示体系给出。主要包括初始置换、逆初始置换、循环结构以及置换选择A的优化设计。

如果以连线方法实现初始置换的位映射关系,不仅使版图的布局布线工作量增大,而且连线占用面积也较大,因此,本文采用移位寄存器方法[4]实现初始置换的功能。考虑到初始置换表中每一列的值分别对应每一输入字节的位2,4,6,8和位1,3,5,7,而且这里设定的接口总线宽为1个字节,所以可将初始置换表按照如下矩阵进行转换:

{初始置换表}={初始置换的每一列}×{每个字节由低位到高位排列}

而且,每一位数据分别存储在8个移位寄存器的第一个位置,当接收到1个字节,各移位寄存器的内容均右移一位,于是便可得到图2中的初始置换电路结构。类似地,逆初始置换也以移位寄存器的方法实现位映射关系。

考虑到研制芯片中时钟周期的裕度较大,因此,采用两次循环结构展开和二级流水线相结合的技术设计循环结构,实现了在面积和速度上取得较好平衡的目标,其结构的优化方法在如图2中一并给出。

对置换选择A,将其置换表中的数值分成上下2部分,每部分数据按照每行8位的格式排列,并将上半部分的前4位数据和下半部分的后4位数据合成为1个字节,而且对经过置换选择的密钥进行循环左移,结构如图2中的置换选择A电路结构所示。

4.2 三重相互认证机制

由于信息安全单元采用对称密钥DES密码体系对数据进行加解密,阅读器和标签具有相同的密钥,因此,可采用基于DES密码体系的三重认证机制确保数据的真实性。阅读器和标签只有经过相互认证后,才能对存储的数据和参数进行操作,主要步骤包括:

(1 阅读器发送“认证查询口令”到标签,标签产生一随机数RA,加密后反馈回阅读器;

(2 阅读器产生一随机数RB,并且使用共同的密钥,将RA和RB加密成数据块Token1并发送给标签,标签对收到的Token1解密,并将从中取得的RA与原先发送的RA比较,一致时,将收到的RB加密成数据块Token2,并反馈回阅读器,进一步确认双方的合法身份;

(3 阅读器对收到的Token2解密,并将从中取得的RB与原先发送的RB比较,一致时,则发送身份确认命令到标签,标签响应并确认。

5 验证平台

为检验所设计数字集成电路芯片的通信功能,本文设计了相应的验证平台,结构如图3所示。

测试向量发生器用于产生各测试向量,为芯片提供输入信号;阅读器数据发送器将测试向量转换为电子标签数字集成电路能够识别的帧格式;响应分析器用于侦查所设计芯片的响应是否为输入信号要求的反馈。

针对通信功能,本文对输入信号组合加于约束,所设计的测试向量集具备如下特征:

(1 测试校验出错情况:当标签接收数据的校验码出错,测试检错功能。

(2 测试序列号出错情况:当标签接收的序列号与期望值不一致,测试检错功能。

(3 测试命令数目出错情况:当标签接收的命令数目与期望值不一致,命令数目约束比期望值多或少,测试检错功能。

(4 测试命令出错情况:当标签接收命令为当前通信状态不能接收的命令,命令约束为其他通信状态的操作命令,测试检错功能。

(5 测试命令操作时间间隔出错情况:当标签在规定的时间间隔内接收命令,时间间隔范围约束为一次操作完成时间和帧保护时间,测试检错功能。

6 结 语

本文采用Synopsys工具,结合中芯国际的0.35 μm工艺库,可以得到本文所设计芯片的面积和功耗如表1、┍2所示:

表1、表2中,工艺库定义的芯片面积以一个与非门作为单位,因此本文设计芯片的面积为36 877.750 000 μm2,功耗为30.845 8 mW。

根据上述验证平台和测试向量集,对本文所研制芯片进行通信功能测试,其结果的波形截图如图4所示。由图4可见设计电路能够检测出校验码、命令数目和命令等出错情况。

综合上述结果可见,设计的芯片符合ISO/IEC14443-A协议,并可以满足无源电子标签对通信和信息安全性的双重要求。

参 考 文 献

[1]陈新河.无线射频识别(RFID技术发展综述\[J\].标准与技术追踪,2005(7:22-26.

[2]约翰・麦克纳马拉.数据通信技术[M].北京:中国铁路出版社,1984.

篇4

【关键词】数字电路 读图 基本方法

【中图分类号】TN79 【文献标识码】A 【文章编号】1674-4810(2015)30-0123-03

人类生活带着对电子技术越来越强烈的依赖进入新世纪。电子技术对人们的这种深刻影响,使广大青少年及电子爱好者对电子技术知识的兴趣也越来越浓厚。

在中学,物理是一门较难的学科,如电磁场的特性,学生看不见、摸不着。在职业学校电学也是课程中相对难学的一门课,一方面电学比较抽象,另一方面电工电子和一系列电路理解起来有个过程,尤其是电路图,学会看电路图,十分重要。

看懂电子电路图是电子技术工作人员的基本能力,就如一个车工必须看懂机械零件图一样。因为只有看懂了电子电路原理图以后才能对电路进行调试、维修和改进。因此,具有一定的电子电路图的识图技能是分析和解决电子技术问题和深入学习的基础。

一 数字电路图的识图方法

首先让我们了解一下什么是数字电路图。

对数字信号进行处理的电路就是数字电路图。数字电路有以下几个显著特点:(1)数字信号采用二值信息――高电平和低电平。(2)数字电路中的晶体管仅在“开关状态”工作,即只工作在饱和和截止两个状态。这两个状态对应二值信息的0和1。(3)数字电路的基本单元对元器件的精度要求不高,只要能判断出高、低电平就可以了,因此便于集成化和系列化生产,成本低廉,使用方便。(4)对数字电路的研究一般集中在输入和输出的逻辑关系方面,包括逻辑分析和逻辑设计。(5)数字电路能对数字信号进行逻辑和算术的运算,广泛应用在智能控制和计算机等现代科技中。

电路图就是人们使用约定的电路符号在纸上表示是几点电路而绘制的图形。使用电路图,大大方便了人们对实际电路的分析、研究和描述。数字电路图表明了数字电路的结构和实际连接方式,通过看数字电路图就可以了解实际电路的情况。

1.识图的基本任务和要点

我们知道,一般电子设备的内部都具有用电子元器件组装的电路板,这些电路板上的元器件是按照相应的电路图纸安装起来的。这些电路图纸通常被称为电路图。常见的电路图有方框图、原理图、印刷版图、装配图等。

印刷版图和装配图都是体现装配关系时使用的电路图。它们非常直观,但往往不反映电路的结构,一般不作为理解电路原理的依据。

方框图是用来体现工作原理的电路图。它是把能够实现一定功能的电路组合(单元电路)抽象化。

电原理图是最复杂的,但也是最有用的一种电路图。它把实际电路的内部结构,各元件之间的连接情况,清晰、简洁地反映出来。实际上,平时我们说的电路图就是指电原理图。阅读和分析电原理图是我们认识和理解一个电路最重要的途径。

数字电路识图的要点一般有以下几点:首先,要注意系统性;其次,要重点分析了解集成电路功能、内电路组成和引脚作用,这是分析数字集成电路的关键。就是说要采取化整为零,然后集零为整的方法,即先对各个电路或各个信号处理进行独立的分析,然后再将它们集合起来进行整体分析。

2.数字集成电路识图的基本方法和要求

熟练掌握一些单元电路的基本组成形式和经典电路,如整流电路、稳压电路和某些运放集成电路等。识图时先将这些单元电路直接画出来,形成电路原理图的框架,这样可提高识图效率。

由于数字电路大多数是以集成电路为核心构成的,所以对数字电路进行读图之前要先对集成电路的情况有所了解,比如集成电路在应用方面的一些功能和特点等。

就功能而言:要从数字集成电路各引脚的外电路结构以及外电路所用元器件参数等去了解认识某一具体集成电路完整的工作情况。同时,还要认识这个完整的电路系统的功能。

就特点的体现而言:一般数字集成电路并不画出所用集成电路的内电路方框图,这给识图带来了很大困难,尤其对初学者进行电路分析来说更为不利。因此在分析这类数字集成电路图时最好先查阅有关数字集成电路的应用手册,找到数字集成电路的内电路方框图,这样可给该电路分析带来很大方便。

初学者分析数字集成电路往往感到比分立器件更困难。其实在掌握读图的规律以后就会感到分析数字集成电路更方便。

篇5

集成电路作为关系国民经济和社会发展全局的基础性和先导性产业,是现代电子信息科技的核心技术,是国家综合实力的重要标志。鉴于我国集成电路市场持续快速的增长,对集成电路设计领域的人员需求也日益增加。集成电路是知识密集型的高技术产业,但人才缺失的问题是影响集成电路产业发展的主要问题之一。据统计,2012年我国对集成电路设计人才的需求是30万人 [1-2]。为加大集成电路专业人才的培养力度,更好地满足集成电路产业的人才需求,2003年教育部实施了“国家集成电路人才培养基地”计划,同时增设了“集成电路设计和集成系统”的本科专业,很多高校都相继开设了相关专业,大力培养集成电路领域高水平的骨干专业技术人才[3]。

黑龙江大学的集成电路设计与集成系统专业自2005年成立以来,从本科教学体系的建立、本科教学内容的制定与实施、师资力量的培养与发展等方面进行不断的探索与完善。本文将结合多年集成电路设计与集成系统专业的本科教学实践经验,以及对相关院校集成电路设计专业本科教学的多方面调研,针对黑龙江大学该专业的本科教学现状进行分析和研究探索,以期提高本科教学水平,切实做好本科专业人才的培养工作。

一、完善课程设置

合理设置课程体系和课程内容,是提高人才培养水平的关键。2009年,黑龙江大学集成电路设计与集成系统专业制定了该专业的课程体系,经过这几年教学工作的开展与施行,发现仍存在一些不足之处,于是在2014年黑龙江大学开展的教学计划及人才培养方案的修订工作中进行了再次的改进和完善。

首先,在课程设置与课时安排上进行适当的调整。对于部分课程调整其所开设的学期及课时安排,不同课程中内容重叠的章节或相关性较大的部分可进行适当删减或融合。如:在原来的课程设置中,“数字集成电路设计”课程与“CMOS模拟集成电路设计”课程分别设置在教学第六学期和第七学期。由于“数字集成电路设计”课程中是以门级电路设计为基础,所以学生在未进行模拟集成电路课程的讲授前,对于各种元器件的基本结构、特性、工作原理、基本参数、工艺和版图等这些基础知识都是一知半解,因此对门级电路的整体设计分析难以理解和掌握,会影响学生的学习热情及教学效果;而若在“数字集成电路设计”课程中添加入相关知识,与“CMOS模拟集成电路设计”课程中本应有的器件、工艺和版图的相关内容又会出现重叠。在调整后的课程设置中,先开设了“CMOS模拟集成电路设计”课程,将器件、工艺和版图的基础知识首先进行讲授,令学生对于各器件在电路中所起的作用及特性能够熟悉了解;在随后“数字集成电路设计”课程的学习中,对于应用各器件进行电路构建时会更加得心应手,达到较好的教学效果,同时也避免了内容重复讲授的问题。此外,这样的课程设置安排,将有利于本科生在“大学生集成电路设计大赛”的参与和竞争,避免因学期课程的设置问题,导致学生还未深入地接触学习相关的理论课程及实验课程,从而出现理论知识储备不足、实践操作不熟练等种种情况,致使影响到参赛过程的发挥。调整课程安排后,本科生通过秋季学期中基础理论知识的学习以及实践操作能力的锻炼,在参与春季大赛时能够确保拥有足够的理论知识和实践经验,具有较充足的参赛准备,通过团队合作较好地完成大赛的各项环节,赢取良好赛果,为学校、学院及个人争得荣誉,收获宝贵的参赛经验。

其次,适当降低理论课难度,将教学重点放在掌握集成电路设计及分析方法上,而不是让复杂烦琐的公式推导削弱了学生的学习兴趣,让学生能够较好地理解和掌握集成电路设计的方法和流程。

第三,在选择优秀国内外教材进行教学的同时,从科研前沿、新兴产品及技术、行业需求等方面提取教学内容,激发学生的学习兴趣,实时了解前沿动态,使学生能够积极主动地学习。

二、变革教学理念与模式

CDIO(构思、设计、实施、运行)理念,是目前国内外各高校开始提出的新型教育理念,将工程创新教育结合课程教学模式,旨在缓解高校人才培养模式与企业人才需求的冲突[4]。

在实际教学过程中,结合黑龙江大学集成电路设计与集成系统专业的“数模混合集成电路设计”课程,基于“逐次逼近型模数转换器(SAR ADC)”的课题项目开展教学内容,将各个独立分散的模拟或数字电路模块的设计进行有机串联,使之成为具有连贯性的课题实践内容。在教学周期内,以学生为主体、教师为引导的教学模式,令学生“做中学”,让学生有目的地将理论切实应用于实践中,完成“构思、设计、实践和验证”的整体流程,使学生系统地掌握集成电路全定制方案的具体实施方法及设计操作流程。同时,通过以小组为单位,进行团队合作,在组内或组间的相互交流与学习中,相互促进提高,培养学生善于思考、发现问题及解决问题的能力,锻炼学生团队工作的能力及创新能力,并可以通过对新结构、新想法进行不同程度奖励加分的形式以激发学生的积极性和创新力。此外,该门课程的考核形式也不同,不是通过以往的试卷笔试形式来确定学生得分,而是以毕业论文的撰写要求,令每一组提供一份完整翔实的数据报告,锻炼学生撰写论文、数据整理的能力,为接下来学期中的毕业设计打下一定的基础。而对于教师的要求,不仅要有扎实的理论基础还应具备丰富的实践经验,因此青年教师要不断提高专业能力和素质。可通过参加研讨会、专业讲座、企业实习、项目合作等途径分享和学习实践经验,同时还应定期邀请校外专家或专业工程师进行集成电路方面的专业座谈、学术交流、技术培训等,进行教学及实践的指导。

三、加强EDA实践教学

首先,根据企业的技术需求,引进目前使用的主流EDA工具软件,让学生在就业前就可以熟练掌握应用,将工程实际和实验教学紧密联系,积累经验的同时增加学生就业及继续深造的机会,为今后竞争打下良好的基础。2009―2015年,黑龙江大学先后引进数字集成电路设计平台Xilinx和FPGA实验箱、华大九天开发的全定制集成电路EDA设计工具Aether以及Synopsys公司的EDA设计工具等,最大可能地满足在校本科生和研究生的学习和科研。而面对目前学生人数众多但实验教学资源相对不足的情况,如果可以借助黑龙江大学的校园网进行网络集成电路设计平台的搭建,实现远程登录,则在一定程度上可以满足学生在课后进行自主学习的需要[5]。

其次,根据企业岗位的需求可合理安排EDA实践教学内容,适当增加实践课程的学时。如通过运算放大器、差分放大器、采样电路、比较器电路、DAC、逻辑门电路、有限状态机、分频器、数显键盘控制等各种类型电路模块的设计和仿真分析,令学生掌握数字、模拟、数模混合集成电路的设计方法及流程,在了解企业对于数字、模拟、数模混合集成电路设计以及版图设计等岗位要求的基础上,有针对性地进行模块课程的学习与实践操作的锻炼,使学生对于相关的EDA实践内容真正融会贯通,为今后就业做好充足的准备。

第三,根据集成电路设计本科理论课程的教学内容,以各应用软件为基础,结合多媒体的教学方法,选取结合于理论课程内容的实例,制定和编写相应内容的实验课件及操作流程手册,如黑龙江大学的“CMOS模拟集成电路设计”和“数字集成电路设计”课程,都已制定了比较详尽的实践手册及实验内容课件;通过网络平台,使学生能够更加方便地分享教学资源并充分利用资源随时随地地学习。

四、搭建校企合作平台

篇6

在非微电子专业如计算机、通信、信号处理、自动化、机械等专业开设集成电路设计技术相关课程,一方面,这些专业的学生有电子电路基础知识,又有自己本专业的知识,可以从本专业的系统角度来理解和设计集成电路芯片,非常适合进行各种应用的集成电路芯片设计阶段的工作,这些专业也是目前芯片设计需求最旺盛的领域;另一方面,对于这些专业学生的应用特点,不宜也不可能开设微电子专业的所有课程,也不宜将集成电路设计阶段的许多技术(如低功耗设计、可测性设计等)开设为单独课程,而是要将相应课程整合,开设一到二门集成电路设计的综合课程,使学生既能够掌握集成电路设计基本技术流程,也能够了解集成电路设计方面更深层的技术和发展趋势。因此,在课程的具体设置上,应该把握以下原则。理论讲授与实践操作并重集成电路设计技术是一门实践性非常强的课程。随着电子信息技术的飞速发展,采用EDA工具进行电路辅助设计,已经成为集成电路芯片主流的设计方法。因此,在理解电路和芯片设计的基本原理和流程的基础上,了解和掌握相关设计工具,是掌握集成电路设计技术的重要环节。技能培训与前瞻理论皆有在课程的内容设置中,既要有使学生掌握集成电路芯片设计能力和技术的讲授和实践,又有对集成电路芯片设计新技术和更高层技术的介绍。这样通过本门课程的学习,一方面,学员掌握了一项实实在在有用的技术;另一方面,学员了解了该项技术的更深和更新的知识,有利于在硕、博士阶段或者在工作岗位上,对集成电路芯片设计技术的继续研究和学习。基础理论和技术流程隔离由于是针对非微电子专业开设的课程,因此在课程讲授中不涉及电路设计的一些原理性知识,如半导体物理及器件、集成电路的工艺原理等,而是将主要精力放在集成电路芯片的设计与实现技术上,这样非微电子专业的学生能够很容易入门,提高其学习兴趣和热情。

2非微电子专业集成电路设计课程实践

根据以上原则,信息工程大学根据具体实际,在计算机、通信、信号处理、密码等相关专业开设集成电路芯片设计技术课程,根据近两年的教学情况来看,取得良好的效果。该课程的主要特点如下。优化的理论授课内容1)集成电路芯片设计概论:介绍IC设计的基本概念、IC设计的关键技术、IC技术的发展和趋势等内容。使学员对IC设计技术有一个大概而全面的了解,了解IC设计技术的发展历程及基本情况,理解IC设计技术的基本概念;了解IC设计发展趋势和新技术,包括软硬件协同设计技术、IC低功耗设计技术、IC可重用设计技术等。2)IC产业链及设计流程:介绍集成电路产业的历史变革、目前形成的“四业分工”,以及数字IC设计流程等内容。使学员了解集成电路产业的变革和分工,了解设计、制造、封装、测试等环节的一些基本情况,了解数字IC的整个设计流程,包括代码编写与仿真、逻辑综合与布局布线、时序验证与物理验证及芯片面积优化、时钟树综合、扫描链插入等内容。3)RTL硬件描述语言基础:主要讲授Verilog硬件描述语言的基本语法、描述方式、设计方法等内容。使学员能够初步掌握使用硬件描述语言进行数字逻辑电路设计的基本语法,了解大型电路芯片的基本设计规则和设计方法,并通过设计实践学习和巩固硬件电路代码编写和调试能力。4)系统集成设计基础:主要讲授更高层次的集成电路芯片如片上系统(SoC)、片上网络(NoC)的基本概念和集成设计方法。使学员初步了解大规模系统级芯片架构设计的基础方法及主要片内嵌入式处理器核。

丰富的实践操作内容1)Verilog代码设计实践:学习通过课下编码、上机调试等方式,初步掌握使用Verilog硬件描述语言进行基本数字逻辑电路设计的能力,并通过给定的IP核或代码模块的集成,掌握大型芯片电路的集成设计能力。2)IC前端设计基础实践:依托Synopsys公司数字集成电路前端设计平台DesignCompiler,使学员通过上机演练,初步掌握使用DesignCompiler进行集成电路前端设计的流程和方法,主要包括RTL综合、时序约束、时序优化、可测性设计等内容。3)IC后端设计基础实践:依托Synopsys公司数字集成电路后端设计平台ICCompiler,使学员通过上机演练,初步掌握使用ICCompiler进行集成电路后端设计的流程和方法,主要包括后端设计准备、版图规划与电源规划、物理综合与全局优化、时钟树综合、布线操作、物理验证与最终优化等内容。灵活的考核评价机制1)IC设计基本知识笔试:通过闭卷考试的方式,考查学员队IC设计的一些基本知识,如基本概念、基本设计流程、简单的代码编写等。2)IC设计上机实践操作:通过上机操作的形式,给定一个具体并相对简单的芯片设计代码,要求学员使用Synopsys公司数字集成电路设计前后端平台,完成整个芯片的前后端设计和验证流程。3)IC设计相关领域报告:通过撰写报告的形式,要求学员查阅IC设计领域的相关技术文献,包括该领域的前沿研究技术、设计流程中相关技术点的深入研究、集成电路设计领域的发展历程和趋势等,撰写相应的专题报告。

3结语

篇7

【关键词】基本结构;静态特性;动态特性;功耗计算;闩锁效应;CMOS集成电路特性;闩锁效应动态功耗

1.引言

CMOS数字集成电路是目前大规模和超大规模数字集成电路中广泛应用的一种电路结构,与NMOS和PMOS数字电路相比较,CMOS数字电路在功耗、噪声抑制、抗干扰能力等方面具有明显的优势。并且由于CMOS数字电路的集成度可以做的非常高,在总体性能上已经超出了TTL电路,因此得到了迅速而广泛地运用。目前CMOS电路占据了99%的市场份额。特别是CMOS电路的制造工艺已经达到了深亚微米范围后,器件特性的变化带来了一系列需要重视的问题。但是在高校传统的数字电路课程的教材中,对TTL电路的原理和特性讲述的比较详细,对CMOS电路的原理和特性却介绍过于简单。特别是对CMOS电路的关键的几个电气特性讲述的更少。因此揭示CMOS数字电路的构成,研究CMOS电路电气特性以及CMOS电路在设计数字系统中一些注意事项,是数字电路课程的教学和正确设计数字系统的一个需要引起注意的环节。

2.反相器的静态特性

在CMOS数字电路中,反相器是所有数字电路设计的核心。几乎所有的CMOS电路的电气特性都可以从反相器得到的结果中推断出来。

Nmos管的开关特性如图1a所示,UT是Nmos管的开启电压,当电压│UGS│≥│UT│时,Nmos管呈现出导通的状态,导通电阻的阻值与UGS的大小呈非线性变化,如图1a所示,输出电阻的典型值在K?范围内。当电压│UGS│≤│UT│时Nmos管呈现出截止的状态,其电阻非常大。在Pmos管的开关特性中如图1b所示,PMOS管和NMOS管成对偶性

在CMOS电路中,推荐的逻辑高电平为VDD,低电平为VSS。因此从图1C所示的反相器电路图中可以看出:当输入逻辑高电平时,此时│UGS│≥│UT│,因此Nmos管导通,UO=VSS。反之Pmos管导通,UO=VDD。

假设一个反相器的输入变量为In,输出变量为Out,反相器的输出电压与输入电压的关系为:,传输特性曲线如图1.d所示。电压传输特性曲线是对CMOS反相器静态特性的最佳的描述。

从中可以看出反相器的特点:

a.输出电压摆幅等同于电源电压,对干扰信号和噪声有很强的抗干扰能力。

b.因为MOS管内部的栅极是一个完全的绝缘体,所以有着极高的输入阻抗。反相器静态时的输入电流几乎为零。

c.反相器在静态时,Pmos管和Nmos管总有一个是截止的,因此流过VDD和VSS间的电流仅仅反相器内部的漏电流。常温下一个含100万门的芯片,在2.5V电压下工作的功耗通常在0.125mW。

3.反相器的动态特性

3.1 反相器的动态功耗和工作频率的关系

反相器的动态功耗主要是由于负载电容的充放电消耗的。当PMOS管导通时,NMOS管截止时,CL从电源吸取了一定数量的能量,输出电压从01。当PMOS管截止,NMOS管导通时,电容CL通过NMOS管释放能量,输出由10。如图3.1所示。

假设输入的是一个理想的方波,即上升沿和下降沿为零,为简化计算,不考虑Pmos管和Nmos管在翻转期间二个场效应管同时导通的情况。反相器输出从01翻转期间电容从电源中取得的能量为对此翻转区间的积分:

在电容上存储的能量Ec通过通过对其在相应周期上对瞬时功耗积分求得:

由此可以看到,从电源中吸取能量的一半消耗在MOS管中,另一半存储在电容C中,在1到0的翻转时CL上的能量通过PMOS管进行放电。

由此可以推出,如果考虑到反相器工作频率的话,反相器静态时01翻转时的功耗为:

反相器的工作频率越高,从电源中吸取的能量也越大。

3.2 电源和输入端信号幅度对CMOS的影响

虽然CMOS电路具有很多的优点,但是由于有一些自身固有的工艺结构引发的寄生效应,如果使用不当,很容易引起CMOS电路的闩锁效应,电路发热直至烧毁。在使用时必须引起注意。

闩锁效应就是指CMOS器件所固有的寄生双极晶体管(又称寄生可控硅,简称SCR)被触发导通,而触发和导通常常是由于CMOS器件的工作电压波动,或者是输入端信号幅度波动等因素引起的。触发后会在在CMOS器件的电源VDD与地线VSS之间形成低阻抗大电流通路,导致器件出现逻辑错误,发热甚至烧毁器件的现象。如图3.2a和3.2b所示。

在正常状态下,VDD和VSS间只有很小的电流通过。由于输入端的脉冲产生瞬间的上冲,或者电源波动产生的波动,在电阻Rw2端产生了电流IRS,IRS电流在寄生的PNP管基极产生了压降,如果压降大于0.7V,寄生的PNP管进入了导通状态。同样,寄生的PNP管导通后在电阻Rs处也产生了压降,又促使寄生的NPN管进入导通状态。这样一个闭合的正反馈的过程就形成了。同样,通过C2的下降沿也会产生同样的效果。此时VDD和VSS间会有大电流通过,即便是电源波动消失或者干扰波消失,电路内仍然有电流通过,只有断开电源才能使得CMOS电路内的正反馈消失。

由以上分析可以得出发生闩锁效应的条件为:

a.当输入端或者输出端出现了大于VDD或者小于VSS的信号,满足了寄生晶体管产生正反馈的条件。

b.电源电压产生了波动,当电压波动过大时使得寄生的晶体管为正偏置,因而产生了闩锁效应。

为防止产生闩锁效应,输入端或者输出端要满足以下条件

有上述分析可得出电源和输入信号的注意事项是:

(1)在布线的时候,CMOS的电源必须加上退耦电容。因为过高的电压波动会使得IRS电流增大,寄生的双极晶体管发生正反馈而产生闩锁效应。

(2)电源提供的电流选择一个合适的数值,避免一旦发生闩锁效应的时候,减少因电流过大而烧毁电路的可能.

(3)输入端的信号不能超过CMOS电路的工作电压VDD。过高的输入电压会使电路进入正反馈的状态,从而发生闩锁效应。从CMOS电压传输特性曲线中可以看出在输入信号VIH=VDD,VIL=VSS时,CMOS电路的噪声容限等参数为最佳状态。

(4)输出端或输入端避免跨接大电容。在开机或关机时,对电容的瞬间的充放电同样会改变寄生三极管的偏置电压而使CMOS进入闩锁效应,电容一般不能大于0.01?。在负载接有大电容时,可以串联电阻,如图3.3所示。

(5)避免信号长线传输,因为信号在长线传输中的分布电容可能会产生振荡引发产生闩锁效应。长线连接的方法如图3.4所示。

4.结束语

理解CMOS电路的电器特性是正确使用CMOS电路的关键。从CMOS电路电压传输特性的曲线中,可以读出电气特性的诸多参数。理解CMOS电路的闩锁效应的触发机制,是正确使用CMOS电路的关键。在CMOS电路飞跃发展的时代,特别是在CMOS电路进入了深亚微米时代,理解和掌握CMOS集成电路的电气特性显得特别重要。

参考文献

篇8

关键词:时钟树;时钟树长度;时钟树平衡;占空比

中图分类号: TP302文献标识码:A文章编号:1009-3044(2011)16-3950-02

Research and Methodologies of Improving Quality of Clock Tree

KE Lie-jin, WU Xiu-long, XU Tai-long

(School of Electronics and Information Engineering, Anhui University, Hefei 230601, China)

Abstract: The elements of clock tree performance: clock tree insertion delay, clock skew and clock signal duty cycle are analyzed. The strategy of improving quality of clock tree are analyzed, the strategy includes reasonable floorplan, reasonable clock source, to avoid macro clock pin bring adverse to clock tree balance, handling the discrete clock gating correctly, improving clock signal duty cycle based on clock inverter.

Key words: clock tree; clock tree insertion delay; clock tree balance; duty cycle

在数字集成电路设计中,时钟作为信号的基准,对电路系统的功能和性能起关键性的作用,时钟信号的载体是时钟树,时钟树是一个电路网络,通过时钟树网络,时钟信号被从时钟源分级传输到时序器件的时钟接受端。

同步数字集成电路的性能很大程度决定于时钟网络的设计,首先时钟信号决定数据传输节拍和系统工作频率。其次,时钟网络是芯片中翻转频率最高的电路之一,时钟网络对布局、布线、功耗资源占有率很大。再次,时钟网络的规模造成时钟信号翻转时会吸取大的电流,并且时钟信号转换时间很小,容易造成电源网络上的噪声,因此构建一个好的时钟网络对于一颗芯片而言是非常重要的。

随着数字集成电路规模的不断增大,系统频率的要求越来越高,时钟网络的结构越来越复杂,如何构建时钟树,以及如何提高时钟树的性能成为越来越重要的问题。

本文讨论了时钟树的常用性能指标:时钟树长度、时钟树的偏差和时钟信号占空比,分析了时钟树的构建对时序、功耗的影响。

1 缩短时钟树长度的好处及相应策略

1.1 缩短时钟树长度的好处

时钟树从时钟源开始,通过buffer或inverter逐级向时钟终点扇出,构建时钟树。一条时钟树分支上面的cell delay 和 net delay之和构成了这个分支的长度,除了某些设计的特殊性要求最小的时钟树长度外,时钟树的长度越短越好,时钟树上的cell本身会消耗功耗,占据面积,所以短的时钟树有利于降低功耗,降低面积。这对于现代手持设备而言,意义巨大。

在90nm及更高级的工艺中,时序分析需要考虑OCV(On Chip Variation),OCV的情况下的setup计算方法是:launch path采用max_delay , capture path采用min_delay,也就是说,tree的长度越长,因OCV造成的launch的tree的延时与capture的tree的延时二者之差越大。这样时序就越难满足。

1.2 缩短时钟树长度的策略

在数字后端设计中,floorplan阶段的布局会对之后的时钟树长度造成很大影响,所以一个好的floorpaln会非常有利于后面的CTS(clock tree synthesis)。

在floorplan阶段会有一定数量的macro要摆放,在摆放这些macro时要避免产生狭窄的通道,因为当这些狭窄的通道内被放入寄存器后,连接这些寄存器的tree就会做得比较长,而时钟树引擎会尽量平衡时钟树的所有分支,这样其它分支就会被这些长的分支拉长了,造成了功耗和面积的浪费,时序的不容易满足。

2 时钟树平衡

2.1 时钟源的设置对时钟树平衡的影响

如果时钟源离core里面的逻辑比较远,该时钟驱动的寄存器一部分在时钟源附近,另一部分远离时钟源,那么这个时钟树就不容易balance, 例如时钟来源于一个IO。可以改变时钟的创建位置,如图1所示,在IO 面向core的输出pin后面插两级时钟buffer,把buffer_2 放置于靠近core的位置,在buffer_2的输出端Y创建时钟,使该时钟所驱动的寄存器相对于时钟源分布得更均匀,这样有利于时钟树的平衡。

如果芯片的时钟信号来源于芯片的IO,那么这个IO的特性将会影响到其后面的时钟树性能。这个IO的信号上升斜率和下降斜率可能不一致,而这种不一致会通过时钟网络逐级传输下去,时钟树综合引擎会平衡上升传播延时和下降传播延时,这样为了达到平衡,一些多余的buffer或inverter就被去了,因此,时钟树就被拉长了。

解决这个问题,可以选用信号上升斜率和下降斜率一致的IO,也可以把时钟源的创建位置从IO的面向bond的pin移到面向core的pin上。

2.2宏模块的时钟端对时钟树balance的影响

某些macro的lib 库会定义一个内部的clock tree,因此造成时钟树在此处不平衡,而此处的不平衡又造成了这个小区域和整个时钟域之间的不平衡。可以在这些macro的时钟端设一个float pin,这样工具就会考虑到这个float pin值,时钟树偏差就会做得比较小。

对于某些IP,其时钟端输入电容比较大,CTS engine为了满足此处的transition和capacitance的约束,就会在此处插入一些buffer或inverter,这样时钟树就被这些buffer或inverter拉长了。可以在这些IP的时钟输入端附近插入一个合适驱动能力的buffer,并使其位置固定。再在这个buffer的输入端定义一个float pin,这样就可以避免大的输入电容的时钟端对时钟树性能的影响。

2.3 分离门控对时钟树balance 的影响

门控时钟可以降低功耗和面积,但是分离门控时钟会对时钟树平衡产生不利影响。如图2所示。

CTS engine 会把clk -->GN-->Q-->A-->Y和clk-->B-->Y都当作时钟路径,而CTS engine计算最短延时时计算通过clk-->B-->Y的路径,计算最长延时时计算通过clk -->GN-->Q-->A-->Y的路径,时钟树因此造成了比较大的偏斜。而实际的时钟传输路径只有通过clk-->B-->Y的,所以可以在A端设一个exclude pin,另外一种解决方法是在CTS之前断掉与门A-->Y的timing arc,CTS之后再恢复这个地方的timing arc。

2.4 clock inverter 和clock buffer对时钟信号占空比的影响

从时钟树构成元素角度来分,时钟树有三种方式,clock buffer构成的时钟树、clock inverter构成的时钟树、clock buffer和clock inverter混合构成的时钟树。clock buffer 由前一级小宽长比的inverter和后一级大宽长比的inverter构成,前一级提供小的输入电容,后一级提供大的驱动能力。

对于时钟占空比要求高的设计,采用只有inverter构成的时钟树会有更好的效果。由于PMOS和NMOS的充放电速度不一样,一个上升沿的信号和一个下降沿的信号经过一个clock buffer的延时是不一样的,即使时钟源发送出0.5占空比的时钟信号,在时钟信号的传输过程中,占空比也会偏离0.5。

而对于由inverter构成的时钟网络,如图3所示,第n级inverter 和第n级net造成的上升沿时钟信号和下降沿时钟信号的传播延时不一致将在第n+1级inverter和第n+1级net处得到补偿,而clock buffer内部的两个inverter已经相对固定,无法形成inverter和net构成的自动补偿机制。

3 结束语

本文关注于如何提高时钟树性能,具体介绍了如何缩短时钟树长度、减小时钟树偏斜、优化时钟信号占空比。对于影响时钟树性能的因素:floorplan、时钟源的位置、时钟IO的信号上升下降斜率、宏模块时钟端的电容、门控时钟的处理、clock inverter的使用都分析了相应的策略。

参考文献:

[1] 陈春章,艾霞,王国雄.数字集成电路物理设计[M].北京:科学出版社,2008.

[2] R.Chaturvedi,Hu J.Buffered clock tree for high quality IC design[M].Proc.ISQED,2004:381-386.

[3] 汪B.基于Garfield5设计中时钟树综合技术研究[D].南京:东南大学,2006.

篇9

一、数字电子技术课程教学现状

电子专业教师只有具备了过硬的理论与实践技术,才能更好地组织电子专业课的教学,拥有较强的动手能力才能在课堂上做到游刃有余,教得顺手。学生才能学有所获。因此要废除旧的教学方法,数字电子技术专业教师必须全方位考虑的问题,必须从数字数字电子技术教学特点出发,不断进行改革,调动学生的学习兴趣,研究出新的教学方法,形成新的教学模式。

1.传统教材不适应高职教育特点

教材方面,虽然现在市场上有很多所谓的针对高职高专院校的教材,但事实上,很多都只是普通高等院校教材的压缩而已,并没有能真正针对高职高专的特点。比如传统数字电路的教材按照课程的学科体系,详细介绍目前已普遍使用的各种数字集成电路内部电路的分析与设计。而其对象仅限于中、小规模集成电路本身,对如何应用各种数字集成电路构建数字系统方面,却没有涉及。因此学生无法对数字电路和数字系统形成整体认识。这样的教材在技术上反映的是20年前数字电路的水平,在内容上没有也不可能体现高职教育重应、重实践的教学特点。

2.传统的实验教学方法不利于创新人才的培养

传统的实验教学方法一个最显著的特点就是它的验证性。老师指导学生实验的目的就是为了验证某一个定理或结论,其优点是针对性较强,指导方便,学生实验成功率较高,但是这种实验很容易使学生产生满足感和依赖性,学生不太愿意进一步思考“为什么要这样做”。因此,这种传统的验证性实验具有简单性,它严重制约着学生创新意识的培养,阻碍着学生主动探索的积极性,不利于创机关报人才的培养。

二“、数字电子技术”课程特点

“数字电子技术”课程是电类、信息类等专业学生进入本专业时首先开始学习的一门专业基础必修课程,该课程与后续开设的“微机原理”、“单片机原理”、“EDA技术”等诸多专业课程密切相关,是学生专业素质形成的关键性课程之一,在课程体系设置中有着重要的基础性地位。教学目的是让学生积累丰厚、扎实的数字电子技术基础知识,为后续课程的学习打下良好基础,同时培养学生的自主学习能力和创新能力。近年来,数字电子技术的应用已发展到甚大规模集成电路,随着现代电子技术、计算机技术以及通讯和网络技术的迅速发展,使得课程内容日趋分化,分析方法更加多样,授课内容愈加复杂,目前课程教学正处在优化、调整、整合的时期,涌现了大量的关于教学研究和教学改革的探索文章。

三、整合课程教学内容,提高教学效果

电子技术飞速发展的今天,数字电路中的一些传统内容已经不适合现代电子信息技术发展的需要。为此,对课程内容的调整势在必行。调整后的内容一定要体现课程知识体系的先进性、前瞻性与实用性。目前“数字电子技术”课程过于学科化,缺乏新观点、新知识、新技术、新器件,因此课程内容的改革应立足于成熟的需要为应用,同时需要增加现代科学的新技术,让学生了解知识的前沿和动态,以拓展学生的知识领域,在授课计划的修订中,一是要合理安排课程的经典内容与现代数字电路内容的课时比例,大量精简压缩分立元件、小规模集成电路的内容,明确扼要地讲述中规模集成电路及其应用,着重于外部逻辑功能的描述和分析,强调外特性和重要参数,不详细讲内部电路。二是要把硬件描述(VHDL)和EDA(CPLD/FPGA)技术另设为一门新课。新的授课计划可以先在电子与信息技术、计算机控制技术、自动控制技术等电类专业中试运行

四、重构数字电子技术理论与实践教学体系

1.强调“基本知识、基本方法、基本思想”的“三基”核心“,以不变应万变”的学习思路

由于电子技术的发展日新月异,数字电子电路的构成方式从早期的以逻辑门、触发器为基础,发展到现在以集成电路为基础,其常用分析和设计手段从早期的逻辑表达式、卡诺图等,发展到现在以EDA计算机辅助技术为主流,数字电子技术的知识体系也日益庞大。所以在教学中首先要让学生认识到课程的性质和特点,同时让学生知道,电路的具体形式是变化无穷的。

2.重视知识的体系化教学

“数字电子技术”的知识点很多,因此教师在教学中就要特别重视知识的体系化教学。在绪论课上,通过对学科发展历史和应用领域的介绍,把教材上的各个章节所讲的内容和作用简略说明一下,使学生在学习具体知识点之前,了解数字电子技术的发展过程、知识构成体系和各种有趣有价值的应用,从而调动学生的学习兴趣,提高学习的积极性。

3.在各个教学环节中,注重理论与实践有机结合

篇10

关键词:集成电路设计;本科教学;改革探索

作者简介:殷树娟(1981-),女,江苏宿迁人,北京信息科技大学物理与电子科学系,讲师;齐臣杰(1958-),男,河南扶沟人,北京信息科技大学物理与电子科学系,教授。(北京 100192)

基金项目:本文系北京市教委科技发展计划面上项目(项目编号:KM201110772018)、北京信息科技大学教改项目(项目编号:2010JG40)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)04-0064-02

1958年,美国德州仪器公司展示了全球第一块集成电路板,这标志着世界从此进入到了集成电路的时代。在近50年的时间里,集成电路已经广泛应用于工业、军事、通讯和遥控等各个领域。集成电路具有体积小、重量轻、寿命长和可靠性高等优点,同时成本也相对低廉,便于进行大规模生产。自改革开放以来,我国集成电路发展迅猛,21世纪第1个10年,我国集成电路产量的年均增长率超过25%,集成电路销售额的年均增长率则达到23%。我国集成电路产业规模已经由2001年不足世界集成电路产业总规模的2%提高到2010年的近9%。我国成为过去10年世界集成电路产业发展最快的地区之一。伴随着国内集成电路的发展,对集成电路设计相关人员的需求也日益增加,正是在这种压力驱动下,政府从“十五”计划开始大力发展我国的集成电路设计产业。

在20世纪末21世纪初,国内集成电路设计相关课程都是在研究生阶段开设,本科阶段很少涉及。不仅是因为其难度相对本科生较难接受,而且集成电路设计人员的需求在我国还未进入爆发期。我国的集成电路发展总体滞后国外先进国家的发展水平。进入21世纪后,我国的集成电路发展迅速,集成电路设计需求剧增。[1]为了适应社会发展的需要,同时也为更好地推进我国集成电路设计的发展,国家开始加大力度推广集成电路设计相关课程的本科教学工作。经过十年多的发展,集成电路设计的本科教学取得了较大的成果,较好地推进了集成电路设计行业的发展,但凸显出的问题也日益明显。本文将以已有的集成电路设计本科教学经验为基础,结合对相关院校集成电路设计本科教学的调研,详细分析集成电路设计的本科教学现状,并以此为基础探索集成电路设计本科教学的改革。

一、集成电路设计本科教学存在的主要问题

在政府的大力扶持下,自“十五”计划开始,国内的集成电路设计本科教学开始走向正轨。从最初的少数几个重点高校到后来众多相关院校纷纷设置了集成电路设计本科专业并开设了相关的教学内容。近几年本科学历的集成电路设计人员数量逐渐增加,经历本科教学后的本科生无论是选择就业还是选择继续深造,都对国内集成电路设计人员紧缺的现状起到了一定的缓解作用。但从企业和相关院校的反馈来看,目前国内集成电路设计方向的本科教学仍然存在很多问题,教学质量有待进一步提高,教学手段需做相应调整,教学内容应更多地适应现阶段产业界发展需求。其主要存在以下几方面问题。

首先,课程设置及课程内容不合理,导致学生学习热情降低。现阶段,对于集成电路设计,国内的多数院校在本科阶段主要开设有如下课程:“固体物理”、“晶体管理”、“模拟集成电路设计”和“数字集成电路设计”(各校命名方式可能有所不同)等。固体物理和晶体管原理是方向基础课程,理论性较强,公式推导较多,同时对学生的数学基础要求比较高。一方面,复杂的理论分析和繁琐的公式推导严重降低了本科生的学习兴趣,尤其是对于很多总体水平相对较差的学生。而另外一方面,较强的数学基础要求又进一步打击学生的学习积极性。另外,还有一些高等院校在设置课程教学时间上也存在很多问题。例如:有些高等院校将“固体物理”课程和“半导体器件物理”课程放在同一个学期进行教学,对于学生来说,没有固体物理的基础就直接进入“晶体管原理”课程的学习会让学生很长一段时间都难以进入状态,将极大打击学生的学习兴趣,从而直接导致学生厌学甚至放弃相关方向的学习。而这两门课是集成电路设计的专业基础课,集成电路设计的重点课程“模拟集成电路设计”和“数字集成电路设计”课程的学习需要这两门课的相关知识作为基础,如果前面的基础没有打好,很难想象学生如何进行后续相关专业知识的的学习,从而直接导致学业的荒废。

其次,学生实验教学量较少,学生动手能力差。随着IC产业的发展,集成电路设计技术中电子设计自动化(Electronic design automatic,EDA)无论是在工业界还是学术界都已经成为必备的基础手段,一系列的设计方法学的研究成果在其中得以体现并在产品设计过程中发挥作用。因此,作为集成电路设计方向的本科生,无论是选择就业还是选择继续深造,熟悉并掌握一些常用的集成电路设计EDA工具是必备的本领,也是促进工作和学习的重要方式。为了推进EDA工具的使用,很多EDA公司有专门的大学计划,高校购买相关软件的价格相对便宜得多。国家在推进IC产业发展方面也投入了大量的资金,现在也有很多高等院校已经具备购买相关集成电路设计软件的条件,但学生的实际使用情况却喜忧参半。有些高校在培养学生动手能力方面确实下足功夫,学生有公用机房可以自由上机,只要有兴趣学生可以利用课余时间摸索各种EDA软件的使用,这对他们以后的工作和学习奠定了很好的基础。但仍然还有很多高校难以实现软件使用的最大化,购买的软件主要供学生实验课上使用,平时学生很少使用,实验课上学到的一点知识大都是教师填鸭式灌输进去的,学生没有经过自己的摸索,毕业后实验课上学到的知识已经忘得差不多了,在后续的工作或学习中再用到相关工具时还得从头再来学习。动手能力差在学生择业时成为一个很大的不足。[2]

再者,理工分科紊乱,属性不一致。集成电路设计方向从专业内容及专业性质上分应该属于工科性质,但很多高校在专业划分时却将该专业划归理科专业。这就使得很多学生在就业时遇到问题。很多招聘单位一看是理科就片面认为是偏理论的内容,从而让很多学生错失了进一步就业的好机会。而这样的结果直接导致后面报考该专业的学生越来越少,最后只能靠调剂维持正常教学。其实,很多高校即使是理科性质的集成电路设计方向学习的课程和内容,与工科性质的集成电路设计方向是基本一致的,只是定位属性不一致,结果却大相径庭。

二、改革措施

鉴于目前国内集成电路设计方向的本科教学现状,可以从以下几个方面改进,从而更好地推进集成电路设计的本科教学。

1.增加实验教学量

现阶段的集成电路本科教学中实验教学量太少,以“模拟集成电路设计”课程为例,多媒体教学量40个学时但实验教学仅8个学时。相对于40个学时的理论学习内容,8个学时的实验教学远远不能满足学生学以致用或将理论融入实践的需求。40个学时的理论课囊括了单级预算放大器、全差分运算放大器、多级级联运算放大器、基准电压源电流源电路、开关电路等多种电路结构,而8个学时的实验课除去1至2学时的工具学习,留给学生电路设计的课时量太少。

在本科阶段就教会学生使用各种常用EDA软件,对于增加学生的就业及继续深造机会是非常必要的。一方面,现在社会的竞争是非常激烈的,很少有单位愿意招收入职后还要花比较长的时间专门充电的新员工,能够一入职就工作那是最好不过的。另一方面,实验对于学生来说比纯理论的学习更容易接受,而且实验过程除了可以增加学生的动手操作能力,同样会深化学生对已有理论知识的理解。因此,在实践教学工作中,增加本科教学的实验教学量可以有效促进教学和增进学生学习兴趣。

2.降低理论课难度尤其是复杂的公式推导

“教师的任务是授之以渔,而不是授之以鱼”,这句话对于集成电路设计专业老师来说恰如其分。对于相同的电路结构,任何一个电路参数的变化都可能会导致电路性能发生翻天覆地的变化。在国际国内,每年都会有数百个新电路结构专利产生,而这些电路的设计人员多是研究生或以上学历人员,几乎没有一个新的电路结构是由本科生提出的。

对于本科生来说,他们只是刚刚涉足集成电路设计产业,学习的内容是最基础的集成电路相关理论知识、电路结构及特点。在创新方面对他们没有过多的要求,因此他们不需要非常深刻地理解电路的各种公式尤其是复杂的公式及公式推导,其学习重点应该是掌握基础的电路结构、电路分析基本方法等,而不是纠结于电路各性能参数的推导。例如,对于集成电路设计专业的本科必修课程――“固体物理”和“晶体管原理”,冗长的公式及繁琐的推导极大地削弱了学生的学习兴趣,同时对于专业知识的理解也没有太多的益处。[3]另外,从专业需要方面出发,对于集成电路设计者来说更多的是需要学生掌握各种半导体器件的基本工作原理及特性,而并非是具体的公式。因此,减少理论教学中繁琐的公式推导,转而侧重于基本原理及特性的物理意义的介绍,对于学生来说更加容易接受,也有益于之后“模拟集成电路”、“数字集成电路”的教学。

3.增加就业相关基础知识含量

从集成电路设计专业进入本科教学后的近十年间本科生就业情况看,集成电路设计专业的本科生毕业后直接从事集成电路设计方向相关工作的非常少,多数选择继续深造或改行另谋生路。这方面的原因除了因为本科生在基本知识储备方面还不能达到集成电路设计人员的要求外,更主要的原因是随着国家对集成电路的大力扶持,现在开设集成电路设计相关专业的高等院校越来越多,很多都是具有研究生办学能力的高校,也就是说有更多的更高层次的集成电路设计人才在竞争相对原本就不是很多的集成电路设计岗位。

另外一方面,集成电路的版图、集成电路的工艺以及集成电路的测试等方面也都是与集成电路设计相关的工作,而且这些岗位相对于集成电路设计岗位来说对电路设计知识的要求要低很多。而从事集成电路版图、集成电路工艺或集成电路测试相关工作若干年的知识积累将极大地有利于其由相关岗位跳槽至集成电路设计的相关岗位。因此,从长期的发展目标考虑,集成电路设计专业本科毕业生从事版图、工艺、测试相关方向的工作可能更有竞争力,也更为符合本科生知识储备及长期发展的需求。这就对集成电路设计的本科教学内容提出了更多的要求。为了能更好地贴近学生就业,在集成电路设计的本科教学内容方面,教师应该更多地侧重于基本的电路版图知识、硅片工艺流程、芯片测试等相关内容的教学。

三、结论

集成电路产业是我国的新兴战略性产业,是国民经济和社会信息化的重要基础。大力推进集成电路产业的发展,必须强化集成电路设计在国内的本科教学质量和水平,而国内的集成电路设计本科教学还处在孕育发展的崭新阶段,它是适应现代IC产业发展及本科就业形势的,但目前还存在很多问题亟待解决。本文从已有的教学经验及调研情况做了一些分析,但这远没有涉及集成电路设计专业本科教学的方方面面。不过,可以预测,在国家大力扶持下,在相关教师及学生的共同努力下,我国的集成电路设计本科教学定会逐步走向成熟,更加完善。

参考文献:

[1]王为庆.高职高专《Protel电路设计》教学改革思路探索[J].考试周刊,2011,(23).