光通信技术范文
时间:2023-04-11 00:40:24
导语:如何才能写好一篇光通信技术,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
>> 国外卫星激光通信系统技术及新进展 激光通信技术的前景及应用 无线光通信技术 空间卫星光通信链路关键技术与方案的研究 论述卫星光通信技术的发展与应用 关于卫星光通信技术发展及其影响因素的研究 激光通信中平台扰动抑制技术的研究 无线激光通信中的图像去噪处理技术 空间激光通信技术最新进展与趋势 试论空间激光通信技术最新进展与趋势 光通信技术现状和发展 无线光通信技术概析 无线光通信技术的应用 为什么说激光通信最保密 激光通信系统噪声分析和处理方法 潜艇激光通信的数值模拟 空间激光通信研究及发展趋势 空间光通信 光通信技术在宽带通信中的应用 光通信未来发展的热点技术展望 常见问题解答 当前所在位置:.
[3]C.Moore,H,Burris,etc. Overview of NRL's maritime laser communication test facility [J].SPIE Vol 5892:58920601-58920612.
[4]Lawrence Robertson. A Multi-Access Laser Space Terminal System for Transformational Communication [R]. .
[5]Robert Lange ,Berry Smutny, etc.142km ,5.625Gbps Free-Space Optical Link based on homodyne BPSK modulation[J].SPIE Vol 6105:6105A01-6105A09.
[6]王红亚,谢洪波.高速大气激光通信收发模块设计[J].电子测量技术,2005.3:94-95.
[7]赵尚弘,吴继礼,李勇军,等.卫星激光通信现状与发展趋势[J].激光与光电子学进展,2011(48).
[8]柯熙政,席晓莉.无线激光通信概论[M].北京:北京邮电大学出版社,2004.
[9]Tzung-Hsien HoStuart,D. Milner, Christopher C. Davis. Pointing, Acquisition and Tracking System with Omnivision [J].SPIE Vol 5892:589201-589212.
篇2
【关键词】光纤通信; 现状;出路
引言
光纤通信技术从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。
1 光纤的概述
光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
光纤通信之所以发展迅猛,主要缘于它具有以下优点:1)通信容量大、传输距离远;2)信号串扰小、保密性能好;3)抗电磁干扰、传输质量佳;4)光纤尺寸小、重量轻,便于敷设和运输;5)材料来源丰富,环境保护好;6)无辐射,难于窃听;7)光缆适应性强,寿命长。
2 光纤通信技术发展的现状
光纤通信的发展依赖于光纤通信技术的进步。目前,光纤通信技术已有了长足的发展,新技术也不断涌现,进而大幅度提高了通信能力,并不断扩大了光纤通信的应用范围。
2.1 波分复用技术
波分复用WDM(Wavelength Division Multiplexing)技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。自从上个世纪末,波分复用技术出现以来,由于它能极大地提高光纤传输系统的传输容量,迅速得到了广泛的应用。
1995年以来,为了解决超大容量、超高速率和超长中继距离传输问题,密集波分复用DWDM(Dens Wavelength Division Multi-plexing)技术成为国际上的主要研究对象。DWDM光纤通信系统极大地增加了每对光纤的传输容量,经济有效地解决了通信网的瓶颈问题。据统计,截止到2002年,商用的DWDM系统传输容量已达400Gbit/s。以10Gbit/s为基础的DWDM系统已逐渐成为核心网的主流。DWDM系统除了波长数和传输容量不断增加外,光传输距离也从600km左右大幅度扩展到2000km以上。
与此同时,随着波分复用技术从长途网向城域网扩展,粗波分复用CWDM(Coarse Wavelength Division Multiplexing)技术应运而生。CWDM的信道间隔一般为20nm,通过降低对波长的窗口要求而实现全波长范围内(1260nm~1620nm)的波分复用,并大大降低光器件的成本,可实现在0km~80km内较高的性能价格比,因而受到运营商的欢迎。
2.2 光纤接入技术
光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有FTTB、FTTC、FTTCab和FTTH等不同的应用,统称FTTx。
FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制订了FTTH的技术标准和建设标准,有的城市还制订了相应的优惠政策,这些都为FTTH在我国的发展创造了良好的条件。
在FTTH应用中,主要采用两种技术,即点到点的P2P技术和点到多点的xPON技术,亦可称为光纤有源接入技术和光纤无源接入技术。P2P技术主要采用通常所说的MC(媒介转换器)实现用户和局端的直接连接,它可以为用户提供高带宽的接入。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。
3 光纤通信技术的发展趋势
近几年来,随着技术的进步,电信管理体制的改革以及电信市场的逐步全面开放,光纤通信的发展又一次呈现了蓬勃发展的新局面,以下在对光纤通信领域的主要发展热点作一简述与展望。
3.1 向超高速系统的发展
从过去20多年的电信发展史看,网络容量的需求和传输速率的提高一直是一对主要矛盾。传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每比特的成本大约下降30%~40%;因而高比特率系统的经济效益大致按指数规律增长,这就是为什么光纤通信系统的传输速率在过去20多年来一直在持续增加的根本原因。目前商用系统已从45Mbps增加到10Gbps,其速率在20年时间里增加了20O0倍,比同期微电子技术的集成度增加速度还快得多。高速系统的出现不仅增加了业务传输容量,而且也为各种各样的新业务,特别是宽带业务和多媒体提供了实现的可能。目前10Gbps系统已开始大批量装备网络,全世界安装的终端和中继器已超过5000个,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。
3.2 向超大容量WDM系统的演进
采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一极光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。采用波分复用系统的主要好处是:1)可以充分利用光纤的巨大带宽资源,使容量可以迅速扩大几倍至上百倍;2)在大容量长途传输时可以节约大量光纤和再生器,从而大大降低了传输成本;3)与信号速率及电调制方式无关,是引入宽带新业务的方便手段;4)利用WDM网络实现网络交换和恢复可望实现未来透明的、具有高度生存性的光联网。
鉴于上述应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。预计不久实用化系统的容量即可达到1Tbps的水平。
3.3 实现光联网
上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光的分插复用器(OADM)和光的交叉连接设备(OXC)均已在实验室研制成功,前者已投入商用。
实现光联网的基本目的是:1)实现超大容量光网络;2)实现网络扩展性,允许网络的节点数和业务量的不断增长;3)实现网络可重构性,达到灵活重组网络的目的;4)实现网络的透明性,允许互连任何系统和不同制式的信号;5)实现快速网络恢复,恢复时间可达100ms。鉴于光联网具有上述潜在的巨大优势,发达国家投入了大量的人力、物力和财力进行预研。光联网已经成为继SDH电联网以后的又一新的光通信发展。
3.4 新一代的光纤
近几年来随着IP业务量的爆炸式增长,电信网正开始向下一代可持续发展的方向发展,而构筑具有巨大传输容量的光纤基础设施是下一代网络的物理基础。传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光纤(G.655光纤)和无水吸收峰光纤(全波光纤)。
3.5 光接入网
过去几年间,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都已更新了好几代。不久,网络的这一部分将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络。而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统。两者在技术上的巨大反差说明接入网已确实成为制约全网进一步发展的瓶颈。唯一能够根本上彻底解决这一瓶颈问题的长远技术手段是光接入网。接入网中采用光接入网的主要目的是:减少维护管理费用和故障率;开发新设备,增加新收入;配合本地网络结构的调整,减少节点,扩大覆盖;充分利用光纤化所带来的一系列好处;建设透明光网络,迎接多媒体时代。
4 结束语
21世纪以来,光通信技术取得了长足的进步,在上文中我们主要讨论了光通信技术及其应用的现状和发展趋势,但这些进步的取得,是包括光传输媒质、光电器件、光通信系统,以及网络应用等多方面技术共同进步的结果。随着光通信技术进一步发展,必将对21世纪通信行业的进步,乃至整个社会经济的发展产生巨大影响。
参考文献
[1]张明德,孙小菡.光纤通信原理与系统[M].南京:东南大学出版社,2004.
[2]李业.浅论我国光纤通信的现状及发展出路[J].信息技术,2008(9).
[3]李玲,黄永清.光纤通信基础.国防工业出版社.2003,9:1~6.
[4]毛谦,张继军.光纤技术的现状与反展趋势.中国电信建设.2009
[5]中华人名共和国邮电部 光导纤维通信系统简介2009-07-02
篇3
关键词:空间激光通信技g 最新进展 趋势
中图分类号:TN929.1 文献标识码 文章编号:1672-3791(2016)11(b)-0003-02
空间激光通信具有通信容量大,通信速率、抗干扰能力强,抗截获能力强和重量轻等多种优点,是以激光为载波,在空间中实现多种信息进行无线传输的通信方式。从历年的空间激光通信技术的发展历程来看,ESA的作用不可小视,ESA代表空间激光通信技术的最高水平,对于空间激光通信技术的发展有很大影响。但是,对于我国而言,我国空间激光通信技术还处在发展的初级阶段,还在摸索空间激光通信技术的发展方向,可结合本国的情况借鉴发达国家空间激光通信技术的发展经验。
1 空间激光通信技术最新进展
目前,国内外空间激光通信发展迅速,欧洲、美国、日本、德国等地区和国家对空间激光通信技术进行了大量的研究,为空间激光通信技术做出了巨大的研究贡献。如表1所示,展示了近几年美国等国在空间激光通信技术研究方面比较有代表性的成果。
2 空间激光通信技术发展趋势
2.1 直接探测体制发展
相比而言,空间激光通信直接探测体制的结构比较简单,操作起来比较方便,因而被广泛应用于第一代激光通信系统内部。但是,从实际空间激光通信环境来看,光强度对通信系统的影响比较大,而且会受到噪音的干扰,空间激光通信直接探测体制无法满足空间激光通信系统的运行需求,敏感度较低。经过空间激光通信专业人士的多年研究,ESA于2008年被安装在卫星上,对空间激光通信系统进行端口检测,同时也对相干通信展开了实验分析,误码率非常小,而且信息传输的速度非常快。目前,空间激光通信技术还将不断完善。为了不断提高激光通信系统的实用性和通用性,未来的发展趋势是探测体制的发展从单一体制向复合探测体制转变。
2.2 传统量子通信的变革
1980年量子通信被首次提出,量子通信应用了加密技术,可以保证传输信息的绝对安全,量子通信一提出就受到了人们的广泛关注。2004年,经过多位空间激光通信科学家的研究实验,实现了量子通信的远距离传输,量子通信可以透过地面大气依旧保持纠缠特性。2006年,量子通信实现了超远距离的空间通信。截止到目前为止,我国科学家对于量子通信的研究已经创造了新的历史。量子通信具有巨大的发展潜力,空间激光通信研究人员也正是看重了量子通信的这一巨大发展潜力,研究人员从2002―2007年展开了多项研究,总结出影响量子通信的多种因素。经过几年的发展,传统量子通信的变革研究的技术逐渐成熟,正在快速向实用化、加密化迈进。将卫星光通信与量子光通信相结合,进行卫星光通信中的量子密钥分发是卫星光通信保密技术一个新的发展方向。
2.3 光子集成化升级
空间激光通信光子技术包括:一是光纤光学,二是集成光学,三是微光子学。光子技术具有以下特点和优点:一是损耗较小,二是协议透明,三是抗干扰性强,四是不诱导电磁干扰,五是重量小,六是体积小,七是柔韧性好,八是无互相耦合。空间激光通信光子技术特别适合应用于航天环境中;1990年,美国经过实验证明光子技术确实可以应用于航天器中;2002年,研发部门加大了研究光子技术的资金量,研究的内容为:一是通信链路,二是模数转换,三是频率转换,四是本振生成,五是光束形成网络,六是传感,七是成像光纤;2009年,西方国家发射出的卫星上就设置了光子器件。如今,空间激光通信光子技术正朝着光子PCB的方向发展,空间激光通信技术标准也在不断提高。
2.4 天基网络的一体化演变
空间激光通信技术发展的最终目标是实现全球数据覆盖,与地面形成网络链路。在空间激光通信技术的研究初期,研究人员把更多的精力放在空间激光通信链路的研究和实验上。2000年后,研究人员开始加大天基网络一体化演变的研究力度。如今,空间激光通信研究人员提出了天基混合网络结构,并对天基网络的性能和所带来的经济效益做出了研究分析。但是,我国的天基网络一体化演变还处在理论研究阶段,还未真正实践,还有很多空间激光通信技术问题亟需解决。
2.5 空间激光通信向深空迈进
人们一直想更加深入地了解星空,国外发达国家自20世纪90年代初期便开始了以激光通信作为深空探测通信方式的相关研究。近几年人们对天空的探索热潮一直不退。如今,研究人员把探索星空的希望寄托在空间激光通信技术上,西方国家也在加大空间激光通信技术应用于卫星上的研究力度。空间激光通信研究人员经过多年的努力,收到了不错的成果。在ESA和NASA(美国国家航空航天局)未来的深空探测计划中,激光通信将成为深空探测活动的主要通信方式。
3 结语
从实际空间激光通信环境来看,光强度对通信系统的影响比较大,而且会受到噪音的干扰,直接探测体制无法满足空间激光通信系统的运行需求,敏感度较低。2004年,经过多位科学家的研究实验,量子远距离的传输通信实现了,透过地面大气量子通信可以依旧保持纠缠特性。如今,光子技术正朝着光子PCB的方向发展,空间激光通信技术标准也在不断提高。空间激光通信技术发展的最终目标是实现全球数据覆盖,与地面形成网络链路。但是,我国的天基网络一体化演变还处在理论研究阶段,还未真正实践,还有很多空间激光通信技术问题亟需解决。截止到目前为止,我国科学家对于空间激光通信的研究已经创造了新的历史。
参考文献
[1]张靓,郭丽红,刘向南,等.空间激光通信技术最新进展与趋势[J].飞行器测控学报,2013(4):286-293.
[2]李玮.激光通信测距技术发展现状及趋势研究[J].激光与红外,2013(8):864-866.
篇4
1.物联网的发展及特征
所谓物联网,是指将各种信息传感设备,如射频识别(rfid)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网结合起来而形成的一个巨大网络。其目的是让所有的物品都与网络连接在一起,方便识别和管理。它其实就是将原本与网络无关,但与我们的生活工作息息相关的万事万物都装上传感器,然后与现有的互联网连接,让人们可以更直接地去控制和管理这些事物,以方便我们的生活和促进生产乃至整个社会的发展。
物联网概念本身也在不断地演进,涵盖的范畴也比以前更加丰富。随着信息与通信技术的日益发达,物联网应用前景相当广阔,预计将广泛应用于智能交通、能源、环境保护、政府工作、公共事业、金融服务、平安家居、工业制造、医疗卫生、智能家居、现代农林业等诸多领域。目前普遍认为,物联网的体系构架可分为感知层、网络层、应用层 3 个层面,并且在每个层面上都有很多种选择。感知层包括二维码标签和识读器、frid 标签和读写器、传感器、摄像头、传感器网络、传感器网关、视频检测识别、gps、m2m(machine to machine)终端等,主要完成识别物体和采集信息的功能。网络层包括各类信息通信网络,如短距无线通信网、蜂窝无线通信网、传统互联网、移动互联网、有线通信网以及物联网信息中心、物联网管理中心等,主要完成将感知层获取的信息进行传递和处理的功能。应用层是物本文由收集整理联网与各类行业专业技术深度融合,实现各种智能化行业应用,实现广泛智能化。
物联网的核心能力主要包括可靠传输、全面感知以及智能处理这三点。其基本特征主要有智能化以及泛在化两方面。所谓的智能化就是能够将情景感知、各种信息的聚合以及无缝连接处理者几方面内容进行有机结合,通过末端网络准确收集管理对象的各种信息,并且及时的进行分析处理,最后将结果提供给需要的用户。而泛在化则是指物联网覆盖应该逐步实现无处不在,这样才能适应社会的发展需求。正是由于上述特点,物联网的应用前景必然非常广泛。
2.光通信技术在物联网发展中的应用
光通信技术在物联网发展中的应用可以分为三个部分,即网络层、感知层以及应用层,具体内容为:
2.1光通信技术在物联网网络层的应用
光纤技术商用化已经有30多年了,经过这么多年的发展已经逐步成熟。近年来,随着光纤放大器以及波分复用技术的快速发展,在很大程度上促进了光纤通信技术容量的扩大以及速度的提高。
在物联网迅速发展过程中,需要完成各种信号的会聚、接入传输并形成全国性的物联网,光纤通信将有很大的应用前景。不论是移动网还是传统固定电话网,从长远发展趋势看,最终将走向泛在网。从物联网应用的承载需求看,通信网或者说泛在网的技术发展完全能够承载物联网的需求。物联网涉及海量的数据集合和泛在的网络要求,即要求在空间上无所不在、时间上随时随地。传感网所承载的业务状态多数是近距离通信,而通信网特别是光纤通信网络能承载更高的带宽,适合长距离传输,非常适宜物联网应用的拓展。现有通信网络核心层传送技术正在向大容量、ip 化和智能化发展,从物联网的角度来看,还应更加智能化,包括自动配置、障碍自动诊断和分析、路由自动调度适配,资源分配更智能化等等。网络接入层传送技术的发展趋势是光接入网络。目前各大运营商都已建设 fttx(光纤接入),它具有 qos(服务质量)保障和更丰富的接入能力,能够满足 m2m 多种高速媒体流传送需求。与移动通信相比,光通信技术具有容量大、损耗小、速度快、带宽高等优点,可是其接入却不是很灵活。而移动通信虽然接入灵活,但是其带宽却是有限的。所以,只有将二者进行有效融合,才能推动物联网的进一步发展。
2.2光通信技术在物联网感知层的应用
光通信技术在物联网中应用的另一个领域就是感知层,其关键就是光纤传感技术。随着科学发展水平的不断进步,传统的单点检测技术已经发展成分布式网络监测技术,而且逐步走向了产业化生产,其应用前景非常广阔。
光纤传感技术与传统传感技术相比,其优势在于光纤本身的物理特性。光波在光纤中传播时,在外界因素如温度、压力、位移、电磁场、转动等的作用下,通过光的反射、折射和吸收效应,光学多普勒效应,声光、电光、磁光、弹光效应和光声效应等原理,使表征光波的特征参量,如振幅、相位、偏振态、波长等,直接或间接地发生变化,因而可以将光纤作为敏感元件来探测各种物理量,这就是光纤传感器的基本原理。此外,光纤还有多种衍生传感功能。利用该特性,通过对光纤光栅进行特殊处理,可制成探测各种化学物质的光纤光栅化学和生物化学传感器。与普通光纤光栅相比,长周期光栅对光纤包层外材料的折射率变化更敏感,将光纤光栅涂上特殊的活性涂覆层,可测量低浓度的目标分子。此类光纤传感器可用于航天器的氢气漏泄检测、煤矿中的瓦斯检测等。而光纤本身又是光波的传输媒质,这种“传“”感”合一的特征所带来的优势,在物联网应用中将无可匹敌。不论是基于瑞利散射、布里渊散射和拉曼散射原理的分布式光纤传感器,还是基于双光束干涉的光纤传感干涉仪,其光纤传感臂上的每一点既是敏感点又是传输介质。而基于多光束干涉的准分布式光纤 fabry-perot 传感器、近年来发展迅速的光纤光栅传感器,两者也均是光纤本身的一个集成部分。此类光纤传感器与常规光纤可熔接,形成低插入损耗连接,具有在线(inline)特征和优势,与光纤传输有天然的兼容性,可以替代传统分立和薄膜型光无源器件,从而为全光通信系统和光纤传感网络提供了巨大的灵活性。
2.3光通信技术在物联网应用层的应用
在今后的发展过程中可以将物联网与各行各业进行深度融合,这样就可以促进行业的智能化管理。如果把光纤传感器嵌入或装备到电网、铁路、桥梁、隧道、公路、建筑、大坝、供水系统、油气管道等各种重大工程设施中,通过光缆连接后可以形成广域光纤传感网络,再通过与无线物联网的组合,与互联网的组合,可以实现各种设备、机器、基础设施等物理系统的整合。在此基础上,通过物联网信息中心管理中心功能强大的云计算平台,对海量数据进行存储、分析处理与决策,完成从信息到知识,再到控制指挥的智能演化,就可使人类更加精细、更加动态地管理生产、生活的方方面面,达到“智慧”状态,进一步提高资源利用效率,提高人类生产力水平,促进人类与自然的和谐发展。
篇5
一、空间通信激光技术的最新进展探究
通信激光技术在全世界范围内都被广泛的应用,发达国家也将发展、进步以及完善通信技术作为重要的研究之一。空间通信激光技术随着各项研究的全面实施,也取得了巨大的发展和进步。
1.1空间通信激光技术的最新进展探究中的月球激光通信验证技术探究
月球激光通信验证技术是美国主要开展的空间通信激光技术。月球激光通信验证技术实施的主要目的,是建立绕月飞行器同地面之间的双向的通信渠道,从而可以有效的实现信息的探测的灵敏度得以有效的提升。同时,由于月球激光通信验证技术的灵敏度较为理想,月球激光通信验证技术的技术服务终端,终端的体积较小,质量也相对偏低,并且月球激光通信验证技术的应用过程中所需要消耗的能源也相对较少,因此空间通信激光技术的最新进展探究中的月球激光通信验证技术探究,对于促进信息技术的发展,具有不可忽视的时代意义。
1.2空间通信激光技术的最新进展探究中的欧洲数据中继卫星系统
欧洲数据中继卫星系统是德国主要研究的空间通信激光技术之一。欧洲数据中继卫星系统实施的主要目的,是通过卫星群体的建造,有效的实现无人机与地面站之间的中继服务的顺利的开展[1]。由于欧洲数据中继卫星系统具有较为完善的激光通信服务终端,具有十分可观的码速率,因此欧洲数据中继卫星系统的应用可以使得空间通信过程中,信息的捕捉时间被有效的缩短。因此欧洲数据中继卫星系统的应用的探究十分的具有可行性。
1.3空间通信激光技术的最新进展探究中的星间光通信工程试探技术
星间光通信工程试探技术是日本主要研究的空间通信激光技术之一。星间光通信工程试探技术的应用过程的主要内容,时间里“阿蒂米斯”卫星与任务卫星之间的双向空间激光通信渠道。从而实现双线链路传输速率的同时有效提升。星间光通信工程试探技术的应用,促使了地轨卫星与机动光学地面,建立完善的空间通信激光的平台的可能性,得以有效的实现。因此空间通信激光技术的最新进展探究中,星间光通信工程试探技术的探究和应用,对于空间通信激光技术的应用具有十分有效的发展和完善作用[2]。
二、空间通信激光技术的进展趋势探究
随着各个国家的不断的计划和完善,空间通信激光技术的发展速度较为客观,同时很多技术上存在的障碍也被有效的解决。例如高效准确的获取、对准以及追踪技术、大气湍流效应挽救技术、高功率激光发射技术,以及具有较高的灵敏度的激光接受技术,这些技术的完善和其全面发展,都使得空间通信激光技术具有十分理想的发展趋势。
开展空间通信激光技术的进展趋势探究,可以有效的明确机制从直接检测向关联检测以及综合检测的转变,同时空间通信激光的进展趋势还包括:通信波长的波段的不断过渡、纳米技术在空间通信激光技术应用过程中的有效融合以及经典光通信与量子光通信之间的有效结合[3]。
探究空间通信激光技术的进展趋势可知,由于空间激光通信的宽带优势十分明显,因此成为空间宽带通讯的最重要的渠道,是空间通信激光技术进展的趋势。
结束语:探究空间激光通信技术最新进展与趋势,首先应当明确空间激光通信技术最新进展:月球激光通信验证技术和欧洲数据中继卫星系统以及星间光通信工程试探技术,进而开展空间通信激光技术的进展趋势探究。通过探究空间激光通信技术最新进展与趋势可知,空间激光通信技术的广泛应用,是应时代的需求而生,具有必然性。将发达国家的空间激光通信技术应用到我国的空间宽带通信发展中,将为我国的空间宽带通信技术的发展带来巨大的推动力。
参考文献
[1]蒙静,李帅,候宇葵.中远红外激光星地通信链路性能研究[A].中国通信学会卫星通信委员会、中国宇航学会卫星应用专业委员会.第十二届卫星通信学术年会论文集[C].2016:6.
[2]张璐.大气激光通信中随机光信号的建模和检测算法研究[D].中国科学院研究生院(长春光学精密机械与物理研究所)中国宇航学会卫星应用专业委员会:2013.
[3]陈莫.空间相干光通信的相位匹配研究[D].中国通信学会卫星通信委员会中国科学院研究生院(光电技术研究所),2016.
篇6
随着遥感器分辨率不断提高,对传输速率的要求也越来越高,因此用传统的微波数据传输方式难度很大。在这种情况下,倘若改用激光通信传输,那么便可比较容易的满足要求,就其通道终端设备自身而言实现难度相对较小。当然,事物都有两面性,由于激光通信的波束很窄(一般为几十微弧度),对两个都处于运动的通信系统来说,激光束的捕获、跟踪和瞄准都具有较大的挑战性,是急待攻关解决的难题。空间激光通信作为高性能卫星通信技术中的关键性课题,国际上开展了大量的研究工作,美、欧、日等国投入大量的人力物力进行相关技术的研究和空间光通信实验装置的开发。
国外卫星激光通信星间
链路系统概况
未来的空间通信网络既包括轨道间链路(IOL),同时又包括星间链路(ISL)。通常所说的星间链路是IOL和ISL的总称。目前国际上所开展的有关星间链路的研究主要是指IOL。IOL是指由地球低轨(LEO)到地球同步轨道(GEO)间的链路;而ISL是指占据相同轨道的既可以是LEO也可以是GEO的卫星间的链路。
星间链路一般被认为是多波束卫星的一种特殊波束,该波束并不指向地球而是指向其它卫星。卫星网络互联本身就含有卫星之间的互联以及卫星与地面站之间的互联两层含义。今天,在卫星光通信领域已取得突破性进展―――成功的实现了卫星―――地面、卫星―――卫星之间的光通信试验。
欧洲的空间激光通信的发展基于欧洲各国的合作,欧空局(ESA)在卫星激光通信的研究方面也投入了大量资金,先后研制了以不同星间链路为背景的一系列卫星激光通信终端,如SILEX和SOUT。SILEX系统的一个终端装于欧空局的中继卫星ARTEMIS,另一个终端装于法国地球观测卫星SPOT-4。2001年11月21日顺利建立了激光通信链路,实现了50Mbps速率的激光通信试验。这是世界上进行的首次星间激光链路试验,是卫星激光通信领域一项里程碑式的进展。
日本开展卫星激光通信的研究尽管较晚,但是进展却很快。日本已于1995年利用装于ETS-VI卫星上的激光通信终端成功地与地面站进行了激光通信实验,尽管此次实验的数率仅为1.04Mbps,但这是世界上首次成功进行的星地激光通信试验。日本NASDA研制的LCE激光通信实验系统1996年与美国的JPL的地面站进行了双向激光通信试验,日本的宇宙开发事业团(NASDA)还研制了专门的激光通信实验卫星OICETS,计划与ESA的ARTEMIS之间进行激光通信实验。
美国是世界上开展空间光通信研究最早的国家之一,研究工作经过了地面演示验证、关键技术研究以及星间和星地空间激光通信试验过程,已经实施了多个有关卫星激光通信的研究计划,投入了大量的资金研制了多个卫星激光通信实验终端,如NASA支持的LCDS、MIT林肯实验室的LITE系统,NASA的喷气推进实验室(JPL)已研制成的2×600Mbps卫星激光通信终端,美国军方BMDO建立了低轨卫星-地面站激光链路终端,数据率为1Gbps,并在积极进行小卫星星座中激光星间链路终端的研制。
俄罗斯在星间激光通信方面也取得了较好的成果,俄罗斯的星间激光数据传输系统(ILDTS)已用于载人空间站、飞行器等。
目前,国际上已完成了空间激光通信链路的概念研究,关键技术和核心部件已解决,已实现了低轨卫星对同步卫星的低、中码速率激光通信实验和进行了低轨卫星对地面站的激光通信实验。这些通信实验系统达到了高捕获概率,短捕获时间,抗多种干扰的高灵敏度动态跟瞄和较高传输数据率,同时研制了激光链路系统评估测试平台及分析、仿真软件。下面的表1是国外激光通信系统研究情况的一个大致概括:
国外已完成和正在进行研究的几个激光通信系统的性能参数概况如表2所示。
取得空间实验成功的SILEX系统是欧洲宇航局研制的,包括两个飞行器的空间光通信终端,其中高轨道(GEO)空间光通信终端载于欧洲航天局的ARTEMIS同步卫星上,低轨道(LEO)空间光通信终端载于法国的地球观测卫星Spot-4上。该系统于2001年11月21日顺利建立了光通信链路,完成50Mbps的光通信试验。
取得空间实验成功的另一个系统是日本邮政省通信实验室(CRL)研制的LCE系统,于1995年取得了星地激光链接的成功。
随着空间激光通信涉及的关键技术的解决,空间激光通信技术与系统的日趋完善,系统实验已经全面进入星载实验阶段,空间激光通信应用范围越来越大,卫星工程技术研究也进一步深化。目前,空间激光通信的主要发展趋势是:
1、原理性实验系统向建立工程实用的系统转化;
2、展更高传输速率系统;
3、向小型化及轻量化发展;
4、实现星间组网。
国外卫星激光通信系统
具体关键技术最新进展
激光通信系统构成大致可分为以下几个部分,激光器、探测器、高速调制和解调、高速电系统单元、高精度的APT组成、高质量的光系统和天线、高稳定的机械结构等。下面对激光器技术、APT技术、调制与接收技术、振动抑制技术目前发展情况予以简单的介绍。
1、激光器技术
用于建立激光链路的光源,一直是激光通信的关键技术之一,由于受到光传输介质及探测器的影响,对激光波长的研究主要集中在800nm、1000nm及1550nm三个波段,除去激光通信第一代气体激光器,其后用于星上的激光器研究主要集中在与以上三种波长对应的半导体激光器、固体激光器和光纤激光器。
(1)半导体激光器 半导体激光器是以半导体材料作为激光工作物质的激光器。它的优点在于超小的外形体积、极高的转换效率、结构简单等。在已进行的星间、星-地试验中几乎都采用半导体激光器。但半导体激光器相比较与别的激光器,缺点是发射光功率较小、波长稳定性差、线宽较宽、调制速度较低。相对于别的缺点,发射功率是它最大的缺点,SILEX系统中,信标光使用了19只半导体激光器,STRV-2系统不管是信标还是信号都使用了多只激光器。多只激光器复合会带来别的问题。针对于发射功率限制,一种被称为主控振荡功率放大(MOPA)的半导体器件被采用。根据所公布资料中MOPA的参数可以看出,半导体激光器功率小的问题已获得初步解决,只要MOPA的功率环境能满足空间环境的要求,半导体激光器会被更广泛的应用于星间和星地激光链接。
(2)固体激光器 固体激光器因其体积大、转换效率低并未被星上应用看好,但随着探测灵敏度对调制方式选择,固体激光器波长稳定性好、发射功率可以做得很大的优点受到重视。特别是Nd:YAG固体激光器,比较适合空间应用。
Nd:YAG激光器优异的性能使其可采用各种调制方式,虽然1064nm的波长落在APD的高增益区外,但基于PSK调制、直接采用光零差解调的检测方式,可使探测器灵敏度大幅提高,几乎等于量子极限∽9光子/比特。据资料报道,Nd:YAG激光器的在保证性能的情况下,已通过各种空间环境试验,满足空间飞行条件。
长期以来,Nd:YAG激光器的电光转换效率是它的一个突出缺点,现在这一情况已经部分得到改善,通过采用性能比较好的半导体激光二极管作为泵浦光源,可以提高Nd:YAG激光器的电光转换效率,使其达到较高的程度。
(3)光纤激光器 光纤通信技术到目前为止,已经是一项非常成熟的技术,不管是体积、转换效率、光束质量、发射功率、谱线宽度、波长稳定性还是调制速率,都可以通过对陆上已有的器件经过比较简单的技术加工而使其满足星上应用。在接收端已经存在的低噪前置光纤放大器,也可以满足接收端对灵敏度的要求。
目前光纤激光器用于星上最大的问题是空间光到光纤的耦合问题。耦合问题包括耦合效率问题和耦合头的污染问题。目前已有1550nm的星间激光通信系统正在研究,如果耦合效率问题和耦合头的污染问题能很好的得到解决,光纤激光器及光纤前置放大器能满足空间环境要求,采用1550nm的光纤无线高速星间、星地通信系统的链路建立应该没有多大问题。
2、捕获、瞄准、跟踪技术
所有的星间、星地激光通信系统,都将APT技术列为关键技术之一,在茫茫太空,以μrad量级的发散角度,在两个相对高速运动的终端之间建立通信链路,能正确的捕获、瞄准、跟踪变成了能进行通信的前提。APT技术在理论上没有多大问题,但由于APT系统所采用的传感器的不同造成了APT系统之间的差异。
早期的及已有飞行记录的激光通信系统,基本上都采用800nm的光波段建立链路,其捕获、跟踪都采用对该波段比较敏感的CCD或四象限作为传感器。
随着1064nm和1550nm波段的广泛研究应用,与该波段相匹配的APT技术和元器件研究受到重视。捕获阶段由于对视场角的要求,只能采用大视场的CCD或四象限作为传感器,跟踪由于和通信联系更为紧密而出现了与通信波段、调制方式及放大策略密切相关的方法。
3、调制、接收技术
激光链路的调制与接收技术集中反映了通信系统的情况。调制方式大致分为调幅、调频、调相,与之对应的接收方式直接强度探测和相干(外差)探测。调频调制方式在激光通信中在组成系统的复杂性和灵敏度方面都没有优势,目前不被采用。直接强度探测(DD),即非相干探测,这种方法具有结构简单、成本低、易实现等优点。相干(外差)探测,这种方法具有接收灵敏度高、抗干扰能力强等优点,但系统较为复杂,对元器件性能要求较高,特别是对波长的稳定性和谱线宽度。
在800nm的通信波段,结合半导体激光器的特点,一般采用直接光强度调制(IM)/直接强度探测(DD)的方式,现在这一波段的调制速率单信道不超过1Gbps。除系统简单外,这一波段的另一个优点是,能够采用对光有内置放大作用的APD探测器。
在1550nm波段,更多的继承了陆地上光纤通信系统的特点,一般也采用的是幅度调制和解调的方式,但它的幅度调制是基于相位的幅度调制外加功率放大的方法,而接收端一般采用光纤前置放大加强度探测的接收技术,对于该波段单信道调制速率40Gbps已经是几年前的报道。
相干探测技术在激光通信中发展较晚也比较缓慢,主要原因是实际应用中光纤通信更适合需要。光纤通信中采用比较简单的幅度调制即可获得极高的传输速率,而传输距离和功率的问题通过简单的中继光纤放大器可以解决,这些优点抑制了相干技术的发展。
相干检测技术的发展,本来也是一个渐进的过程,先是外差和差分检测,最后的目标是零差检测。相干检测通常可比非相干直接探测在灵敏度上高约10~20dB。但受限于激光器发射功率、频率稳定度及线宽,对激光相干技术1064nm和1550nm两个波段是可选的工作频段。
相干系统最大的优点是检测灵敏度高,由于对系统元器件的要求比较高,在向零差系统PSK发展的过程中,形成了多种相干检测系统。表3给出一个对不同的相干检测系统,码速率1.25Gbps、误码率10-7、在1064nm波段各系统探测灵敏度(以光子数/比特表示)及相对于零差PSK,各检测系统灵敏度下降(dB)情况。
从以上的表格可以看出零差PSK系统、同步外差PSK系统、差分检测DPSK能够满足-53dBm要求,其中零差PSK的灵敏度是最高,同步外差PSK次之,差分检测DPSK的灵敏度最低。
4、振动抑制技术
振动抑制是困扰卫星光通信的一个重要问题,从开环捕获、闭环跟踪到光通信各个环节,该问题都成为影响系统性能的重要因素。
最早提出的抑制措施主要集中在结构方面,采用对结构的被动控制和主动控制来抑制振动。被动控制是通过优化结构设计,依靠结构本身的阻尼消耗振动能量;主动控制是将外部的能量输入受控系统,与系统本身能量相互抵消来实现振动抑制。
随着激光通信的深入,在注重结构抑制的同时,就通信系统设计本身也引入了对付振动的方法,大致可归结为以下几种方法:
(1)调整带宽 通过调整带宽或是改变接收机的参数来改变接收功率,从而补偿发射机振动对通信系统性能的影响,适用于低频抑制。
(2)调整探测阵列 用N×M个象素组成的探测矩阵,基于在每个象素中对信号噪声振幅的认识,通过调整探测阵列中的每个象素各自的增益,可以使误码率降到最低适用于低频抑制。
(3)调整波束宽度 使用相位阵列技术,使用一个振动振幅测量单元和一个可调增益的天线。如果振动振幅测量单元探测到振动振幅在发生变化时,它将调整天线增益使之达到一个合适的值,达到新的振动水平,最终使通信系统性能达到优化。
(4)功率控制 依振动改变发射功率,这种方法总体上可节省发射功率,又可以对付振动达到有的放矢的目的。
(5)采用多样性的星间链路 该方法基于星间组网,通过使用一系列不相关的传播链路来传输相同的信息,而达到避免使用性能非常差的信道,来增加通信链路的有效连接的几率。
结束语
资料显示,目前在研的激光通信链路系统及在研机构相比较于上世纪八、九十年代有所减少,这并不代表激光通信相比较与微波通信没有优势,也不代表激光通信没有市场,仅是激光链路从理论研究和试验阶段向实用化、商业化的发展过程中出现的一种必然趋势,符合优胜劣汰的规律。以在激光通信链路系统这一领域的三个集团为例,下面作一简要分析评述:
ESA是星间、星地激光链路系统设计中处于优势的竞争者,在SILEX之后紧接着研制了小光学用户终端SOUT,甚小光学用户终端VSOUT,高级激光通信终端ALCT和短距离星间链路终端SROIL。以他们目前的实力,完全可以打通所有星间的连接,但他们研究的范围领域仍在扩大,有迹象表明ESA在1064nm领域的研究也已明显处于优势。
日本是最早在星-地激光链接试验中获得成功的国家,在搭载激光系统LCE的卫星出现故障后,日本并没有停止原有的OICETS的发射计划,而是对LUCE系统实施了更周密、更可靠的测试计划。
美国STRV-2计划星-地激光链接试验的失败,对其是一个打击,但早在1995年,利用日本的LCE系统,美国已取得部分直接试验数据,我们更应该相信STRV-2是一个有继承性的激光链接计划,回顾STRV-2上的激光终端配置,多信标、多接收信道、多发射信道、多种码速率(最低155Mbps),总体上采用模块化设计,一旦星-地双向激光链接成功,其能验证的星-地、星间链接项目之多令人吃惊。2001年5月18日,美国的GEO-LITE卫星进入轨道,其上装有一个由MITLL研制的激光通信终端。
空间光通信的优点以及其巨大的发展潜力,无疑将是今后高码速率通信的一个方向,可以看出在这一领域中,欧、日、美的领先地位已相当明显,并且今后的竞争将更加日趋激烈。
我国在空间激光通信系统技术开展比较系统的协作性研究比较晚,一方面,应当承认在这一领域与处于世界领先地位的其他国家之间存在有相当大的差距,并且给予高度重视,加快研究的进程,提高研究的效率,以便能够及时跟上他们前进的步伐。另外一方面,由于有国外的经验可以借鉴,如果抓住机遇,一定会在较短时间内实现赶上世界发达国家研究水平的目标。未来适时研制有光通信系统的卫星星座或通过国际合作租用国际上现成的卫星光通信信道,并建设卫星光通信地球站,以便日后利用卫星光通信系统进行载人航天器对地通信。结合我国目前的情况,对今后未来的发展给出如下建议:
1、星间、星地激光通信领域,应有一个明确的、长远的发展目标和计划;
篇7
【关键词】光纤通信技术 铁路通信 应用技术
从光纤通信问世到现在,光传输的速率以指数增长,光纤通信技术得到了长足的进步, 应用范围也不断扩大。随着铁路通信朝着数字化、综合化、宽带化、智能化方向发展,光纤通信技术已经大量应用于铁路通信系统中,显著地提高了铁路通信能力,极大地促进了铁路通信系统的完善和发展。
一、光纤通信概述
光纤通信是以很高频率(大约1014Hz)的光波作为载波、以光纤作为传输介质的通信。1966年7月,美籍华人高锟博士《用于光频的光纤表面波导》,分析证明了用光纤作为传输媒体以实现光通信的可能性,预见了低损耗的光纤能够用于通信,敲开了光纤通信的大门。1970年,美国康宁公司根据高锟论文的设想首次研制成功当时世界上第一根超低损耗光纤(衰减系数约为20dB/km),光纤通信时代由此开始。由于光纤通信具有损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。光纤通信系统的传输容量从1980年到2000年增加了近一万倍,传输速度在过去的10年中大约提高了100倍。目前,光纤通信技术已有了长足的发展,新技术也不断涌现,进而大幅度提高了通信能力,并不断扩大了光纤通信的应用范围。
二、光纤通信技术现状
(一)波分复用技术
波分复用技术可以充分利用单模光纤低损耗区带来的巨大带宽资源,根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。
(二)光纤接入技术
光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有FTTB、FTTC、FTTCab和FTTH等不同的应用,统称FTTx。FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。
三、光纤通信技术发展趋势
(一)超高速、超大容量和超长距离传输
超大容量、超长距离传输的波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的 WDM 系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。仅靠OTDM和WDM 来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和 WDM通信系统的关键技术中。
(二)光孤子通信
光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km 以上;在高性能EDFA方面是获得低噪声高输出EDFA。
(三)全光网络
篇8
1当前我国发展光纤光缆的基本情况
一是普通光纤。普通单模光纤在平常比较常用,由于在逐步发展的光通信系统,导致逐步增大单一波长信道容量与光中继距离,除此之外还能够做到进一步优化g.652.a光纤所具备的性能,其主要表现就是尚未在同一区域分布零色散点与最低衰减系数以及尚未充分利用1550rim区的低衰减系数。这样的改进对于g.653规定的色散与itutg.654规定的截止波长位移单模光纤相符。二是核心网光缆。从当前我国的情况来看,光缆则全部应用与各种级别的干线,如今已经全部实施g.655光纤与g.652光纤这样的单模光纤,将多模光纤都予以淘汰。虽然我国也曾经使用过g.653光纤,可是由于存在相应弊端也并没有发展这种光纤。g.654光纤并不能做到将光纤系统容量极大的增加,可是在我国陆地光缆当中并没有使用这种光纤。干线光纤其主要是在室外进行使用,并不是使用光纤带,而是实施分立光纤,如今已经停用了骨架式与紧套层绞式结构。三是接入网光缆。由于处于接入网当中的光缆频繁分插、比较多的分支与距离显得比较短,要想将网容量增加,往往采取的做法就是将光纤芯数增加。尤其是处于室内管道当中,受到十分有限的管道内径的影响,在将光纤芯数增加的过程当中显得特别重要的就是将光缆重量与直径减小以及光缆光纤集装密度增加。g.652.c低水峰单模光纤与g.652普通单模光纤使用于接入网当中,密集波分复用比较适合低水峰单模光纤,如今我国使用的范围也比较少。四是室内光缆。在进行室内光缆的使用过程当中通常都会进行传输视频信号、数据以及话音,另外还能够在传感器、遥测等领域进行使用。从笔者的观点进行分析,室内光缆可以划分成综合布线用光缆与局内光缆。主要是用户使用的综合布线光缆则是在用户端室内进行布放,从易损性这一角度进行分析,通过与局用光缆比较考虑显得更为严格。局用光缆就是在中心局或者别的电信机房内部进行布设,相对固定位置与有序紧密存放。五是电力线路通信光缆。从本质上进行分析,光纤这也是属于介电质,另外还能够将光缆当成全介质,这其中并不拥有一丁点的金属。这样的并不存在金属的全介质光缆属于电力系统当中最为理想的通信线路。全介质光缆敷设在电力线杆当中主要是缠绕式结构与全介质自承式结构。全介质自承式光缆能够单独实施布放,因此拥有比较广的适应范围,广泛的应用在电力输电系统改造过程。如今我国能够生产出多种类型的全介质自承式光缆以便可以将市场需要满足。可是诸如耐电弧性能、光缆蠕变、大志数光缆结构等这些产品性能与结果层面还必须做到持续性完善。我国拥有比较的大的全介质自承式光缆需求量,这种产品还显得比较热门。
2基于新形势下光纤通信技术发展趋势分析
篇9
基于无线激光通信的原理,设计并研制出了一套以激光内调制为工作模式的无线激光通信语音传输系统装置,测量并分析了该系统的频率极限、幅频特性和动态特性,与其他无线激光通信实验装置相比,本装置易于携带、调节,使用更直观、方便。
【关键词】无线光通信 语音传输 激光内调制 幅频特性
无线激光通信是利用激光作为载波在空间直接进行语音、数据、图像等信息的双向传送的一种通信技术,它不使用光纤等导波介质,直接利用激光在大气或外太空中进行信号传递,是目前通信领域研究的热点之一。本文基于光通信基本原理,设计出一套无线激光语音通信系统,以激光内调制为工作模式,进行音频信号的传输。该系统体积小,易于携带、调节,使用更直观、方便。
1 基本理论
无线激光通信系统由发射系统、接收系统以及自由空间传输三部分组成。发射系统的核心部分包括:放大器、激光器、 A/D转换。接收系统的核心部分包括:光电探测器、低噪声前置放大器、D/A转换。探测器将接收到的微弱信号进行光电转换,由光信号转换为电信号进行输出,再经低噪声前置放大器进行放大、解码,还原为原来信号进行输出。
2 硬件设计
2.1 发射系统的硬件设计
发射端采用的电路板电压为5V,半导体激光器波长为650nm,其余器件的参数如图1所示。音频信号通过电容器C4送到三极管Q1的基极,使三极管的基极电流随着音频信号的变化而变化。这样使接在三极管集电极上的激光发射二极管中的电流受到音频信号的调制,把待传输的信号放大至激光管的线性工作区,加载到半导体激光器两端。
2.2 接收系统的硬件设计
接收发射端采用LM386芯片作为放大电路的核心部分,电路板电压为5V,光敏电阻选择硫化镉光敏电阻MG45,其余器件的参数如图2所示。其中电阻R7从输出端连接到V2的发射极,形成反馈通路,并且与R5和R6构成反馈网络。引脚7端接一个电解电容到地,起滤除噪的作用。
3 通信光路设计
由于实验是在实验室进行的,传输距离较短,故激光的发射角较小,只需在接收端的光电探测器前放置一个焦距为75mm,直径为25.4mm的双凸透镜作为接收天线,将光会聚到探测器的光敏面上。
4 性能测试
用信号发生器给一个通道输入正弦波,改变输入正弦波信号频率,同时在接收机的音箱处用示波器监测输出信号的幅度,用MATLAB软件作图得到图3所示的幅频特性,可以看出在频率f=2kHz时的幅度最大,大约为515mV。由于选取的半导体激光器和光探测器具有一定的响应时间和延时作用,因此此系统一定存在一个极限传输频率。我们测得该系统在信号频率大于20kHz时,出现了较为严重的失真现象。当输入正弦波信号频率f=1kHz时,改变输入正弦波信号幅度,测量输出信号幅度随之变化情况如图4所示,当输入信号大于6V时,输出信号基本保持不变,大约为700mV。
6 结论
自制了一套无线激光通信语音传输系统装置,传输的音质良好,测量并分析了该系统的频率极限、幅频特性和动态特性,用MATLAB绘制出了系统的传函曲线和动态特性曲线,截止频率大约为20kHz,传函曲线表明当信号频率f=2kHz时的幅度最大,动态特性曲线表明当输入信号大于6V时,输出信号基本保持不变,大约为700mV。
参考文献
[1]谭立英,马晶.卫星光通信技术[M].北京:科学出版社, 2004.
篇10
【关键词】光缆光纤通信技术;现状;发展趋势
1引言
当前,光纤通信技术在实际运用中具有良好的发展空间,被誉为最有前途的通信技术之一,现代化通信支柱的地位非它莫属,光纤通信技术也被称为信息技术革命的重要标志之一。如今,信息量如天上繁星不可胜数且复杂多变,光纤通信技术已被人们当成主要的传输媒介,对于信息网架构的整体面貌具有深刻的影响。光纤通信技术在当今信息社会发挥无比伦比的作用,前程似锦。本文主要对光纤通信在我国发展的现状及其具体的发展趋势做具体阐述[1]。
2光纤通信的概况
提出具有低损耗特点的光纤能够被应用于通信领域中,从而由此打开光纤通信领域的大门的时间是1966年,美籍华人高馄与霍克哈姆对此,由此光纤通信技术越来越被人们所重视。光纤通信技术的开始阶段是在1970年,美国康宁公司首次研制出光纤,其损耗为20dB/km。光纤通信的载波是1014Hz的光波,传输媒质为光纤。光纤通信因为它具有低损耗和传输频带宽以及容量大的优点,而且其具有体积小和重量轻以及抗电磁干扰强等众多优点,因此被众人所喜爱。
3光纤通信技术发展的现状
3.1波分复用技术
以能获得较多的宽带资源为目标,波分复用技术通过对单模光纤低损耗区进行充分利用,最终效果明显。光纤的低损耗窗口具有多个信道,它的划分是根据每一信道光波的波长来达到划分的目的。光波是信号的载波,在发送端应用合波器的方式来合并规格各异的信号光载波,一根光纤中就合并规格各异的信号光载波,以这种方式进行信号传输。在接收端口,应用分波器对其进行区分,由一根光纤变为多根光纤。除了在光纤非线性时的情况下,因为不同波长的光载波信号可以当作是相互独立单独存在的个体,因而一根光纤中能够实现多渠道光信号的复用传输的目的。
3.2光纤接入技术
光纤接人网技术,其意义和价值非常重大,它也被称为信息高速公路的“最后一公里”。如果要达到信息高速传输,且要满足更多受众需求的目的,其宽带具有主干传输网络是重要环节,但用户接人部分更是关键的部分。光纤接人网技术,其信息传输达到高速化。在光纤宽带接入过程中,因光纤到达不同的位置,其应用也有很多种类,例如FTTB、FTTC和FTTCab以及FTTH等应用。这些应用被称作为FTTx。光纤到户,其简称为FTTH,FTTH是光纤宽带接入的最终方式。FTTH提供全光的接入,所以,对光纤的宽带特性加以充分利用,从而满足受众不受限制的带宽要求,对于宽带接入的需求也可以充分满足。当前,国内可以向受众提供FE或GE两种宽带,它可以很好地满足大中型企业用户。因此,这种接入方式比较理想[3]。
4光纤通信技术的发展趋势
随着社会的发展,人们对于光纤通信的要求也越来越高,其超高速度和超大容量以及超长距离传输就是人们对光纤通信技术所追求的具体目标,全光网络更是人们所持之以恒追求的目标。1)传输技术波分复用技术能够满足超大容量与超长距离传输的要求,对于光纤传输系统的传输容量具有巨大的提高,在将来的跨海光传输系统中应用前景更加广阔。这些年,波分复用系统取得了较快的发展,当前的1.6Tbit/WDM系统被广泛应用在商用领域,在此过程中全光传输距离扩展幅度也较高。提升传输容量,采取光时分复用,也是应用OTDM技术的一种很好的办法,与WDM通过增加单根光纤中传输的信道数。这种方式可以明显提高传输容量,而且这种方法合理科学。以提高单信道速率的理念,提高传输容量,这种理念与现实相符,这同时也是OTDM技术的主要内容,OTDM技术最终实现的单信道最高速率较普通速率高达640Gbit/s。2)单通过OTDM与WDM对光通信系统的容量提高,传输容量毕竟有限,另外一种方式是对OTDM信号进行波分复用,最终对传输容量会有较大幅度的提高。应用偏振复用,简称为PDM技术,其对于减弱相邻信道的相互作用所取得的效果显著,见效快。主要是因为在超高速通信系统的基础上,归零(RZ)编码信号没有较大的占用空间,其对于色散管理分布的要求在一定程度上会有所降低,而且在对光纤的非线性情况下,光纤的偏振模色散中,RZ编码方式具有较强的适应能力,所以,超大容量WDM/OTDM通信系统所使用的传输方式一般都是RZ编码。WDM/OTDM混合传输系统在系统本身就可以找到需要解决的关键技术[4]。3)光孤子通信。光孤子与其他光脉冲相比较,它的存在较为特殊,例如ps数量级的超短光脉冲就是较为特殊的例子。光纤的反常色散区,光孤子就存在这种区域之中,群速度色散和非线性效应互相平衡,光纤进行传输时需要长距离传输,波形与速度没有变化。光孤子通信技术,对光孤子加以利用,把光孤子作为载体,通信过程中可以实现长距离无畸变的通信,如果其在零误码的状况下,其传输的信息距离非常遥远。4)全光网络。它是人们一直所追求的信号传输方式,它所要解决的技术问题是以光节点来代替电节点。可想而知,其节点之间也是全光化的,信息在进行传输时,信号在进行互相交换时,在运行的过程中它是以光的形式在进行的,用户应用交换机对信息进行处理操作的过程中,按比特运行的这种方式已不存在全光网络中,它的路由是由波长所决定的。在传统的光网络中,节点间以全光化的形式存在,虽然已被实现,网络结点处却一直采用电器件,对于当前通信网干线总容量的继续提高有所限制,因此如何实现真正的全光网越来越被人们所关注。
5结束语
光通信技术对于信息技术具有支柱性作用,虽然在发展路程中会有许多难走的路,但它是通信领域发展的必然趋势。从现代通信的发展趋势来看,光纤通信更是将来通信领域的王者。人们所追求的全光网络目标的脚步也会越来越近。
参考文献
[1]于虹霞.光纤通信技术的现状及发展趋势[J].黑龙江科技信息,2012(8):107.