微电子技术范文

时间:2023-03-24 18:36:58

导语:如何才能写好一篇微电子技术,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

微电子技术

篇1

从本质上来看,微电子技术的核心在于集成电路,它是在各类半导体器件不断发展过程中所形成的。在信息化时代下,微电子技术对人类生产、生活都带来了极大的影响。与传统电子技术相比,微电子技术具备一定特征,具体表现为以下几个方面[1]:(1)微电子技术主要是通过在固体内的微观电子运动来实现信息处理或信息加工。(2)微电子信号传递能够在极小的尺度下进行。(3)微电子技术可将某个子系统或电子功能部件集成于芯片当中,具有较高的集成性,也具有较为全面的功能性。(4)微電子技术可在晶格级微区进行工作。

2微电子技术发展历程概述

微电子技术诞生于20世纪40年代末。1947年,巴丁、布莱顿与肖克莱发明了晶体管,这使得电子技术有了极大的突破,也为微电子技术的后续发展奠定了基础。至20世纪50年代末,集成电路的出现推动了电子技术革命,这也意味着微电子技术变得愈来愈成熟,并进入了快速发展期。同时,计算机技术应用范围的不断拓展,也进一步促进了微电子技术的发展。至20世纪70年代,伴随着微型计算机的出现,让微电子技术发展达到了空前的高度,也奠定了微电子技术在高新技术当中的核心地位[2]。如今,微电子技术已走入人们的生活当中,计算机、手机、家用电器的制造、生产都离不开微电子技术的支持。同时,微电子技术也成为了国防工业、印刷工业、汽车工业等工业生产当中不可或缺的核心技术。甚至可以说微电子技术无处不在,它已经与整个社会形成了一种相互依存的关系。相对于发达国家而言,我国微电子技术起步较晚。但近年来,我国的微电子技术取得了很大进展,特别是在纳米集成技术方面有所突破,并且集成规模也变得愈来愈大。其中华为公司在移动芯片方面已经处于国际领先地位,旗下的海思芯片已经能够与高通、三星等芯片一较长短。如今我国已经成为全球最大的消费类电子市场,在市场刺激下,我国微电子技术整体水平还将进一步提升。

3微电子技术发展趋势分析

3.1硅基CMOS电路

在硅基技术不断进步、不断成熟的情况下,硅基CMOS的应用深度也在不断提升。从硅基CMOS电路发展趋势来看,硅晶圆片的尺寸正在不断扩大,然而特征尺寸(光刻加工线条)却变得愈来愈小。早期的硅片尺寸为2英寸居多,经过3、4、6英寸的过渡发展,如今已经达到8英寸水平[3]。近年来,集成电路制造工艺技术的进一步突破,使得硅片尺寸已经达到12英寸以上,直径超过300mm。硅片尺寸的扩大,意味着整体生产成本能够进一步降低。英特尔公司在集成电路芯片制造方面一直处于行业领先地位,从2011年开始英特尔便具备了成熟的32nm制造工艺。近年来,由32nm工艺到22nm工艺,再到如今主流的14nm工艺,体现了集成电路制造技术的快速发展。未来两年内,器件的主流特征尺寸将朝着10nm、7nm方向发展。当然,在硅基CMOS电路特征尺寸不断缩小的情况下,器件结构的物理性质会变得愈来愈大,不可能完全按照摩尔定律一直发展下去,甚至可以说硅基CMOS电路已经遇到了一定的发展瓶颈。要让其突破发展瓶颈,必然需要新材料的支持。高K材料、新型栅电极及新制造工艺将是促使其进一步发展的关键。

3.2生物芯片

生物芯片是微电子技术未来重要的发展方向之一。生物芯片是一种微阵列杂交型芯片,其中微阵列主要由各类生物信息分子所够成,包括DNA、RNA、多肽等。它是典型的生物技术与微电子技术的融合性产物。在阵列当中,各分子序列是预先所设定的序列点阵,并且序列与位置都是已知的[4]。以生物分子特异性作用为基础,可将生化分析过程集成于芯片表面,这样便能够实现生物成分如DNA、RNA、糖分子、蛋白质、多肽等的高通量快速检测。在生物芯片技术水平不断提升的过程中,其应用范围也在逐渐扩大。例如,Santford与Affymetrize公司所生产的DNA芯片上含有超过600种的基因片段。在芯片制造过程中,先在玻璃片上蚀刻出微小沟槽,在将DNA纤维覆于沟槽上,以不同DNA纤维图形来体现基本片段的差异性。利用电场等手段可让某些特殊物质将部分基因的特征表现出来,从而实现基因检测。又如,三位美国科学家被授予了一项关于量子级神经动态计算芯片的专利。此类芯片功能性较强,可进行高速非标准运算,这给量子计算领域的发展带来了巨大的推动力。该芯片是物理过程与生物过程的结合产物。以仿生系统为基础,在接口界面通过突触神经元连接,可实现反馈性学习,无论是运算速度,还是运算能力均具有较高水准。一旦该技术成熟后,可在民用及军事领域大范围应用。

3.3集成系统

集成系统是微电子技术发展的重点方向。以往微电子芯片都是以集成电路芯片为基础,然而,电子信息类型及数量的不断增多对集成电路芯片提出了新的要求,要求其具备更低的功耗、更快的速度,并且能够快速处理不同类型的复杂智能问题。在此需求下,SOC(系统级芯片)概念愈来愈受到关注。SOC具有极强的集成性功能,不但能够将信息处理系统、执行器集于一体,还能集成生物、化学、物理敏感器[5]。目前,SOC已经成为了移动终端中最为主流的芯片解决方案。部分手机的SOC性能已经达到了很高的水平,甚至接近于桌面级CPU。以苹果的A10芯片为例,A10晶体管的数量已经超过30亿,其整体性能较上一代A9芯片提升了约40%,所集成的GPU性能较A9也有50%的提升,但整体能耗却下降了30%。同时,SOC当中还集成了数字信号处理器模块、控制器模块、存储器单元模块等多个模块,可以胜任各种任务。未来随着相关技术的不断成熟,SOC还将具备更大的发展空间,并成为社会生产当中不可或缺的一部分。

3.4微电子制造工艺

穆尔定则指出,集成电路的集成度每3年左右就会成倍增长,而特征线宽则会下降30%。特征线条愈窄,也就意味着集成电路的工作速度愈快,并且单元功能消耗功率也会一定幅度下降。集成电路集成度的不断增大对相关制造技术(光刻技术、蚀刻技术、扩散氧化技术)也提出了新的要求。(1)光刻技术。利用波长为436nm光线,即可获取亚微米尺寸图形,从而得到集成度为1M位与4M位的DRAM。然而i射线曝光设备的出现进一步提升了光刻技术整体水平。利用i射线曝光可获得半微米尺寸及深亚微米尺寸图形,得到16M位与64M位的DRAM。目前主流的光刻技术为248nmDUV技术及193nmDUV技术,未来纳米压印光刻技术及极紫外光刻技术均存在较大潜力,极有可能成为下一代的主流光刻技术。(2)蚀刻技术。在高密度集成电路制造过程中,由于特征尺寸的不断缩小,对蚀刻工艺的要求也在不断提升。随着相关工艺的不断成熟,采取CER等离子源及ICP高密度等离子源,并将其与静电卡盘技术相结合,可进一步提升蚀刻效果。(3)扩散氧化技术。以往的气体扩散法需要在高温条件下长时间扩散,才能获得扩散层。新一代的离子注入技術进一步提升了扩散氧化效果。采取离子注入技术,可在任意位置置入杂质,再经过低温处理,便能得到扩散层。

3.5立体微电子封装

在电子产品集成度不断提升的情况下,微电子封装已经成为主流封装技术。相对于传统封装技术而言,微电子封装技术具有高性能、高密度的特征,具有更好的适用性及更高效率。从发展趋势来看,未来微电子封装技术将朝着少封装、无封装的方向发展,平面型封装会逐渐转向立体封装。立体封装是基于传统微电子封装技术发展而来[6]。立体封装可将两个及以上的芯片在单个封装中进行堆叠,即实现正方向上的多芯片堆叠。换句话说,立体封装是一种典型的堆叠封装技术。通过立体封装能够大幅度提升组装密度,提升幅度可达200%至300%。目前立体封装主要包括三种形式,即有源基板立体封装、叠层立体封装及埋置型立体封装。上述三种封装方式各具特点,适用于不同类型的芯片。

4结语

在微电子技术不断发展的过程中,它的影响力变得愈来愈大,并逐渐成为了衡量国家科学技术实力的重要标志,也体现了国家的综合实力。未来,微电子技术还将具备更大的发展空间,它将成为引导人类社会发展、推动技术革命的重要因素。

参考文献

[1]肖李李.微电子技术的应用和发展分析[J].电子制作,2016(16):98.

[2]李彦林.微电子技术的发展与应用研究[J].电子制作,2015(20):36.

[3]金撼尘.微电子技术发展的新领域[J].电子世界,2014(09):5-6.

[4]邓海刚,席宏扬,尤晓亮.浅谈微电子技术的应用和发展[J].电子制作,2013(17):93.

[5]程晓芳.微电子技术的现状及其发展趋势[J].山西电子技术,2012(04):93-94.

[6]关晓丹,梁万雷.微电子封装技术及发展趋势综述[J].北华航天工业学院学报,2013(01):34-37.

篇2

航空微电子及关键技术

以集成电路为核心的微电子技术,在军事通信、军事指挥、军事侦察、电子干扰和反干扰、无人机、军用飞机、导弹,雷达、自动化武器系统等方面得到广泛应用,覆盖了军事信息领域的方方面面。因此,现代信息化战争又被称为“芯片之战”。出于国防装备的需要,世界军事强国不仅重视通用微电子技术发展,也十分重视专用微电子技术的发展。这是因为专用微电子产品不仅在国防装备中应用广泛,而且对国防装备的作战效能起着关键作用。美国提出,在其防务的技术优势中,集成电路是最重要的因素。20世纪80年代美国就将集成电路列为战略性产业。决定航空电子系统成本和技术的关键和核心,是以航空关键集成电路和元器件为核心的航空微电子技术和产品。

当前微电子科学技术一个重要的发展方向,就是由集成电路(IC)向集成系统(IS)转变,并由此产生了微系统。微系统有两重含义:一是将电子信息系统集成到硅芯片上,即信息系统的芯片集成——片上系统或System on-a-Chip(SoC)。另一含义就是微电子机械系统(MEMS)和微光机电系统。

SoC将一个基于PCB上实现的系统功能尽可能的转化为基于功能、性能高度集成的基于硅的系统级芯片实现。因此,SoC尽可能多的集成系统的功能,可以减小系统体积重量,提高系统的性能,提高系统的可靠性,并能降低系统的制造成本。

MCM(Multi-Chip Module)是利用先进的微组装技术将多个(2个或以上)集成电路管芯及其他微型元器件组装在单一封装外壳内,形成具有一定部件或系统功能的高密度微电子组件。基于MCM基础上发展起来的系统级封装SIP(System in Package),是将整个应用系统中所有的电路管芯和其他微型元器件组装在单一封装外壳内的技术。MCM/SIP技术的开发应用将是突破传统封装固有瓶颈的一种有效途径,实现信息技术的发展对集成电路的封装密度、处理速度、体积、重量及可靠性等方面提出新的应用要求。

上世纪90年代,美国NASA为实现太空飞船小型和微型化提出先进飞行计算机计划(AFC),将MCM 作为在微电子领域保持领先地位的重要技术加以发展,并确定其为2010年前重点发展的十大军民两用高新技术之一。 日本一直以来都是MCM 技术的推崇者,他们建立的MCM技术协会进一步促进多芯片组件的发展与应用。

虽然SoC可以集成多种功能IP,但多工艺混合的IP难以采用SoC在单一硅片上实现, 因此虽然SoC发展迅速,但并不能取代MCM/SIP技术,一定程度上来讲,MCM/SIP技术是对SoC实现小型化的重要补充。因此,SoC/MCM(SIP)技术固有的技术优点,是航空电子系统低功耗、高性能、高可靠、超小型化的发展的永恒追求,也是航空电子系统发展迫切需要的核心技术之一。

航空微电子产业的国内外现状

航空电子系统所用关键集成电路与元器件的基本上可以分为四大类别:通用高端芯片、航空专用集成电路、机载任务子系统专用处理芯片、航空核心元器件。

1、通用高端芯片,主要是指处理类、存储类、电源类、A/D、D/A、OP等类别的集成电路。高端通用芯片决定航空电子系统的整体性能,是航空系统中不可缺少的一类重要器件。由于武器装备发展的需求超前于我国集成电路的研制和国产化,各项主战装备进入设计定型时,国内出现无“芯”可用的状况,导致定型装备的高端通用芯片基本依赖于进口,在重点型号中几款用量大的CPU芯片大都要依靠进口,只有少数是国产化的CPU芯片,而且性能都比较低。

2、航空专用集成电路,主要包是指总线网络及相关标准协议,以及使用MCM、SIP设计的模块。航空专用集成电路一般分为两种:第一种是满足航空标准、协议和规范的专用电路,如支持ARINC429协议、1553B协议、光纤通道FC-AE协议等的电路,它决定了航空电子系统的体系结构。这类芯片主要是总线协议处理类芯片,是航空电子系统的“中枢神经”,遍布飞机的各个部件和角落。第二种是满足飞机应用环境要求的专用集成电路。这类芯片是面向航空电子系统的应用需求特点开发的芯片。欧美新一代飞机研制中,广泛使用了SoC/MCM(SIP)技术手段,实现低功耗、高性能、高可靠性、超小型化的最终目标。为了达到F-22等新一代飞机综合核心处理机(ICP)对“性能/体积”方面的要求,美国“宝石台”计划中定义了多达12种MCM。

3、机载任务子系统专用处理电路,主要包括弹载计算机小型化核心芯片、头显定位处理系统芯片、头/平显畸变校正芯片、机载专用远程激光测距芯片以及机载防撞系统综合信号处理芯片等。机载任务子系统专用处理电路是决定航电任务子系统或设备某些特定性能的专用集成电路,如弹载计算机、头显定位处理系统芯片、头/平显畸变校正芯片、机载专用远程激光测距芯片和机载防撞系统综合信号处理芯片。目前国内该类任务子系统多采用专用电路板卡实现,缺点主要在于体积大、功耗高、集成度低、数据处理时间长等。

篇3

关键词微电子技术集成系统微机电系统DNA芯片

1引言

综观人类社会发展的文明史,一切生产方式和生活方式的重大变革都是由于新的科学发现和新技术的产生而引发的,科学技术作为革命的力量,推动着人类社会向前发展。从50多年前晶体管的发明到目前微电子技术成为整个信息社会的基础和核心的发展历史充分证明了“科学技术是第一生产力”。信息是客观事物状态和运动特征的一种普遍形式,与材料和能源一起是人类社会的重要资源,但对它的利用却仅仅是开始。当前面临的信息革命以数字化和网络化作为特征。数字化大大改善了人们对信息的利用,更好地满足了人们对信息的需求;而网络化则使人们更为方便地交换信息,使整个地球成为一个“地球村”。以数字化和网络化为特征的信息技术同一般技术不同,它具有极强的渗透性和基础性,它可以渗透和改造各种产业和行业,改变着人类的生产和生活方式,改变着经济形态和社会、政治、文化等各个领域。而它的基础之一就是微电子技术。可以毫不夸张地说,没有微电子技术的进步,就不可能有今天信息技术的蓬勃发展,微电子已经成为整个信息社会发展的基石。

50多年来微电子技术的发展历史,实际上就是不断创新的过程,这里指的创新包括原始创新、技术创新和应用创新等。晶体管的发明并不是一个孤立的精心设计的实验,而是一系列固体物理、半导体物理、材料科学等取得重大突破后的必然结果。1947年发明点接触型晶体管、1948年发明结型场效应晶体管以及以后的硅平面工艺、集成电路、CMOS技术、半导体随机存储器、CPU、非挥发存储器等微电子领域的重大发明也都是一系列创新成果的体现。同时,每一项重大发明又都开拓出一个新的领域,带来了新的巨大市场,对我们的生产、生活方式产生了重大的影响。也正是由于微电子技术领域的不断创新,才能使微电子能够以每三年集成度翻两番、特征尺寸缩小倍的速度持续发展几十年。自1968年开始,与硅技术有关的学术论文数量已经超过了与钢铁有关的学术论文,所以有人认为,1968年以后人类进入了继石器、青铜器、铁器时代之后硅石时代(siliconage)〖1〗。因此可以说社会发展的本质是创新,没有创新,社会就只能被囚禁在“超稳态”陷阱之中。虽然创新作为经济发展的改革动力往往会给社会带来“创造性的破坏”,但经过这种破坏后,又将开始一个新的处于更高层次的创新循环,社会就是以这样螺旋形上升的方式向前发展。

在微电子技术发展的前50年,创新起到了决定性的作用,而今后微电子技术的发展仍将依赖于一系列创新性成果的出现。我们认为:目前微电子技术已经发展到了一个很关键的时期,21世纪上半叶,也就是今后50年微电子技术的发展趋势和主要的创新领域主要有以下四个方面:以硅基CMOS电路为主流工艺;系统芯片(SystemOnAChip,SOC)为发展重点;量子电子器件和以分子(原子)自组装技术为基础的纳米电子学;与其他学科的结合诞生新的技术增长点,如MEMS,DNAChip等。

221世纪上半叶仍将以硅基CMOS电路为主流工艺

微电子技术发展的目标是不断提高集成系统的性能及性能价格比,因此便要求提高芯片的集成度,这是不断缩小半导体器件特征尺寸的动力源泉。以MOS技术为例,沟道长度缩小可以提高集成电路的速度;同时缩小沟道长度和宽度还可减小器件尺寸,提高集成度,从而在芯片上集成更多数目的晶体管,将结构更加复杂、性能更加完善的电子系统集成在一个芯片上;此外,随着集成度的提高,系统的速度和可靠性也大大提高,价格大幅度下降。由于片内信号的延迟总小于芯片间的信号延迟,这样在器件尺寸缩小后,即使器件本身的性能没有提高,整个集成系统的性能也可以得到很大的提高。

自1958年集成电路发明以来,为了提高电子系统的性能,降低成本,微电子器件的特征尺寸不断缩小,加工精度不断提高,同时硅片的面积不断增大。集成电路芯片的发展基本上遵循了Intel公司创始人之一的GordonE.Moore1965年预言的摩尔定律,即每隔三年集成度增加4倍,特征尺寸缩小倍。在这期间,虽然有很多人预测这种发展趋势将减缓,但是微电子产业三十多年来发展的状况证实了Moore的预言[2]。而且根据我们的预测,微电子技术的这种发展趋势还将在21世纪继续一段时期,这是其它任何产业都无法与之比拟的。

现在,0.18微米CMOS工艺技术已成为微电子产业的主流技术,0.035微米乃至0.020微米的器件已在实验室中制备成功,研究工作已进入亚0.1微米技术阶段,相应的栅氧化层厚度只有2.0~1.0nm。预计到2010年,特征尺寸为0.05~0.07微米的64GDRAM产品将投入批量生产。

21世纪,起码是21世纪上半叶,微电子生产技术仍将以尺寸不断缩小的硅基CMOS工艺技术为主流。尽管微电子学在化合物和其它新材料方面的研究取得了很大进展;但还不具备替代硅基工艺的条件。根据科学技术的发展规律,一种新技术从诞生到成为主流技术一般需要20到30年的时间,硅集成电路技术自1947年发明晶体管1958年发明集成电路,到60年代末发展成为大产业也经历了20多年的时间。另外,全世界数以万亿美元计的设备和技术投入,已使硅基工艺形成非常强大的产业能力;同时,长期的科研投入已使人们对硅及其衍生物各种属性的了解达到十分深入、十分透彻的地步,成为自然界100多种元素之最,这是非常宝贵的知识积累。产业能力和知识积累决定了硅基工艺起码将在50年内仍起重要作用,人们不会轻易放弃。

目前很多人认为当微电子技术的特征尺寸在2015年达到0.030~0.015微米的“极限”之后,将是硅技术时代的结束,这实际上是一种误解。且不说微电子技术除了以特征尺寸为代表的加工工艺技术之外,还有设计技术、系统结构等方面需要进一步的大力发展,这些技术的发展必将使微电子产业继续高速增长。即使是加工工艺技术,很多著名的微电子学家也预测,微电子产业将于2030年左右步入像汽车工业、航空工业这样的比较成熟的朝阳工业领域。即使微电子产业步入汽车、航空等成熟工业领域,它仍将保持快速发展趋势,就像汽车、航空工业已经发展了50多年仍极具发展潜力一样。

随着器件的特征尺寸越来越小,不可避免地会遇到器件结构、关键工艺、集成技术以及材料等方面的一系列问题,究其原因,主要是:对其中的物理规律等科学问题的认识还停留在集成电路诞生和发展初期所形成的经典或半经典理论基础上,这些理论适合于描述微米量级的微电子器件,但对空间尺度为纳米量级、空间尺度为飞秒量级的系统芯片中的新器件则难以适用;在材料体系上,SiO2栅介质材料、多晶硅/硅化物栅电极等传统材料由于受到材料特性的制约,已无法满足亚50纳米器件及电路的需求;同时传统器件结构也已无法满足亚50纳米器件的要求,必须发展新型的器件结构和微细加工、互连、集成等关键工艺技术。具体的需要创新和重点发展的领域包括:基于介观和量子物理基础的半导体器件的输运理论、器件模型、模拟和仿真软件,新型器件结构,高k栅介质材料和新型栅结构,电子束步进光刻、13nmEUV光刻、超细线条刻蚀,SOI、GeSi/Si等与硅基工艺兼容的新型电路,低K介质和Cu互连以及量子器件和纳米电子器件的制备和集成技术等。

3量子电子器件(QED)和以分子原子自组装技术为基础的纳米电子学将带来崭新的领域

在上节我们谈到的以尺寸不断缩小的硅基CMOS工艺技术,可称之为“scalingdown”,与此同时我们必须注意“bottomup”。“bottomup”最重要的领域有二个方面:

(1)量子电子器件(QED—QuantumElectronDevice)这里包括单电子器件和单电子存储器等。它的基本原理是基于库仑阻塞机理控制一个或几个电子运动,由于系统能量的改变和库仑作用,一个电子进入到一个势阱,则将阻止其它电子的进入。在单电子存储器中量子阱替代了通常存储器中的浮栅。它的主要优点是集成度高;由于只有一个或几个电子活动所以功耗极低;由于相对小的电容和电阻以及短的隧道穿透时间,所以速度很快;且可用于多值逻辑和超高频振荡。但它的问题是制造比较困难,特别是制造大量的一致性器件很困难;对环境高度敏感,可靠性难以保证;在室温工作时要求电容极小(αF),要求量子点大小在几个纳米。这些都为集成成电路带来了很大困难。

因此,目前可以认为它们的理论是清楚的,工艺有待于探索和突破。

(2)以原子分子自组装技术为基础的纳米电子学。这里包括量子点阵列(QCA—Quantum-dotCellularAutomata)和以碳纳米管为基础的原子分子器件等。

量子点阵列由量子点组成,至少由四个量子点,它们之间以静电力作用。根据电子占据量子点的状态形成“0”和“1”状态。它在本质上是一种非晶体管和无线的方式达到阵列的高密度、低功耗和实现互连。其基本优势是开关速度快,功耗低,集成密度高。但难以制造,且对值置变化和大小改变都极为灵敏,0.05nm的变化可以造成单元工作失效。

以碳纳米管为基础的原子分子器件是近年来快速发展的一个有前景的领域。碳原子之间的键合力很强,可支持高密度电流,而热导性能类似于金刚石,能在高集成度时大大减小热耗散,性质类金属和半导体,特别是它有三种可能的杂交态,而Ge、Si只有一个。这些都使碳纳米管(CNT)成为当前科研热点,从1991年发现以来,现在已有大量成果涌现,北京大学纳米中心彭练矛教授也已制备出0.33纳米的CNT并提出“T形结”作为晶体管的可能性。但是问题是如何去生长有序的符合设计性能的CNT器件,更难以集成。

目前“bottomup”的量子器件和以自组装技术为基础的纳米器件在制造工艺上往往与“Scalingdown”的加工方法相结合以制造器件。这对于解决高集成度CMOS电路的功耗制约将会带来突破性的进展。

QCA和CNT器件不论在理论上还是加工技术上都有大量工作要做,有待突破,离开实际应用还需较长时日!但这终究是一个诱人探索的领域,我们期待它们将创出一个新的天地。

4系统芯片(SystemOnAChip)是21世纪微电子技术发展的重点

在集成电路(IC)发展初期,电路设计都从器件的物理版图设计入手,后来出现了集成电路单元库(Cell-Lib),使得集成电路设计从器件级进入逻辑级,这样的设计思路使大批电路和逻辑设计师可以直接参与集成电路设计,极大地推动了IC产业的发展。但集成电路仅仅是一种半成品,它只有装入整机系统才能发挥它的作用。IC芯片是通过印刷电路板(PCB)等技术实现整机系统的。尽管IC的速度可以很高、功耗可以很小,但由于PCB板中IC芯片之间的连线延时、PCB板可靠性以及重量等因素的限制,整机系统的性能受到了很大的限制。随着系统向高速度、低功耗、低电压和多媒体、网络化、移动化的发展,系统对电路的要求越来越高,传统集成电路设计技术已无法满足性能日益提高的整机系统的要求。同时,由于IC设计与工艺技术水平提高,集成电路规模越来越大,复杂程度越来越高,已经可以将整个系统集成为一个芯片。目前已经可以在一个芯片上集成108-109个晶体管,而且随着微电子制造技术的发展,21世纪的微电子技术将从目前的3G时代逐步发展到3T时代(即存储容量由G位发展到T位、集成电路器件的速度由GHz发展到灯THz、数据传输速率由Gbps发展到Tbps,注:1G=109、1T=1012、bps:每秒传输数据位数)。

正是在需求牵引和技术推动的双重作用下,出现了将整个系统集成在一个微电子芯片上的系统芯片(SystemOnAChip,简称SOC)概念。

系统芯片(SOC)与集成电路(IC)的设计思想是不同的,它是微电子设计领域的一场革命,它和集成电路的关系与当时集成电路与分立元器件的关系类似,它对微电子技术的推动作用不亚于自50年代末快速发展起来的集成电路技术。

SOC是从整个系统的角度出发,把处理机制、模型算法、芯片结构、各层次电路直至器件的设计紧密结合起来,在单个(或少数几个)芯片上完成整个系统的功能,它的设计必须是从系统行为级开始的自顶向下(Top-Down)的。很多研究表明,与IC组成的系统相比,由于SOC设计能够综合并全盘考虑整个系统的各种情况,可以在同样的工艺技术条件下实现更高性能的系统指标。例如若采用SOC方法和0.35μm工艺设计系统芯片,在相同的系统复杂度和处理速率下,能够相当于采用0.18~0.25μm工艺制作的IC所实现的同样系统的性能;还有,与采用常规IC方法设计的芯片相比,采用SOC设计方法完成同样功能所需要的晶体管数目约可以降低l~2个数量级。

对于系统芯片(SOC)的发展,主要有三个关键的支持技术。

(1)软、硬件的协同设计技术。面向不同系统的软件和硬件的功能划分理论(FunctionalPartitionTheory),这里不同的系统涉及诸多计算机系统、通讯系统、数据压缩解压缩和加密解密系统等等。

(2)IP模块库问题。IP模块有三种,即软核,主要是功能描述;固核,主要为结构设计;和硬核,基于工艺的物理设计、与工艺相关,并经过工艺验证过的。其中以硬核使用价值最高。CMOS的CPU、DRAM、SRAM、E2PROM和FlashMemory以及A/D、D/A等都可以成为硬核。其中尤以基于深亚微米的新器件模型和电路模拟为基础,在速度与功耗上经过优化并有最大工艺容差的模块最有价值。现在,美国硅谷在80年代出现无生产线(Fabless)公司的基础上,90年代后期又出现了一些无芯片(Chipless)的公司,专门销售IP模块。

(3)模块界面间的综合分析技术,这主要包括IP模块间的胶联逻辑技术(gluelogictechnologies)和IP模块综合分析及其实现技术等。

微电子技术从IC向SOC转变不仅是一种概念上的突破,同时也是信息技术新发展的里程碑。通过以上三个支持技术的创新,它必将导致又一次以系统芯片为主的信息技术上的革命。目前,SOC技术已经崭露头角,21世纪将是SOC技术真正快速发展的时期。

在新一代系统芯片领域,需要重点突破的创新点主要包括实现系统功能的算法和电路结构两个方面。在微电子技术的发展历史上,每一种算法的提出都会引起一场变革,例如维特比算法、小波变换等均对集成电路设计技术的发展起到了非常重要的作用,目前神经网络、模糊算法等也很有可能取得较大的突破。提出一种新的电路结构可以带动一系列的应用,但提出一种新的算法则可以带动一个新的领域,因此算法应是今后系统芯片领域研究的重点学科之一。在电路结构方面,在系统芯片中,由于射频、存储器件的加入,其中的电路结构已经不是传统意义上的CMOS结构,因此需要发展更灵巧的新型电路结构。另外,为了实现胶联逻辑(GlueLogic)新的逻辑阵列技术有望得到快速的发展,在这一方面也需要做系统深入的研究。

5微电子与其他学科的结合诞生新的技术增长点

微电子技术的强大生命力在于它可以低成本、大批量地生产出具有高可靠性和高精度的微电子结构模块。这种技术一旦与其它学科相结合,便会诞生出一系列崭新的学科和重大的经济增长点,这方面的典型例子便是MEMS(微机电系统)技术和DNA生物芯片。前者是微电子技术与机械、光学等领域结合而诞生的,后者则是与生物工程技术结合的产物。

微电子机械系统不仅是微电子技术的拓宽和延伸,它将微电子技术和精密机械加工技术相互融合,实现了微电子与机械融为一体的系统。MEMS将电子系统和外部世界联系起来,它不仅可以感受运动、光、声、热、磁等自然界的外部信号,把这些信号转换成电子系统可以认识的电信号,而且还可以通过电子系统控制这些信号,发出指令并完成该指令。从广义上讲,MEMS是指集微型传感器、微型执行器、信号处理和控制电路、接口电路、通信系统以及电源于一体的微型机电系统。MEMS技术是一种典型的多学科交叉的前沿性研究领域,它几乎涉及到自然及工程科学的所有领域,如电子技术、机械技术、光学、物理学、化学、生物医学、材料科学、能源科学等〖3〗。

MEMS的发展开辟了一个全新的技术领域和产业。它们不仅可以降低机电系统的成本,而且还可以完成许多大尺寸机电系统所不能完成的任务。正是由于MEMS器件和系统具有体积小、重量轻、功耗低、成本低、可靠性高、性能优异及功能强大等传统传感器无法比拟的优点,因而MEMS在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们接触到的所有领域中都有着十分广阔的应用前景。例如微惯性传感器及其组成的微型惯性测量组合能应用于制导、卫星控制、汽车自动驾驶、汽车防撞气囊、汽车防抱死系统(ABS)、稳定控制和玩具;微流量系统和微分析仪可用于微推进、伤员救护;信息MEMS系统将在射频系统、全光通讯系统和高密度存储器和显示等方面发挥重大作用;同时MEMS系统还可以用于医疗、光谱分析、信息采集等等。现在已经成功地制造出了尖端直径为5μm的可以夹起一个红细胞的微型镊子,可以在磁场中飞行的象蝴蝶大小的飞机等。

MEMS技术及其产品的增长速度非常之高,目前正处在技术发展时期,再过若干年将会迎来MEMS产业化高速发展的时期。2000年,全世界MEMS的市场达到120到140亿美元,而带来的与之相关的市场达到1000亿美元。

目前,MEMS系统与集成电路发展的初期情况极为相似。集成电路发展初期,其电路在今天看来是很简单的,应用也非常有限,以军事需求为主,但它的诱人前景吸引了人们进行大量投资,促进了集成电路飞速发展。集成电路技术的进步,加快了计算机更新换代的速度,对CPU和RAM的需求越来越大,反过来又促进了集成电路的发展。集成电路和计算机在发展中相互推动,形成了今天的双赢局面,带来了一场信息革命。现阶段的微机电系统专用性很强,单个系统的应用范围非常有限,还没有出现类似于CPU和RAM这样量大面广的产品。随着微机电系统的进步,最后将有可能形成像微电子技术一样有广泛应用前景的新产业,从而对人们的社会生产和生活方式产生重大影响。

当前MEMS系统能否取得更更大突破,取决于两方面的因素:第一是在微系统理论与基础技术方面取得突破性进展,使人们依靠掌握的理论和基础技术可以高效地设计制造出所需的微系统;第二是找准应用突破口,扬长避短,以特别适合微系统应用的重大领域为目标进行研究,取得突破,从而带动微系统产业的发展。在MEMS发展中需要继续解决的问题主要有:MEMS建模与设计方法学研究;三维微结构构造原理、方法、仿真及制造;微小尺度力学和热学研究;MEMS的表征与计量方法学;纳结构与集成技术等。

微电子与生物技术紧密结合诞生的以DNA芯片等为代表的生物芯片将是21世纪微电子领域的另一个热点和新的经济增长点。它是以生物科学为基础,利用生物体、生物组织或细胞等的特点和功能,设计构建具有预期性状的新物种或新品系,并与工程技术相结合进行加工生产,它是生命科学与技术科学相结合的产物。具有附加值高、资源占用少等一系列特点,正日益受到广泛关注。目前最有代表性的生物芯片是DNA芯片。

采用微电子加工技术,可以在指甲盖大小的硅片上制作出包含有多达万种DNA基因片段的芯片。利用这种芯片可以在极快的时间内检测或发现遗传基因的变化等情况,这无疑对遗传学研究、疾病诊断、疾病治疗和预防、转基因工程等具有极其重要的作用。

DNA芯片的基本思想是通过生物反应或施加电场等措施使一些特殊的物质能够反映出某种基因的特性从而起到检测基因的目的。目前Stanford和Affymetrix公司的研究人员已经利用微电子技术在硅片或玻璃片上制作出了DNA芯片〖4〗。他们制作的DNA芯片是通过在玻璃片上刻蚀出非常小的沟槽,然后在沟槽中覆盖一层DNA纤维。不同的DNA纤维图案分别表示不同的DNA基因片段,该芯片共包括6000余种DNA基因片段。DNA(脱氧核糖核酸)是生物学中最重要的一种物质,它包含有大量的生物遗传信息,DNA芯片的作用非常巨大,其应用领域也非常广泛:它不仅可以用于基因学研究、生物医学等,而且随着DNA芯片的发展还将形成微电子生物信息系统,这样该技术将广泛应用到农业、工业、医学和环境保护等人类生活的各个方面,那时,生物芯片有可能象今天的IC芯片一样无处不在。

目前的生物芯片主要是指通过平面微细加工技术及超分子自组装技术,在固体芯片表面构建的微分析单元和系统,以实现对化合物、蛋白质、核酸、细胞以及其它生物组分的准确、快速、大信息量的筛选或检测。生物芯片的主要研究包括采用生物芯片的具体实现技术、基于生物芯片的生物信息学以及高密度生物芯片的设计、检测方法学等等。

6结语

在微电子学发展历程的前50年中,创新和基础研究曾起到非常关键的决定性作用。而随着器件特征尺寸的缩小、纳米电子学的出现、新一代SOC的发展、MEMS和DNA芯片的崛起,又提出了一系列新的课题,客观需求正在“召唤”创新成果的诞生。

回顾20世纪后50年,展望21世纪前50年,即百年的微电子科学技术发展历程,使我们深切地感受到,世纪之交的微电子技术对我们既是一个重大的机遇,也是一个严峻的挑战,如果我们能够抓住这个机遇,立足创新,去勇敢地迎接这个挑战,则有可能使我国微电子技术实现腾飞,在新一代微电子技术中拥有自己的知识产权,促进我国微电子产业的发展,为迎接21世纪中叶将要到来的伟大的民族复兴奠定技术基础,以重铸中华民族的辉煌!

参考文献

[1]S.M.SZE:LecturenoteatPekingUniversity,FourDecadesofDevelopmentsinMicroelectronics:Achievementsandchallenges.

[2]BobSchaller.TheOrigin,Natureandlmplicationof“Moore’sLaw”,.1996.

[3]张兴、郝一龙、李志宏、王阳元。跨世纪的新技术-微电子机械系统。电子科技导报,1999,4:2

[4]NicholasWadeWhereComputersandBiologyMeet:MakingaDNAChip.NewYorkTimes,April8,1997

篇4

现有机制的电子元件是一个量子现象是非常不同的,有许多理论问题需要解决,如电子陷阱磨损过程,非弹性散射机制。为了解决这个问题,然而,电子技术和关键设备,和纳米纳米电子电子电路,它主要表现在以下几方面。

(1)在治疗硅量子异质结应该继续电子设备、纳米二氧化硅,大多数人扩展一个新的类似的明确、制造技术和半导体纳米结构层蛋糕光刻。半导体材料,不同层次有不同的势能,纳米尺度的量子井结构,这种结构被称为“\半导体异质结。

(2)在分子组装纳米器件的晶体管,甚至知道如何使分子晶体管和分子导线,但如何将这些组件组合成为一个具有逻辑性的结构,还是一个比较困难的问题,解决这个问题常用的方法是利用平面的扫描隧道显微镜(STM)的分子电子学可行途径;另一部分是通过数组。虽然,有一些机构在这个领域方面进行了大量的研究,也取得了一些进步,但是如何将这项技术应用到实际中去,还有很大的难度。

(3)超高密度量子效应存储器存在的问题。随着科学技术的不断进步,纳米技术在计算机中的应用逐渐普及,纳米计算机也将成为一种发展趋势,而超高密度存储量子效应的电子“芯片”在纳米计算机中会成为一个主要的元件,是计算机信息系统的计算机可以提供高容量的存储设备与快速访问,但没有机械运动部件。然而,能够创建纳米电子逻辑设备,提出了新的挑战,量子效应的纳米电子制造业的超高密度存储阵列或设备使用相同的芯片。

(4)几万亿到前所未有的密度组装计算机纳米计算机连接问题。纳米电子元件需要巧妙的结构,布局合理,这其中需要考虑的一个重要的问题就是纳米计算机之间的互相连接的问题。计算机之间互相连接的问题,也就是计算机结构的各种输入与输出的问题。纳米计算机作为计算机发展的一个趋势,其工作原理是将巨大的信息量都存储在一个比较小的空间内,并且要对这些信息进行有效地利用。因此,这就需要纳米计算机之间,计算机与外部环境之间有准确的连接。当前,计算机的发展趋势是逐渐微型化,微型化又会出现一个问题,即如何保持电线之间的隔离,避免过热或或者串线,因此,要有一些几何约束,不能无限制地增加数量的连接。因此,为了纳米电子器件、量子效应的计算机系统,急需解决纳米计算机的连接问题。

2交互式电子技术手册的问题

交互式电子技术手册的发展经过了很长的一段时间,发展到现在,一共有五个阶段。但是目前还没有真正意义上的人工智能的集成故障诊断的综合电子技术手册。各种各样的电子技术手册虽然代表了不同的发展阶段,和优势的电子技术手册、低水平仍有其价值。随着电子信息技术组织、管理和传播的优势明显,收集。在信息化、数字化的时代,电子技术手册更关注的是对各种信息获取的便捷程度,发展电子技术手册,不仅需要一个良好的外部组织环境,还需要良好的管理、用户手册等诸多内容。

3在时间与频率标准方面的应用

时间和频率是对一个现象进行描述的重要参数,这两者之间,可以通过时间的标准来引导出频率的标准,也可以两者都使用同一个标准。可以通过标准的标准频率源,它可以是一个引用来分享。1952时间标准,建立国际天文联盟定义的基础上,地球的自转和革命,分别称为世界时(UT)和星历表时间(ET)。目前,世界上很多国家都制定出了相应的量子频率标准,如133铷原子频率标准(CS)、氢频率标准,一个标准的原子氢、甲烷、饱和度和他-Ne激光器频率标准和吸收。这样做之后,从过去的微观运动,在这场伟大的运动的原子结构的标准时间。另一方面,设备简单、体积和重量;另一方面,它大大提高了稳定性的频率标准。1967年,国会通过了一项决议,规定:13个国际测量的时间第二阶段等于133919631的“770全国铯超精细跃迁”。时间基准,开发高精度频率测量技术,这将有助于太空飞行,太空探索,还可以促进现代微波技术、激光技术、雷达等方面的发展。有些应用程序在任何情况下,近似静态分析,关键问题在交互式电子技术手册,纳电子学的基本知识和挤压,在时间和频率标准和应用电子技术专业。在蓬勃发展的同时,在现代高新技术产业、先进的信息在我们的生活中,广泛应用新技术、建筑,没有科学,我们研究一个新的理论和国家经济建设和和谐社会建设、专业技能、实践在空气中,应用程序的理论。

4结语

篇5

关键词:高职;工作过程;微电子技术;课程体系

中图分类号:G712 文献标志码:A 文章编号:1674-9324(2012)07-0139-03

近年来,我国高等职业技术教育发展迅猛,规模迅速扩大。另一方面,随着我国社会经济的快速发展,企业对技能型劳动人才的需求大幅增加,对技能型劳动人才的综合能力亦提出了更高的要求。虽然对高等教育大众化和社会经济的发展作出了突出的贡献,但也带来了突出的问题。课程体系是一个专业所设置的课程相互间的分工与配合,课程体系是否合理直接关系到培养人才的质量。高等学校课程体系主要反映在基础课与专业课、理论课与实践课、必修课与选修课之间的比例关系上。课程改革是高职教学改革的核心和难点。由于高职开设微电子技术专业的时间较短、学校较少,形成半导体产业链的区域还比较少,因此对微电子技术专业的人才定位、课程体系等都还不很完善,从而给本专业的人才培养带来不确定因素,不利于专业的发展,也难以满足微电子技术行业企业对人才的需求。本文即针对以上问题展开一些有益的探讨与实践。

一、构建课程体系的总体思路

构建微电子技术专业课程体系的总体思路是以微电子行业职业岗位需求为依据,以素质培养为基础,以技术应用能力为核心,构建基于工作过程的课程体系。实施学院“四环相扣”的工学结合人才培养模式,将“能力标准、模块课程、工学交替、职场鉴定”的四个环节完整统一,环环相扣,充分体现了高职教育工学结合的人才培养思想,努力为社会培养优秀高端技能型人才。

1.基于工作过程的课程体系的理论基础。基于工作过程的课程体系的理论基础,主要从德国“双元制”职业教育学习论和教学论的角度阐述构建基于工作过程的课程体系的理论依据。工作过程系统化的课程体系必须针对职业岗位进行分析,整理出具体的、能够涵盖职业岗位全部工作任务的若干典型工作过程,按照人的职业能力的形成规律进行序列化,从中找出符合职业岗位要求的技术知识和破译出隐性的工作过程知识,并以工作任务为核心,组织技术知识和工作过程知识[2]。通过完全打破原有学科体系,按照企业实际的工作任务、工作过程和工作情境组织课程,形成围绕工作过程的新型教学项目的“综合性”课程开发。

2.行业、企业等用人单位调研。通过调研国内(“成渝经济区”为主)微电子技术行业、企业等用人需求和要求,了解现有高职微电子技术专业学生就业情况、用人单位反馈意见及人才供需中存在的问题。电子信息产业是重庆市国民经济的第一支柱产业。重庆市“十二五”规划建议提出,培育发展战略性新兴产业。把新一代信息产业建设为重要支柱产业,建设全球最大的笔记本电脑加工基地、建设通信设备、高性能集成电路、光伏组件及系统、新材料等重点产业链(集群),建成国家重要的战略性新兴产业基地。以集成电路产业的重点项目为牵引,建成包括芯片制造、封装、测试、模拟及混合集成电路设计和制造等项目的产业集群,形成较为完善的集成电路产业链;四川电子信息产业未来5年将迈万亿元,成渝经济区将打造成西部集成电路的产业高地。随着惠普、富士康、英业达、广达集团等世界级的IT巨头进入成渝,未来几年IT人才需求在20万以上,而现在成渝地区每年培养的相关人才不过2万人左右,远远不能满足社会需求。市场需求的调查表明,近年来成渝地区IC制造、IC封装及测试、IC版图设计等岗位的微电子技术应用型人才紧缺。同时调研表明半导体行业企业却难以招到满意的人才,学生在校学非所用,用非所学,实践动手能力、社会适应能力、责任意识、职业素养难以满足企业要求。

3.形成专业定位,确定培养目标。根据存在的问题及半导体产业链过程:集成电路设计裸芯片精细加工封装测试芯片应用PCB设计制造,充分掌握现有微电子技术专业课程体系建设的基础及存在的问题,形成重庆电子工程职业学院微电子技术专业定位,确定培养目标:培养德、智、体、美全面发展;掌握微电子技术专业领域必备的基础知识、专业知识;有较强的岗位职业技能和职业能力;面向集成电路设计、芯片制造及其相关电子行业企业,满足生产、建设、服务和管理第一线的优秀高端技能型专门人才。毕业生应该既掌握微电子方面的基本技术,又具有很强的实际操作能力。具体可从事岗位:集成电路版图设计;半导体器件制造;IC制造、测试、封装;电子工艺(半导体)设备运行、维护与管理;简单电子产品的设计与开发;电子产品的销售与售后服务,并为技术负责人、项目经理等后续提升岗位奠定良好基础。

二、构建基于工作过程的学习领域课程体系

篇6

关键词:纳米;电子技术;现状;发展

进入第二十一世纪以来,专家们认识到,纳米技术将作为科学技术的领先优势,为纳米技术的深入研究,纳米电子技术可能带来革命性的突破,新技术的发展和应用。纳米电子元件的速率非常高,可用于高度集成的器件,且能耗低,具有一定的节能效果,现已广泛应用于信息技术领域,已成为信息技术产业的关键技术。目前,纳米电子技术的研究还不够深入,应用还不够,但纳米电子技术具有很强的应用潜力和较强的应用前景。目前,对纳米电子技术产品的研究主要包括纳米电子器件和纳米电子材料,这些产品不仅功能齐全,而且性能良好。

1 纳米电子技术产生的概述

1.1 纳米技术产生的背景

1.1.1 微电子技术遇到挑战

20世纪有很多重大的发明,电子器件是其中对我们生活和工作最具有深远影响的发明之一。集成电路芯片的发展基木上遵循了摩尔定律,即每隔3年集成度增加4倍,特征尺寸缩小2倍微电子产业已沿着摩尔轨道运行了30余年。

21世纪微电子技术仍在快速发展,但是它遇到了严峻的挑战。随着电子元件尺寸的不断缩小,集成电路的集成度也要求越来越高,在未来若干年如何制造出具有更低功率消耗、更低成木、更小尺寸及更稳定更好性能的半导体芯片就成了摆在我们而前的当务之急。

1.1.2 纳米电子技术的产生

为了能够产生较低的功耗,降低到木材,更小的尺寸和更稳定的半导体芯片的电子器件的性能更好的纳米器件和纳米电子技术应运而生。它解决了微电子技术的问题:纳米电子器件不仅是微电子器件的尺寸进一步减小,更重要的是他们的工作将取决于器件的量子特性,所以他们也被称为量子器件。它主要是通过对电子波相位的控制来实现一定的功能,因此,量子器件具有较高的响应速度和较低的功耗,将从根本上解决日益严重的功耗问题。

1.2 纳米电子技术的定义

纳米电子技术是一种新的科学技术,作为现代物理学和先进工程技术相结合的产物,是基础研究和应用的产物,是纳米技术和电子技术的产物,其最终目的是实现人类可以根据自己的意志来进行单原子操纵,纳米电子产品包括纳米电子器件和电子材料。

2 纳米电子技术的发展现状

2.1 纳米电子材料的应用

目前大多数纳米材料包括:纳米硅薄膜、纳米硅材料以及纳米半导体材料。其中,纳米硅材料最具有技术优势,非常符合新世纪人类对电子技术的发展需求。硅电子材料的技术相较于其他材料的优势在于:

1.能耗低、准确可靠、运行时间较短、不易受外界的环境影响。

2.得益于科技的保证和不断地开发研究应用,使得其成本价钱有所降低。

3.由于其短距离的分子间距,使得硅电子材料在运行过程中,反应速度很快,这就从另一方面降低了材料能耗,提高工作效率。

2.2 纳米电子元件的应用

纳米电子元件问世之前,电子元件经过了集成元件、超大规模集成元件两个发展历程,因此,纳米电子元件是在“两位前辈”的发展基础上开发出来的。

随着集成规模的不断扩大,电子元件的尺寸却要越做越小,要达到纳米尺寸的范围(0.1-100nm),例如刚刚面试的单电子晶体管,它的一个电子信号就代表了一位信息的数据,意思就是晶体管的尺寸要小到极致,从而颠覆了现代电子技术的高集成、高速度下,一定要高能耗的格局。

2.3 纳米电子技术应用于现代科学

纳米电子技术的发展有助于细微部位的研究,而这些细微之处通过普通显微

镜是无法做到的,纳米电子技术的应用还能有助于纳米传感器的发明,通过纳米传感器可以观察到生化反应的各种不同的化学信息以及电化学信息。

纳米电子学作为新技术交叉口的生物医学和电子技术,具有极大的开发利用价值,其研究潜力是无限的。结合生物医学电子作为生物医学和电子的两大主题,在生物医学电子设备的集成和小型化方向的研究有很大的发展空间,本研究主要是基于微电子器件的发展,当器件的规模发展到原子或分子水平的大小,人们对于微小生物的研究将进入一个前所未有的新阶段。

3 纳米电子技术的未来展望

3.1 新型电子元器件

电子元器件技术将会在未来10至20年飞速发展,而市场对新型的电子元器件在不断提出要求,电子元器件技术将需要不断适应市场的要求,走向实用性。单电子器件、共振隧穿电子器件、纳米场效应晶体管、纳米尺度MOS器件、分子电子器件、自旋量子器件、单原子开关等新型信息器件的研究将不断取得突破,促使纳米电子技术向着延续、扩展摩尔定律和超越CMOS的方向发展,大规模纳米集成电路将初步实现,对数据存储和计算机发展等产生重大影响。

3.2 石墨烯

石墨烯是质地坚硬且非常薄的一种纳米材料,它在常温下传递电子的速度,比一般导体都快。正是由于它具有这样的特点,对石墨烯的研究与开发更具意义。大家都知道,电子和原子碰撞会产生能量,这就是一般的导体释放能量的方式。但同时我们可以看到,这样释放能量的方式也是能量的浪费。可石墨烯不同于一般的导体,它具有异常的特性,使得能量不会在碰撞中耗损。据专家预计,2020年左右将研制成功性能优异的石墨烯材料和晶体管,并解决其互连和集成等技术问题;2030年左右可研制成功石墨烯系统芯片,并形成规模化生产。这将使碳基COMS取代长期占据集成电路主导地位的硅基CMOS,引发集成电路领域发生革命性的变化。

3.3 碳纳米管

碳纳米管是一种一维的纳米材料,整体重量轻和完美的六边形构成是它的特点,由于它具有这样的特点也导致了它异于一般导体优势:良好的力学性能(金刚石的强度却又有极大的柔韧度);良好的导电性能;良好的传热性能;良好的光学性能和储氢性能。碳纳米管在纳米电子方面有着非常重要的用途,是场效应晶体管和单电子器件的一种具有发展前途的重要材料,以实现集成电路高速且耗能低的目标。

3.4 忆阻器

忆阻器顾名思义就是记忆电阻器,是继电阻器、电容器、电感元件之后的第四种电子元件。忆阻器是一种基于模拟信号的非线性动态纳米元件,可以构成交叉开关,且其材料可以与CMOS工艺兼容。忆阻器体积小、功率低、不受辐射影响,特别是用忆阻器实现的器件可兼有运算和存储功能,被认为是替代硅芯片、延续摩尔定律的有力竞争者。

4 总结

纳米电子技术取得了飞速的发展,其影响力是深远的,所以在这个特殊的阶段,我们需要抓住这个好机会,集中优势力量,加强基础研究和应用研究,在纳米电子学、前沿捕捉纳米电子技术,我国的信息技术得到了更新和升级,加快了发展步伐。

面对上述的发展现状和未来前景,我们可以看到,它是一种具有巨大潜力、应用广泛、产品性能优良、符合人类未来需求的科学技术。如果它能应用于其他科学技术领域,将促进我国新一代信息技术的飞速发展。

参考文献:

[1]蒋鹏程.纳米电子技术的发展与趋势[J].科技展望,2015(11).

[2]韩熙.纳米电子技术分析及发展分析[J].电子测试,2015(10).

[3]余巧书.纳米电子技术的发展现状与未来展望[J].电子世界,2012,12:24-25.

[4]张鉴.纳米电子技术的发展与展望研究[J].中外企业家,2013,02:125.

篇7

许多科技领域和方向孕育着重大创新突破,尤其是在信息领域和材料领域。在信息领域,宽带、无线、智能网络继续快速发展。超级计算、虚拟现实、网络制造与网络增值服务等产业突飞猛进。集成电路正在逐步进入“后摩尔时代”,“wintel”平台正在瓦解,多元开放平台正在形成。互联网进入“后IP时代”,云计算和物联网引发应用模式大变革。进而引发出现在信息化、数字化和网络化基础上的学习教育、科研、制造、贸易服务和公共治理等新模式。在先进材料领域,智能制造从分子层面设计、制造和创造新材料到与直接数字化制造结合,将产生爆炸性的经济影响,而激光制造是其内核。

微电子和激光技术的融合是新一轮科技革命的策源地。进而衍化为大数据、智能制造和无线网络三项宏大技术的重大变革,哪个国家能在微电子技术与激光技术融合领域率先突破,哪个国家就能引领全球,从而引发世界经济格局的全面调整。面对这种形势,中国必须加快科技创新和科技成果向现实生产力的转化速度,只有这样,才能在未来发展中占据制高点、拥有先进生产力,具有现代经济结构,赢得主动权;才能避免近现代中国因四次错失科技革命的机遇而沦落为三流国家的厄运。

微电子技术,严格意义上是纳电子技术,其核心是集成电路和激光(“最快的刀”、“最准的尺”、“最亮的光”)。这个核心在向微电子技术基础工艺过程积极渗透,激光镀膜特别是激光脉冲镀膜本质上冲破了真空镀膜的框框。无论国防尖端技术还是民用工业生产,无论城市还是乡村,无论宏观宇宙还是微观粒子,处处都体现着微电子和激光技术的应用;同时,从价值链看,1~2元的集成电路产值将带动10元左右电子产品产值和100元国民经济的增长,而且随着经济的发展,这个数字还在变化,其发展规模和技术水平已经成为衡量一个国家发展水平和综合国力的重要尺度。由此可见,微电子技术与激光技术及其融合兼具基础性与战略性,是新兴产业的引爆器,广泛渗透于现代化建设的可持续能源与资源体系、先进材料与智能绿色制造体系,信息网络体系、生态高值农业和生物产业体系、普惠健康保障体系、生态与环境保育发展体系、空天海洋能力新拓展体系和国家与公其安全体系等经济社会基础和战略体系。

技术经过应用才能彰显其价值,产业是技术应用规模和效果的有力体现,从技术需求和产业发展周期看,目前微电子和激光技术也正处于难得的发展机遇期:从五大高技术产业科技需求指数及排序表中可以看出,电子及通信设备制造业科技需求占高技术产业科技需求的一半以上,并且在人力资源投入、财力资源投入和科技产出等一级指数中都位列第一,是高技术产业中科技需求最强的行业。微电子技术与激光技术是电子及通讯设备制造业的关键核心技术。

目前世界微电子市场从开发到量产的周期不到10年,现在微电子的世界市场增长率处于低谷时期,这个时候如果我们能实现微电子技术的新突破,就会迎来一个新的市场高峰。在突破方向上,新型逻辑电路与模拟电路有可能开辟新的市场领或,新型结构器件是我国逻辑集成电路开拓国内外市场的重要突破口之一。同时,要通过微电子与激光技术的融合促进微电子延续、扩展和跨越摩尔定律。

人类历史上每一次产业革命或技术革命总是首先由起主导作用的某一项或多项技术取得突破,从而带动一系列重大陂术的迅猛发展,最终引起社会范围内的产业革命。微电子陵术和激光技术的融合推动人类进入纳米时代,今后的1 O年到15年我们将经历纳米技术带来的新产业革命浪潮,它的急速发展尤其是基础研究的发展将促进一批新兴尖端技术的兴起、发展和突破,从而促使社会生产力的新飞跃,引领新一轮技术革命的浪潮。但我国科技与经济的结合不够。出现科技与经济“两张皮”的现象。跨越科技与经济之间的鸿沟,要重视硬实力,也绝不能忽视软实力。管理与体制的创新在很大程度上决定了我国微电子与激光产业的未来。首先,应该定位多元执行主体与执行方式,以联动带发展。目前我国微电子领域的支持方式还是以高校和科研机构的竞争型项目资助方式为主,比如重大科技专项、“973”、“863”和自然科学基金等。今后应更加注重官、产、学、研、资和创的结合,将资助主体扩大到企业,并引入以机构为主体的资助方式;其次,应实施积极的微电子与激光财政、金融政策加强政府采购,为本国微电子与激光产业发展护航,同时可运用股权、期权等激励机制吸引微电子与激光高级人才;最后。最重要的是要加强科技资源的整合,建立官、产、学、研、创、资多元合作机制,加快结构调整,建立包括大学、研究机构、企业、政府和银行等多元主体在内的综合性科技创新平台,实现信息共享、技术共享、知识共享、政策共享、金融共享、创新共享和工具共享。

篇8

1.1转变传统观念,加强实践教学理论教学和实验教学,是用以掌握知识和实践知识的两个方面,两者相辅相成,缺一不可。学生获取知识的过程,就是不断学习和实践的过程,两者之间没有孰轻孰重。学习知识的途径是多种多样的,我们可以在课堂上学习,也可以在实验课上学习,而对于实践而言,我们不仅可以在实践课上进行,也可以在理论课中进行实践。因此,我们应该转变实验课从属于理论教学的传统教育思想,有计划的增加实践教学环节在理论教学中的比重,充分调动学生的学习积极性,培养学习兴趣。

1.2引入现代电子技术,完善实验课程体系随着电子信息技术的发展,特别是微电子技术的飞速发展,电子设计的方法与理论也发生了很大的变化。学校应该根据实际情况,因地制宜对电子信息类和电气类专业的学生进行有计划、有目的培养,依据“基础、提高、综合、创新”课程设计的要求,教学内容由浅入深、循序渐进。学校要根据电子技术发展的要求,大力提倡电子信息类和电气类专业的学生进行自主创新实践的活动,使学生所学课本知识内容与课外实践相结合,巩固专业知识,增强创新意识,培养创新能力,探索电子技术的快速发展与电子专业学生获取知识矛盾的新途径。

1.3加强实验室建设,扎实专业硬件基础加强实验室建设,主要从以下两个方面:首先,要转变错误思想,加大对实验室的资金投入。近几年,由于国家对于学科建设的大力支持,学校加大对实验室的资金投入,实验室可以利用这些资金对部分设备进行维修更换。其次,提高管理水平,完善规章制度。高校实验室应该制定科学合理的实验室仪器管理制度,向学生介绍实验室仪器的使用方法,减少因为操作失误而引起的设备损坏,当实验结束后,由老师检查实验仪器后方能离开,对实验室仪器设备的使用要做到责任到人,以便及时发现问题,解决问题。事实证明,通过提高管理水平,完善规章制度可以有效地减少学生操作失误,培养良好的操作习惯。

1.4扩大学生自主实验,改革实验教学课程内容作为高等教育的重要组成部分,工程教育在新时期内要以人为本,将传统“以教为主”的教育方式慢慢向“以学为主”过渡,逐步建立以学生为主体的教育模式。近几年,部分高校将“开放创新实践”纳入“电子技术实验”的必修实验环节,其实验内容紧密结合理论知识,保证创新实践的内容的创新性和实用性,以鼓励每个学生开展创新实践活动。

1.5建立健全开放实验平台,促进学生探究式学习学校应该推进开放实验室的建设,利用实验室资源为广大学生提供一个免费学习,开放交流,进行实践创新活动的平台,让学生真正的成为学习的主体,为学生的开展创新活动提供最大的可能。开放式实验教学的推广,让学生体验到主动探索性实验的乐趣,由被动变主动。在开放实验室这个独立的平台中,同学们可以利用课余时间对实验方案反复推敲、分析实验过程、观察实验现象、处理实验结果,这就大大提高了学生的自主探索的能力。开放式实验教学方式还可以让学生根据自身条件和所掌握的理论知识积极参与到老师的研究课题当中,充分调动学生的学习积极性,初步培养学生从事科学研究的能力,适应当代电子技术发展的教学新体系。

1.6加强实验室师资队伍建设,提高教师实践教学能力学校在提高实验室硬件设施的基础上还应该加强实验室教学队伍的建设,如果没有好的实验室教师团队,再好的实验条件和实验设备也不能体现出它们的价值。所以说,实验室教师队伍的建设就显得尤为重要。主要从以下三个方面加强实验教学队伍的建设:(1)实验室教师队伍的建设不能急于求成。实验室的技术人员应该在充分了解仪器设备的使用情况下,正确操作,逐步提高自己的实际操作能力,让实验室设备正常使用,发挥最大的功能。实验室技术人员在设备出现问题时,能够找出问题所在,并及时维修,保证学生的正常使用。(2)对于部分特殊情况实验室,应该提高实验室科技人员的薪酬待遇,有利于实验室的人员稳定。(3)定期对实验室技术人员进行技术培训,掌握设备工作原理,熟悉设备操作,提高实验室技术人员的实践教学能力。

2结语

篇9

关键词:卫星数字电视机顶盒 故障 处理方法

一、电视屏幕显示“无卫星信号”

出现这种故障的原因有:①是由室外单元引起,有可能从天线高频头到卫星数字电视机顶盒的同轴电缆折断或F型接头接触不良,也有可能天线的方位角、仰角没调好,或天线上的高频头损坏;②是机顶盒的电源单元有故障,各供电电压不正常;③是设置的频道参数不正确;④是机顶盒的一体化调谐器损坏;⑤是传输流解复用器损坏。

检修“无卫星信号”故障,可先用其它卫星数字电视机顶盒接收。若其它机顶盒也收不到信号,则说明故障在室外单元。若其它机顶盒能正常接收,则观察故障机顶盒的“锁定”指示灯。若“锁定”指示灯不亮,则检查高频头供电电压(18V/14V)是否正常或“关断”,检查机顶盒设置频道参数设置是否正确,检查一体化调谐器供电电压(21V),若有21V电压则继续检查解码上的三端稳压器(LM317)及其周围电路。若“锁定”指示灯亮,则说明QPSK解调或传输流解复用器有故障,可接上示波器测量QPSK解调输出的数据信号BCLK(字节时钟)、D/P(数据/极性)等控制信号。

二、电视图像出现停顿或马赛克

电视屏幕图像出现马赛克现象,说明卫星数字电视机顶盒已接收到卫星信号,设置的频道参数与系统控制电路工作正常,造成这种故障的原因可能有:①信号太弱。查看天线高频头内有无异物(如蜘蛛等);若卫星天线输出电缆串接的功率分配器太多(可采用有源功率分配器)或损坏;检查同轴电缆是否变质老化。②天线或高频头的位置未调整好。③某些机顶盒的22KHz双星接收控制要影响一体化调谐器工作,当处于“开”位置,对一体化调谐器有干扰应将其关上。④机顶盒内的一体化调谐器供电电路有故障。若一体化调谐器供电电压偏低或供电电压的稳定性较差。⑤一体化调谐器中部分电路损坏。

三、电视图像正常但无伴音

电视屏幕上图像正常,出现无伴音或广播的故障,说明卫星数字电视机顶盒的信号接收、解复用和解码、视频编码器及其滤波网络都能正常工作,故障发生在音频D/A转换器(如PCM1723E)与续的运算放大器(如JR4558)及其周围元件。

如果在节目编辑菜单里将音频PID(节目包识别码)参数更改后进行保存,播放时便会出现图像正常但无伴音输出的现象。因此当遇到无伴音输出故障时,不仅要注意检查音频处理电路部分,同时还应对相关的存储芯片进行检查。由于存储芯片有逻辑损坏与物理损坏之分,因此进行维修时,一般不要直接更换存储芯片,如果是发生逻辑错误的话,只需要恢复默认设置或重新升级即可,只有在发生内部物理损坏时,才需要更换。

四、有电视伴音,无图像或图像异常

出现频道显示正常,有电视伴音,无图像或图像异常的故障,说明卫星数字电视机顶盒的信号接收、解复用、解码均正常,故障发生在视频编辑器及其后续电路上。大部分机顶盒的视频编辑器都只通过视频滤波网络直接输出到AV端子,出现这种故障时视频编辑器损坏的可能性较大,也有可能后续的滤波网络电路短路或开路;少数型机顶盒的视频信号从视频编辑器输出后,还要经过一个运算放大器(如MC14577)。因此应先检查视频编辑器的视频输出端有无图像信号输出,若有图像信号,则说明故障出在后续的视频放大电路上;若出现有图像但图像颜色不正常的故障,则主要由视频滤波网络电路引起。

五、电源电路异常

检修卫星数字电视机顶盒电源部分的故障,可先观察机顶盒面板上的电源指示灯与数码显示管。开机后如果发现电源的指示灯不亮,数码显示管无显示,则说明电源单元没有5V电压输出。机顶盒通常采用开关式稳压电源,主要输出3.3V(7.5V)、5V、12V、21V、30V等电压。

出现电源的指示灯不亮,数码显示管无显示故障后,先检查电源电路的5V电压是否有输出。用万用表测量电源各输出端,看是否有电压输出,若有电压则说明电源电路无故障,此时可检查电源电路与解码板之间的连接器是否接触不良,连接电缆有无断线,若无电压输出,则说明故障在电源电路。由于电源电路的几路电压均由一个逆变压器产生,若几路电压都没输出,可判断故障发生在脉宽调制器以前,在一般情况下几路电压的输出电路同时发生故障的可能性很小。这时可继续检查熔断器、输入滤波电路、桥式整流器、开关管及脉宽调制器。发现溶丝烧断后,先检查电路中有无短路现象,若有短路故障,应先排除短路故障后再换同样规格熔丝。

若连续烧断熔丝,则说明电路中有损坏的元器件,若滤波电容漏电、整流管击穿、开关管击穿等。若熔丝未熔断,则检查整流器有无直流电压输出,若无直流电压输出,则检查整流器输入端有无交流电压输入,有交流电压说明整流器损坏。若整流器输出的直流电压正常,可判断故障发生在逆变器电路中,逆变器主要由开关管、脉冲变压器和脉宽调制器组成,检查时可接上示波器,在脉冲变压器的次回路中测量有无高频脉冲输出,无高频脉冲说明振荡电路未起振。振荡电路中的关键器件是开关管,若开关管损坏振荡电路就不能起振。若开关稳压电源只有5V电压无输出,其余各路电压计、均正常,则说明故障就在5V输出电路中。

六、面板控制和遥控器故障

1、 面板控制和遥控器均不起作用

这种故障往往伴随显示屏显示混乱。常见原因是微处理器或其电路损坏,可通过测量微处理器各引脚直流工作电压及其在路电阻值,并与其“标准值”相比较进行判断(可用一台型号相同的机顶盒在正常工作时进行测量比较)。若某一只或几只引脚的值与对应的“标准值”相差悬殊,便说明微处理器本身或其电路有故障,这时应对其相应的电路进行检查。若电路无故障,可断定微处理器损坏。

篇10

Q:从技术本身的成熟度来讲,量子点技术现在处于怎样的阶段?其商业化进程又如何?

A:2005年QD Vision创立于美国马萨诸塞州列克星敦,众多员工来自麻省理工,拥有250多项专利和待审专利,到2013年实现了商业化量产,这中间耗费了8年的研发时间和1亿美金的研发费用。8年里,为实现商业化量产,QD Vision一直在致力于建构生产设备和生产能力,设计生产流程。

从2013年开始,量子点技术开始商业化,主要以两类产品体现:应用于大屏幕的QD侧入式量子管,索尼、TCL、康佳、飞利浦的电视以及AOC的显示器;应用于小屏幕的QD薄膜,亚马逊的Kindle、ASUS Zenbook以及三星SUHD电视等。

从具体的商业化进程来看,从2013年开始,索尼是第一个采用QD Vision的技术并且量产超过百万台的公司,2014年QD Vision的业务重心完全放在中国,目前从各大厂商的正式媒体可以看到:TCL的9700系列、海信的7100系列、飞利浦LC的27寸显示器,均采用了QD Vision先进的量子点技术。此外还有更多的设计和合作在进行当中,陆续会在2016年导入。

更重要的一个里程碑是,从2016年开始,QDVision将会进军小尺寸市场,比如笔记本、平板薄膜的量子技术,将会进行商业化量产。所以,在今年的下半年,QD Vision将会陆续有新的产品。这等于是说,QD Vision的触角将往小尺寸方面延伸,从过去大尺寸、中尺寸的方案,开始进入到笔电和平板市场。

另外,很值得一提的是,中国的青云创投(Tsing Capital)和德国的巴斯夫创投(BASF Venture Capital GmbH)将进行新一轮的融资,总额达2240万美元,将被用于公司的进一步研发创新,并加速公司营收增长。这两家公司不仅希望QD Vision可以大力拓展薄膜技术或量子管技术,亦期待除投资之外也可进行更进一步的技术合作。

Q:量子点技术有哪些特点?未来发展的突破点是什么?

A:对于显示技术而言,除了成本、工艺、色彩表现,还有一个需要考量的是功耗,OLED作为自发光的LED,功耗比传统的LCD多了大概将近30%。我们承认OLED技术在穿戴装置上是有卖点的,比如说弯曲、背光模组放不进去的地方,OLED的自发光有它自身的好处,但是仅限于小尺寸的产品,大尺寸的产品在我们看来不会成为主流。