生物技术产业范文
时间:2023-04-12 04:41:16
导语:如何才能写好一篇生物技术产业,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
1.个体网中异质性同质性(Homophily)最早由Lazarsfeld和Merton?(1954)提出[28],起始于社会学研究,其指行动者之间某种属性上的相似或相同。异质性和同质性的研究多聚焦于个体网层面,关注个体的异质性对个体间连接造成的影响,如性别、种族、年级等对友谊的影响[29,30]。研究结果表明相似的行动者之间更容易形成连接。不同原因会导致同质性的分类有所差别。如Kossinets和Watts(2009)针对大学邮件网形成的研究中[7],将同质性分为结构同质性(StructuralHomophily)和个人同质性(Individ-ualhomophily)。前者用来解释相同的选课、小组讨论等结构性因素导致人与人之间建立联系,后者则用来解释因相同性别、种族等建立的连接。这种因相似而主动进行的选择也可称为选择同质性(ChoiceHomophily)。随着网络理论的发展,逐渐有学者开始关注组织层面的异质性对连接的影响,而这些研究的背景往往并不尽相同,如组织间个人网络形成的研究关注选择同质性的作用[31],但联盟的研究则关注结构同质性的作用[32]。笔者研究的对象是集群内的技术结块,技术之间也具有异质性。技术虽是由个体开发,属于组织的,但并不能将其简单的划归至个体网络或组织网络的研究之内,因此之前的研究结论并不能简单的适用于技术网络。2.异质性对技术结块的作用产业集群的形成往往是因为组织地理上的邻近能够为其带来信息和技术优势,次级产业集群的形成的主要原因则有可能是组织在技术或产品上的邻近性[9]。高技术企业结块的重要原因在于彼此的知识溢出[33],组织倾向于与拥有特定技术的其他组织在技术结构上进行聚集。那么,研究的问题实际上表达的是不同技术之间是如何形成联系的。从网络视角考察,研究的问题即是同质或异质属性的点之间如何形成边的问题。衡量技术网络中的异质性需要确定不同技术之间的差异,这些差异影响着组织间的技术转移和吸收[32]。笔者认为这种差异表现在两个方面:一是形式上的差异性,如专利申请人、技术的表现形式上的差异或基础研究和理论研究的不同;二是实质差异,如技术实质内容和技术基础的不同。现有的关于技术和知识异质性的研究主要关注技术间的实质差异。可以分为两派,一派认为组织不会轻易让同质性知识在组织间流动,因为这会削弱组织的竞争优势[34]。而竞争异质性影响着组织间的知识和信息交换,因此异质性的知识因其互补的特性更容易产生创新的机会[24],使网络行动者获得更好的绩效[35,36],组织更乐意与拥有异质性的组织进行技术和知识的交换。这意味着在技术网络中,异质性技术间更容易形成连接。另外一派学者认为同质性知识更容易吸收和转化,集群聚集就是因为企业在原件性知识上有着极高的相似性知识[37],因而集群内企业可以更好的获得技术溢出。因此,在技术网络中,同质性技术间更容易形成连接。这些研究结论之所以不同,除了研究背景的差异外,主要有两个原因:第一,知识异质性的具体划分不同,形式上具有同质性的技术间并不一定易于形成连接;第二,未考虑集群动态性的发展,如企业在初创期可能更倾向于吸收同质性的知识[36],发展成熟期则可能更愿意吸收异质性的技术。因此,需要重点关注两方面,其一是特定网络可能需要不同的异质性分类,其二是异质性技术在集群发展不同阶段的连接亦有可能有所不同。3.技术异质性和组织异质性在不同研究背景之下,同质性或异质性的分WANGLUOJINGJIYANJIU|网络经济研究类一直是研究者需要首先关注的问题[27,28]。笔者认为,知识间的异质性在技术网络内主要表现在两个方面,一个为内容方面的异质性,即技术的主题是不同的,如计算机技术和原子能技术具有内容异质性;另一个分类为形式方面的异质性,即技术的表现形式有差异,如理论研究和基础研究。具体到生物技术产业集群,内容方面的异质性可以表示为技术间所属次级分类的差异,称之为技术异质性;形式方面的异质性则重点表现在技术是否更具应用性。一般认为,企业的技术更偏向于应用,科研机构的技术更偏于基础理论,能够得到更为广泛的引用。集群发展的技术源一般为科研机构[38],称之为组织异质性。技术异质性差异较大的技术可能具有互补性,相互连接更有可能引发突破式的创新。因此,在创新对组织绩效影响巨大的生物技术产业中[39],组织更愿意引用技术异质性差异较大的技术。同时,生物技术产业依然处于发展阶段,产业未完全细分,如诊断设备的专利多基于在先的诊断方法技术。这使前面的论断得到加强。另一方面,技术异质性差异较小的技术之间的连接更易于产生渐进式创新,其技术主题相差不远,因为相同的知识基础集群内组织更容易从同质性技术间得到技术溢出。基于此,提出本文的两个相反的论断。论断1在生物技术产业集群中,技术异质性差异较大的技术间更容易形成连接。论断2在生物技术产业集群中,技术异质性差异较小的技术间更容易形成连接。在产业集群中,公共研究机构的重要作用在于输出或溢出其基础性知识[39],企业亦愿意基于理论知识进行技术上的研发(有许多生物技术企业本就源自公共研究机构的衍生,即academicspin-offs)。而公共研究机构(大学和科研院所)的技术往往基于本身开发的前期技术或其他公共机构的在先技术,较少受到企业的技术反哺。医院有的技术具备理论性,与公共研究机构技术的连接更多;有的具有实用性,与企业技术连接的较多。基于此,提出本文的第三个论断。论断3在生物技术产业集群中,组织异质性差异较大的技术间更容易形成连接。。同时,生物技术的发展不过短短数十年,在发展初期,许多知识和技术是同质性的,但随着科学的发展,异质性知识和技术逐渐增多,开始出现许多交叉领域[15],如生物信息学等。因此,需要考虑到网络的动态性。在集群发展初期,集群规模较小,组织的聚集往往是基于某一类技术,还未出现众多差异化的技术。在集群发展后期,会有边缘技术出现,一些边缘技术也会逐渐变为核心技术[32];研发人员的增多和流动带来知识和技术交换,技术异质性差异大的技术间的连接逐渐增多。因此可得出如下推论。推论1在生物技术集群发展初期,技术异质性差异小的技术更容易形成连接。推论2在生物技术集群发展成熟期,技术异质性差异大的技术更容易形成连接。同理,在集群发展初期,许多生物技术企业来自于学术衍生,集群技术多来源于作为理论前沿阵地的公共研究机构。随着集群发展,企业数量增多,规模增大,企业的研发能力增强,技术间的连接开始出现以企业技术为核的结块。医院在研究基础理论的同时,也需要进行实践活动,其技术部分处于基础理论的研究和部分属于应用技术的研究。因此得出如下推论。推论3在生物技术集群发展的初期,公共研究机构的技术多与组织异质性技术结块。推论4在生物技术集群发展的成熟期,医院的技术起到连接企业和公共研究机构的作用。推论5在生物技术集群发展的成熟期,公共研究机构和企业的技术皆多与组织异质性技术结块。
二、方法与数据
1.数据来源集群内的知识交换可以分为显性知识和隐性知识,专利属于显性知识,专利中记载的信息量占所有技术信息量的90%以上[40]。生物技术多以专利进行保护,制药业和仪器产业的专利数量在美国所有产业中位居前五[2]。专利引文可分为施引和被引(CitationMade和CitationReceived)两种。引文数据基于以下原因可以较好的适用于研究主题:第一,专利数据具有地理边界性,适合做产业集群的分析[41];第二,引文数据适合进行动态性分析,数据信息完备,反映了一定时间跨度内的知识和技术的流动[41-43];第三,专利引文既能够反映企业之间的技术连接[44],亦能够反映企业间的知识流动,因此可以通过分析不同性质的技术之间的连接程度和方向等指标研究集群内再结块现象;第四,专利数据适用于社会网络分析(SocialNetworkAnalysis,SNA),SNA的方法可以从整体的角度探寻集群的技术结构变化[45]。2.样本与数据整理选择波士顿集群作为研究样本。波士顿集群是全球最早出现的产业集群之一,集群的发展完全契合于生物技术及其产业的发展,发展历程中带有明显的技术特征,其生物技术风险投资项目在全美位于前列[17]。波士顿集群拥有全球领先的生物技术企业,如Biogen、Genzyme、Am-gen、Genetics等,他们与科研院校,如哈佛、MIT、波士顿大学等一同支撑着集群的发展,集群内组织之间有着频繁的知识和技术流动[46]。使用USPTO的专利引文数据[44],数据中的专利授予时间从1976年至2006年,将专利区域限定在波士顿地区,专利分类限定在医疗领域,并将引文整理为矩阵格式。3.变量设计专利引文的迟滞性可能长达50年,但50%的专利被引发生在授予专利后的十年以内,在第5年的时候被引数量达到峰值[44]。因此,在分析子群体形成时,以5年为一个周期,这可以保证前一周期的最后一年的专利引文在新周期中能够得到最大的体现,从而更好的观察次级集群技术结构的变化,并保证研究的动态性。数据被划分为5个周期。根据Chandler(2009)的研究[47],将1976年至1993年划归集群发展初始期,1994年至2006年划归成熟期。技术异质性:生物技术可以再细分为多个子领域,同领域之间的技术在各方面都具有相似性。专利因技术相似性可以分为诊断方法、制药、设备制造和纯技术四个子领域[44]。在引文数据库中,则将技术划分为医药、设备、纯技术和混合领域。因为研究的问题是技术异质性对连接形成的影响,除引文矩阵外,还需构造每个专利在技术差异上的属性数据。参照Bell和Zaheer(2007)构建属性数据的方法[5],以五列向量分别表示五个时期的技术异质性。技术异质性属于分类变量,如果该技术属于医药类别,赋值为1,设备、纯技术和混合领域的赋值分别为2、3、4。组织异质性:专利技术分别属于企业、大学、研究机构和医院,不同主体的技术在理论性和应用性上有不小的差异。同技术异质性一样,五列向量构建组织异质性,用来测量技术在理论和应用上的差异。赋值1、2、3、4分别表示专利属于企业、大学、研究机构和医院。4.统计方法研究需要测量两类关系:一类是技术分类(即技术异质性)对专利引文的形成是否存在影响;一类是组织分类(即组织异质性)对专利引文的形成是否存在影响。但变量并不是独立抽样,而是来自于同一个网络内的关系数据,因此需要使用基于随机置换的检验方法得到较为精确的结果[48]。对于技术异质性和组织异质性对结块的影响,采用随机置换关系列联表(RelationalCon-tingency-Table)的检验方式,该方法能够对矩阵与分组变量之间的关系进行自相关随机检验[48],从而估计是否异质性技术间更容易结块。另外,用UCINET软件[49]进行统计分析。
三、结果与讨论
1.集群内的动态结块正如产业集群一样,次级集群也是不断演化的。首先使用图形和描述性统计的结果研究次级集群的结块随时间的变化,这能对次级集群的发展有一个直观的认识。通过探索性的图形分析,可一览子群体是否因技术异质性而结块。技术结构的绘制使用Pajek软件[50],采取Kamada和Kawai(1989)的绘制方法[51],每个时期均将连通子图(Component)独立标明。在图中,[1]表示专利属于医药类(Drugs),为黑色;[2]表示其属于诊断与医疗器械类(Surgery&MedicalInstruments),为灰色;[3]为生物技术类(Biotechnology),为浅灰色;[4]为混合医药(Miscellaneous-Drug&Med);为深灰色。顶点越大,表示专利被引次数越高。每幅图中存在数个连通子图,这些连通子图即是集群中的技术次级集群。从图1至图5中可以看出:最初的联通子图在发展中不断加入新的专利,规模不断扩大,这表明集群中技术的影响力存在“马太效应”,即富者越富。要注意的是,这个效应并不是针对单个专利,而是针对单个次级集群的,这个现象产生的原因可能是高被引专利往往是技术先进、影响深远的专利,因此后期专利不断附加其上,新连接的形成遵循偏好连接的模式(PreferentialAttachment)[52]。初期联系较紧密的四个专利形成的次级集群联系依然很紧密,这四个专利皆是器械专利。随着时间增长,出现了规模远超其他群体的最大次级群体,如图5所示,这一定程度上表明了群的技术溢出非常有效,技术间的连接紧密。网络在初期的技术流动局限在同质性圈子里,但在第三期(图3),网络开始出现比较明显医药专利与器械专利的结块,在后两期中,异质性技术间的结块进一步扩大。这意味着在波士顿集群中,初期同质性技术易聚集在一起,在后期才逐渐出现异质性技术的结块现象,这可能是因为集群发展中逐渐出现了对互补性技术的需求。这直观上证明了推论1和推论2。每一期的技术网络结构指标数据如表1所示。可以看到,密度与网络规模负相关,密度之间无法进行比较,但是点度可以进行比较,随着时间的发展,平均点度逐渐降低后又再次升高。这表示初期和后期技术间的连接比较紧密,集群具有明显的技术溢出效应。2.技术异质性对技术再结块的影响本节分析在集群发展的不同时期,技术异质性如何对结块产生影响,并对论断1和2、推论1和2进行验证。其影响如表2所示,对角线以灰色标出,表示技术组内连接数量。每组中连接频数最大的格值以黑体标出。为了更方便直观的对统计结果进行讨论,将组内与组间连接频率进行比较,如表3所示。从30年的区间考虑,医药的组内连接呈现增长的趋势;器械的组内连接则越来越少,越到后期,与其他技术的联系越紧密;混合技术则一直表现出非常低的组内连接,这也和其技术性质符合。因为1976-1981年的大部分格值的期望值都小于5,无法进行卡方检验[53]。但从图1中可以看出,集群内仅有器械和混合两类专利,而两类专利的连接都仅存在同类之中。从表2中可以看到,四个周期的卡方检验都非常显著,表示四个时期异质性差异大的技术间都形成了结块,证实了论断1,否定了论断2。属于集群发展初期的有三个时期(1976-1981,1976-1987,1976-1993)。图1显示了第一个时期的结块状况,结块全部发生在同质性技术之间。但据表2,第二和第三时期的异质性技术之间已经存在结块,在1976-1987年间,技术结块是以器械技术为主的;而在1976-1993年间,技术结块则是以医药技术为核心。这与推论1相反,意味着集群在发展初期即存在了异质性技术间的结块,而技术间的连接往往以某种特定类型的技术为主。3.组织异质性对技术再结块的影响本节分析在集群发展的不同时期,组织异质性如何影响结块,并对论断3、推论3、4、5进行验证。如表4所示,对角线以灰色标出,表示相同组织类型技术的组内连接数量。每组中连接频数最大的格值以黑体标出。同上一节一样,将组内与组间连接频率进行比较,制成表3。表3可以分析技术结块的趋势,大学和科研机构的技术的结块90%左右发生在异质性技术之间,企业技术从同质性结块为主逐渐变化为以异质性结块为主,医院则从异质性结块为主转变为既有同质性连接和异质性连接较为平衡,各占约50%。在集群发展初期,两个时期(1976-1987)的卡方检验都不显著,表示这10年集群技术间以组织同质性的技术连接为主,再增长5年后,卡方检验才显著,意味着组织异质性的技术连接出现在发展初期的末端。这与论断3不符。从表3可以看出,初期大学和研究机构的技术连接以组间连接为主,证实了推论3。在集群发展成熟期,除医院技术外,组织差异性大的技术间更容易形成连接。因此若将论断3的时间限定在集群发展成熟期,则其成立。同时,企业、大学和研究机构的技术皆多与医院的技术形成连接,这意味着医院技术起着连接两种组织异质性技术的作用,推论4得到证实。根据表3,大学、研究机构和企业的技术结块皆是以组间连接为主,证实了推论5。实际上,该结论再次表明了公共研究机构在集群中具有重要的知识溢出效应。
四、结论
篇2
关键词:生物技术产业发展问题对策
一、生物技术概论
生物技术是现代生物学发展及其与相关学科交差融和的产物,其核心是以DNA重组技术为中心的基因工程,还包括微生物工程、生化工程、细胞工程及生物制品等领域。生物技术,可视为一种运用生物体来制造产品的科学与技术,虽然生物技术这项专有名词是在七十年代才开始正式出现,但生物技术应用却可追溯至远古时代。例如,神农氏尝百草是中国历史上利用植物在医药应用上的最早记载,足见生物技术观念与应用早已存在人类日常生活之中。
为加快生物技术产业的发展,我国始终把生物技术列为国家重大科技计划,政府大幅度增加了研发投入,同时鼓励国家加大科技投入,取得了较好的效果,获得了一批具有知识产权的新基因,新表达系统、生物工程、药物进入了创制阶段,建立了一系列关键平台技术,动植物转基因技术已经成熟,杂交水稻大面积推广,抗基因的棉花、番茄已经进入了商业化的发展,有数十种基因药物已经进入了实用化阶段。
另外,通过对高产、优质、抗逆的动植物新品种,新型药物、疫苗和基因治疗,蛋白质工程三大主题的研究开发,以增产粮食为战略重点和发展生物技术药物产业为突破口,为生物高技术产业的形成奠定了良好的基础,并在遗传工程农作物的培育方面走在世界前列。
二、生物技术产业发展现状
首先,生物技术生产发展快速,涉足领域不断深入。我国生物技术起源于80年代,到2000年销售产值已经达到200亿元人民币,平均增长33.58%。同时,生物技术产业涉及的领域是非常广泛的。并且还再继续扩展深入。
其次,生物技术产业取得了重大成就。世界上出现了一批影响未来的重大技术:人类基因组学或蛋白质组学、干细胞技术与组织工程、生物信息学、转基因技术、克隆技术、生物芯片或蛋白芯片或组织芯片、基因治疗与细胞治疗、反义核酸技术、单抗技术等对现代生命科学及生物技术产业产生了巨大的影响。
最后,生物技术企业不断发展壮大。由于生物技术前景广阔,发展潜力巨大。我国从事生物技术产品开发的企业,如雨后春笋,不断涌现。另外,生物技术产业格局从治病为主向治病、保健、提高生活质量的健康产业过渡。兼并重组愈演愈烈,大企业愈来愈大,协作型竞争已经成为当今生物技术产业的主流;、生物技术产业发展存在的问题
首先,自主知识产权过少,产业化能力很低。目前,我国在生物技术产业及产业发展所需的重要仪器、设备、试剂主要依靠国外进口。生物技术产业的技术与装备还相当欠缺。目前我国尚不具备自主研制和生产并占有国际市场的能力。我国的生物技术产业和其他的发达国家的生物技术产业比较起来,我们的技术还很低,并且很多的研究成果都还是在实验室,还没有走出转化为现实生产力的大门。如何加快将开发研究出来的生物技术成果转化为现实的生产力,提高产业化能力,是当前我国生物技术产业要充分重视的一个大问题。
其次,投入严重不足,并且投入渠道单一。生物技术产业是资金密集型产业,是高投入、高风险和高回报的产业,因此,资金短缺是首先要解决的问题。在国家加大生产技术投资力度的同时,还要充分利用银行贷款以及尚待健全的风险资金市场,寻找各种资金渠道。政府应制定优惠政策,鼓励企业参与生物技术的研究与开发。目前,我国企业资本融通渠道只有创业者个人出资,上市公司、民营企业投资,政府的风险投资,国家科技部的中小企业担保基金,中小企业科技创新基金五种。其中上市公司、民营企业的投资因为上面所说的缺乏对无形资产的认识和认可,导致他们常常希望在所投资的企业中依靠他们所提供的有形资本来控股,严重地打击了创业者的积极性。
最后,产业化人才缺乏,研发与产业化脱节。生物技术产业的发展同样离不开人才。由于研究开发人员培养周期长,大量优秀的科研人员滞留在国外,国内缺乏优秀人才,尤其缺少技术兼经营型人才。此外,我国现有生物技术人才偏重于理论研究,产业化人才相对缺乏,在我国生物技术产业发展中,常出现实验室里的科研成果难以产业化,或产业化成本很高而无经济价值。
四、生物技术产业发展的对策
首先,健全和完善管理体制。发展我国的生物技术产业,必须结合我国具体国情,同时运用政府和市场两种资源配置的调节手段,盘活我国技术、设备与设施、人才等方面的存量,使各方面的优势系统有效地集成。必须同时调动国家、地方和企业以及科技人员的内动力和凝聚力,须下决心解决部门地方条块分割、低水平重复的顽症。为此,建议国家适时成立全国性的组织管理机构,对全国生物技术产业及产业发展进行总体规划和协调指导,从而做到整体协调、避免多头指挥和政出多门,实现决策、协调和实施系统的统一、简便和高效。
其次,进行战略布局调整,加强企业队伍建设。根据目前我国生物技术产业及产业发展情况,结合现有国家级高技术产业开发区,可选择技术力量比较雄厚、投资环境好并已有一定生物技术产业基础的地方作为生物技术产业化基地,给予更为优惠的财政和税收扶持政策。培养专门的企业人才,成立专门的开发生产企业或机构。就生物技术来说,我国已经有了很大成绩,但是在研究、开发、生产、销售四个环节中,研究和开发环节还存在很大的缺陷。因此需要下力气建立一只强大的研究,开发队伍。
再次,以市场为主导,重点突破。努力开拓生物技术产品市场,开发和生产符合生物技术市场需求的产品。生物技术市场对生物技术产品的需求将会极大的促进生物技术产业的迅速发展。世界生物技术都在迅猛发展,但是不同的国家有不同的研究重点和方向。就以我们中国来说,中国的生物技术最有权威的是植物细胞工程育种、植物快繁和脱毒苗生产等植物生物技术上。发挥我国的优势,保持技术的最前沿,可以大大的促进生物技术产业发展的领域。
最后,加大政府投资,完善建立产业政策扶持
通过与研究开发机构建立广泛联系,并有力地引导企业介入,密切生物技术产业上下游的结合,有效地使单一技术向产业进行技术转移和辐射,从而加速具有商业前景的技术和产品尽快形成商品化和产业化。政府要制定一系列保护和鼓励生物技术发展的政策和法律。通过制定法律加强合作研究、鼓励发明创新和促进技术转移。还可以通过融资渠道来实现对生物技术产业的扶持,其中包括拨款或资助,大公司出资、成立基金会、贷款、风险投资等。政府直接投资的变化是调整研发投入结构,提高民用研究与发展投入,特别是民用高技术开发投入,以提高经济竞争力。投入的重点是风险大、民间投资有困难的重大长期研究课题。另外,政府对生物技术产业的扶持还有一个非常重要的方面,就是促进合作研究开发。政府可以将国有研发成果下放,鼓励产、学、研合作。
参考文献:
[1]林桂芸关于我国生物技术产业化发展的问题与对策[J];成都大学学报(自然科学版);2003年03期
篇3
一、发展生物技术产业重大意义,它已经成为许多国家应对金融危机战略措施。
各国纷纷制订生物产业发展战略规划,专项政策,成立专门机构,加速培养和吸引人才,大幅度增加对生物技术研究和产业化的投入,引导社会资源投入生物产业,促进生物产业在知识密集区域集聚化发展,努力抢占21世纪国际经济技术竞争制高点。
二、世界生物技术产业发展现状
(一)生物技术产业已经进入大规模产业化阶段
现代生物技术首先应用于医药和农业领域,生物医药业、生物农业快速增长。以生物医药为例,全球范围内正在研制的2000多种生物药物80%已经进入临床试验阶段,批准了6000多例转基因动植物进行试验,批准生产的转基因动植物已达100多种。由于生物制药科技含量极高,受宏观经济基本面的影响较小,消费刚性特点明显,且价格稳定,盈利能力高于社会平均利润率,上世纪90年代以来,全球生物药品销售额以年均30%以上的速度增长,大大高于全球医药行业年均不到10%的增长速度。
(二)生物技术产业将成为继信息产业之后世界经济中又一个规模巨大的主导产业。
近十年来,全球生物技术产业的销售额约每五年翻一番,许多国家生物产业销售额增长率高达25%-30%,远高于全球经济增长率。预计到2020年,生物医药占全球药品的比重将超过1/3,生物质能源占世界能源消费的比重将达到5%左右,生物基材料将替代10%-20%的化学材料。继信息产业之后,生物产业将逐渐成为未来全球经济社会发展的又一重要推动力。
三、我国生物技术产业发展现状
(一)我国生物技术与发达国家差距相对较小,生物技术产业初具规模,在发展中国家中总体水平处于领先地位
近年来,我国生命科学与生物技术研究取得了长足的进步,在后基因组学、蛋白质组学、干细胞等生命科学领域具有较高的研究水平,在杂交水稻、转基因棉花等生物育种领域具有一定的优势。在我国,生物制药产业也呈现出蓬勃的发展态势,在1999年到2008年的10年间,生物制药子行业年均销售增长率为22%,而医药工业为19%,生物制药产业的销售规模虽然仅为整个医药行业的10%,但成长速度要明显快于医药工业的整体水平。另外,生物技术棉花种植面积已经超过6100万亩,生物农药年生产总量达到12万吨,燃料乙醇生产能力几近140万吨。目前我国的生物技术产业在发展中国家中总体水平处于领先地位。
(二)发展中面临的问题
1、生物技术产业自主创新能力薄弱
生物技术产品产业化程度低,生物科技成果转化率低,以生物医药为例,迄今为止,我国生产的中药以外的医药产品,自主发明的不足3%。国内有6千多家的医药企业,普遍缺乏自主知识产权,企业产品趋同,毫无国际竞争力可言。工程化研究开发薄弱,生物医药中上游技术比国际先进水平落后三至五年,而下游工程技术则至少落后十五年以上。
2、融资困局亟待打破。
发展生物产业的社会效益远高于产业自身的直接经济效益。当前,我国生物医药、生物农业、生物能源、生物基材料等一批新兴产业群体正在迅速形成。这是一个好的趋势,需要进行正确引导和扶持,特别是加快建立有利于产业化发展的投融资环境、市场环境,完善转基因生物安全管理等有关法律法规,解决新兴生物产业发展面临的融资困难、产业技术发展滞后、初期成本高等突出问题。
3、缺乏生物技术产业的高端人才。
生物技术产业的发展对人才的要求极其严格,目前在我国从事生物技术研究和产品生产经营的从业者素质参差不齐,整体素质不高,既懂技术又懂经营的高素质人才十分稀缺,难以适应我国生物技术产业快速发展的需要。
四、发展之路
(一)建立生物技术产业基金
美国的生物技术产业从上个世纪70年代起步以来,始终是全球生物科技的领跑者,其生物技术公司数量占全球总数的1/3。分析美国这方面的成功经验,除了人才、技术、设备、研发能力、体制等等因素之外,美国生物技术产业之所以能得到迅速发展的一个很重要方面是,美国无论是政府还是私营投资机构对这个产业领域的连续多年来的巨大投资。可见风险投资对一国生物技术产业的发展可谓至关重要。
我国目前的风险投资以政府为引导,以国有资本投资为主体。即资金来源主要集中于政府财政专项拨款和金融机构贷款。这种特点不可避免地导致了现行风险投资资金的低效率与盲目性,因此改革我国现行的风险投资体制已迫在眉睫。政府部门应当制定优惠政策,拓展生物技术企业高风险时期的资金来源,调动社会资金支持生物技术企业的发展,通过多种渠道拓宽生物技术产业基金的资金来源,规范和发展资本市场,吸引民间投资,大力发展创业风险投资,推动贷款担保机构发展,形成以民间资本和民间投资机构为主体的多元化投资主体和投资结构。
(二)加强国际合作
近年来,除了美国是传统的生物技术产业强国,加拿大的生物技术产业也迅速增长,目前它
篇4
生物育种高技术产业化是指应用转基因技术、细胞工程、分子标记等先进遗传改良技术对动植物品种进行科学改良,并通过相应的工程措施对技术成果进行规模化、产业化开发的过程。2000年以来,针对生物技术为主导的高技术产业迅速发展态势,国内存在产学研脱节、产业化条件成熟的成果得不到及时转化的问题,结合我国农业和农村经济发展和结构调整的战略需求,国家相应启动了生物育种高技术产业化工程。10多年的实践证明,生物育种产业是农业高技术产业的重要方向,也是近年来发展最快的农业高技术产业。前些年虽然国家只安排了产业化工程总投资的10%的扶持资金,却带动了地方政府、企业和银行的积极性,对农业生物高技术应用、新品种的产业化发展、行业结构调整起到了重要推动作用。在看到成绩的同时,还存在进一步发展和提高的问题。必须面对国内需求不断提高和国内外资源、技术竞争日益激烈的形势,从战略和全局的角度出发,在宏观管理、资金、政策和工程内容等方面采取相应的措施,使之保持持续、健康、稳定的发展。
1我国生物育种高技术产业化工程成效显著
2000年以来,结合国家农业优势农产品区域规划,围绕保粮增收的总体建设目标,有计划、分步骤地在全国有条件的地区,组织实施生物育种高技术产业化工程。通过组织各部门和各省区对国家和省鉴定的有关生物育种的科技成果和相关品种(系)的产业化方案实施,起到了以点带面的作用,引导全国有条件地区的农业优势资源开发和农业产业技术升级,促进了农业产业结构调整和农业综合生产能力的提升。围绕生物基因资源开发利用方面,在国家发改委的主持和组织下,依靠各省区相关企业的力量,对生物基因资源从多方面、多角度进行了全方位开发和利用。据不完全统计,2000年以来,全国共实施了农业生物育种产业化项目250个,对450个具备产业化条件的动植物新品种(品系)进行了产业化开发。工程总投资约170亿元,其中国家投资约20亿元。在新技术应用和新品种产业化发展取得了较大的成就,产生了较好的经济和社会影响。
1.1优质高产动植物新品种的产业化,为农业综合生产能力提升提供了强有力保障(1)在种植业新品种示范应用方面,国家先后组织了湖南、湖北、四川、江苏、福建、海南、吉林等省建设优质超高产水稻的项目27个、新品种(品系)58个的产业化,新增水稻父母代良种3.3亿kg,约可推广1000万hm2,占全国水稻种植面积的36%;组织了吉林、河南、陕西、甘肃、新疆等省建设玉米项目19个、新品种(品系)44个的产业化,新增玉米新品种2.4亿kg,约可推广800万hm2,占全国玉米种植面积的29%;组织了吉林、山东、河南等省建设小麦项目9个、新品种(品系)15个的产业化,新增小麦新品种7300万kg,约可推广113万hm2,占全国小麦种植面积的7%;组织了黑龙江、河北等省建设大豆项目5个、新品种(品系)15个的产业化,新增大豆新品种9200万kg,约覆盖233万hm2,占全国的24%;在油料、糖料、薯类及其它经济作物均相应组织实施了一批高技术产业化项目。通过这些项目的实施,良种推广面积超156万hm2,形成年增产50多亿kg。已发展成为国内种植业内稳定的高技术生物育种产业,成为稳定市场、提高农产品品质和改善人民生活的重要支柱。(2)在棉花新品种示范应用方面,国家先后组织了新疆、江西、湖北、河南等省建设转基因抗虫棉等优质品种产业化项目10个,对20个新品种(品系)进行了开发,新增优良种籽2600万kg,约可推广116万hm2,占全国优质棉种植面积的23%。通过这批项目的实施,大大促进了生物技术选育的棉花新品种的推广应用,到2010年底,通过生物技术选育的棉花新品种种植面积占总面积的75%以上,河北、山东、河南、安徽等棉花主产省的生物技术棉花种植率已达到100%。通过产业化技术的突破,在转基因抗虫棉新品种方面,形成了一批在国际市场有影响的高技术企业,在国内市场上已与世界著名的美国孟山都生物公司形成强有力的竞争。(3)畜禽、水产新品种示范应用方面,近年来先后组织了北京、新疆、湖南、河南、吉林等省(市、区)牛胚胎及牛新品种快繁技术的推广和应用,湖南正虹猪、吉林、四川、新疆优质羊快繁等43个高技术示范项目,对湖南正虹猪、渝荣配套系猪、海南文昌鸡、湖南黑牛、云南的大河乌猪等46个优良品种分别进行产业化工程配套。这些项目的实施,带来了畜禽新品种繁殖技术的革命,有力地推进了畜禽新品种的快速繁殖和推广,产生了显著的经济和社会效益。据分析,已实现年新增核心良种奶牛4.42万头,良种奶牛胚胎20.6万枚,良种肉牛肉羊冻精680万支,奶牛冻精350万支,优良父母代种猪19.3万头,父母代种禽1585万套的能力。利用现代育种技术推动我国本土品种资源的产业化,促进了我国地方种畜资源的改良和商业化进程。在水产类通过对青海湖裸鲤、南美白对虾、中华绒螯蟹、福建花鲈等22个项目、37个品种(品系)的产业化开发,新增优质鱼虾蟹苗生产能力79.1亿尾,贝类苗37.7亿枚。形成年提供优质水产品40多亿kg,年增产值约1000亿元,年出口创汇近20亿美元的高技术产业。
1.2促进了农业生物关键技术的产业化通过组织实施一批生物育种高技术项目,在一系列生物育种相关技术产业化方面取得了较大进展,解决了一批制约产业化发展的关键问题。在过去10年生物育种高技术产业化工程推广技术中,11%的项目企业主要产品技术水平达到了国际领先水平,12%的项目企业达到了国际先进水平,59%的项目企业达到了国内领先水平,对企业创新能力提升和产业化发展起到巨大推动作用。(1)植物育种主要应用转基因技术、细胞工程、分子标记3种技术。①促进了转基因技术与相关技术的有效融合,为植物新品种选育提供了更加有效的技术支撑。如创世纪转基因技术有限公司通过“双价转基因抗虫棉和单/双价抗虫杂种棉高技术产业化示范工程项目”的实施,以具有自主知识产权的双价抗虫棉及单/双价抗虫棉技术成果为基础,形成一批抗虫棉生产性繁育和示范基地,农业科技产品中试基地,使农业高新技术应用和成果转化水平大幅度提高。通过对转基因抗虫棉技术的熟化、中试、转化和组装,培育了一系列可以大规模推广应用的新品种,培养了一批集中配套技术的示范样板棉区。除转基因抗虫棉外,在粮食作用、林木花草、饲料作物等方面也得到广泛应用,培育和推广了大量的新品种和新品系,且规模不断扩大。②转基因技术与航天育种、远缘杂交等高技术的结合更加紧密。如在“新疆中国彩棉(集团)股份有限公司天然彩色棉良种繁育高技术产业化示范工程”中,将航天育种、离子束灌注、转基因、远缘杂交等技术相结合,创造出彩色棉新种质,获得经济性状有明显改良的新品系。③双价、多价转基因技术逐步完善,不断研制出功能更加强大的转基因农作物新品种。河北三北种业有限公司高油玉米高技术产业化示范工程属于发明专利,该项目利用三种遗传效应(杂交优势增产效应、细胞质雄性不育的增产效应、花粉直感对含油量和蛋白质含量及赖氨酸含量的增加效应),突破了普通玉米无法高产、高油化的局限。(2)畜禽育种方面。①突出了我国本土品种资源的产业化。国外动物种源大规模进入,并长期垄断中国种畜市场。针对中国“引种-退化-再引种”的对外国种源严重依赖的怪圈,和普遍推广的国外高生长性能的品系(如猪的杜×长×大杂交组合)风味不足,肉味不浓,难以满足消费者的需求的现实,相比之下我国本土畜禽品种更加适合中国人注重“色、香、味”的消费习惯。已实施项目中,重庆的渝荣配套系猪、云南的大河乌猪和广东的阳山鸡、皖南青脚鸡、南江黄羊、青海大通牦牛等都属于地方特色新品种,在现代生物技术推动下,不仅具有风味突出、抗逆性强等特点,兼具较好的生长性能,有较好的市场前景。这些项目加快对我国地方特色品种的产业化。②应用现代生物技术,促进我国地方种畜资源的改良。传统的育种方法是将不同特点的某类动物进行杂交,经过几代繁殖后,能够实现既定育种目标且后代性状稳定的才能成为一个品种或品系。由于杂交组合多,杂交后代性状不稳定,及动物体有自然生长周期,因此,选育动物新品种(品种)周期比较长,难度大,尤其是大型动物如猪、牛等有时要经过几代人的努力才可能选育出一个新品种(系)。现代养猪育种技术中应用较多的包括分子标记辅助育种技术和最佳线性无偏估计(BLUP)方法。生物技术中的DNA测定技术,已经准确地找出控制产子数量、脂肪含量、抗应激性、产奶量等基因,通过分子标记,直接对未长成的动物幼体进行基因检测,而不必等动物完全长成后进行统计,既缩短了育种周期,又可以及时排除不符合育种要求的杂交组合,大幅度减少育种工作量。已实施项目中对地方优势资源的开发也进行了有益尝试,如渝荣配套系猪、山东鲁莱黑猪、湖南黑牛、云南的大河乌猪和广东的阳山鸡、广东的“广良”高效瘦肉型猪选育项目等,在发挥地方特色品种优势方面取得了一定的成果,对我国地方种畜禽资源更好地进行商业化开发进行了有益尝试,能够起到带动示范作用。③现代生物技术在畜禽快繁突破技术的应用。如采用无性生殖和有性生殖相结合的方法,以单倍体化的胚胎细胞作为母源卵子替代物,构建胚胎;采用胚胎移植、分子标记辅助选择和胚胎性控等生物育种技术,实现良种奶牛繁育和产业化生产,以及卵母细胞体外成熟、体外受精和体外培养系统方法等,在畜种改良和产业化发展中发挥了重要作用。在已实施的项目中,北京荷斯坦种牛、广西奶水牛、吉林延边牛、新疆肉羊等高技术产业化项目均从不同层面对上述技术进行了有效开发和应用。(3)水产类。①突出了珍稀水产资源的开发。如青海省鱼类原种良种场青海湖裸鲤原种繁育高技术产业化项目对青海湖裸鲤进行了人工繁殖和有效的开发和保护。张家界金鲵生物科技有限公司张家界大鲵保护与规模化繁殖高技术产业化示范工程对大鲵的成功人工繁殖和有效保护。重庆市对长江上游特有的6种名特野生鱼的人工驯养和规模化生产项目,在满足消费者多样化需求的同时,对保护长江特有的珍惜鱼种资源方面具有重要意义。②注重优良品种的引进和开发。新疆天润赛里木湖渔业科技开发有限公司高白鲑、凹目白鲑白鲑属鱼高寒淡水良种繁育高技术产业化示范工程,通过高白鲑、凹目白鲑的引进和人工繁殖填补了国内空白。浙江跃腾水产食品有限公司南美白对虾生物选育高技术产业化示范工程引进并选育南美白对虾SPF品种,并在繁育技术上实现重大突破。大连天正实业有限公司圆斑星鲽等北方名贵海水鱼类新品种育种高技术产业化示范工程采用纯种引进、遗传结构分析、分子辅助标记、亲鱼促熟与采卵授精等技术,实现圆斑星鲽等北方名贵海水鱼类新品种育种产业化。这些项目的实施丰富了国内水产资源和良种的产业化。
1.3扶持了一批产业化龙头企业,促进了高技术成果的转化和新品种的推广我国从事农业良种生产的企业较多,但专门从事生物育种的企业不多,而且规模普遍偏小。国家通过生物育种高技术产业化工程的实施,由于国家资金的扶持和引导,促进了高技术成果的转化和新品种的推广,提高了企业产品抗击市场风险的能力,出现了一批知名龙头企业。如农作物生物育种方面主要有拥有抗虫转基因水稻专利的奥瑞金公司、隆平高科、登海种业、丰乐种业、万向德农、敦煌种业、海南神龙大丰、河北大风车、大北农等龙头企业;在畜禽生物生物育种方面,涌现出湖南正虹(生猪)、海南罗牛山(文昌鸡)、江苏京海禽业等龙头企业。在水产生物育种方面,涌现出湖南省洞庭(青鲫)、浙江跃腾(对虾)、永强(大鲵)、福建闵威水产(鲈鱼)、山东丁马(中华鳖)等知名企业,为提高农业生产技术水平、改善市场供应发挥了重要作用。
1.4探索了“企业+基地+农户”的生物育种高技术产业化发展模式农业生产涉及千家万户,生物育种产业化工程一直积极探索通过“企业+基地+农户”的模式,促进企业与农户之间形成利益共同体,按市场需求与农户签订收购合同,积极争取最大规模的农户参与,带动农民发展生产,让农民在参与产业化项目中得到实惠。以2002年江苏高邮鸭集团有限公司申报的高邮鸭良种繁育高技术产业化示范工程为例,项目提出运用现代分子育种技术,进一步提高高邮鸭的生产性能,按照“企业+基地+农户”模式建立各镇基地,其中基础设施建设11386.31m2、购置仪器设备76台套。建设规模为1000万只良种高邮鸭及配套加工,项目批复总投资4898万元,其中国家扶持500万元。2006年项目建成,在做好高邮鸭保种、选育的同时,加大了高邮鸭的扩繁和推广力度,分别在郭集、司徒、横泾等乡镇建立了5个扩繁基地,饲养种鸭20万多只,推广苗鸭近1000万只,带动农户和专业大户400多家,有效地促进了农业增效和农民增收,增强了高邮鸭蛋、鸭肉的加工转化能力,还带动了养殖运输产业,形成了以高邮鸭为品牌的高邮鸭产业集团。
2生物育种产业化工程面临的形势与挑战
2.1资源环境约束和消费需求的提高,对生物育种产业提出了新的挑战新的时期,“三农”问题始终是社会各界关注的重要问题。耕地面积减少的趋势不可逆转,耕地质量在一些地区不断下降;水资源短缺与利用效率低下并存;农业面源污染加重,农业生态环境脆弱。根据国情,从今后发展看,随着人口增长,消费水平提高,粮食需求将呈刚性增长。必须确保国家粮食安全的同时,不断满足人们对农产品的优质、安全、多样化需求。这就要求必须加快新技术和新品种的应用,发展高效农业,提高资源使用效率,走人与自然和协发展的道路。我国农业生物资源丰富,是选育高产、优质、抗逆等特性的新品种、维持人类生存的物质基础,其中与农业生产密切相关和植物物种达9600多种[2],水生动植物资源2万余种,但近些年围垦和开荒,以及环境污染,加上保护、开发、利用措施不到位,生物资源破坏和流失严重。据农业部统计,国家需重点的野生动植物得到应有保护的比例不足20%。同时,国外对农业生物资源的争夺激烈,采取各种途径从世界各地获取资源,如中国野生大豆资源流失美国大大提高其生产能力,成为大豆出口大国,给国内大豆生产造成巨大冲击。这对我国生物育种产业提出了严峻挑战。我国是农业大国,只有掌握了生物资源的制高点,才能在未来的竞争中争取主动。
2.2面对全球性转基因技术的严峻挑战从世界范围而言,在近30年里,转基因技术在农业领域的应用研究进展迅速。转基因作物在产量、抗逆性、品质和生产成本等方面较传统作物有明显优势。2010年全球转基因作物种植面积达到1.48亿hm2,是1996年的87倍。1996年全球种植转基因作物的国家仅6个,2010年已达29个。至2010年转基因作物累计种植面积已超10亿hm2。这些表明转基因作物仍保持强有力的发展态势。我国目前转基因玉米和转基因水稻获得了安全证书。抗虫棉、耐贮番茄、转基因辣椒等已被批准商品化生产。转基因农业的研究和开发整体上居世界中等水平,还处于产业化发展初期。我国转基因植物的研究起步较早,在国家“863”计划、“转基因植物研究与产业化专项”和国家高技术产业化生物育种专项等科研和产业化项目的支持下,我国的转基因植物研究取得很大进展。由于成功地自主研究出转基因抗虫棉,有效地抵御了国外抗虫棉的冲击,在抗虫棉方面形成了较好的规模和竞争力。全国抗虫棉种植面积达到25万hm2,国产转基因抗虫棉已累计推广超过了1667万hm2,通过产业化技术的突破,在转基因抗虫棉新品种方面形成了一批在国际市场有影响的高技术企业。与之相反,因研发和产业政策滞后,大豆产业的国际竞争力急剧下降,难以抵挡美国、阿根廷、巴西等国廉价转基因大豆的入侵。总体上看,我国在转基因技术尤其是规模化、产业化方面还有很大的发展空间,与发达国家存在不少差距。孟山都、杜邦、拜耳等跨国公司利用其基因技术、专利、市场、营销、服务和资本优势,已经控制了国际种业市场70%的份额。转基因产品的市场竞争正在改变全球农业生产、加工、贸易和粮食安全的格局。面对全球性转基因生物育种技术的严峻挑战,我国作为农产品生产和消费大国,生物育种高技术研发与产业化工作任重而道远。
3对进一步实施生物育种高技术产业化工程的建议
3.1从宏观上做好生物育种高技术产业化工程的战略规划生物育种高技术产业化是一个系统工程,涉及农业大国的粮食安全和肉蛋奶的稳定供应,需要相应的高技术成果作为支撑,也需要将产业化条件熟化技术和成果进行大面积推广应用,才能获得预期的效益。因此,生物育种高技术产业化工程需要发挥综合管理部门的宏观管理职能,与科技、农业、林业等专业部门的协调、配合,做好“全国一盘棋”的战略规划。①要明确生物育种产业的中长期发展目标、生物育种产业的重大战略布局、分品种的区域布局,以及需要建设的重大成果推广转化工程;②要做好生物育种高技术产业化工程与行业发展部门的协调和配合。从生物育种高技术产业化工程“十•五”“十一•五”执行效果看,国家虽然下了很大的决心,组织人力物力安排了一批项目,但安排的项目更多体现在“点”上的效果,“面”上的效果还不很明显,还没有形成产业聚集效应和区域聚集效应。农业高技术产业化项目主要涉及的农业部、林业部和科技部,从部门的角度出发,在“十二•五”期间在粮、棉、油、糖、肉、蛋、奶、林产品等方面分别已制定了一系列总体发展和区域发展规划,如《全国新增1000亿斤粮食生产能力规划(2009-2020年)》、《全国农业生物资源保护工程建设规划(2011-2015年)》、《农业科技发展“十二•五”规划(2011-2015年)》、《新疆棉花生产基地二期建设规划》等,地方也有不同区域和资源特点的开发规划,这些规划体现了我国农业生物资源的开发和区域经济的规模化、专业化、区域化发展。③要做好生物育种高技术产业化工程与科技部《国家“十二•五”科学和技术发展规划》的协调和配合。《国家“十二•五”科学和技术发展规划》提出,针对保障食物安全和发展生物育种产业的战略需要,围绕主要农作物和家畜生产,突破基因克隆与功能验证、规模化转基因、生物安全等关键技术,获得一批具有重要应用价值和自主知识产权的功能基因,培育一批抗病虫、抗逆、优质、高产、高效的重大转基因新品种,实现新型转基因棉花、优质玉米等新品种产业化,整体提升我国生物育种水平。重点突破现代生物育种技术和品种产业化技术,培育动植物新品种1000个,其中重大突破性品种100个。从长远看,这些规划的实施为生物育种高技术产业化工程提供了重要的背景和条件。生物育种高技术产业化工程建设规划必须在工程布局和工程内容上做好与规划的衔接,做到协调布局、各有侧重、相互促进,协调发展。
3.2加大政策扶持力度,提高产业聚集效应(1)生物农业发展前景广阔,将成为投资的热点领域。比较中国生物农业企业与与美国和日本的生物农业企业可见,我国企业存在如下差距:首先是资金实力和资本规模不足,例如Monsanto公司的年销售收入为55亿美元,而我国最大的生物农业企业年销售收入也仅5亿元人民币左右。生物育种是高技术、高投入、长周期的产业,需要一段时期的持续投入,需要有实力的企业参与,也需要政府的持续扶持。我国种植和养殖领域种类繁多,许多品种选育和技术成果都到了成熟期,全国每年涉及生物育种的各类具备产业化发展的成果有300多项,而国家每年用于生物育种领域的投资有限,前10年平均每年只能安排不到20%的项目,时效性很强的科研成果往往有被搁置浪费的危险。从资金投入看,项目总投资大都在3000万元到1亿元,前10年国家对每个项目补助投资仅10%左右,由于我国农业企业普遍规模较小、实力弱,企业自筹能力有限,加上地方配套资金难以落实,导致项目资金规模和建设规模缩水,很难保证项目按设计顺利完成,并得以持续发展。必须集中资金,突出重点,在产业布局的基础上,加大生物育种高技术产业化扶持力度,形成多层次、多渠道、多元化投资格局,使产业的聚集效应在重点区域和重点品种上集中体现。同时,还需加强各类高新技术产业化载体、产业化基地、科技园等建设,进一步完善从技术创新到产业化的全链条支撑服务体系。因此,还需国家加强政策性扶持的力度和扶持范围。(2)生物育种是社会关注度较高的产业,要引导资本市场和社会投资投向生物育种产业。应进一步加大国家投资力度,对产业前景较好,但前期相对弱小的新品种,适当提高国家投资比重。充分运用财政支持、金融信贷、引进外资、风险投资等多种融资渠道。研究建立国家生物农业发展专项基金,支持重点生物育种项目建设,引导社会资金投向生物农业。允许农业高技术专利在银行办理抵押贷款,促进政策性银行开辟中小型农业企业贷款渠道,鼓励商业银行加大对生物育种企业的贷款规模。
3.3加大种子产业的市场宏观管理,培育大规模、高水平生物育种企业我国已累计培育主要农作物新品种1万余个,实现大规模的品种更新换代5—6次,良种对增产的贡献率达到35%左右,已初步形成主体多元化的全国种子市场,种业市场价值达500亿元,种子使用量在200亿kg左右[5]。截至目前,全国持证各类种子经营企业有10000余家,专门从事生物育种和改良的机构1000多家,并有继续扩大的趋势。在我国登记注册的国际知名种子公司也纷纷在我国设有办事机构,形成市场之势。国内育种企业由于经营主体比较分散,企业规模普遍偏小,产业聚集度低,整体实力不强,多数企业没有稳定的生物育种和研发设施和团队,缺乏核心竞争力,难以满足农业结构调整的需要。必须通过政策引导、法律规范,加大种子执法力度,进一步严格市场准入,强化市场监管,整顿种子市场秩序,规范品种管理,维护公平、有序的市场竞争环境。通过政策引导、财政扶持、企业积极参与,鼓励同类企业的战略重组,加速资产整合,提高创新能力和企业竞争力,加速培育具有龙头带动作用的产业主体,打造一批育种能力强、技术先进,市场网络健全的生物育种企业集团。
篇5
高新技术产业对全省调整产业结构、转变发展方式、拉动经济增长发挥了重要作用。
不过,湖北高新技术产业在发展过程中也存在一些突出问题。产业的规模还不够大,企业的核心竞争力有待进一步增强,产业的配套能力还需完善。很多有前景的高新技术产品和技术,往往由于缺乏本地的配套企业,导致夭折或外流。比如,在激光产业领域,湖北在全国具有突出优势,但由于融合度不够、配套能力不足,导致产业规模一直不够大;在地球空间信息产业领域,湖北拥有全国唯一的国家地球空间信息产业化基地,但由于龙头企业缺乏、支撑服务体系不完善,市场拓展步伐缓慢。
为打通这些发展瓶颈,近年来,湖北省科技厅按照产业链与创新链融合的创新思路,提出建立以重大高新技术、终端产品或产品群为核心,重点选择激光产业、地球空间信息、信息光电子、新能源汽车等18条高新技术产业链,开展囊括产业链上中下游及服务配套的全产业链条设计工作,编制完成了湖北省高新技术产业链技术创新规划及其创新地图。
篇6
1微生物发酵技术应用于再造烟叶生产
微生物技术应用于烟草发酵的研究在国外开展较早,利用微生物改良烤烟品质的研究在国内也越来越多[7]。在造纸法再造烟叶生产过程中,微生物发酵技术主要应用于原料和萃取液或浓缩萃取液的处理方面。
1.1微生物发酵技术应用于原料预处理
造纸法再造烟叶用的原料含有蛋白质、淀粉、果胶、木质素等大分子物质,化学成分较为复杂,具有一定的不协调性。用微生物发酵技术对原料进行预处理,分解生产原料中对品质不利的成分,从而降低造纸法再造烟叶的木质气与刺激性,改善其口感,提高其内在品质和可用性。Gravely等[8]提出用E.caratavora培养液降解烟草中的果胶和用Asetgillus及Aspergnlusoryzae降解烟梗中的纤维素的微生物消化方法。于兴伟等[9]直接用微生物发酵法处理生产再造烟叶的烟梗,采用黑曲霉对烟梗进行固态发酵,以发酵后烟梗中果胶残留率为指标,对其发酵条件进行了优化,并放大到150L固态发酵罐。通过黑曲霉酶解作用,使烟梗转变为水溶性物质及固形物两大部分,其中,固形物中的大分子物质(如果胶、蛋白质等)得到有效降解,这两种物料均可作为再造烟叶的基础物料。郭刚[10]提出了使用木质素降解菌及降烟碱杆菌发酵处理造纸法烟草薄片生产原料,发现上述菌种均可在一定程度上改善再造烟叶内在品质,而双菌种混合发酵能明显改善再造烟叶的内在品质。原料经发酵粗酶液处理后,木质素和烟碱含量下降,刺激性明显减轻,口感变好,香气变浓,内在品质明显提高。
1.2微生物发酵技术应用于萃取液处理
造纸法再造烟叶生产过程中利用水浸提萃取烟草原料得到萃取液,再经多效浓缩制备得到浓缩萃取液。上述制造工艺在很大程度上只是原材料物理性质的改变,原料的固有化学性质并未完全改变,燃吸时仍存在木质气较重、辛辣灼热感较明显、余味差等质量缺陷。应用微生物发酵技术可在一定程度上改善上述问题,主要有以下三个方面的作用:合理调节化学成分的组成;增加香气成分;降低烟碱。
1.2.1合理调节化学成分的组成
为了合理调节造纸法再造烟叶中化学成分,提高再造烟叶的品质,有研究利用微生物对萃取液或萃取浓缩液进行处理,并检测其植物碱、总糖、还原糖、总氮等成分,发现经微生物发酵处理后的再造烟叶的糖含量明显下降,糖碱比、糖氮比趋于合理,处理后再造烟叶的整体吃味质量有所提升[11~12]。
1.2.2增加香气成分
烟草中酸性香气物质能够改善烟草酸碱度,赋予烟气味和芳香特征,使烟气柔和、适口。常用中性香气成分含量来衡量烟叶香气的强度。烟草中主要的中性香气物质有β-大马酮、3-庚酮、茄酮、新植二烯等。碱性香气物质包括烟碱、吡咯、呋喃等[13~14]。程昌合等[15]将烟草萃取浓缩液在45℃醇化处理数日,经过醇化处理后烟末浓缩液中的挥发性组分增多,且主要致香成分含量均有不同程度的增加。处理后烟草薄片的香气量、协调性、木质杂气和余味等方面有较明显地改善。但究竟是何种微生物在醇化过程中起作用(包括增加香气成分的作用),论文并未给出明确的结论。张晨等[16]利用酿酒酵母对造纸法再造烟叶生产过程中的烟草萃取液进行了转化增香处理,处理后的萃取液增香效果明显,其挥发性致香成分增加一倍。酿酒酵母处理对再造烟叶的烟气平衡作用明显,且增加了香味物质,处理后的再造烟叶烟气协调性更好,余味明显改善,并且含有香气成分。可见,微生物在烟草萃取液中的转化应用值得深入研究。
1.2.3降低烟碱
烟碱含量过高制约烟草薄片的发展和应用。目前,国外研究者已从环境中分离了多种烟碱降解菌,对节杆菌属细菌代谢烟碱的机理研究较多[17];国内主要集中在烟碱降解菌的分离和上部烟叶中烟碱的降解等方面[18~19]。实践证明,微生物降解法是去除或减少烟草中烟碱的有效途径。袁勇军课题组从种植烟草的土壤中分离到一株高效烟碱降解细菌DN2[18],并初步报道了该菌在烟草薄片制备液中的应用情况[20],之后又研究利用菌株DN2降解烟草薄片制备液中的烟碱[21]。结果表明烟草薄片制备液中烟碱降解的最适条件是:添加0.1%的酵母膏,使用氨水将pH调节到7.0,接种15%种子液,培养温度30℃。在上述条件下,采用30L发酵罐对烟草薄片制备液进行3个批次的半连续发酵,烟碱的平均降解速率为140.55mg/L/h,高于其他烟碱降解菌株,为其工业化应用提供了技术性参考。但目前采用微生物技术来降解烟草薄片中的烟碱的研究还相对较少。
2酶技术应用于再造烟叶生产
随着酶学研究的深入,利用酶技术改善烟草品质已成为烟草行业的研究热点,国内外许多专家和学者应用酶技术改善再造烟叶品质方面也进行了许多探索。酶技术应用在造纸法再造烟叶方面的报道主要集中在原料预处理、浸提萃取工序(包括洗梗工序)、萃取液或浓缩萃取液中添加酶,个别也有应用于涂布工序的研究报道。
2.1酶技术应用于原料预处理
在浸提之前对原料进行加酶处理,在一定程度上起着降低其中的不利成分,增加原料或其浸提液的香气成分,提高浸提率等作用。林翔等[22]利用复合酶液对烟梗的梗丝进行喷撒处理,发现经复合酶处理2h的梗丝,总糖含量提高至22.8%,糖氮比和糖碱比均得到了提高,主要香气成分总量提高了27%,梗丝的香气品质得到了改善,感官总体质量有了较大提高。闫亚明等[23]在烟草原料中加入酶制剂,对不易水解的大分子化合物进行酶解,再将酶解后的烟草原料进行浸取、浓缩,浸提率得到大幅度提高。葛少林等[24]发明了一种造纸法烟草薄片的制造方法,首先采用酸性蛋白酶、果胶酶、淀粉酶对烟草原料进行生物降解,使得烟草萃取液中美拉德反应底物的含量得以提高。
2.2酶技术应用于浸提萃取工序
为了减少造纸法再造烟叶中的不利成分,很多研究用酶作用于再造烟叶的浸提萃取工序。基于现有制梗丝技术和洗梗工艺条件,有研究尝试通过加酶洗梗处理,对烟梗的主要组成成分进行适量降解,发现果胶酶、纤维素酶、复合蛋白酶对烟梗的降解效果非常显著,有助于提高再造烟叶品质[25~26]。针对造纸法薄片刺激性大、木质气重、口感差等问题,郑小嘎等[27]通过在造纸法再造烟叶生产工艺烟梗浸提过程中添加复合酶制剂,梗丝经酶处理后,刺激性明显减轻,口感变好,香气变浓,内在质量也得到显著提升。李鲁等[28]指出在烟草水溶液中用米曲霉的真菌蛋白酶,在适宜的条件下随着酶添加量与酶解时间的增加,烟草蛋白质含量逐渐降低,同时酶解液中可溶性氮以及游离氨基酸含量逐步增加。在烟梗和烟末萃取过程中加入果胶酶、半纤维素酶和蛋白酶,研究发现在适宜的酶处理萃取条件下,烟梗和烟末的蛋白质、总纤维素、果胶的转化率和还原糖含量比热水萃取有大幅提升[29]。可见将酶技术应用于浸提萃取工序可有效将烟梗中大分子物质进行转化分解,但具体的工艺条件需要进一步优化。
2.3酶技术用于萃取液处理
在萃取液中应用酶技术同样也可以将果胶、蛋白质等大分子物质进行生物酶降解、转化,在一定程度上优化化学组成、降低烟碱、增加了萃取液中的致香物。马林[30]研究了烟碱脱氢酶在造纸法烟草薄片中的应用。发现在烟草薄片提取液中加入2%的烟碱脱氢酶酶液(m/m,酶浓度1.0mg/mL)及过量的NAD,40℃下反应16h后,烟碱降解率为50.58%。经过烟碱脱氢酶处理的烟草薄片的烟气品质得到提高。马东萍等[31]将酸性蛋白酶、复合果胶酶、复合中性纤维素酶和中性脂肪酶配制成改性添加剂,可烟梗提取液中导致烟草燃烧后出现糊焦气、木质气、蛋白焦臭气的淀粉、纤维素、蛋白质、果胶等大分子化合物降解为水溶性的小分子化合物。
2.4酶技术应用于涂布工序
有研究报道[32]将酶制剂用于制作涂布料应用于再造烟叶中,得到的再造烟叶的总糖、还原糖含量增加,内在吸味的甜度感相应提高;总烟碱增加,劲头提升;蛋白质减少,杂气减轻;氯、钾、钙、镁含量也减少,对再造烟叶造成的负面影响相应降低;重要致香物质都有了较大幅度的增加。将其应用于卷烟产品中,口感更舒适,满足感更强,烟气细腻、飘逸、协调,焦油量和一氧化碳含量也明显下降。
3展望
篇7
[关键词] 茶叶 龙泉市锦溪镇 研究
[中图分类号] S571.1 [文献标识码] A [文章编号] 1003-1650 (2014)11-0065-01
近年来,人们在不断追求物质生活的同时,对茶叶需求也在不断提高,无公害茶叶正逐渐受到人们追崇。如何生产无公害茶叶成为了专家们研究热点,主要针对培育抗病种茶苗,防治病虫害,生产治理,茶叶后期加工等方面进行研究。无公害茶叶将迎来一个全新茶叶时代。
一、什么是无公害茶叶
所谓无公害茶叶就是指在无农药残留,重金属,有害微生物等污染环境指标下,按照正规操作流程种植,科学生产管理,达到卫生指标质量要求,生产对人们健康有益的茶叶,符合国际化生产指标。无公害茶叶研究已经成为热潮,将不断发展与完善。
二、培育抗病种茶苗
与其他农作物受病虫害侵害相同,茶树也不例外,一样受着病虫害侵扰。如何培育出具有抗病性茶苗是目前当务之急。利用茶苗本身来抵御病虫害是最根本的方法,并且节约成本又无公害。茶树经过各种技术的培植,逐渐形成了稳定的抗病性。这种自身抗病性能够阻止病虫害滋长,防止病害蔓延扩大。但是,茶树作为一种生木本植物,选育优良高质量茶苗所需时间和成本较大。转基因技术的出现,为该问题提供了解决方法。目前我市的转基因技术还处于初期阶段,对如何充分发挥茶树自身功能,使其达到最优品质还有待深入研究。
三、害虫防治研究
1.利用天敌措施
利用天敌进行生物防治既无污染又高效,每种害虫基本上都有相对应的天敌,有的天敌还可同时对付两种及以上害虫。利用天敌在杀死害虫同时,还不会危害茶树自身,只要利用恰当,就会对茶树生长产生有效作用。适用茶树害虫的天敌有很多种,包括蝴蝶、食虫益鸟、寄生病原细菌、真菌等,这些都是茶园害虫的专门天敌,对茶树生长发挥至关重要的作用。
2.生物农药的措施
采用生物农药防治是消灭害虫的必要手段。既不会威胁到天敌的生长,而且效果好。经专家鉴定,生物农药能够高效杀害病虫害,并且绿色无污染。今后,加强研发传统农药替代品,加强无公害防治技术开发,制作茶园专用肥料,主要采用基因工程技术来制药,建立遗传基因转化体系是生物农药发展的趋势。
四、产地环境研究
茶树最适宜生长在青山绿水旁,如何构建一个无污染生态茶园是产出无公害茶叶的必要条件。这给茶园选址增加了难度。必须对大气质量,水源质量,土地质量进行精确地检测,只有符合标准地区才能用于生产茶叶。但由于耗资巨大的原因,茶户们都自然而然的忽视这个过程。选址第一要素就是周边水资源清澈充沛,阳光充裕,空气清新,土壤肥沃。第二要素是必须远离排放污染气体的交通干线、排放三废企业工厂和制造生活垃圾废水市区城镇。对于经常施肥撒药水农业区也不宜靠近。最后最好是种植隔离林,使茶园与周围一切隔离,形成一个茶园绿色体系,确保茶园在一个生态环境中生长。
五、生产管理研究
茶树生长中不免要使用农药和化肥,这其中含有大量的有害物质,一旦残留在茶树中,就会危害茶树的健康,不利于生产出无公害茶叶。生产管理主要是针对科学合理使用化肥,加工茶叶等方面进行管理,使其真正无公害。在实际操作中,茶农户们使用的防治方法不当,采购的农药品种不足,甚至还出现了混搭农药的现象。在施肥中,茶农们往往倾向于施氮肥、化肥、单位肥等这些含有害元素多的肥料。很多茶农不懂得科学使用农药,他们一直沿袭传统的方法,不知社会在不断进步,对茶园的生产管理也在不断地加强。
生产管理能够避免个人盲目现象,生产中需要采用物理、生物等科学的防治方法进行防治。在施肥方面应多采用绿色生态型化肥。此外需要对茶农户们加大生产管理技术宣传,提供专业机构让茶农们学习先进知识。只有茶农的技术水平上升,才能培养出无公害茶叶。
六、茶叶加工研究
实际中,持卫生行政部门批准许可证从事茶叶加工的茶厂很少,大部分都是无许可证的零星分散型小厂,这些小厂都存在加工环境差,加工工具不合格,加工人员不规范等普遍问题。在不合格环境中加工的茶叶容易引细菌感染,掺杂不明物质,损害茶叶质量。除此之外,加工者总是不引起重视包装物选材,材料的好坏直接影响茶叶质量是否会被损害,劣质包装材料会让原本上等好茶大打折扣。更有甚者,为了追求高利润无惜以次充好,添加绿色素、香精等有害物质,以提高茶叶的色泽和香气。
茶叶加工的每个环节都不容有失,从最初的建厂区域,采购机械设备,到录用职工人员。加工茶厂的选址需要慎重,茶厂不能建在交通干线旁,茶叶会被车辆排放的废气污染。还必须远离经常喷洒农药的农田,远离畜牧场、工厂、粪池等诸如此类的地方。加工茶叶的设备必须是专门制茶仪器,如若不然,会损害茶叶品质,无法保持茶叶的原汁原味。工作人员的录用不经过严格的删选,每个人员都要学习专业知识。从业人员不但要具备专业技能,还必须注重个人卫生,决不能污染任何一片茶叶。最后工厂重要随时保持清洁,工作人员要定时进行消毒和检测工厂环境。
七、总结
目前龙泉市锦溪镇无公害茶叶生产技术正在不断地研究中,虽然在选种培育,防止有害生物,产地环境,生产管理等方面还存在一些不足,但是只要认真研究,及时改正不当的行为,一定能提高茶叶质量。生产无公害茶叶是以后茶叶行业发展的必然趋势。希望能通过各种生产研究,为生产无公害茶叶做贡献,提高无公害茶叶产量,生产出对人们身体有益的无公害茶叶,满足市场要求。
参考文献
[1]刘声传,李泽贤,何莲,魏杰,刘红梅. 无公害茶叶生产关键环节存在的问题及对策[J]. 贵州农业科学,2010,05:73-76+80.
篇8
书名:《武夷茶叶之生产制造及运销》
作者:林馥泉
出版日期:1943年
第四节 耕耘
茶园耕耘的目的不外为二,第一、促进土壤之理学性质与土中肥料化学变化。并使耕土松软,茶树根松生长旺盛,容易吸收养分。第二、为防止杂草之繁衍,使土壤保持适当湿度,以助为茶树之生长。武夷茶园之耕耘方法与时期,随当地气候与土质之不同而稍异。
茶叶为永年作物,一年之中,往往采摘鲜叶至数回之多,欲使嫩芽不断萌放,鲜叶不停开展,对于茶园耕耘,不能有丝毫疏忽。单就除草一项工作之精粗,对于鲜叶收获,显然有不同。若误于季节,则生长更有显然差异,往往致收获大为减少。故经营完善之茶园,每年常举行深耕一次,浅耕达四五次之多。至少亦行深耕一次浅耕二次。武夷岩茶之采摘,近今一年常仅采摘首春茶一次,或首春二春二次。且因茶园土质概属砂质土,土壤不易坚实,复因罔峦险峻,工作困难,人工招雇不易,每年仅行深耕浅耕各一次,间亦有较勤谨茶农,于茶芽萌动时,加行春前一次除草,俗称为“打春草”。茶农对此次加工除草,并不以为此有益于茶树之生长,却多以便利春茶采摘为目的。
1、芽前除草
时间:芽前除草之前适期为三月下旬及四月上旬,约于采首春茶前一个月。此时园中杂草因春日和暖,随茶芽之萌动,发生繁茂即予芟除。过迟则恐锄伤茶树之幼根,妨碍春芽之伸育。
方法:通常用阔板锄头,以不锄伤茶树细根为准,约深一一公分于表土浅之锄入,此时草根新生未长,如此深度已可将草锄弃,断其生机。同时可用锄头顺将株旁之土,锄三四锄头培壅株际,此工作进行甚速。勤谨工人每日可完成二三亩。
2、深耕
深耕作用:茶树属永年作物,固定生育于一定地中,若果栽种后未实行深耕,则土壤下层逐渐固结,空气不能透通,养分利用,因之减少,且根无法纵横成网状之伸育,仅主根直生深层,地上树冠之旁枝因而不生,鲜叶产量大减。此时便须实行深耕,此对于衰老茶树,欲图恢复树势者,更为必要之工作。深耕既可疏松土壤,增进养分之利,且因行深耕,将树之老根截断,使发新根。同时将园中杂草锄翻埋入土中,令其腐烂,增进土中之腐植质,为茶园中之天然肥料。
深耕期:深耕时期依茶树生育情形,最宜行之于秋后八月下旬至九月下旬之间。此时茶芽伸育迟缓,深耕时截断株根较无碍树之生育。武夷素不采摘秋茶,是以每顾及工人招雇之便利(盖此间茶工全属江西籍每年制茶结束大部即还原籍)于二春茶采后十数日中茶工尚未遣散时,即开始深耕,通常自八月中旬至九月下旬时,正为头二伏酷暑之时,茶农咸谓此时深耕,杂草可受烈日晒死,本地俗语有云“七月掘金,八月掘银,九月掘铜,十月掘铁”(月份系指农历)。意即以农历七月为深耕最适期,此期中所掘之茶园,明年之收获有如掘金。十月掘园地者,所得为铁。金属中之也。笔者二年来观察结果,认此时期深有嫌过早,此时绿叶伸展未停,新梢正须充实,一旦缺少地下水供给,影响茶树生长不浅,惟茶农因为不采秋茶,故未直接见出其利害。
深耕方法:深耕时,先将株下之表土落叶杂草等掘开,放置于行间空地上,然后用锄头由近株根掘入,将底土全部翻开,披盖于行间表土之上,曝露于园中,听受风吹日晒,使其充分风化。掘开之土,向株旁积放,植茶之一行间,逐掘成一巨大深沟,其深自二五公分至四O公分不等。高大之水仙,掘深至六O公分以上。茶树主根,几全露现。生于树丛中之杂草,为锄头力所不能及者,遂用手抓拔以去,务使掘开部分之根际不附土块为止。向二旁掘开,行之中间,行沟土块堆积达三四十公分之高,杂草悉数埋入堆土中,以促腐烂。如此深耕,笔者以为未尽合理。因上述深耕法,将地下三O公分深部分根群掘断,反使主根往下层直生。又因时期过早,酷日之下,茶叶水分蒸发正盛,忽将地下水分供给减少,妨碍茶树生长在所难免。理应于近株际约为地上枝端垂直稍内向部位掘入为善。茶农对于近株深耕法,所据理由即将耕土堆于行之二旁,留出行沟,可以积住雨水,冲入细肥土粒,直接增加根际肥料。此虽不无相当理由,然茶树根部吸收肥料,而不在于主根,却在与树冠所披盖部分同等位置之网状须根间。
如上所述方法,菜茶栽植经五年以上之茶园,每年均举行一次。因菜茶自第四、五年起,始可开采,但初年深耕度比老园为浅。乌龙奇兰桃仁等。茶树行深耕年限均与菜茶同。水仙则自第三四年即可开采,深耕开始期自当提早一二年。深耕工作于一茶园中完毕,再而次园,一园之中先自一行后及次行,山坡则自山脚至山顶顺次而上。又深耕后之茶园,均停置任土壤风化达二个月之久,于十月中下旬开始覆土,俗称此项深耕工作为“打草”或“缴第一次锄头”。注:“缴字即费金钱雇工人之意”。
3、覆土
茶园经春耕后,二个月即行覆土,此项覆土工作,实际即包括茶树壅土、铲除秋草及茶园中耕之三项工作。山中茶农称此项工作为“冬山”亦称为“缴第二次锄头”,颇为适当。
时期:茶农对于茶树生育情形颇为明,春季发生之茶叶,通常前一年八月下旬至十一月上旬霜降前分化伸育。茶树之壅土当应不失此时期,于九月下旬至十月中旬举行之。武夷茶园均于此时期实行覆土。过迟霜降恐地下温度降低,根部受局部冻害,往往害致全树枯死。至少亦影响根之发生,芽之分化,鲜叶收量的减少。当地茶农咸谓茶树须吃“十月小逢春”之水,并非无根据。
方法:深耕时所掘开堆积于株旁之耕土、覆土即用阔板锄头将土翻掘壅入株中。翻土时则表及杂草、落叶先翻入沟中株旁,然后将耕土壅满株间根部,并如栽植时近株际留出凹形株穴,约深有八九公分,使茶树主干全部没入园土表面。壅土后,即将茶园全面施行中耕,将土块捣碎,耕耘深度约为二O公分左右,使土壤松软,仍作成平畦,此项壅土工作,无异茶树之施用寒肥。
与覆土工作同时进行,有如茶园四处,杂草灌木之芟除,水沟之修葺,道路之修筑等,阶段式之梯园,在覆土时,尚应将上一段园壁上之杂草清除,将杂草埋入下园土中作为绿肥,务使茶园之中除茶树而外,别无他物。
于此尚应附带提及者,即山中四通八达之主要公共道路,虽非直接与茶园有关,但若因道路通过其茶园地段者,无论远近,概须由各该茶园所管辖之包头负责修筑,此种道路,大部系石砌阶级,往往一修费金极巨。包头无法负担者,山主亦须负担,无从异说,如茶园散在各岩者,每年费在修路之人工为数确为可观。
每岩茶园之深耕及覆土,二次工作所需人工,由于茶园集中与离散相差甚大。茶园集中者,每产一千斤茶者,第一次深耕所需数仅一六O―一七O工,第二次覆土工则为一二O―一四O工,合计约二百八十余工。此以山水沟洞外厂一厂为例。如茶园零散者同一茶量,深耕费工在四百工以上,覆土工亦达三百十工之多,此有如庆云岩一厂者。
兹将武夷制茶所所辖九岩茶园之深耕及覆土工数,与产茶比较列表于下,以示一般。
福建省示范茶厂武夷制茶所所辖九岩厂茶园
深耕及覆土工数与茶量比较表
由上表数字表示可知同一产茶量,所需工数相差有多至一倍以上者。茶园之集散以及茶树生育之好坏其所费成本之差别,实足骇矣。
第五节 客土(“填山”)
所谓“填山”,即自他处运土填入茶园,以增加耕土是也。武夷岩茶,素来不施用肥料,且茶树每以老为贵,常有“唐树”、“宋树”之称,茶树从来未注意台刈更新。加以地势峻峭,雨水冲刷甚剧,土质又属重砂质土壤,土中肥分流失甚速,凡此种种,均为茶树之致命伤。固欲避免茶树之无患枯萎,唯一之计策,即须行“填山”。每一茶园,经三四年间,即捋园岸砌高,由附近山坡运入肥润新土,培壅于茶园中,此有恢复衰老树势,增加土壤肥分缓和雨水冲刷之效。昔时茶况景气较好时,山中专业从事打石,砌茶园开岸以填土之石匠,达七、八十人,而今茶况衰落不堪,留山石匠仅七、八人而已,且都以打石为副业。现下茶园实行“填山”者,除若干公产茶园外,已及少见。茶树之日见衰落,生长日见不良,乃为意中之事。
填山之决定条件:
山中茶户对于茶园“填山”自来未曾捋全岩所有茶园一年全部实行“填山”。因限于资本或人工之支配关系,大部认真其事。每年仅选择一部分园地行之,今年甲山明年乙山,次第进行。且一山之中,因地势及土质关系,茶树生育之优劣相差甚巨,故对茶园“填山”之决定条件,自有不同,昔时茶况较佳,当较普遍行之,今茶况日下,更不能慎重其事,其选择条件如下:
(1)地势属山中肥润之斜坡,或属谷中之盆地,或属岩凹石隙等处,对茶树生育绝对有利者。
(2)茶园先前曾出名茶,今因失于管理,茶树已见衰落,欲急图恢复者。
(3)新选茶园,茶树欣欣向荣者,欲促其极早成园,求得鲜叶产量丰富者。
(4)茶树生长较为旺盛者。
有上述情形之一者,当被选为最先“填山”之茶园,且反复次数亦多。至于土质较差之山巅或山边洲茶,素未被注意。每年仅按时节耕耘,已属尽人事实。
“填山”之适当时期:山中茶园因传统观念从来未行施肥,茶树发育生长所需之养分,除每年耕耘所埋入杂草落叶等小许有机质肥料外,主要肥分来源尚依靠“填山”。每一茶园经三四年由他处运入肥沃土壤培壅树株则树势当不致如何迅速衰败,大抵如上述优良之茶园每隔三四年即行“填土”一次,次者五六年一次,再者或未曾经填一次者有之。其中属名贵之单丛,则每年仍行分别壅土。
一年之中最适宜之“填土”时期,系自茶园深耕后开始,八月中下旬之十月中下旬均属适期。过早茶园未行深耕,园土坚实填土其上,实非所宜。过迟则影响茶芽之分化,且易至茶树根部受冻结之害。
“填山”方法:(1)清理山场―“填山”前应提早深耕,将准备举行“填山”茶园之四处灌木杂草等,芟除清理,尤其是备供运土之处所,其间杂草等之披盖物,应悉数除去,并开设运土的道路。
(2)园岸加高―此项工作分石砌与草皮砌者二种,均照原来园岸质地而定。原来属石砌者,加高时仍用石砌,草皮岸则仍用草皮岸。加高程度,应比准备填土之高度高出二十公分,即以一次加岸可作二次填土之用。石岸通常系以高三O公分厚十余公分之石块斜砌二层,约高四十五公分,草皮应易受水冲坏,通常则与新填园土同高,一次加高约三O公分。其石及草皮之砌筑,均与上述砌岸方法同。
(3)填土高度及方法―填土高低,须视茶树生长程度如何而定。如茶树高大,填土可略高,否则,稍低。通常以一公尺上下之茶树,一次填土约三O公分,过高则影响茶树生长,过低则有失填土价值。填土之大部向上坡或茶园邻近取给。土质通常选黑褐色而又松软肥润者。此种土壤均属表土,所取用部分系表层六七十公分处。红黄色之沙砾土或深之新土,均非所宜。填土选定后,即用山锄开剥,先捣碎土块,去其小木杂草之根及夹杂石块等,由工人用土箕挑运至所欲填之茶园中。填土自茶园之一端至他端,或自外而内,一级填完,再填次级,自下而上。填土导入园中后,有另外一工人执锄再充分捣碎并予以整平,近株丛并作凹状穴地,使茶树干部约十公分没入土面。其后即全园做成平畦,照式开设排水沟。至此填土工作乃告完成。
清理山场:山场清理,为“填山”最后工作。因为凿石掘土茶树时受其压倒埋没,或因工作便利捋茶树束,应逐一扶正。四处水沟应再度清理,以免受土淤塞。园中四处草根石块之移去。水道之清理,取土处所,应再施工以防避坍塌,以及火路之开设等等均为山场清理之要事。
“填山”一事,极费财力,其决夺权概属山主。其开支全部由山主负担,包头仅贡献意见,并代招雇工人,代备膳食等。施工时期,通常山主均专派有点工人员,在山监督指挥。其中工人除石岸砌筑由石匠包工,完工后,就石方面积计值外,其他均雇佣短工,依实际工作情形及其日数给其工资。若遇雨天无法工作,则山主仅供膳食,不给工资。每一人工,每日除膳食有山主供给外,照一九四一年秋之工价每日可净得一元五角工资,至于每填一亩茶园,所需工数多少,则随各处地形不同而异,难以求得一标准数字。兹就武夷制茶所一九四一年举行佛国岩填山实际情形而言,计填山有乌龟石、乌岩二处,茶园面积计三O亩,计加高园岸石方为一田,七六方市丈,公款为四四三,二OO元(仅乌龟石一处茶园加高石岸,余均用草皮砌),工达六五二工,计工资总值为一九五六元。
第六节病虫害
1、 害虫
(1)大蟋蟀
学名:Brachytvures Partentosus Lient.
科属:直翅目,蟋蟀科。
发生器:夏秋间。
为害:成虫及幼虫均食害茶叶苗之类,使苗枯死,亦啮食茶树之叶片。
发生地点:山麓附近之苗圃,或新垦茶园中。
(2)蝼
学名:Gryllotalpa atricana palis.
科属:直翅目,蝼蛄科。
发生期:夏秋之间。
发生地点:山麓附坦之茶园中。
为害:同大蟋蟀。
(3)凹额蠡斯
学名:Euconocepnalus acuminatus Fabr.
科属:直翅目,蠡斯科。
发生期:秋季。
发生地点:山中天心岩九龙窠。
为害:成虫产卵于茶树枝干组织内。
(4)台湾白蚁
学名:Odontatermes tormosanus Sniraki.
科属:羊翅目,白蚁科。
发生期:终年皆发生。
为害:成虫(工蚁)匿土道中啮食茶树之根及枝干。
发生地点:广灵岩、青狮岩、九龙窠、福龙岩等处。
(5)角蝉
学名:Gargara Spec.
科属:同翅目,角蝉科。
发生期:秋冬二季。
为害:成虫产卵叶茎内,吸食叶茎之液汁。
发生地点:山中各岩均有发生,广灵岩附近发生较多。
(6)绿浮尘子
学名:Cnlorta ilauscens Fabr.
科属:同翅目,浮尘子科。
发生期:终年发生五六回。
为害:成虫幼虫均吸食茶叶液汁,为害剧者,往往使新芽无法发生,叶片受害全数枯落致死。
发生地点:山中各岩普遍发生。
(7)茶蚜
学名:Toxxptera aurantii Boyer.
科属:同翅目,蚜科。
发生期:春秋季三季均有发生,夏期发生者无翅,系属雌性。秋季发生雌雄性均有
为害:成虫及幼虫刺吸叶及嫩稍之液汁,且因具有蜜腺致引起煤病之发生。
发生地点:发生普遍以水濂、广灵岩较多。
(8)龟甲介壳虫
学名:Ceroplastes tloridensis comst.
科属:同翅目,介壳虫科。
发生期:终年发生。
为害:直接为害―幼虫及雌性成虫刺吸茎叶之液汁。
间接为害―滴蜜汁于叶之边缘致引起煤病。
(9)红脓介壳虫
学名:Ceroplastes rubens maskell.
科属:同翅目,介壳虫科。
发生时期:终年发生。
发生地点 :磊石岩及山麓企山等处。
为害:幼虫附于茎叶上,吸食茎叶之液汁,且以引致煤病发生,受害茶树即枯死。
(10)盾椿象
学名:Poecilocoris iatus Dalias.
科属:半翅目,椿象科。
发生时期:终年发生。
为害:成虫及幼虫吮吸嫩籽之液汁,使其失却发芽力。
发生地点:岩中普遍发生。
(11)亡目椿象
学名:Lygus sp.
科属:半翅目,盲椿象科。
发生期:春季发生。
为害:成虫及幼虫刺吸嫩叶液汁,致使叶片缩。
发生地点:碧石、清源、宝国等岩。
(12)茶虫
学名:Clania minuscnla batl.
科属:鳞翅目,蛾科。
发生期:夏季发生。
为害:幼虫潜居裹内,啮食叶片。
发生地点:蜂窠岩、福龙岩发生特多。
(13)青刺毛
学名:Parasa sinica walk.
科属:鳞翅目,刺蛾科。
发生期:夏季。
为害:幼虫啮食叶汁。
发生地点:普遍发生,山麓企山发生特多。
(14)黄叶蛾
学名:Cacoecia asiatica walsingh.
科属:鳞翅目,叶蛾科。
发生时期:夏秋二季发生三四次。
为害:幼虫叶潜居,或叠叶内啮食叶片。
发生地点:普遍发生,山麓以企山为最多。
(15)茶蚕
学名:Andraca bipuncta walk.
科属:鳞翅目,天社蛾科。
发生期间:春夏秋三季均有发生
发生地点:天心、天游、青栖岩等处。
为害:幼虫啮食叶片,为害甚烈,往往使全部茶树受害,不见青叶。
(16)茶毒蛾
学名:Euproctis pseudoconspersa Stlane.
科属:鳞翅目,毒蛾科。
发生时期:每年夏秋发生二回。
为害:幼虫栖于叶间啮食叶片。
发生地点:普遍发生,山麓赤石附近尤多。
(17)茶梗蠡
学名:Cossidac.
科属:鳞翅目,小蠡蛾科。
发生时期:终年发生。
发生地点:普遍发生。
为害:幼虫蛀食枝干,致其枯死。
(18)天牛
学名:Cerambycidac.
科属:鞘翅目,天牛科。
发生时期:终年发生。
发生地点:山中九龙窠、水濂洞发生较多。
为害:成虫伤害枝干,幼虫蛀食枝干,以水仙茶受害最多。
(19)堆砂蛀
学名:Linoc10stis gonatias Meyrick
科属:鳞翅目,木掘蛾科。
发生时期:终年。
发生地点:广灵寺及天心附近均有发生,以广灵岩最多。
为害:幼虫蛀食茶树枝干,排粪淤外,通常用丝挂住。
(20)番死虫
学名:
科属:鞘翅目,番死虫科。
发生时期:终年。
发生地点:山麓赤石附近较多。
为害:蛀食成茶枝干。
2、病害
(1)炭疽病(茶黑斑病)
病菌学名:Gloeosporiurn Tneae-sinensis Miyaixe.
西名:Antnracnose.
发生时期:春夏两季期中。
发生地点:甚为普遍。
为害情形:发病时,先于叶面发现病斑,其后半点逐渐扩大,一叶之中常有病斑五六点。受害叶中之病斑里,发生黑色煤状物,使周围变黄,网脉变黑,叶面隆起,为害至烈。
(2)轮纹病
病菌学名:Pestalorria tnese Sawada.
西名:Geer bight.
发生时期:春夏两季中
发生地点:普遍发生,尤以碧石岩青狮岩二处较多。其中荒芜茶园发生最多。
为害情况:被害叶部,病起叶面发生油状黄绿色斑点,渐次扩大至全面,病斑变黄褐色,且有暗褐色纹理。叶因而干枯反,逐致掉落,为害颇烈。
(3)根瘤病
病菌学名:Rosellimia necatrixl Hartig Beriese.
西名:Raot Rot.
发生时期:梅雨期中。
发生地点:慧苑岩南圃中。
为害情形:茶芽萌后期中,树叶忽如受热汤所烫伤样,渐次叶枯萎,并逐渐染至邻近茶株。受害株至翌年枯死。检视枯死树根,见有白纹羽状物附着其间。此为病菌白丝束缠绕根际,吸收根之形成层养分,致根部腐败,茶树枯死,其后于土中繁殖,以菌丝传染全园,为害甚烈,往往使茶园变成光山。
(4)褐枯病
病菌学名:Colletotrichum Camelliae Massel.
西名:Bromn Bilgnt.
发生时期:一年中除寒冷时期外,终年发生,尤以梅雨期中为最多。
发生地点:山中普遍发生,尤以降水多排水不良之阴湿地为最多。
危害情形:受害都系茶之嫩芽及叶,发病时先起暗绿色干燥性病斑,其后逐渐变大成茶褐色,并有褐色黑色小粒点,稍成轮状,散布其间。最后病斑变为灰色,叶则全变褐色而脱落。有事枝条上亦发生有不正形之褐色病斑,迨至变为黑色,枝条即枯死,为害次烈。
(5)圆斑病
病菌学名:Cevcosporella TneaePeccn.
发生时期:梅雨期中。
发生地点:普遍发生。
为害情形:病发生时,茶叶边缘或中部发生不正形或半圆形病斑,亦有星轮纹状者。表里均有此病斑,表面红褐色,后逐渐变为黑褐色。又表里面均有灰白色细点,为害较轻。
(6)煤病
病菌学名:Me hola Spp.
西名:Sooty Mold.
发生时期:终年发生。
篇9
关键词:装配式结构 建筑产业化 产业链 技术创新 集成住宅
中图分类号:F426 文献标识码:A 文章编号:1674-098X(2014)11(c)-0036-01
当前我国实施建筑产业现代化的目的是提高建筑总体质量,提高劳动生产率,以适应当前我国新型城镇化建设的发展需求,其基础是搞好工业化生产,实现集约化、社会化大生产,而搞好工业化生产的前提是提高科技发展水平,提高体系集成配套的水平,提升产业链上的联动服务水平。
近些年来,国内的建筑科技交流空前频繁,信息扩散速度加快,范围加大。装配式建筑结构是实现建筑产业现代化的重要途径,我国在装配式建筑方面的研究和应用也在逐渐升温,截止目前住建部已批准50个国家住宅产业化基地,并成立国家住宅产业化基地技术创新联盟,为推进建筑产业化技术创新体系建设起到重要推动作用。据中国二十二冶集团装配式住宅分公司总工程师李哲龙介绍,“通过国家住宅产业化基地建设,不断加大科研投入,与科研院所和高等院校合作,解决影响产业化发展的关键技术问题,不断提升行业竞争力。”
要推进建筑产业现代化的发展,必须着眼于建筑产业化科技创新体系建设,加强原始创新、集成创新和引进消化吸收再创新,目前无论国家层面,还是地方层面都在积极探索与推进。笔者从产业化建筑全生命周期、全产业链协作角度考虑,提出以下七个方面开展技术创新,逐步夯实国家建筑产业现代化发展战略支点的科技支撑。
第一,结构体系设计。新型装配式建筑结构体系的研发是实现建筑产业现代化的重要基础,更是满足建筑产业化发展不同需求的基本保障。通过结构体系的技术研发与创新,为满足不同地域、不同居住空间要求提供核心技术支撑。
第二,节点、接缝连接技术。相比传统现浇建筑结构,装配式结构存在大量的节点、水平接缝、竖向接缝连接,这些连接是结构的薄弱环节。例如装配式框架结构中梁与柱;装配式剪力墙中水平接缝、竖向接缝连接均需要从其抗震性能、物理功能等方面考虑,并和抗震设计规范的“强节点、弱构件”的设计原则相吻合,从而保证装配式结构体系的整体性能。
第三,施工工法。装配式建筑结构的优势主要体现在施工工法上,诸如具有施工速度快,对环境影响小,受环境制约小等特点。装配式结构涉及复杂工况下构件的吊装、翻转、就位、固定等施工技术、安全施工措施与防护标准的制定、构件校正技术等环节,如何提升施工效率、进行安全施工,对有效缩短施工总工期,实现住宅的高效节能,低碳环保起到决定性作用,也是能否真正实现绿色工地和绿色施工的重要保障。
第四,部品生产。部品生产不仅要考虑自身设计能力的发展,更要注重与结构设计及施工协作联动,共同推进装配式建筑结构体系发展,不断提升市场竞争力。确保部品构件的高精度,开发更高精度预制混凝土模具是部品生产的前提和关键技术,河北雪龙机械制造有限公司副总经理王立宁说,“无论是从成本角度、生产效率还是构件质量方面考虑,模具设计是关系到工业化建筑成败的关键性因素。”另外各类预埋件的精确定位技术、流水线自动化生产技术、特殊施工工艺的自动化技术及部品标准化、模数化、通用化生产技术均需要不断提升科技水平,为降低施工综合成本、确保部品构件质量奠定基础。
第五,新型建筑材料研发。新型建筑材料是建筑产业现代化发展的必然要求,反之也将推动新型建筑材料业的发展。产业化建筑必将围绕新型建材的使用而全面展开,建筑产业现代化对新型建材从规格、质量、性能上都将提出新的要求,建材质地要采用密度小、易加工、方便运输、易成型的新型建筑材料,这就要求建材行业必须进行相应的技术研发、设备改造,不断根据市场的需求调整产业结构和产品结构,提高建材生产的技术与管理水平,提高产品质量与技术含量,由粗制产品向精细加工的半成品、成品方向发展。
第六,软件开发。据住建部印发的《2011-2015年建筑业信息化发展纲要》中指出,“加快推广BIM(Building Information Moldeling)、协同设计等技术在勘察设计、施工和工程项目管理中的应用,提升企业的生产效率和管理水平。”通过软件开发,将信息技术、自动化技术、现代管理技术与生产技术相结合,提高生产效率、产品质量和企业的创新能力。据唐山市规划建筑设计研究院正高级工程师高春荣介绍,加强适用于装配式结构设计、施工、管理的软件技术研发,将为装配式结构的技术进步和推广应用注入强劲动力。
第七,住宅集成技术。集成住宅是我国建筑产业化发展的重要方向,是满足我国新型城镇化建设中多样化、个性化需求的必然选择。发展住宅集成技术主要是围绕结构主体、围护材料、室内装修及设备安装进行,是我国建筑产业化发展的最大瓶颈。据唐山中材建筑科技有限公司董事长巩俊贤介绍,目前困扰集成住宅的问题包括集成住宅设计缺乏标准、围护材料需要轻质高强、工业化的建造模式,只有解决瓶颈问题,才能更好体现装配式集成住宅的优势与市场。
党的十八届三中全会指出,深化科技体制改革,健全技术创新市场导向机制,发挥市场对技术研发方向,促进科技成果资本化、产业化的作用。目前我国建筑生产方式正发生着转型升级的巨大变化,产业科技创新有利于推动产业结构优化升级。积极推进建筑产业化科技创新的同时,适应市场导向需求,注重科技成果转化与推广,全面提升建筑产业链的服务水平和科技含量,逐步推进产学研合作制度和互惠政策,使得各方优势资源(人、物、信息)有机衔接,提高科技研发效率和速度,为建筑产业现代化发展奠定基础。
据住建部科技与产业化发展中心副主任文林峰表示,建筑产业化的发展方向日趋明显,各地政府的热情也逐渐高涨,建筑产业化正步入发展机遇期。通过建筑产业链协作与产业化建筑全生命周期的技术创新,提升建筑产业化发展水平与科技含量,推动产业化建筑整体水平上台阶,发展符合节能、节地、节水、节材等资源节约和环保要求的建筑产业化成套技术与建筑体系,促进产业化建筑生产、建设和消费方式的根本性转变,全面提升我国建筑产业现代化发展水平。
参考文献
[1] 秦珩.万科北京区域工业化住宅技术研究与探索实践[J].住宅产业,2011,131(6):25-32.
[2] 樊骅.叠合板式混凝土剪力墙结构体系技术应用[J].住宅产业,2011,131(6):19-24.
篇10
河南省建设生物质能化产业的重要性和紧迫性
全球每年生物质的总量大约在1.7×1011 吨,估计现在只有6.0×109 吨生物质(约占总量的3.5%)被人类利用。按照能源当量计算,生物质能仅次于煤炭、石油、天然气,位列第四,占世界一次能源消耗的14%,是国际社会公认的能够缓解能源危机的有效资源和最佳替代方式,是最具发展潜力的可再生能源。目前,生物质能化利用的主要方向包括:生物液体燃料、生物燃气、生物质成型燃料、生物质发电、生物质化工等方向。生物质能产品既有热与电,又有固、液、气三态的多种能源产品,以及生物化工原料等众多的生物基产品,这些特质与功能是其他所有物理态清洁能源所不具备的。
据国际能源署统计,在所有可再生能源中,生物质能源的比例已经占到了77%,其中生物质发电、液体生物燃料和沼气分别占生物质能源利用总量35%、31%和31%。
很多国家成立专门的生物质能管理机构,主要负责相关政策的制定以及部门的协调事宜,如巴西“生物质能委员会”,印度“国家生物燃料发展委员会”,美国“生物质能管理办公室”等。
很多国家都制定了关于生物质能发展的长期规划,确定了具体的发展目标,如美国“能源农场计划”,巴西燃料乙醇和生物柴油计划,法国生物质发展计划,日本“新阳光计划”,印度“绿色能源”工程等。各国都采取了积极务实的生物质能源发展政策与措施,如欧盟主要采取了高价收购、投资补贴、减免税费以及配额制度等。美国主要采取了担保贷款、补助资金和减免税费等。
2011年,最具代表性的生物燃料――燃料乙醇全球产量达到了7 000万吨,美国燃料乙醇产量达到4 170万吨。近期美国已把生物质能的重点转向第二代先进生物燃料,《能源独立与安全法》(EISA)强制要求2022年生物燃料用量达到1.1亿吨,其中先进生物燃料为6 358.8万吨。第二代生物燃料指“寿命周期内温室气体排放比参考基准减少50%以上的、玉米乙醇以外的可再生燃料”,主要包括纤维乙醇、沼气、微藻生物柴油等。为实现此目标,美国政府采用了投资补助和运行补贴(每加仑1.01美元,约合2 123元/吨,按汇率6.3计算)等方式大力鼓励先进生物燃料相关的研发、中试、示范和商业化项目建设,已建试验、示范装置45套,预计2~3年内可以实现商业化规模生产。
生物质成型燃料方面,欧美的发展最为发达,其主要以木质生物质为原料生产颗粒燃料,其成型燃料技术及设备的研发已经基本成熟,相关标准体系也比较完善,形成了从原料收集、储藏、预处理到成型燃料生产、配送和应用的整个产业链。截至2010年,德国、瑞典、加拿大、美国、奥地利、芬兰、意大利、波兰、丹麦和俄罗斯等欧美国家的生物质成型燃料生产量达到了1 000万吨以上。
美国POET公司、美国杜邦公司、意大利M&G公司、西班牙Abengoa公司等将于2014年前运行5万吨以上规模的纤维乙醇厂。
生物质精细化工产品目前已达1 100多种,如乙二醇、乳酸、丁二酸、丁醇、2,3-丁二醇、乙酰丙酸、木糖醇、柠檬酸、山梨醇等。据分析,从生物质制取的化学品现已占化学品总销售额10%以上,并以每年7%~8%的速率增长。美国国家研究委员会预测,到2020年,将有50%的有机化学品和材料产自生物质原料。壳牌公司认为,世界植物生物质的应用规模在2060年将超过石油。
随着技术的进步,未来生物质能化开发利用将向原料多元化、产品多样化、利用高值化、生产清洁化方向转变,纤维乙醇生产成本进一步下降,与粮食乙醇相比将具竞争优势,成为液体生物燃料的主流产品;大中型沼气是极具潜力的新兴生物能源方向;以纤维素糖为平台的生物化工产业的兴起,将减少对化石资源的依赖,促进绿色发展。远期生物质快速热解制生物燃料和微藻生物燃料也将有较大的发展空间。
总体上看,我国以燃料乙醇为代表的生物质能化产业发展基本达到世界先进水平,推广使用技术成熟可靠、安全可行。在法律、政策、规划、试点等方面开展了创造性的工作,为今后的工作打下了基础。
河南生物质能化产业发展基础
作为农业大省,河南生物质资源非常丰富。仅农业剩余物的干重量每年为7 000万吨,占全国1/10。林业剩余物资源量每年为2 000多万吨,其中生态能源林近期规划500多万亩,远景规划1 200万亩。
河南省生物质能化开发利用起步较早,2004年即在全国率先实现了乙醇汽油全覆盖,成功创造了乙醇汽油推广的“河南模式”。目前,河南省生物质能化利用主要涵盖了生物质成型燃料、液体燃料、气体燃料和发电等方向,涉及燃料乙醇、纤维乙醇、沼气、成型燃料、生物柴油、生物质发电、乙二醇、乳酸等产品,2010年生物质能利用折标煤420万吨。
液体生物燃料产品产量超过70万吨居全国第一,其中燃料乙醇产量超过60万吨,约占全国的30%,燃料乙醇消费量超过30万吨。2009年底,河南天冠建成投产了全球第一条万吨级秸秆纤维乙醇生产装置,实现连续规模化生产,建立了完整的工艺路线,掌握了多项具有自主知识产权的关键技术,部分指标接近或超过国外先进水平,已经通过了国家验收,具备了进一步产业化放大和推广的条件。全省能源林面积超过300万亩,开展了生物柴油的实验生产,具备了规模化生产的技术能力。
建成了国内最早的工业化沼气项目并获得了广泛推广和应用,拥有全球最大的1.5亿立方米/年工业化沼气装置,配套3.6万千瓦沼气发电项目已经并网发电,同时供40万户居民生活、2 500辆公交和出租车使用。农村户用沼气达到361万户,普及率18%,大中型沼气达到2 360处。
生物质发电总装机45万千瓦居全国前列,年发电量约10.6亿千瓦时。
目前,河南省生物质成型燃料产品产能已超过30万,年产量20多万吨,居华中地区首位,其中建立位于河南省汝州市的生物质压块燃料生产工程,目前年产生物质成型燃料3万吨,正在形成年产10万吨的生产基地,通过示范建设,建立了压块成型燃料生产厂原料最佳收集模式、清洁生产模式、成型燃料产业发展模式,生产电耗为40kW・h/t~50kW・h/t,实现了压块成型燃料的产业化生产。建立在洛阳偃师市和河南汝州市的成型燃料设备生产基地,目前正在形成年产300台套的生产能力。
生物制氢方面国内还没有产业化,近几年,国内少数学者主要围绕提高光合细菌的光转化效率等方面,着手对光合细菌制氢进行了实验研究,并取得了一些重要进展。河南农业大学在国家自然科学基金、863计划等项目支持下,正在按照生产性工艺条件进行太阳能光合生物制氢技术及相关机理的研究,并且已经取得了一定的突破,成为河南省重要的制氢技术储备。
生物质化工产品总产量超过10万吨。河南财鑫集团2010年建成纤维乙二醇中试装置,形成了整套工艺技术,达到国内先进水平,正在进行万吨级产业化示范;河南宏业生化2011年建成全球首套生物质清洁生产2万吨/年糠醛联产乙酸装置,已实现连续规模化生产,达到国际先进水平。
河南农业大学、郑州大学、河南能源研究所等一批科研机构有较强的生物质能源研发实力。
河南省从事生物质能研发和产业推广的单位上百家。
2013年,生物质能化产品总产值超过100亿元。
总体来说,河南省生物质能开发利用起步较早,达到国内先进水平,其中燃料乙醇、沼气和秸秆成型燃料等技术和装备居国内领先地位。
河南省发展生物质能化产业的总体要求
坚持资源开发与生态保护相结合,以不牺牲农业和粮食、生态和环境为出发点,科学开发盐碱地、“三荒”地等宜能非耕地,规模化种植新型非粮能源作物与生态能源林,加强农林牧剩余物资源、城市生活垃圾与工业有机废水、废渣管理,坚持梯级利用、吃干榨净,建立标准化生物质能化原料收储运供应体系,推动生物质能化产业绿色低碳循环发展。
坚持顶层设计与先行先试相结合,把握世界生物质能化产业发展方向,统筹谋划国家生物质能化发展的新模式、新途径,破解关键制约瓶颈和体制机制障碍,以资源、技术、市场发展现状为前提,在河南先行先试,以点带面,积极推进,努力探索具有示范带动意义的生物质能化全产业链发展模式。
坚持自主创新与开放合作相结合,立足现有产业基础,整合聚集国内研发力量和专有技术,强力推进生物质能化核心技术开发,加快关键装备集成,占领世界生物质能化产业发展新高地。开展国际交流与合作,合理引进国际先进技术、装备与人才,带动生物质能化产业全面发展。
坚持重点突破与整体推进相结合,以纤维乙醇产业化为突破重点,推进沼气高值化利用、生物化工和生物质能化装备规模化生产,加快纤维丁醇、航空生物燃料、微藻生物柴油、生物质快速热解制生物燃料等先进产品与工艺研发步伐,整体推进生物质能化高起点产业化开发利用,培育规模大水平高的战略性新兴产业。
坚持政府推动与市场运作相结合,发挥政府主导作用,制定积极的产业政策,引导多种经济主体投入,扶持生物质能化企业规模化发展。建立有效的市场激励机制,营造良好发展环境,发挥市场配置基础作用,以市场开拓带动生物质能化产业持续健康发展。
在发展目标上,充分发挥河南生物质能化开发利用的资源、技术和实践优势,集聚优势企业和科研机构,吸引国内外生物质能化领域领军人才,开展生物质能化资源梯级循环利用,做大做强生物能源装备制造业,在全国率先建成规模最大、实力最强、技术最先进的生物质能化示范区,全面发挥示范区的示范、辐射和带动作用,打造全国的生物质能化源科研、装备制造和推广应用基地,占领世界可再生能源领域新高地。
近期目标(2014-2015年):规划投资200亿元以上,新增工业产值188亿元以上。重点推进纤维乙醇产业化,稳定粮食乙醇产量,纤维乙醇生产能力达到50万吨/年,纤维乙二醇等多元醇生产能力达到10万吨/年,联产糠醛达到5万吨/年,新增大中型沼气生产能力16.5亿立方米。生物柴油总生产能力达到50万吨/年,其中高品质航空燃油占10%以上。新增年产5~10万吨的成型燃料生产基地2个,生物质成型燃料生产能力达100万吨;初步奠定生物质能化示范省产业基础,确立生物质能化发展基本模式。
中期目标(2016-2020年):规划投资1 000亿元以上,新增工业产值1 600亿元以上,其中装备制造700亿元。纤维乙醇生产能力达到300万吨/年,纤维乙二醇等多元醇生产能力达到50万吨/年,联产糠醛达到50万吨/年,新增大中型沼气生产能力62亿立方米。生物柴油总生产能力达到400万吨/年,其中高品质航空燃油占30%以上。建成500个左右的生物质成型燃料加工点,形成约250万吨的生产能力。带动生物质能化技术升级,基本建成国家生物质能化示范省。
河南省生物质能化产业创新的重点任务
重点发展纤维乙醇、纤维乙二醇、纤维柴油、糠醛、沼气,实施醇电、醇气、醇肥、醇化多形式联产,着力提升农林剩余物的资源化利用水平;积极建设工业、畜牧业、农村大中型沼气工程,提高城乡有机垃圾资源化利用水平,加快构建新型农村社区配套的分布式生物能源体系;积极拓展生物质化工,初步形成规模化的生物化工产业链;完善生物质成型燃料体系的原料收集、储存、预处理到成型燃料生产、配送和应用的整个产业链,积极推进生物质成型燃料的产业化、规模化生产及应用模式,开拓生物质成型燃料应用新途径,大规模进行燃油、燃气替代应用,与煤炭形成相当竞争力;大力推进生物质能化装备产业;积极探索开展航空生物燃料、微藻生物柴油、快速热解制生物燃料等先进生物燃料技术示范。
(一)纤维乙醇产业化
在纤维乙醇产业化方面,围绕纤维乙醇生产,着力提升纤维乙醇生产和综合利用技术水平、装备和自动化水平,能源利用转化效率和经济性指标达到国际领先水平。形成包括科技研发、装备制造、工程设计建设、生产运营、人才培养和队伍建设在内的完整产业体系;形成秸杆采集、储存、调运、纤维素酶生产和配送、纤维乙醇生产与集中脱水加工等较为完备的生产经营管理模式,实现纤维乙醇产业化重大突破。
1.纤维乙醇产业化步骤
发挥天冠、中石化、中石油等能源骨干企业人才、技术、资金、管理和市场优势,不断提高生物质资源能源化转化效率,实现不同原料、不同规模、不同产品梯级开发产业化发展。因地制宜,结合城镇化和新农村建设,以产业集聚区为依托,采取不同产品结构模式,设计建设3~10万吨不同规模纤维乙醇厂。实施沼渣和炉灰还田,保持土地资源和粮食生产可持续发展。
――采取“醇―气”模式建设纤维乙醇工厂,实现木质纤维素分类利用,纤维素生产乙醇,半纤维素生产沼气联产,木质素残渣发电供热。
――结合现有秸秆电厂,采取“醇―电”联产模式,首先利用秸秆中的纤维素生产乙醇,剩余木质素废渣作为电厂燃料和半纤维素等产生的沼气联产发电,重点解决醇、气、电一体化技术和装备系统集成。
――在糠醛和木糖(醇)生产集中地区,整合糠醛、木糖(醇)生产规模,以玉米芯为原料,首先用半纤维素生产糠醛或木糖(醇),剩余糠醛或木糖渣中纤维素生产乙醇,剩余木质素作为燃料发电,实现纤维乙醇、糠醛(木糖)和发电联产,提升原料资源利用效率,解决生产环节污染问题,实现“醇―化―电”一体化发展新模式。
2.实施关键技术创新工程
――开展纤维素酶生产技术提升研究,不断提高菌种产酶效率,提升自控水平,进一步降低纤维素酶生产和使用成本,建设配套生产和供应基地。
实施关键技术创新工程,重点开展纤维素酶生产、原料预处理、酶解发酵三大关键步骤技术攻关,进一步提高纤维乙醇的技术经济性。
――加大能源植物优选培育和能源作物基地建设力度,利用河南省未开发荒地,种植能源作物,提高原料亩产和纤维素含量,开展规模化能源作物种植。
――依托车用生物燃料技术国家重点实验室,整合高校基础研究资源,重点解决纤维素酶、木聚糖酶等多酶系生产菌种构建,筛选优化高效、耐逆菌株,提高纤维素酶生产效率和发酵酶活,提高多酶系酶解效率,实现纤维素酶生产和使用成本大幅降低。
――构建高效、长寿命、高耐受性代谢工程菌株,选育驯化适合工业化生产的混合糖发酵菌株,实现纤维素、半纤维素共同发酵生产乙醇,提高原料转化乙醇效率,建设万吨级技术示范工程。
――开发连续高效低能耗预处理技术和设备、提升同步糖化发酵、蒸馏浓缩耦合等工艺技术水平,形成3~10万吨工艺技术包。
(二)沼气利用与农村新能源体系建设
1.工业大中型沼气与高值化利用
实施纤维乙醇-沼气联产,提升食品、轻工、化工、生物医药等行业的废渣、废液联产沼气水平,重点建设日产5万m3、10万m3以上的大规模工业化沼气工程,通过高温全混厌氧发酵、中温上流式厌氧污泥床、膨胀颗粒污泥床相结合的工艺提高厌氧发酵COD去除率、扩大沼气消化液资源化利用规模,降低有机废水好氧处理的负荷。开展以沼气综合利用为核心的企业泛能网示范,提高能源利用效率,减少污染物排放。鼓励沼气规模化生产生物天然气入站入网,压缩生物天然气(CBNG)用作车用燃气、居民用气及发电。
工业大中型沼气主要围绕纤维乙醇、生物化工、食品等高浓度有机废水、废渣排放企业,按照集中就近原则,合理布局,优先配套建设分布式能源供应系统。
2.农村大中型沼气和农村新能源体系建设
按照坚持走集约、智能、绿色、低碳的新型城镇化道路的要求,将生态文明理念和原则全面融入新型农村社区,构建农村新能源体系。以大中型沼气建设为核心,加快农村能源消费升级,为新农村建设提供高品位的清洁能源,提高农村居民生活质量,改善居住环境,推进生物能源镇(社区)示范,推动绿色、健康、生态文明的新型农村社区建设。依托大型养殖企业或利用秸秆建设大型沼气集中供气工程,并在条件具备的社区试点沼气分布式能源,实现气、电、热联供。开展农村微电网示范,探索可持续的运营模式。开展太阳能热水系统和地热能采暖并提供生活热水示范项目建设。根据各地资源条件,开展沼气、小水电、太阳能、地热能、风能等多种能源组合的用能方式示范,探索适宜中部地区的农村能源发展模式,推动农村新能源体系建设。
3.城市生活垃圾沼气
在省辖市或地区性中心城市,结合城市污水和有机垃圾收集,建设大型或超大型工业沼气工程。对生活垃圾进行二次集中分类处理,构建“有机废弃物―厌氧发酵―沼气发电―沼液沼渣制肥”等循环经济链条。在建或新建垃圾填埋场配套建设填埋气回收装置生产沼气,鼓励大中型垃圾填埋场建设沼气发电机组。
4.生物质热解气化
以城市废弃物和农村生物质废弃物为对象,结合工业园区的能源需求,建立热电气联供的生物质燃气输配系统示范工程。大力推行区域集中处理模式和循环经济园、工业园等园区模式,选取已经启动基础设施建设程序的项目作为示范工程,真正做到科技与需求相结合、技术与产业相结合。提高生物质气化技术水平,限制生物质气化产业发展的一个主要原因是技术仍处于较低水平,未来的发展首先要解决技术问题,包括加强生物质气化基础理论研究,提高气化炉工作效率、燃气净化效率,提高装备系统稳定性,增强系统自动化程度,完善产业链各项关键技术,打造生物质气化技术流水线生产。扩展气化技术应用领域,不但要将生物质气化技术应用于木质生物质原料,还需根据生物质原料来源及单位用途,发展适于工业生物质、农业生物质、城市生活垃圾等多元生物质气化技术,并根据用途发展高品质燃气技术、气化供热、发电、制冷等多联产技术。实现生物质气化技术产业装备生产的规模化,提高装备的设计水平,扩大装备的生产规模,实现设备的系列化、标准化、大型化,并完善上下游相关企业单位,实现装备技术的自主化设计制造,取得自主知识产权,构建完整的生物质气化技术装备设计与制造产业链。
5.生物质制氢
河南省乃至我国的生物制氢技术尚未完全成熟,在大规模应用之前尚需深入研究。目前需要解决的问题还很多,如高效产氢菌种的筛选,产氢酶活性的提高,产氢反应器的优化设计,最佳反应条件的选择等。生物制氢技术利用可再生资源,特别是利用有机废水废物为原料来生产氢气,既保护了环境,又生产了清洁能源,随着新技术的不断开发,生物制氢技术将逐步中试和投产,成为解决能源和环境问题的关键技术产业之一。
(三)成型燃料产业化
在成型燃料产业化方面,发挥河南省科学院能源研究所有限公司、农业部可再生能源重点开放实验室、河南省生物质能源重点实验室、河南省秸秆能源化利用工程技术研究中心等科研院所的人才和技术优势,依托河南省秋实新能源有限公司、河南奥科新能源发展有限公司、河南偃师新峰机械有限公司等企业,加大生物质成型燃料的关键技术突破和产业化推广。完善生物质成型燃料原料、工艺、产品、应用等环节,建设原料收储运模式,优化组合工艺生产线、降低能耗、提高自动化控制程度,加大推广力度和规模。
1.成型燃料产业化步骤
――根据河南省不同地域的生物质原料分布产出规律,结合生物质成型燃料生产模式及生产企业生产实际情况,开展收储运的理论研究和试验示范,建立生物质原料的收储运模式,解决农林生物质原料收储运成本费用问题。建立健全农林生物质原料收储运服务体系,建立适宜不同区域、不同规模、不同生产方式的农林生物质原料收储运体系。在河南省有代表性的区域,建成规模不小于5万吨/年的成型燃料收储运生产示范体系。
――研究生物质物料特性参数、生物质成型过程特性参数以及成型产品特性参数在线式数据采集与控制系统,保证生物质成型燃料全生产系统的智能化控制,保证成型系统稳定持续运行。将生产系统稳定生产时间提高到5 000小时/年,实现工业化连续生产。
――根据河南省不同地域原料特性,开发出以木本原料为主的高产能、低能耗的颗粒燃料成型机组,单机生产规模达到3-5吨/小时,成型燃料生产电耗达到60kW・h以下;配套设备完整匹配,形成一体化连续生产能力,示范生产线规模达到1万吨/年;选择代表性区域,建成年产2万吨以上颗粒燃料示范生产基地。
――根据河南省不同地域原料特性,开发出以草本原料为主的高产能、低能耗的块状成型燃料成型机组,单机生产规模达到3-5吨/h,成型燃料生产电耗达到40kW・h以下;配套设备完整匹配,形成一体化连续生产能力,示范生产线规模达到3万吨/年;选择代表性区域,建成年产5万吨以上颗粒燃料示范生产基地。
2.成型燃料规模化替代化石能源关键技术与工程示范
针对目前生物质成型燃料在燃料利用环节存在能源转化效率不高、应用规模小,高效综合利用及清洁燃烧技术水平不高等问题,开展成型燃料气化清洁燃烧关键技术设备研发和推广,从而实现生物质成型燃料的高效清洁燃烧利用,规模化替代燃油、燃气等清洁燃料。
――研发成型燃料高效气化及清洁燃烧关键技术,开发生物质成型燃料沸腾气化燃烧炉、大型高效气化炉,研制低热值燃气高效燃烧及污染控制技术,取得生物质气化系统与工业窑炉耦合调控技术。燃烧设备规模达到MW级,能源转换效率达到75%,各项环保指标达到燃油或燃气炉窑排放指标。建设年消耗千吨的生物质成型燃料的气化燃烧替代工业窑炉燃料的示范工程,实现生物质能源在工业窑炉上应用的突破。
(四)开发相关生物化工及综合利用产品
积极推进生物化工产品技术研究和产业化示范,实现对石油、天然气、煤炭等化石资源的替代。围绕纤维乙醇的副产物如二氧化碳、木质素等开展综合利用,提高产品的附加值;开展纤维质原料制取乙二醇项目产业化示范;拓展生物乙烯及下游产品产业链,开拓乙醇深加工新产业链;开发生物丁醇和生物柴油相关生物化工品。
1.二氧化碳基生物降解材料和化学品
加强高活性、安全、低成本催化体系研究,突破反应条件温和、环境友好的聚合工艺和非溶剂法提取技术,开展二氧化碳基生物降解材料及下游制品的产业化示范。积极研发二氧化碳与甲醇一步法合成碳酸二甲酯等关键技术,重点发展聚碳酸亚丙酯树脂、碳酸二甲酯、聚碳酸酯、发泡材料和阻隔材料等深加工产品。
2.纤维乙二醇、丙二醇、丁醇、糠醛下游产品产业化
依托天冠、财鑫等在生物化工技术研发方面具有优势的大型企业集团,开展纤维质糖平台为基础的生物化工醇技术攻关和产业化示范,重点发展纤维乙二醇、丁醇等高附加值产品产业化示范。依托宏业生化发展糠醛下游深加工产业链包括乙酰丙酸、糠醇、二甲基呋喃、四氢呋喃、呋喃树脂等。
开展纤维乙二醇等多元醇生产技术优化改进和产业化示范,提高生产效率和产品收率、质量,正在建设万吨级产业化示范装置,到2015年完成10万吨级乙二醇、丙二醇生产装置,到2020年形成50万吨生产能力。
开展纤维素水解物生产丁醇菌种的选育(葡萄糖木糖共利用),推进细胞表面固定化技术及其反应器的开发,采用反应-吸附耦合的过程集成研究,缩短发酵周期,提高产物浓度和分离效率,2015年完成2万吨级纤维丁醇示范,2020年形成10万吨/年纤维丁醇生产能力。
开展以糠醛为原料的乙酰丙酸、糠醇、二甲基呋喃、四氢呋喃、呋喃树脂等产品的深度开发,2015年建成连续化和规模化生产基地,2020年形成年加工50万吨糠醛生产规模。
3.生物乙烯及下游产品
开展乙醇高效催化制乙烯产业化示范。着力突破乙醇脱水制备乙烯催化剂关键技术,提高催化剂的选择性、寿命和催化效率,实现生物乙醇生产乙烯工艺的长周期、低成本、稳定运行。完善提升乙烯-聚乙烯-塑料制品和乙烯-环氧丙烷-乙二醇-聚对苯二甲酸乙二醇酯(PET)两条产业链,大力发展塑料制品、包装材料和高端服装面料。
4.木质素高值化开发利用产品
提高木质素综合利用水平,重点开发胶粘剂、有机缓释肥料、木质素复合材料、水泥保湿剂、高值燃料等产品,拓展其在化工、农林、建筑等领域的应用范围。
(五)微生物柴油产业化
根据国内外现有研究成果,结合绿色化和生物精炼概念的理念,实现微生物柴油的产业化。微藻等微生物养殖和生产生物柴油技术实现重大突破,开展万吨级工业化示范。集合微藻等微生物优良品种选育、高效转化、规模化养殖、油脂提取精炼等核心技术,开展工业化养殖、生产示范,实现微生物柴油和副产品的多联产。
1.木质纤维素生物质的综合处理技术
木质纤维素生物质主要成分为纤维素、半纤维素和木质素,经过一定的物理/化学处理,木质纤维素糖化,用于微生物的培养。副产物中的糠醛等物质会影响微生物的生长和代谢,综合的处理技术目标是将这些副产物控制在最低的水平,同时达到最高的降解效率。酸碱和离子液等化学处理要配合温度、压力,适度的破碎要配合微波、超声、蒸汽爆破技术,从而达到能量消耗最小,水解产物变性最少的效果。这些处理技术综合起来需要针对不同物料有序实施。
2.产油微生物脂类代谢的遗传调控
对于产油微生物油脂过量积累的机制当前还停留在生化水平上。利用基因组学、蛋白组学和转录组学技术,研究产油微生物脂肪代谢的基因调控机制,通过对某些关键基因实施遗传修饰,使其朝着人为设定的代谢流方向发展,最大限度的发挥转化作用。理解脂肪代谢的基因调控原理还有利于通过不同发酵模式调控油脂积累,有利于更好的利用工业废弃物生产油脂,有利于通过培养基营养限制调控脂肪的积累,有利于利用小分子诱导物调控细胞的繁殖和脂肪积累。
3.微生物柴油原位转酯技术
传统的微生物柴油生产周期长、成本高,而且打破微生物坚实细胞壁的操作很难实施。基于微藻等微生物生物柴油生产的周期分析显示,90%的能耗是用在微藻的油的提取工序上,表明油的提取工艺的进步将大大影响生产成本,决定着生物柴油加工产业的经济效益。近期“原位”转酯方法用于藻类生物产油生产受到密切关注,这种在细胞内酯类与醇类接触直接发生转酯反应,而不需要将脂类提取出来再与其发生反应。这种直接转酯技术,不仅能够用于微生物的纯培养物,同时有效适用混合培养产物的生物柴油生产。研究显示,原位转酯技术能够降低样品中的磷脂的量,甚至达到不能检出的水平。生物质的含水量会极大的影响油脂的提取率,而小球藻原位转酯研究发现,适当增加转酯反应底物醇的比例能够从含水量较大的生物质中获得较高产率的生物柴油,将大大减少微生物生物柴油的能量消耗和设备投入,明显降低生产成本。
4.生物精炼概念下的微生物柴油生产技术体系
木质纤维素物质来源广泛,如果在处理过程中将某些附加值较高的化学提取出来将会大大提高收益。同时,将微生物菌体所含的营养物质充分利用也会大大节省原料成本,例如将酵母菌提油后的残渣经过加工脱除抗营养因子后再用到微生物培养基的配制,可以节省大量含氮营养添加物。转酯反应的副产物甘油可以提纯后加工成丙二醇,后者是一种附加值更高的化学原料,甚至粗甘油用于培养基添加会提高微生物油脂的积累。废水处理可以用厌氧发酵生产甲烷或氢气,也可以通过微藻培养回用有机营养物。
5.生物柴油相关生物化工品
积极利用生物柴油副产品甘油,采用高活性、高选择性的催化剂,突破反应热移除、微生物法二羟基丙酮等关键技术,重点开发环氧氯丙烷、乙二醇、丙二醇、十六碳酸甲酯、二羟基丙酮(DHA)等高附加值精细化工产品,拓展其在医药、化工、食品等领域应用范围,实现资源高效综合利用。
6.生物质乙酰丙酸平台化合物
完成以玉米秸秆为原料水解生产乙酰丙酸工艺的优化设计与中试,解决生产过程设备腐蚀问题,完成乙酰丙酸的分离纯化工艺,完成乙酰丙酸的衍生物乙酰丙酸乙酯的生产工艺设计,将生物质高效转变为乙酰丙酸等平台化合物。完成千吨级的生物质水解生产乙酰丙酸联产糠醛工艺、乙酰丙酸酯化工艺中试装置的建设及运,完成放大级的生物质水解的生产乙酰丙酸工艺包的开发设计。
7.生物质间接液体燃料
开展生物质间接液化技术及产品开发,利用生物质先气化成合成气(由CO和H2组成的混合气体)、然后再将合成气液化得到的产品,如甲醇、二甲醚、费托汽柴油等,逐步建立中试及示范工程。
8.生物质纳米材料
以生物质作为原料合成碳基纳米材料、多孔碳材料及复合材料,所制备的纳米材料具有优异的固碳效率、催化性质和电化学性质,使其在催化剂载体、固碳、吸附、储气、电极、燃料电池和药物传递等领域潜在重要应用,使其成为合成技术研究的热点。
(六)强化生物质能化装备产业化与基地建设
围绕生物质能化产品规模化开发利用,依托特色产业集聚区,发挥骨干装备制造企业的产业基础和技术优势,加强与国内外优势生物质能化装备企业和专业科研院所合作,整合上下游企业,完善特色生物质能化装备产业链。突出集成设计、智能控制、绿色制造和关键总成技术突破,培育一批具有系统成套、工程承包、维修改造、备件供应、设备租赁、再制造等总承包能力的生物质能化装备大型企业集团,建设一批特色鲜明、技术先进、在全国有重要影响的生物质能化装备基地。
1.农林原料收储运装备
以洛阳、许昌等农机产业集聚区为重点,集合国内先进农林机械制造企业,引进国外先进制造技术,骨干企业,重点突破秸秆剪切、拉伸、压缩成型等基础共性技术,大力发展稻麦捡拾大中型打捆机、玉米秸秆收割调质铺条机、棉秆联合收割机、能源林木收获机械、高效粉碎机械与成型机等重大整机产品,带动相关零部件产业配套发展,切实提高生物质收集、装载、运输、储藏的高效性和通用性。
2.纤维乙醇成套装备
以南阳新能源产业集聚区为重点,依托天冠集团现有纤维乙醇成套装备,集成国内外先进技术,加大设计研发力度,加快推进具有自主知识产权的纤维乙醇成套装备技术提升,打造世界领先的纤维乙醇成套装备制造基地。重点开发原料预处理低温低压、大型连续汽爆技术和装备,纤维素酶大型、高效生产技术和装备,大型高效连续酶解发酵技术和装备,高抗堵蒸馏及热耦合干燥成套装备,木质素燃烧高效能量转化装备。2015年前形成年总装10套3~10万吨级纤维乙醇成套装备能力。2020年形成年总装300万吨纤维乙醇成套装备能力。
3.沼气生产及沼气发电成套装备
以南阳新能源、郑州经济技术、安阳高新技术和长葛市等产业集聚区为重点,依托天冠集团、森源集团等骨干企业,加快发展有机废弃物高效率厌氧消化及沼气生产、沼气制取生物天然气、民用沼气加压输送、撬装式CNG加气站以及生物天然气分布式能源集成等成套装备。加强与美国通用、德国西门子和日本三菱等国外优势企业合资合作,大力发展2 000千瓦以上大型沼气发电技术和装备。在南阳形成大型工业沼气成套装备基地,在许昌和周口形成农村大中型沼气成套装备基地,在郑州形成生物天然气分布式能源与CNG加气成套装备基地,在安阳形成城市有机垃圾沼气成套装备基地。
4.生物质成型燃料及其高效利用成套装备
依托河南省科学院能源研究所有限公司、河南秋实新能源有限公司等,建成成型燃料成套生产设备和生物质热解气化、高效燃烧及生物质成型燃料气炭油联产设备加工生产基地。
5.生物柴油和生物热解技术装备
依托中石化、中石油集团先进生物柴油和航空生物燃料技术,发挥洛阳、商丘装备制造业优势,加快发展水力空化、临界态甲醇酯化等新型生物柴油装备,形成成套生产能力。加快开发生物质快速热解、生物油催化加氢生产车用燃料技术和装备。
6.生物化工产品关键装备
依托河南财鑫集团、华东理工大学、天津大学,设计研发优化改进秸秆制乙二醇等多元醇高效预处理、糖化、连续氢化裂解反应器和节能精馏分离等关键设备。
依托河南天冠集团、郑州大学、清华大学、浙江大学、中山大学、中科院上海生命科学研究院等,设计研发优化二氧化碳降解塑料反应釜、脱挥挤出造粒、产品改性等关键设备,生物柴油副产物甘油制1,3-丙二醇反应自控流加、膜法分离、脱盐、浓缩、真空精馏等关键设备,纤维丁醇发酵分离耦合反应器、离交树脂产物分离等关键设备。
依托宏业生化、河南省科学院能源研究所、中科院广州能源所、山东省科学院,设计低温低压精馏塔、液相管式推流反应器、高效多级蒸发等关键设备;改进废液无公害化处理、高效分散造粒、低分子量差分离等关键装备。
7.生物柴油和生物热解技术装备
依托中石化、中石油集团先进生物柴油和航空生物燃料技术,发挥洛阳装备制造业优势,加快发展水力空化、临界态甲醇酯化等新型生物柴油装备,形成成套生产能力。加快开发生物质快速热解、生物油催化加氢生产车用燃料技术和装备。
8.高比例灵活燃料汽车和双燃料汽车
与国内外知名汽车发动机制造企业合作,依托郑州日产、海马和宇通开发乙醇/汽油灵活燃料汽车和汽油/天然气、柴油/天然气双燃料汽车。前期开发专用发动机、燃料供给及控制系统、氧传感器等,2015年后形成批量生产能力,配套建设相应的燃料(E85、车用生物天然气)输、供、储设施。2020年灵活燃料汽车产能达到20万辆以上,双燃料汽车产能达到10万辆以上。
(七)其它先进生物燃料技术创新和示范
加大科技研发投入和攻关力度,加快推进生物柴油、航空生物燃料、生物质快速热解制生物燃料等其他先进生物燃料技术取得重大突破。2015年前开展废弃油脂生产生物柴油和万吨级纤维丁醇等示范工程建设,2020年前推动含油林果生产航空生物燃料和高级油产业化发展,微藻养殖和生产生物柴油技术实现重大突破,开展万吨级工业化示范。
1.生物柴油
在郑州、洛阳、开封、商丘、安阳、周口、漯河、焦作等餐饮废弃油脂和工业废弃油脂富集的地区,加快建立工业废弃动植物油脂回收体系、餐厨垃圾油脂回收体系,以餐厨垃圾油脂和工业废弃动植物油脂为主生产车用生物柴油。到2015年形成20万吨/年产能,2020年前在全省推广,形成30万吨规模。
集合微藻优良藻种选育、高效转化、规模化养殖、油脂提取精炼等核心技术,开展工业化养殖、生产示范,实现生物柴油和副产品的多联产。
2.航空生物燃料
在南阳、洛阳、三门峡、安阳等山地丘陵区推进规模化的含油林果原料基地建设和采集体系建立,到2020年实现以含油林果为主要原料生产航空涡轮生物燃料和高级油,规模达到25万吨/年。
3.生物质快速热解生产车用生物燃料
围绕生物质快速热解生产生物油、生物油催化加氢生产车用生物燃料,开展关键技术与工程示范研究。2015年完成千吨级中试。2020年建成5万吨级的生物油催化加氢生产车用燃料示范工程。