楼宇自控范文

时间:2023-03-23 21:00:02

导语:如何才能写好一篇楼宇自控,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

篇1

关键词: BAS;智能大厦;应用

Abstract: Building Automation systems (Building Automation System, the abbreviation BAS) of intelligent Building is one of the important component parts. BAS is based on the modern computer technology, automatic control technology, the communication technology and network technology, through the network will be distributed in each of the monitoring system controller connect up, to complete the operation, management and focus on distributed control function of the integrated automation system. This paper analyzes the function of the system and the control work in the way to be introduced.

Keywords: BAS; Intelligent building; application

中图分类号:G267文献标识码:A 文章编号:

BAS通过对大厦内的机电设备采用现代计算机技术进行自动化监控和有效的管理,控制大厦内的温、湿度,创造舒适、安全的工作环境,并以最低的能源和电力消耗来维持系统和设备的正常运行,以求取得最低的大厦运作成本。同时,BAS极大的方便了设备的操作与维修,减少管理和维护人员,达到节约能源和人力资源的目的,为业主创造了更高的经济效益。

楼宇自控系统将建筑电气设备与控制子系统、进行分散控制、集中监视、管理,实现一体化控制、检测和管理,创造舒适、安全的工作环境,以最低的能源和电力消耗来维持系统和设备的正常运行,取得最低的大厦运作成本。同时,通过优化控制提高管理水平,极大的方便了设备的操作与维修,减少管理和维护人员,达到节约能源和人力资源的目的,为业主创造更高的经济效益。

一、系统功能:

通过对楼内冷热源系统、空调系统的最佳控制,温、湿度的自动调节,新风量的控制,以及供排水、照明等合理设计从而保证各个区域的环境和满足各个区域的功能要求,楼宇自控系统可以根据不同区域进行日程安排,自动设定设备控制策略,使设备运行数量与环境控制要求相匹配,并提供最佳的能源供应方案。

建筑电气设备的能源消耗巨大,尤其是空调机组,系统采取运用优化运行方式,确保节能,使这些设备高效运行,从而降低运行费用。

楼宇自控系统的主要任务之一是管理建筑设备使其管理现代化,包括管理功能、显示功能、设备操作功能、实时控制功能、统计分析功能及故障诊断功能,并使这些功能自动化,从而实现物业管理现代化,降低人工成本。

利用楼宇自控系统的软件功能,自动累计各种机电设备的运行时间,在可以利用备用设备的情况下,自动循环使用,平衡常用设备和备用设备使用时间,延长设备的使用寿命。

二、系统控制功能

1、新风系统监控

送风温度自动控制: 冬季时,根据传感器实测的温度值自动对热水阀开度进行PID运算控制,保证新风机送风温度达到设定温度的要求;反之,夏季根据传感器实测的温度值自动对冷水阀开度进行PID运算控制。通过调节水阀的开度,使送风温度达到用户的设定值。

送风湿度控制: 根据湿度传感器的实测值自动对加湿阀进行PID运算控制,保证送风湿度达到用户的湿度设定值。

过滤网堵塞报警: 空气过滤器两端压差过大时报警,并在图形操作站上显示及打印报警,并指出报警时间。

新风机启停控制: 根据事先设定的工作时间表及节休息时间表,定时启停新风机,自动统计新风机运行时间,提示定时对新风机进行维护保养。

连锁保护控制: 风机停止后,新风风门、电动调节阀、电磁阀自动关闭;风机启动后,其前后压差过低时故障报警,并连锁停机;当温度过低时,进行防冻保护,开启热水阀,关闭风门,停风机。

节能运行,包括:

——间歇运行:使设备合理间歇启停,但不影响环境舒适程度。

——最佳启动:根据建筑物人员使用情况,预先开启空调设备,晚间之后,不启动空调设备。

——最佳关机:根据建筑物人员下班情况 ,提前停止空调设备。

——调整设定值:根据室外空气温度对设定值进行调整,减少空调设备能量消耗。

——夜间风:在凉爽季节,用夜间新风充满建筑物,以节约空调能量。

2、空调系统监控

回风温度自动控制: 冬季时,根据传感器实测的回风温度值自动对热水阀开度进行PID运算控制,保证空调机组回风温度达到设定温度的要求;反之,夏季根据传感器实测的回风温度值自动对冷水阀开度进行PID运算控制。通过调节水阀的开度,使回风温度达到用户的设定值;在过渡季节则根据室外送入新风的温湿度自动计算焓值,并与室内回风的焓值进行PID运算,其结果将自动控制新风阀、回风阀、排风阀的开度,以达到自动调节混风比的作用。

回风湿度控制: 根据湿度传感器的实测值自动对加湿阀进行PID运算控制,保证回风湿度达到用户的湿度设定值。

过滤网堵塞报警: 空气过滤器两端压差过大时报警,并在图形操作站上显示及打印报警,并指出报警时间。

空气质量调节: 在重要场所设置二氧化碳测量点,根据测量值的浓度自动调节新风比。

空调机组启停控制: 根据事先设定的工作时间表及节休息时间表,定时启停空调机组,自动统计空调机组的运行时间,提示定时对空调机组进行维护保养。

连锁保护控制: 风机停止后,新回排风风门、电动调节阀、电磁阀自动关闭;风机启动后,其前后压差过低时故障报警,并连锁停机;当温度过低时,进行防冻保护,开启热水阀,关闭新风门,停风机,并在图形操作站上显示报警。

3、冷热水系统监控

根据实际热水量需求控制热交换器及水泵运行台数,以达到节能效果。

热水供水温度控制:由热水温度设定值与供水管的温度值比较作PID运算,控制电动蒸汽阀的开度,保持热水供水温度。

温度监测:监测蒸汽温度、热水供水温度及总管供水温度,确保系统操作正确。

水泵的监测与控制:监测水泵的运行状态、故障状态,控制水阀的启停。

可根据程序安排,每次启动不同的热交换器及水泵,从而增加设备寿命。

4、给排水系统监控

5、环境参数测量:室外温度/室外湿度、室内空气质量检测

篇2

关键字:楼宇自控系统;控制

中图分类号: TU984 文献标识码: A 文章编号:

1引言

本文以一工程实例介绍了组成智能大厦的一个子系统一楼宇自控系统,这个系统担负着对整座大厦内机电设备的集中监测与控制,保证所有设备的正常运行,并达到最佳状态。同时,在计算机软件的支持下进行信息处理、数据计算、数据分析、逻辑判断、图形识别等,从而提高了智能大厦的高水平的现代化管理和服务。

2系统结构

本系统包括两个可以互相通信的中央监控站,每个监控站上挂接两条控制总线(C-BUS),每条总线各挂15个左右区域控制器。利用语音软件(Interactive Voice Response Software)可以实现电话远程控制,通立电话进入整个楼宇系统,监视并控现场的物理点。本系统的结构图如图1。

本系统共采用了58个数字式直接控制器(DDC)和2个开放式连接控制器。其中,大型模块式控带咪(监控点最多可达128点)21个,中型单元式控制器(监控点最多可达36点))37个。从整体结构可见系统分为四个部分:中央监控站、区域控制器、现场设备(图中没有画出)和通信网络。中央控制站是整个系统的最高层管理中心,用来监视、控制、数据处理和中央管理,即对来自分站的数据和报警信息进行实时监测,同时也向分站发送各种各样的控制信息,也可以对己有的数据进行打印,做各种报表,做数据的历史趋势曲线等;区域控制器即所谓分站,对下具有育删泣完成对现场电气设备的数据采集和控制,对上具有与中央控制站通过网络介质通信的功能:现场设备直接与控制器相连,它的数字和模拟信号直接接到控制器,从控制器输出的控}唁号也直接引至现.场设备;现场设备具有安全、可靠能满足实际要求的精确度的特点;通信线一般使用屏蔽或非屏蔽双绞线,在中央控制站一层使用TCP/IP协议,通信速率可达l OMbps,在分站一层使用RS485协议,通信速率可达1 Mbps。

3与第三方控制系统进行接口

一般而言,楼宇自控系统是对建筑物内的空调设备、照明配电设备、给排水设备和电梯设备等进行监视和控制,从而使大楼的物业管理更方便、更快捷,实现一定程度的智能化。现在很多商家都开发了相应的、各有特色的软件来实现这一目标,但对于每一套软件来说,它都有自己的侧重点和某方面的优势。因此对于用户来讲,可以自行选择并加以相互综合,集两套或两套以上系统软件的优点,从而使整个管理更有效。这样就势必带来了一个相互通信、交换信息的问题,即接口的实现。

笔者参与的楼宇自控系统是一大型楼宇自动化系统,该系统共有监控点3000多个。整套系统实现对生产中心内的新风机组、吊式风柜、风机盘管、空调机组、给排风机、照明配电设备及冷冻站的一部分参数进行监控。

该大楼有冷冻站两个,包括八台冷水机组。冷冻站内的冷水机组是由另一套第三方控制系统(Carrier)来进行监控的。该系统可以根据当时大厦内的温度高低来确定冷量需求,从而自动启停不同功率的冷水机组,并随时监视它们的各种运行参数。由于它监视所得到的参数只能从各个冷水机组上的分站显示屏观看,且不十分方便。如果短彭丈该系统的CCN Dataport将所有参数提供给楼宇自控系统,直接在中央监控站上浏览则会很有效,而控制仍由Carrier自动进行。接口原理如图2:

从图2可以看出,与Carrier控制系统相连的OpenLink控制器就相当于一个Excel 5000类型的控制器。它在C-Bus控制总线上也占用一个设备结点号(每条总线至多可以有30个设备结点),并且它可支持多达768个数据点。

4电话远程控制

语音信息系统是在公用电话网上向用户提供存取语音信息的邮箱式服务系统,它是计算机技术和通信技术在通信领域里紧密结合的产物。当语音信息系统在智能建筑中使用时,可作为建筑物内用户专用的语音信息服务系统。它的目的是相应用户在任何时间任何地方使用电话,通过拨号和按键,对语音信息系统进行操作,从中存取、管理语音信息。语音信息技术与计算机技术和软件工程发展密切相关,系统中信息的不同类别、用户的不同需求、服务的不同侧重点以及管理模式等等,都可以通过丰富而复杂的软件设计得到实现。

语音系统允许用户通过电话拨号进入楼宇自控系统,对系统的设备进行监视和控制;也可以在数据点产生报警时,通过电话通知预先设定的用户,或澎丈交换机来传呼相应的传呼机,传呼机可以是中文BP机和数字BP机,只要添加相应的设备如Modem就可以了。当用户拨打分配给该电话遥控系统的电话号码并接通后,会听到欢迎进入电话遥控系统的提示,用户输入帐号加两个“*”即可。其后,用户的操作可以完全按照该系统给出的语音提示进行。退回主菜单可以按,’#”键。帐号不同,用户级别可能不同,可以选择的菜单也不同。具体步骤如图3:

从上图可以看出,通过点菜单可以进行很多功能,利用这些功能可以对整个楼宇自控系统的所有数据输出点进行监视和控制。也就是说通过电话控制各数据输出点和通过运用上位机、键盘控制数据输出点效果是等价的。

实现电话远程控制,需要添加的硬件设备为语音接口长,它插在上位监控站的ISA槽上,每块语音接口卡带有四个电话接口,也就是说允许四部电话同时访问。首先必须正确设置语音板。语音板上有几个影践,它们是JPI、JPS、JP6、JP7、 SWl。1P7用来设置语音板的数量,如果系统只用了一块语音板则要跳上。JP1用来设置接口卡的IRQ值,允许的值为2,3,4,5,7,9,缺省的跳线在IRQ9,如果其它外设已经占用,则改变到一个空余的IRQ值,如果有一块以上的语音板,它们使用相同的IRQ值。JP5和JP6用来设置I/O地址中的基地址。两个组合起来可以设置四种基地址:D000,A000,B000,C000,其中D000是缺省设置。SW是用来设置偏移地址,共有四个DIP开关,可以设置八个偏移地址:0000,2000,4000,6000,8000,A000. C000,EOOO。所以结合起来就可以设置32种I\O地址。注意在设置IRQ和I\O地址时,不能与其它设备冲突。

上位监控站运行语音软件IVR(Interactive Voice Response)之前,应先在软件中进行编辑和修改工作。它包括两个方面:语音菜单的录制和各种系统特性表的编制。

在菜单方面,首先要录制好每个语音提示,并存放在系统规定的目录下。然后根据具体需要组织上卜文提示,包括欢迎提示、菜单的层层进入、有关的帮助以及它们之间的顺序如何等等。数据点表的编制主要是根据在系统中点的位号进行命名相对应的数据点名字;选择相应的楼层号(三个数字)、区域号(三个数字)和设备号(三个数字),即地理位置,这是最关键的,因为当系统进行数据点查找的时候,就是依次根据楼层号、区域号、设备号来进行的,所以每一个数据点的地理位置都必须不同。数据点还有对应的描述、语音代码、缺省值、产生报警时的电话组、可以访问该点的用户以及该点的任务安排等。

系统特性表包括系统用户表、语音代码表、电话列表等。系统用户分为三种:系统管理员、可录音用户、一般用户,其中系统管理员可以定义其它用户、录制语音提示、编辑系统数据库等,也就是说他拥有系统所有的权限;而可录音用户可以录制系统语音提示以及系统管理员分配给他的数据点一般用户只能控制系统管理员分配给他的数据点。语音代码表为地理位置描述或者数据点的描述等。电话列表为当系统产生报警后系统将自动呼出至的电话或传呼机列表。完成了硬件和软件方面的设置之后,电话遥控系统便可以正常工作了。这样,系统管理员可以随时随地通过一部双音频电话控制整个楼宇自控系统。

5 结论

楼宇自控系统是建筑智能化的重要组成,今后会有很大的发展前景。

参考文献

篇3

关键词:智能建筑、楼宇自控、智能化照明控制、节能

一、楼宇自动化控制系统概述

智能建筑是指利用系统集成的方法,将计算机技术、通信技术、信息技术与建筑艺术有机结合,通过对设备的自动监控,对信息资源的管理和对使用者的信息服务与建筑的优化组合,所获得的投资合理,适合信息社会需要并且具有安全、高效、舒适、便利和灵活特点的建筑物。2013年在北京举行的智能建筑展也充分的肯定了这一点。

我国智能建筑始建于上世纪90年代,目前,已在北京、上海、广州、深圳等地相继建成一批智能型的大型公共建筑和住宅小区。同时,智能建筑已不再局限于办公大楼,其范围以及扩大到医院、车站、学校、商场、住宅区等。智能建筑的功能也朝着多元化的方向发展。

楼宇自动化控制系统是智能建筑不可缺少的重要组成部分,其任务是对建筑物内部的能源使用、环境、交通及设施进行检测、控制与管理,以提供一个既安全可靠、节约能源,而且舒适宜人的工作和居住环境。楼宇自动化控制系统包括暖通空调系统、给排水系统、供配电系统、照明系统、电梯系统、消防系统、安防系统等。楼宇自动化控制系统就是将建筑物内的空调与通风、给排水、变配电、照明、电梯、消防和安防等系统,以集中监视、控制和管理为目的构成的综合系统。下面,我们将一起探讨楼宇自控系统中的照明系统。

二、智能建筑照明控制系统

1.照明控制系统的发展

电气照明是建筑物的重要组成部分,照明控制是照明系统的主要内容。过去,照明控制主要是控制灯光回路的开和关,而现在,照明控制已趋向智能化发展,通过智能照明控制系统,可以对建筑物中灯光的色彩、明暗分布和时间进行控制,并可以组合创造出不同的意境和效果,不但提升了照明环境的品质,而且确保在建筑物中的工作和生活群体的舒适和健康,同时节约能源。

照明控制经历了手动控制、自动控制和智能化控制三个阶段。手动控制是最初的控制方式,以最简单的手动操作来启动和关闭照明电器,从而达到控制的目的。自动控制的特征是以光、电、声音等技术来控制电器,这种控制方式局限于单个或单组灯具,不能完成网络化的监控控制。智能化控制系统是以计算机和网络技术为核心,将来自传感器的信息进行处理后,通过一定的程序指令控制照明电路中的设备,达到不同的照明要求。

2.智能化照明控制系统的特点

智能化照明控制与传统的手动照明控制相比有很多优点,包括创造环境气氛、改善工作环境、良好的节能效果、延长广元寿命、管理维护方便等。智能化照明控制具有以下特点:

2.1系统集成性。

智能化照明控制系统是集计算机技术、网络技术、自动控制技术、数据库技术和系统集成技术于一体的现代控制系统。

2.2智能化。

智能化照明控制系统具有信息采集、传输、逻辑分析、智能分析集反馈控制等智能特征的控制系统。

2.3网络化。

智能化照明控制系统是大范围的控制系统,可进行控制信息交换和通信。

2.4使用方便。

智能化照明控制系统的各种控制信息可以以图形化的形式显示,方便控制,显示直观,而且可以利用编程的方法灵活改变照明效果。

3.智能化照明控制系统的结构

智能化照明控制系统主要由输入单元、输出单元和系统单元三部分组成。某些复杂的系统中还需要辅助单元和系统软件。

输入单元是将外界输入的控制信号转换为系统能够识别的信号,作为控制依据,包括控制面板、显示屏、智能传感器、时钟管理器等。输出单元的功能是接收总线上的控制信号,控制相应的负载回路,实现照明控制。包括开关控制模块、调光控制模块及其他模拟输出单元。系统单元是指系统的各组成部分,在系统控制软件的支持下,通过计算机对照明系统进行全面的实时监控。

三、常用照明控制传感元件

传感器是智能化照明控制系统输入单元的重要元件,常用的传感元件有人员动静传感器、时钟控制器、照度传感器、红外遥控传感器、声控传感器。

1.人员动静传感器

人员动静传感器是通过探测人体移动的信号进行智能分析、量化计算,准确判断出人员移动的方向和位置。例如:当人员进入房间时,开启照明系统;当人员全部离开房间时,关闭照明系统;当房间内有人时,保持照明系统。

2.时钟控制器

时钟控制器是一个电子时间开关,通过预设置的时间来开启和关闭照明系统或者启动不同的灯光场景,可按照每一天的时间表来编制记忆场景,可设置周末、节假日的特殊场景。在室内照明中,时钟控制器通常用于使用时间比较固定的区域,例如:商店、工厂等。在室外照明中,时钟控制器广泛应用于建筑物的立面照明、广场照明等。

3.照度传感器

照度传感器是将光信号转换成电信号的装置,可根据环境灯光的变化,将可见光转换成电信号,从而控制照明系统来保证作业面的照度在移动范围内。当作业面的照度高于预设置的照度值时,关闭或者调暗采光系统;当作业面的照度高于预设置的照度值时,开启或者调亮采光系统。

四、智能化照明控制系统的控制方式与实施

1.定时控制

定时控制是常用的一种照明控制方式,通过时钟控制器等电气元件,实现对各个区域内照明灯具的工作时间的控制。电子可编程实时时钟控制是目前应用最广泛的一种定时控制方式,可设定很多不同的灯光区域和时间,管理方便,还可节约能源。

2.场景控制

场景控制是实现对各区域内用于正常工作状态的照明灯具的场景切换控制。照明设备和照明回路都可以控制,每个设备和回路可设置成不同亮度水平,然后储存成一个场景,可以看作为一个区域的外观。场景设计完成后,可通过操作控制面板或遥控器来实现场景照明,也可以加定时器和光传感器实现自动场景照明。常见的场景数量是8个。

场景控制通常用在功能用途较多的建筑物,如展厅、会议室、酒店大堂等。

3.照度检测控制

照度检测控制是通过调光模块和照度传感器等电气元件,实现对各区域内用于正常工作状态的照明灯具的自动调光控制,使得该区域的照度不会随外界因素的变化而改变,始终保持在照度预设值的范围内。这样可以充分利用日光,又能节约能源。

照度检测控制方式主要使用在办公室照明场合,白天的时候,近窗户处照度较高,基本能够符合视觉作业的要求,其他照度较低的地方可通过开启相应的灯来调节亮度,这种照度检测的控制方式有利于节约电能,能够保证控制区域内的照度均匀一致。

4.灯光与窗帘的联动控制

灯光与窗帘联动控制也称为电动窗帘控制,是智能化照明控制系统的一个重要组成部分。窗帘的开闭可由照度传感器控制,白天当亮度足够时,可以设置自动打开窗帘,夜晚可以将窗帘关闭,开启照明系统。在家居室内,还可以根据主人的喜好来设计窗帘开关的程序,例如开1/2,1/3不同等。

窗帘联动控制可用于智能化家居室内、写字楼、别墅、宾馆、医院、实验室等处。

5.活动区域探测控制

活动区域探测控制通过调光模块和动静传感器等电气元件,实现对各区域的照明灯具的自动开关控制。活动区域的传感器能检测出房间内的人员走动,并将信息反馈到控制器,从而控制相应灯光的打开和关闭。使用这种控制方式应该注意传感器安装的位置,如果安装不当,会造成不必要的开灯和关灯,造成资源浪费。活动区域探测控制方式常用于办公室、会议室、厕所、走廊等场所。

6应急照明控制

应急照明控制是智能化照明系统对特殊区域内的应急照明的控制。通过调光模块,实现在应急状态下各区域内的照明灯具的减免数量的控制。包括正常状态下的自动调节照度和区域场景控制,以及应急状态下自动解除调光控制。

除了以上几种控制方式外,智能化照明控制还能实现与安防系统、火灾自动报警系统等其他智能化系统的联动。

五、智能化照明控制的节能方案

节能是当前大环境下建筑发展的基本趋向,照明节能是建筑界实施可持续发展战略的一个不可缺少的环节。如何做到既保证照明质量又能节约能源,是照明控制的重要内容。照明节能主要从以下几点着手:其一,采用高效节能的节能光源;其二,重视利用太阳能;其三,采用智能照明控制技术。

那么,如何做到具有节能效果的智能化照明控制?我们可以从时间表控制、自然采光控制、亮度平衡控制和作业调整控制等几方面来考虑。

1.时间表控制

时间表控制分为可预知时间表控制和不可预知时间表控制。在人员活动比较有规律的场所,灯具基本上是按照固定的时间运行的,就可以采用可预知时间表控制的方案。通常用于学校、工厂和办公室等。如果策划得好,可预知时间表控制的节能效果可达到40%。

对于活动的时间经常发生变化的场所,可采用不可预知时间表控制的方案,通常采用人员动静传感器来实现,节能效果高达60%。

2.自然采光控制

自然采光控制是充分利用自然采光来达到节能的目的。自然采光的控制一般使用照度传感器来实现,由于自然采光会随时间发生变化,通常应与人工照明相互补偿。外界的自然光变换错综复杂,常有瞬时突变的情况,因此,采用自然采光控制时必须正确识别自然光变化的长期趋势。自然采光控制方案常用于办公室、机场、超市和集市等。

3.亮度平衡控制

亮度平衡控制的目的是平衡相邻的不同区域的亮度,减少眩光,减小人眼的光适应范围。当亮度升高时,开启人工照明;当亮度降低时,关闭人工照明。亮度平衡控制方案常用于隧道照明,室外亮度越高,隧道内的照明的亮度也越高。

六、结束语

终上所述,智能化照明控制能够实现照明的高层次智能管理,营造良好的照明环境,提高工作效率,减少维护成本,节约能源。此外,随着建筑和照明技术的发展,照明已成为建筑艺术的一部分,智能化照明通过与建筑结合,提高了建筑照明光环境质量和建筑价值,以及为节能和保护环境提供了可靠途径。智能化照明控制是实现人居环境可持续发展的重要技术之一,具有广阔的应用前景。

参考文献:

1. 中华人民共和国建设部,GB50034-2004,建筑照明设计规范,北京:中国建筑工业出版社,2004

篇4

关键词:楼宇自控; 智能建筑; 设备监控

中图分类号:S611 文献标识码:A 文章编号:

近些年,随着建筑业的不断发展,楼宇自控系统在智能建筑中的应用越来越广泛。建筑智能化已成为21世纪我国建筑业发展的主流。智能化技术的发展与应用在我国已有了明显的变化,人们对新技术、新产品的开发和使用不仅势头不减,而且更加注重产品与实际的结合,更加注重探讨在设计过程中、工程施工中和建后应用中的问题及其解决方法。而楼宇自控系统的设计正是大家所关注的内容之一。它之所以重要, 是因为其技术难度高、过程复杂,不易被人接受和掌握,也由于它关系到节能而被更加被关注。

一、楼宇自控系统设计内容

楼宇自控系统设计主要包括以下几个方面的内容:

(1)需求分析:该工程设置楼宇自控系统的必要性、目的和意义,给楼宇自控系统的功能设计一个总体的定位;

(2)功能描述:一套合格的设计方案展现给业主的主要方面就是设置该系统可以实现哪些功能,让业主明白自己的投资能够有哪些收益;

(3)系统设计控制点位表:该部分是对工程的针对性详细设计,在点位表列出设备的位置、控制参数、数据类型以及设备点位的数量,为配置 DDC 等现场控制设备以及各种传感器、执行器等前端设备提供依据;

(4)设计图纸:设计图纸包括设计原理图、系统图和施工平面图;

(5)设备配置清单以及造价预算:根据点位表和设备的平面图布置位置,进行系统的设备配置,进而结合施工图作出施工图预算。

二、楼宇自控系统的功能

楼宇自控系统的主要功能:1)制定系统的管理、调度、操作和控制的策略;2)存取有关数据和控制的参数;3)管理、调度、监视与控制系统的运行;4)显示系统运行的数据、图像和曲线;5)打印各类报表;6)分析系统运行的历史记录及趋势;7)统计设备的运行时间、设备维护周期和保养管理情况等。

三、楼宇自控系统的控制目标

楼宇自控系统应该向用户提供如下功能:1)通过配置系统的硬件和软件, 实现测量各类工艺、设备状态的参数,设置并控制设备启停 提供设备运行报告等功能;2) 监视并显示系统监控设备的工作状态,故障时自动报警;3) 现场自动控制组织的安全调整功能;4) 根据系统记录,管理分析当前和过去运行过程;5) 提供计算和预测工具,用于优化操作参数并组合,实现设备优化使用;6) 实现楼宇自控系统与其他系统数据交换。为此, 我们对每一个子系统都进行了相应的需求分析。楼宇自控系统监控对象如下:

3.1 冷冻站系统的监控

监控设备包括:冷水机组、冷却水循环泵、冷冻水循环泵、冷却塔、自动补水泵、电动蝶阀等。1)根据事先排定的工作及节假日时间表,定时启停冷水机组及相关设备,完成冷却水循环泵、冷却水塔风机、冷冻水循环泵、电动蝶阀、冷水机组的顺序连锁启动,及冷水机组、电动蝶阀、冷水循环泵、冷却水循环泵、冷却塔风机的顺序连锁停机。启动顺序为:对应冷却水、冷冻水管路上的阀门立即开启; 冷却塔风机、冷却水泵、冷冻水泵的启动延迟 2~3 min启动; 制冷主机延迟3~4min执行。停止顺序为:立即切断主机电源;冷却塔风机、冷却水泵、冷冻水泵的启动延迟2~3min关闭; 对应冷却水、冷冻水管路上的阀门立即关闭。2) 测量冷却水供回水温度, 以冷却水供水温度及冷水机的开启台数来控制冷却塔风机启停的数量。维持冷却水供水温度, 使冷冻机能在更高效率下运行。3) 监测冷水总供回水温度及回水流量,由冷水总供水流量和供回水温差,计算实际负荷,自动启停冷水机、冷冻水循环泵冷却水循环泵及相对应的电动蝶阀。4) 根据膨胀水箱的液位, 自动启停自动补水泵。5) 监测冷水总供回水压力差,调节旁通阀门开度,保证末端水流控制能在压差稳定情况下正常运行。在冷水机系统停止时,旁通阀自动全关。6) 监测各水泵、冷水机、冷却塔风机的运行状态、手/自动状态、故障报警,并记录运行时间。7) 水泵保护控制:在每台水泵的出水端管道上安装水流开关,水泵启动后,水流开关检测水流状态,如有故障则自动停机; 水泵运行时如发生故障,备用泵自动投入运行。8) 中央站彩色动态图形显示、记录各种参数、状态、报警,并记录累计运行时间及其他的历史数据等。

3.2 换热站系统的监控

监控设备包括:热交换器 冷凝泵等。

3.3 新风/空调机组的监控

监控设备包括:新风/空调机组。1)时间程序自动启/停送风机,具有任意周期的实时时间控制功能; 2)监测送风机的运行状态、手/自动状态、故障报警、累计运行时间; 3) 防冻保护: 在冬季当温度过低时,开启热水阀,关新风门、停风机、报警提示;4)由风压差开关测量空气过滤器两侧压差,超过设定值时报警; 5) 风机、风门、冷水阀状态连锁程序。启动顺序: 开冷水阀、开风阀、启风机、调冷水阀,停机顺序: 停风机、关风阀、关水阀; 6) 对于新风机组,测量新风温度和送风温度,并根据送风温度PID调节二通水阀的开度,维持送风温度为设定值; 对于空调机组,测量新风温度和回风温度,并根据回风温度 PID 调节二通水阀的开度,维持回风温度为设定值;7) 中央站彩色图形显示,记录各种参数、状态、报警,记录累计运行时间及其历史数据等。

3.4 给排水系统的监控

监控设备包括: 给排水泵、生活水池、污水池、集水坑。1)监测水泵启停控制;2)水泵运行状态监视;3)水泵运行故障报警;4)水箱液位监测;5)水箱高中低液位报警。

3.5 送排风系统的监控

监控设备包括:送/排风机。1) 监测各风机的运行状态、手/自动状态;2) 在自动状态下按时间程序自动启/停风机;3) 监测送/排风机的故障信号,故障时报警,并累计运行时间;4) 中央站彩色图形显示,记录各种参数、状态、报警,记录累计运行时间及其历史数据等。

3.6 照明系统的监控

监控设备包括:公共照明配电箱。1) 对于各照明回路,根据时间程序自动开/关各照明回路;2) 对于各照明回路,监控各回路的开关状态、故障报警、手/自动状态;3) 程序可根据用户需要任意修改,可自定义节假日工作模式,降低大厦运行中的电能消耗;4) 中央站彩色图形显示,记录各种参数、状态、报警,记录累计运行时间及其历史数据等。

3.7 变配电自控系统

对变配电系统的监控主要包括对高压、低压、变压器、发电机设备的相关运行参数的监视,楼宇控制系统对变配电系统一般只对变配电设备进行检测不控制。

3.8 电梯系统的监控楼宇自控系统

对电梯系统实行只监视不控制的方式,电梯系统提供高级接口给楼宇自控系统集成, 楼宇自控对电梯的运行状态、故障报警、电梯的上升下降进行监视; 对自动扶梯的运行状态 故障报警进行监视,并对电梯系统的运行时间进行累计记录。

四、结语

总之,通过楼宇自控系统可以将一个工程的空调制冷、供暖通风、变配电系统、室内外照明、景观照明电梯、给排水等进行监控或监视,合理地启停控制和定时开关等,以此来节约运行成本,延长设备的使用寿命,从而达到最终的节能目标及信息化服务。

参考文献

[1]方倩波.楼宇自控系统设计与实施探讨[J].智能建筑与城市信息,2012(02).

篇5

城市建设中智能建筑数量不断增多,可以更好的满足实际生产生活需求。智能建筑功能更丰富,所需设备种类与数量更多,而为保证各项功能的正常运转,需要投入更多专业技术。其中楼宇自控系统的应用,可以提高智能建筑内设备运行可靠性,且在维持功能正常运转的同时,降低能源损耗,对提高智能建筑建设综合效果具有重要意义。

1 楼宇自控系统分析

1.1 集散式

集散式是建筑楼宇自控系统比较常用的一种结构形式,具有集中管理、分散控制的特点,通过2层网络结构形式,控制3个层级设备,通过对现场设备运行状态信息进行采集、分析与控制,完成有效控制[1]。其中,设备现场控制器间分为人机交互平台与控制处理中心2部分,通过控制处理中心来达到离线配置与在线监控的目的。此种系统结构形式,在实际应用中具有较高的可靠性,一旦现场设备出现运行故障,可以及时发现且向管理人员传递信息,而其余设备可以继续运行且在被控状态。

1.2 现场总线式

即现场总线控制系统结构形式,主要包括现场总线、仪器仪表、控制计算机3部分,系统核心为现场总线控制技术,在实际应用中具有稳定性高、成本低以及实时效果好等优点。现场总线式结构形式已经逐渐代替了传统集散式系统,可以提高对现场设备的控制管理效果,且对信号收集、传输等方面进行了优化[2]。其集合了自动控制技术、计算机信息技术与仪器仪表技术,是智能建筑的重要组成部分,对提高各项功能设备运行稳定性具有重要意义。

2 智能建筑楼宇自控系统设计原则

2.1 舒适性原则

对智能建筑楼宇自控系统进行设计,本质上就是实现对各类设备的有效控制,确保可以维持基础功能的正常运行,满足日常生活需求。因此在设计时,需要遵循舒适性原则,自控系统可以根据室内外温度自动进行调控,形成一个科学的控制方案,为人们营造一个健康舒适的室内环境。

2.2 节能性原则

智能建筑规模不断加大,结构设计更为复杂,为维持建筑基础功能的正常运行,势必需要更多资源作为支持。基于可持续发展理念,对楼宇自控系统进行设计时,需要遵循节能性原则,在保证基础功能正常运行的前提下,控制能源的损耗。应根据基础功能对建筑进行合理分区,并对相应的区域采取相应的设计方案,提高空调通风系统设计的合理性,保证该区域可以达到空调调节效果。而没有使用该系统的区域则不需要开空调,可降低空调运行成本,达到降低损耗目的[3]。另外,还需要针对各区域功能运行状态做好数据记录,分析系统运行效率,实现对系统内所有机电设备的统一管理。

2.3 系统性原则

智能建筑功能不断完善,对其楼宇自控系统进行设计分析时,需要基于建筑系统性特点,以维持各项功能正常运行为目的,从技术角度出发做好各要点控制。遵循系统性原则,做好各细节控制,确定自控系统可以对所有设备运行参数进行采集、整理、分析,通过对不同阶段运行数据的对比,来确定优化措施。例如对水电系统设备维修时间、能源耗费以及运行参数等进行总结对比,然后根据实际需求进行自动调节,达到提高系统综合运行效率的目的。

3 智能建筑楼宇自控系统技术要点

3.1 定风量空调机组

对定风量空调机组进行设计时,需要基于实际需求,做好每个基础功能细节的分析,确保可以满足实际生产生活需求。第一,温度控制。监测机组回风温度,并与设定温度进行对比,实现水阀PID调节。一般夏季温度可设定在24℃~26℃,冬季温度设定在20℃~22℃即可[4];第二,湿度控制。可以根据室内湿度传感器测量值,自动控制加湿阀开关进行调整,确定送风湿度能够达到预定设计值;第三,CO2含量控制。有系统探测器来实时监控CO2浓度,然后通过比例积分调节新风阀/回风阀的开度,将CO2含量控制在允许范围内,可以满足正常需求,营造一个健康舒适的环境;第四,过滤网报警。检测空气过滤器两侧压力变化,当压差超限后系统发出警报,提醒管理人员对空气过滤器进行清洗或者换新;第五,机组定时控制。对于智能建筑工程来说,需要根据日常应用实际情况,结合事先安排的工作与节假日时间表,设定机组自动启停时间,既可以满足功能需求,又可以降低运行损耗。

3.2 送排风系统

对送排风系统部分进行设计,需要从自动控制、CO2浓度控制以及保护要求3个方面来进行,保证系统可以正常运行。同样需要与智能建筑管理部门取得联系,获得作息时间安排表,合理确定机组启停与维修时间。通过送排风机组的运转,将建筑内CO2含量控制在合理状态下,尤其是对于地下室区域,需要根据专业标准,重点做好送排风机启停管理[5]。其中,风机为整个送排风系统运行的关键设备,需要重点研究其保护要求,确定其一旦出现运行故障,可以及时进行报警并自动停机,避免故障影响范围增大,为管理措施的实施争取时间。

3.3 给排水系统

给排水系统为智能建筑工程重要组成部分,楼宇自动控系统对于此部分的设计,需要保证可良好进行液位监测、设备运行监控以及故障处理等。第一,液位监测。对生活水箱、消防水箱进行实时监控,确定水箱高、低、超高、超低液位状态信息,一旦液位超限,系统能够及时报警,提醒管理人员采取相应措施处理;第二,变频装置监控。对系统内设置的变频装置进行实时监控,如果存在运行异常情况,可以通过屏幕来显示停水泵运行状态,其通过声光形式进行报警,提醒管理人员及时检修,并根据实际运行状态进行管理;第三,水泵运行监控。监控排污系统集水坑超高液位,以及设备运行状态,在发现运行故障隐患时及时采取措施进行优化。

3.4 公共照明系统

针对公共照明系统进行设计时,可以从2个方面来进行,保证系统运行稳定性与可靠性。一方面,照明控制。根据提前设定的时间程序表进行启停控制,并对于特殊情况,用户可以根据实际需求另外设置手动启停程序,在故障发生后能够及时采取措施处理,保证系统运行安全性;另一方面,系统维护。智能建筑照明系统比较复杂,且设计施工时与其他专业产生大量的交叉作业。为保证系统正常运行,在设计时需要重点做好维护管理研究,采用开关与手自动结合方式控制,且要自动记录各路照明子系统累积运行时间,便于后期系统的有效维护。

篇6

关键词:楼宇智能化 电气自控 应用

Abstract: intelligent building electrical automation mainly includes is electric control system and electrical control system security, in the design process control system is a foundation, security system is the guarantee. Only the design of both the rationalization and scientific process to achieve the real "intelligent". So in electrical system design process must hold on to the core, and the core of the system needs to come to open each part, eventually to establish a complete system of the target.

Keywords: intelligent building electrical control applications

中图分类号:F407.6文献标识码:A 文章编号:

楼宇智能化通常包括建筑自动化、通讯自动化、办公自动化等多个方面。随着我国国民经济的迅猛发展,高档智能化建筑已成为当今建筑的主流。楼宇自控系统是建筑设备自动化控制系统的简称。建筑设备主要是指为建筑服务的、那些提供人们基本生存环境所需的大量机电设备,如暖通空调设备、照明设备、变配电设备以及给排水设备等,通过实现建筑设备自动化控制,以达到合理利用设备,节省能源、节省人力,确保设备安全运行之目的。电气自动化已成为楼宇自控系统不可缺少的基本环节。在楼宇自控系统中,电气自动化系统设计占有重要的地位。前些年人们提到楼宇自控系统,指的主要是暖通空调系统的自动化系统,而目前自控系统已涵盖所有可控的电气设备,电气自动化已经是楼宇自控系统最为基础的环节之一。在此,文章针对电气自动化在楼宇智能化的电气接地及保护两方面进行粗略的探讨。

1 电气接地

在电气自动化应用中,电气接地占有极为重要的地位,接地系统关系整个供配电系统的稳定性与可靠性,是保障系统安全的基础。随着楼宇智能化的发展,电气自动化给楼宇接地系统带来了新的改变。目前主要有TN―S、TN―C和TN―C―S三种电气接地系统。

TN―S电气接地系统是三相五线制,分别是三根火线和一根中性线、一根接地保护线。该系统具有以下特点:中性线与保护接地线共同在所属变压器中性点实现接地,除此之外二者没有电气连接;中性线带电,保护接地线不带电;中性线与保护接地线均重复接地;TN―S电气接地系统具备安全的基准电位,安全可靠。

TN―C电气接地系统是三相四线制,分别是三根火线和一根保护中性线,其中性线与保护接地线合一,多用于较早的低压配电系统。由于该系统是三相四线制,中性线只有在三相负载平衡时才不带电,而智能化楼宇中单项负荷较大,其三相负荷一般是不均衡的,中性线中通常有随机电流。除此之外智能化楼宇中荧光灯使用量大,由此产生的三次谐波加大了中性线的电流量,中性线如果连接设备外壳可能导致电击事故或是火灾事故。因此,使用TN―C电气接地系统时必须对电子设备安设直流、交流工作、安全保护和防雷保护接地。与此同时,考虑到智能化楼宇中的大量的精密电子仪器设备容易受到电磁波干扰,程控交换机房、消防报警监控室、计算机房等均有防静电要求,因而在设计智能化楼宇以及施工、安装过程中需要考虑屏蔽、防静电接地的要求。

TN―C―S电气接地系统由TN―C系统和TN―S系统两部分组成,其中TN―C系统用于进户之前,TN―S系统用于进户之后,二者分界面处于中性线与保护接地线相连处。由于使用TN―C―S系统能够降低设备对地电压,却不能彻底消除,对地电压大小受负载平衡等因素影响,因此需要在进户处布置重复接地,并控制负载平衡情况。组合使用TN―C和TN―S系统不仅提高了设备和人员的安全性,还节省了建设成本,兼顾安全性、稳定性和经济性。但如果三相负载不平衡,楼宇内有电力变压器时应选择TN―S系统。

2 电气保护

楼宇智能化中的电气保护主要包括交流工作、安全保护、屏蔽与防静电、直流工作、防雷保护接地五方面内容。独立的交流工作接地或是安全保护、防静电、直流工作、防雷保护接地电阻分别不应大于4Ω、4Ω、100Ω、4Ω、10Ω。

交流工作接地指的是必须在变压器中性线或者是中性点接地,中性线选择铜芯绝缘线,配电中存在的等电位接线端子通常在箱柜内。需要注意的是,等电位接线端子不仅不能外露,也不能和直流接地、安全保护接地或是屏蔽接地等其它接地系统混接,还不能和保护接地线连接。采取中性点接地能够确保高压系统继电保护动作可靠、准确,并避免零序电压偏移,确保三相电压平衡。

安全保护接地指的是对电气设备中没有带电的各个金属部分使用金属连接的方式与接地体作良好连接,使用保护接地线连接智能化楼宇中的用电设备及其附近的金属构件,但不能连接保护接地线与中性线。智能化楼宇中的强电、弱电、非带电导电构件或是设备都需要安全保护接地,如果不作安全保护接地,设备外部绝缘损坏可能使外壳带电,不仅容易进一步损坏设备,还可能造成人员触电事故。由于并联电路中支路电阻与电流成反比,正常情况下人体电阻要远远高于接地电阻,因此使用安全保护接地后设备外壳的电压十分低,流经人体产生的电流极小,不会对人员造成威胁。使用安全保护接地,尽量降低接地电阻,能够保障电气系统运行的稳定、安全,还能保障设备安全和人身安全。

屏蔽与防静电接地分别指的是用保护接地线连接设备外壳、屏蔽管路两端、室内的多个部位,用导静电体连接带静电或可能产生静电的物体与大地,以避免设备、导线、室内受到电磁干扰,消除静电。由于人员在房间内走动或是移动设备等行为都可能产生大量静电,如果接地不好不仅会对电子设备产生干扰,还可能损坏设备芯片,甚至引发一些安全事故,因此防静电接地需要将所有可能产生或带静电的设备外壳和设施与保护接地线可靠连接,并使接地电阻尽量降低。

直流工作接地指的是用截面积较大的铜芯绝缘线连接电子设备与基准电位。由于智能化楼宇中有大量的电子设备,在计算机、自动化设备、通讯设备等电子设备中输入、传输、输出信息或是放大信号等操作都以微电位或者是微电流进行,需要依靠直流工作接地使其基准电位和供电电源保持稳定,以提高其操作的准确性和稳定性。需要注意的是,直流工作接地不宜与保护接地线连接,更不能与中性线连接。

防雷保护接地指的是对智能化楼宇中的电子设备、线路等做防雷保护接地,并以电力通信运维工作的流程化管理,使各种运维工单处于有序化、闭环化的环境下流转,显示工单在各个部门间流动的情况,使运维工单所流经的每个环节都有据可查。同时,在固化完成一系列运维流程基础上,提供支持流程灵活定制的平台,以提高运维工作人员的效率。

3 系统设计原则

3 . 1 标准体系结构原则

通信网全程管控系统的设计应采用体系结构,本次系统将采用TMN网管结构体系,其优点在于成熟性和完整性。TMN体系是目前国际上被广泛接受的体系中最为完整的通信网管标准体系;国外的众多大公司已开发出TMN的应用开发平台(如HP的Open View,IBM的Net View,SUN的Sol-stice Enterprise Manager等),以支持TMN的标准;而众多的国际、国内的通信设备制造厂商也已接受Q3接口标准,并在他们的设备上配置Q3接口。国内的公用网、部分专用通信网都有利用TMN来建设网管系统的成功范例。

3.2 兼容性原则

电力通信网在通信本质的角度上与公网是一致,但在业务成分以及各业务成分Qos要求与公网有相应差异,对于组织结构较为分散的电力通信网络来说,网管系统对各种体系的兼容性很有必要。因TMN体系其各种不足:结构复杂性和接口的单一化 。因 此 , 在 本 次 通 信 网 全 程 管 控 系 统建设中采用TMN体系结构,但也会对此体系结构中存在的问题加以考虑。因此,系统在接受TMN的同时,也需遵循兼容性原则,即兼容其他网管体系结构以解决TMN中存在的问题。系统的兼容性对电力通信网网络管理十分必要, 如SNMP协议,SNMP简单网路管理协议所构成的网络管理是目前应用最为广泛的TCP/IP网络的管理标准,SNMP网络管理系统也是目前应用较为广泛的网络管理系统类型之一。众多的通信设备制造厂商也支持SNMP的标准。因此,本次通信网全程管控系统也应该兼容SNMP简单网路管理协议等。另外,通信网全程管控系统还应考虑对目前新的网管体系和标准的兼容性,CORBA体系、开放式分布处理ODP体系,基于Web的网管体系、TINA体系等。

3.3 系统实用性原则

通信网全程管控系统设计不能好高骛远,应严格遵循系统实用性原则。充分考虑本次管理对象的实际情况,对系统进行总体设计。人机操作界面的设计应充分考虑工作的具体情况和实际需要。

3.4 接口开放性原则

要保证通信网全程管控系统的先进性和实用性,必须先保证系统接口的开放性,由于传输网跨多个不同行政区域,各级用户的管理功能要求的不一致性更大,因此,系统的接口开放性的要求显得尤为重要。所以,系统的接口应遵循开放性原则,能支持满足应用功能接口的第三方应用程序,保证其在不改变系统核心功能的条件下进行新的应用功能的接入或研发。

3.5 可扩展性原则

随着通信技术的不断发展,电力通信网中各类新兴通信技术的应用也不断增加,因此系统的可扩展性也是本次通信网全程管控系统必须遵循的设计原则之一。系统的设计充分考虑传输网网络扩容和功能深入的要求,采用分布式处理体系结构,便于升级和扩展。现有系统的处理能力需充分考虑未来5年至10年的发展,采用的硬件平台应充分支持应用的扩展性。可通过增加主机等设备扩展系统的负荷能力或通过扩充硬件配置达到系统扩展要求。

3.6 稳定性原则

电力通信网关乎电力生产安全,因此通信网全程管控系统应遵循稳定性原则,系统的硬件配置中网络、服务器、前置机结构均采用双机配置,以保证系统的高可靠性。同时,系统自身的功能设计也具有自诊断能力,在系统运行时能够对其自身所处环境如系统应用程序、数据库及构成网管系统的网络设备进行自诊断功能。

4 总体架构设计

根据对系统前期的调研,遵照系统的设计目标及设计原则,智能全程管控系统应实现南网、省、地系统的纵向互联互通,其总体架构设计如(图1)所示。各级智能全程管控系统的数据采集与控制通过北向接口收集传输网、业务网、支撑网等各类设备网管信息。数据采集与控制模块将数据上传到数据处理模块,在数据处理模块之上构建综合监视、资源管理、运维管理三类应用功能。南网、省级系统及地级系统通过数据交换系统实现互联,完成纵向一体化运行和管理。通过数据交换平台将各级系统架构互联起来形成电力通信网智能全程管控系统的整体架构。

篇7

【关键词】电气自动化;楼宇自控;建筑结构

智能建筑的核心就是通过路口与自动化系统软件和硬件来整合和运行各种硬件和软件系统,从而使得这些系统充分发挥其应有功能和功率。在建筑工程项目中,其主要是强调人性化的使用接口,促使建筑工程中的各设备、各环节都达到有条不絮的运行状态,使得其中各种建筑物节点模式能够与相关的辅助设备关联起来,从而形成一种舒适、优雅的居住环境。这种系统的应用是确保建筑物机电、消防、汽车管理等各种系统结合为一体,从而达到更加舒适、优雅的生活要求。

一、智能建筑概述

智能建筑通常都是包含建筑自动化、通讯自动化和办公自动化等多个功能和要求的综合性工作模式。在现代化科学技术发展中,以高档智能化为主的建筑结构已成为目前国民经济发展的基础,也是实现现代化建筑发展的主流。楼宇自动化控制系统通常都是以建筑设备为基础进行的,为人类生活和生存提供所需要求的机电设备,这些设备通过自动化管理与控制,从而发挥其应有的功能座率与功能猛劲儿做到节能、环保且无污染的运行模式和目的。电气自动化已成为楼宇发展系统中的核心环节,是电气系统工作中的基本环节和核心问题。在过去的智能建筑工程中,我们所说的智能化主要是通过对通讯系统和采暖修通进行管理和控制的,而目前的社会发展中,其已经涵盖了社会的方方面面,是楼宇自控系统的最基础环节和模式。

二、电气自动化发展

目前的新建楼宇中,各种建筑结构不断涌现,其建设趋势是通过将各种智能设备在规划指出就开始整体置放在网络数字化建设之中,从而对其中存在的各环节,各方面进行分析,使得建筑业主集成度要求越来越高,从而用来净化周边环境、陶冶人们心情。虽然在目前的建筑工程也加入了自动化控制一环,但是由于工程项目中存在着较多的不足和缺陷,使得在管理之中还存在着一定缺陷。因此在目前的工作其发展规律是集成化朝着数字化发展的过程,也是在工作中从各环节都呈现出高度发展的模式。

三、接地系统

接地系统是目前建筑电气工程中不可缺少的一部分,在工程建设中占据着重要地位与作用。就一般情况而言,其在施工的过程中都是通过各种关系来对其可靠性和安全性进行综合的分析与探讨,从而使得其在工作中添加了诸多的新内容。目前常见的接地系统主要是从以下两个方面进行分析与管理的。

1、TN-S系统。TN-S是一个三相四线加PE线的接地系统。通常建筑物内设有独立变配电所时进线采用该系统。TN-S系统的特点是,中性线N与保护接地线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。中性线N是带电的,而PE线不带电。该接地系统完全具备安全和可靠的基准电位。只要象TN-C-S接地系统,采取同样的技术措施,TN-S系统可以用作智能建筑物的接地系统。如果计算机等电子设备没有特殊的要求时,一般都采用这种接地系统。

在智能建筑里,单相用电设备较多,单相负荷比重较大,三相负荷通常是不平衡的,因此在中性线N中带有随机电流。另外,由于大量采用荧光灯照明,其所产生的三次谐波叠加在N线上,加大了N线上的电流量,如果将N线接到设备外壳上,会造成电击或火灾事故;如果在TN-S系统中将N线与PE线连在一起再接到设备外壳上,那么危险更大,凡是接到PE线上的设备,外壳均带电;会扩大电击事故的范围;如果将N线、PE线、直流接地线均接在一起除会发生上述的危险外,电子设备将会受到干扰而无法工作。因此智能建筑应设置电子设备的直流接地,交流工作接地,安全保护接地,及普通建筑也应具备的防雷保护接地。此外,由于智能建筑内多设有具有防静电要求的程控交换机房,计算机房,消防及火灾报警监控室,以及大量易受电磁波干扰的精密电子仪器设备,所以在智能楼宇的设计和施工中,还应考虑防静电接地和屏蔽接地的要求。

2、TN-C-S系统。TN-C-S系统由两个接地系统组成,第一部分是TN-C系统,第二部分是TN-S系统,分界面在N线与PE线的连接点。该系统一般用在建筑物的供电由区域变电所引来的场所,进户之前采用TN-C系统,进户处做重复接地,进户后变成TN-S系统。TN-C系统前面已做分析。TN-S系统的特点是:中性线N与保护接地线PE在进户时共同接地后,不能再有任何电气连接。该系统中,中性线N常会带电,保护接地线PE没有电的来源。PE线连接的设备外壳及金属构件在系统正常运行时,始终不会带电,因此TN-S接地系统明显提高了人及物的安全性。同时只要我们采取接地引线,各自都从接地体一点引出,及选择正确的接地电阻值使电子设备共同获得一个等电位基准点等措施,因此TN-C-S系统可以作为智能型建筑物的一种接地系统。、

四、电气保护

1、交流工作接地:工作接地主要指的是变压器中性点或中性线(N线)接地。N线必须用铜芯绝缘线。在配电中存在辅助等电位接线端子,等电位接线端子一般均在箱柜内。必须注意,该接线端子不能外露;不能与其它接地系统,如直流接地,屏蔽接地,防静电接地等混接;也不能与PE线连接。在高压系统里,采用中性点接地方式可使接地继电保护准确动作并消除单相电弧接地过电压。中性点接地可以防止零序电压偏移,保持三相电压基本平衡,这对于低压系统很有意义,可以方便使用单相电源。

2、安全保护接地:安全保护接地就是将电气设备不带电的金属部分与接地体之间作良好的金属连接。即将大楼内的用电设备以及设备附近的一些金属构件,用PE线连接起来,但严禁将PE线与N线连接。

在现代建筑内,要求安全保护接地的设备非常多,有强电设备,弱电设备,以及一些非带电导电设备与构件,均必须采取安全保护接地措施。当没有做安全保护接地的电气设备的绝缘损坏时,其外壳有可能带电。如果人体触及此电气设备的外壳就可能被电击伤或造成生命危险。

篇8

关键词:Kingview技术;智能楼宇;自控系统

1.智能建筑楼宇自控系统

1.1楼宇自控系统的含义

智能建筑随着信息技术的不断发展而产生的,满足人们对建筑使用的各种 要求。智能建筑把管理、服务、系统及结构相结合,创建了一个智能化的建筑环境。[1]智能建筑主要包括通信自动化系统、办公自动化系统及楼宇自动化系统三大系统。楼宇自控系统是智能建筑最为重要的一环,楼宇控制系统主要是把建筑物里(如:电梯、空调、通信、照明、排水、通风)等机电设备进行集散的管理与控制。楼宇自动化系统对建筑的设备、运行的状态、安全状态进行严密的监控,促进智能建筑的合理与优化。

1.2楼宇自控系统设计目标

1.2.1减少能源的消耗

在现在的建筑中,为了满足建筑使用者的需求,建筑里的机电设备往往需要消耗很大的能源,据有关资料显示,整个建筑中光是机电设备的能源就占了整个建筑能源消耗的一半,这样的能源消耗给建筑使用者造成了很大的财务开支。而楼宇自动化系统的运用,可以减少能源的消耗,节省财务开支。

1.2.2提高管理水平

一些大的建筑物,由于机电设备数量过于庞大,而且比较的分散,管理起来十分的困难,需要花费大量的人力、物力、财力。楼宇自动化控制系统把机电设备进行集散式的监控,可以及时发展管理上存在的问题,并给予解决。减轻了管理人员的劳动强度,节省了管理成本,同时提高了物业人员的管理水平。

1.2.3设备运行达到标准

楼宇自控系统的最根本的目标就是实现智能建筑的机电设备的服务功能,例如照明灯的实用、排风机的运行状态、电梯的正常使用、空调的控制等等都要满足使用者的需求,保证人们在智能建筑获得一个良好的工作环境及生活空间。

2.Kingview软件技术的简介

2.1Kingview软件技术的概念

Kingview软件技术,又被称为组态王。Kingview软件技术设计和开发了智能建筑的楼宇自动化控制系统,以强大的软件技术及硬件平台形成了一个集散式的监控系统,改善了传统监控系统的缺陷。[2]Kingview软件具有使用简便、功能强大、运行稳定、适应性强等优点,被广泛的用于通信、电力及化工等各个领域。Kingview软件技术包含了管理系统、监控系统及控制系统三大部分,主要以监控系统为中心,连接管理系统和控制系统,不仅能对建筑物进行有效的管理与控制,还能通过楼宇自控系统传达信息。Kingview软件技术为楼宇自控系统提供了可视的监控画面及数据连接,使得楼宇自控系统能更好的运行。

2.2Kingview软件技术的功能

Kingview软件技术的功能为楼宇自控系统的形成提供了有利的条件。(1)数据分析功能。Kingview软件与数据库进行有效的结合,为物业管理人员提供了强大的数据库,管理人员通过数据库可以了解许多的信息。而且Kingview软件自身的数据分析功能,可以协助管理人员做好各种运行报表。(2)图像化人机界面。Kingview软件强大的图形界面设计功能,让楼宇自控系统设计人员能够直观的看到整个控制系统的结构及运行的状态,提供了管理人员的管理水平。(3)集散管理功能。Kingview软件采用的是集散式的运行方法,分为很多个子系统,但是又对每个子系统进行统一的管理,这种集散式的管理功能,能有效控制每个系统的运行状态,方便管理人员及时发现问题,并及时做出应对措施。

3.Kingview软件技术的应用分析

3.1Kingview软件技术在空调系统中的应用

在许多的地下建筑中,往往有很多的空调除湿机组,为了保证建筑内机电设备的使用性及空气参数的调节,对空调除湿机组进行智能化的控制。软件是监控系统的核心技术,所以运用Kingview 软件对空调系统进行设计。(1)设备的准备。在硬件齐全、软件充足的条件下,我们还要添加一些设备,空调除湿机组的 PLC 控制器,按控制器的情况,设置设备的地址,与软件系统达成共识。(2)数据库的建立。在 Kingview 建立数据库,收集各种数据,例如,空调系统的进风温度、升温除湿等数据,这些数据的数据来源于空调除湿机组控制器的程序位地址。(3)监控画面的设计。依据使用者的需求,监控画面可以分为三个部分,分别为标题栏、系统控制及监控栏。[3]标题栏主要设置系统的名称,系统控制栏设置登录和退出系统的按钮,监控栏对空调的参数进行控制。把数据与画面相连接,形成实质性的监控画面。(4)动画的实现。单一的监控画面并不能满足数据的显示,通过实现设备的动画效果,能够更加生动形象的把设备的运作状态显现出来。

3.2Kingview软件技术在电梯系统中的应用

智能建筑的发展,人们对电梯服务的需求也越来越高了。一些建筑往往会有两台或者更多的电梯,这就要求我们对电梯系统进行统一的管理。[4]对电梯系统的运行状态进行监控,提高电梯服务效率。Kingview软件的开发与应用,即可满足这一要求。(1)数据库的建立。我们可以在PLC 中收集电梯的运行参数,主要包括电梯的内选信号、电梯上下的运行状态、电梯的报警系统等参数的收集分析。(2)监控画面的设计与应用。根据不同建筑的需求,运用Kingview软件设计监控画面,设计好监控换面,对电梯的运行状态进行监控,监控画面要清晰的现实电梯的运动状态及所在的位置。(3)报警系统的实现。电梯可能会出现各种的故障,造成各种的事故的产生,甚至会危及人们的生命安全,所以电梯安全报警系统的实现尤为重要。当电梯在运用中发生故障时,报警系统会出现提示声音,并建立起报警档案。例如,电梯在运行中发生超载情况时,会有提示的声音,表明电梯超载。由于面对电梯出现无法运行的状态时,会有紧急报警按钮,及时通知管理人员进行维修。

4.结语

智能建筑楼宇自控系统的集成是一项技术性很强的控制系统,这个控制系统涉及了计算机技术、自动控制技术、传感技术等多种技术。[5]楼宇自动化控制系统的实现可以减少能源的消耗,可以提供物业管理人员的管理水平,更为楼层使用者提供更好的服务。楼宇自控系统的实现,需要科学合理的设计,才能使楼宇自控系统得到最大的发挥,提供更优质的服务。

Kingview软件的开发与应用对楼宇自控系统做出了科学合理的设计,为楼宇自控系统提供了强大的集成平台,对各楼层的子系统集中在一起,进行统一的管理与监控。Kingview软件保证了楼宇自控系统的安全运行,提到了楼宇自控系统的功能效率。

参考文献:

[1]何涛.智能建筑中的楼宇自控系统[J].教育教学论坛.2010(15):45-47.

[2]李颖.浅谈智能建筑楼宇自动控制系统[J].中国科技信息.2009(04):35-37.

[3]曹荣良.楼宇自动化控制节能系统设计与集成研究[D].贵州大学 2009(09):89-91.

篇9

当今社会随着通信、电子、计算机以及自动控制技术的迅猛发展,人们对学习、办公及生活环境的要求日益提高,智能建筑 (Intelligent Building,IB)应运而生并得到高速发展,楼宇自控系统BAS(Building Automatic System)是其关键之一。楼宇的智能化自20世纪90年代已经开始应用于大中城市的高层及多功能建筑物上之后得到了广泛应用和飞速发展。

图书馆属于公共建筑,其内部结构复杂、安全要求高、设备数量众多,非常需要建设智能化系统。图书馆建筑的智能化程度,决定着其运行效率与安全等级,楼宇自控系统是其关键系统之一,起着重要的作用。

本文以一图书馆工程实例介绍楼宇自控系统的设计,此项目规划占地2.1万平方米,建筑面积约9.8万平方米,地下2层、地上10层,建筑总高度约50米。设有办公室、信息咨询部、阅读部、活动推广部、数字资源与技术保障部、物业管理等多个部门。

1 楼宇自控系统的需求分析

楼宇自控系统设计具有很大的灵活性,应根据建筑物的整体功能需求和物业管理方式确定控制水平,根据建筑物内不同区域的要求和受控设备的分布特点,选择技术先进、成熟可靠、经济合理的控制系统方案,避免投资的盲目性。

本楼宇自控系统拟对图书馆内的各机电设备(包括:空调通风监控系统、给排水系统等),采用集散系统进行监控和管理,以实现对设备进行可靠而经济的优化控制,进而延长设备的使用寿命、节约能耗和简化管理。

系统必须具有开放性、可扩充性、标准化,采用开放性的标准通讯协议。控制主网和分布网要求采用BACnet/IP通讯协议,BAS分站则采用BACnet MS/TP或LONWORKS通讯协议。最终系统具备开放性、兼容性和扩展性具。

系统的管理访问支持 B/S或同时支持 B/S 和 C/S,允许设置多个工作站,对系统实现远程管理和控制。

根据图书馆的使用要求,提供针对性的管理功能,包括:检修提醒报警、越限报警、控制失效报警。

1.1 空调通风监控系统的需求分析

本工程中空调监控系统的监考设备包括:冷源系统、空调机组、新风机组、送/排风机等。

冷源系统包括 4 台冷机、5 台冷冻泵、5台冷却泵、4 台冷却塔、1 个膨胀水箱、1个软化水箱及2台补水泵等设备。冷源系统由专用的群控系统管理,楼宇自控系统(BAS)只需通过BACnet、OPC 等开放的通讯协议接口,读取设备相关参数,实现监测。监测的主要内容:冷机、冷冻/冷却泵、冷却塔的运行状态,冷冻水供回水总管的流量、温度、压力,冷却水的供回水温度等。

新风机组的监控需求包括:风机的启停控制、水阀的控制、状态监测及报警;空调机组的监控需求包括:风机的控制、水阀的控制、新/回风阀开度的控制、状态监测及报警;送排风机的监控需求包括:风机的启停控制、状态监测及报警。

1.2 给排水系统的需求分析

本工程给排水系统包括:36个集水井、72台排污泵,分布在负二层;消防1个水池、2个生活水箱(配有5台生活水泵)、1台直饮水泵。排污泵的启停由液位开关自动控制,BAS对消防及生活给水设备只监不控。监测内容:排污泵的状态(运行、手/自动和故障报警)生活水泵组的运行状态、故障报警,生活水箱和集水井的超高、超低水位;报警提示:集水井水位过高、消防水池或生活水箱水位过低时发出报警;生活水泵、排污泵的运行状态与控制要求不一致时发出报警;互为主备的排污泵一台发生故障报警时另一台不能自动投入运行时系统发出报警;当水泵累计运行时间越限时,系统发出提示消息。

1.3 第三方系统集成

本工程中冷源系统、电梯系统、不间断电源、发电机系统等第三方系统需要通过集成接入楼宇自控系统(BAS),要求BAS通过软件读取各系统内部数据,并详尽、准确、实时的记录数据。

2 楼宇自控系统的方案设计

2.1 楼宇自控系统的基本组成

为提高可靠性,本系统采用分布式集散型控制系统,系统由中央管理站(服务器/工作站)、各种DDC(Direct Digital Controller,直接数字控制器)及各类传感器、执行器等组成,能够完成多种控制及管理功能,是一种智能化控制管理网络系统。

中央管理计算机(又称上位机、系统服务器)通常设置在中央控制室,由PC主?C、显示器及打印机组成,是楼宇自控系统的核心。中央管理计算机实时监测来自现场设备的所有信息数据和报警信息,并发出各种控制指令给现场控制器,对收集到的数据进行处理和记录,并通过各种输出设备通知工作人员。

DDC控制器是一种可独立运行的数据采集和控制装置,由处理器、输入输出通道和各种接口电路等组成。DDC控制器是楼宇自控系统的核心和实现控制功能的关键部件,通常分散设置在受控设备的附近,是系统与现场设备的接口。DDC通过各种输入通道采集实时数据,再按一定的控制规律进行运算,最后发出控制信号,控制受控设备的运行。 DDC的输入输出接口分为四类,分别是:模拟输入(AI),数字输入(DI),模拟输出(AO),数字输出(DO)。

传感器和执行器是安装在受控设备里的传感元件和执行元件,是楼宇自控系统的末端设备。传感器对一些直接反映系统性能的物理量,如温度、湿度、压力等进行检测,并将检测到的物理量输入到DDC,DDC则输出控制信号传送给各执行器,进而控制受控设备。

2.2 各子系统的设计

2.2.1 空调通风监控系统

1)风机的监控

现场控制器(DDC)通过事先编制的启停控制命令,通过数字输出(DO)控制风机的启停,并将风机主电路上交流接触器辅助触点的状态输入到DDC的数字输入(DI),监测风机的运行状态;主电路上热继电器的辅助触点信号作为风机过载停机报警信号,通过DDC的数字输入(DI)反馈到系统中来。

2) 送、回风温湿度监测及水阀的控制

在送、回风口各设置一个温湿度传感器,其输出信号接至DDC的模拟输入(AI),对送、回风的温湿度进行监测。比较回风温度与设定温度的差值,采用PID 等控制算法,通过模拟输出(AO)控制二通阀的开度。

3) 新/回风阀开度比例控制

空调机组的新/回风阀开度比例控制信号为模拟输出(AO)信号。

4)状态监测及报警

通过DDC的数字输入通道(DI)采集空调机组/新风机组的风机手/自动状态、风机压差、过滤网堵塞报警信号。系统会将监控数据自动记录下来生成表格,便于以后查找、打印或者作进一步的数据处理。

空调通风监控系统各设备的监控点位如表1所示。

2.2.2 给排水系统

1)采集生活水泵组和排污泵的运行、故障报警、手自动状态等信号,集水井水位(超高、超低水位)信号,通过DDC的数字输入(DI)到BAS,在系统界面上实时显示。

2)通过软件的报警提醒功能设置报警点,如:启停泵异常、设备累积运行时间越限等,提醒工作人员现场排查或检修。

给排水系统的监控点位如表2所示。

2.2.3 第三方系统集成

冷源、电梯、发电机、不间断电源等第三方系统需要通过集成网关接口接入BA系统,这四个第三方系统分别由各自厂家通过其专用的监控系统自行监控和管理,再将各监测数据通过集成网关接口提供给BA系统,各系统设置一个 BACnet网关用于与BA系统的连接和通讯。

3 楼宇自控系统的选型及配置

3.1 楼宇自控系统的选型

楼宇自控系统的选择既要满足业主的要求,又必须符合“智能建筑设计标准”(GB/T50314-2006),应全面考虑系统的可靠性、开放性、可扩展性及技术的先进性。

在选用产品时,首先应从该建筑物的要求出发,充分分析和考虑市场可供商品的市场定位和特性,选择适合的产品。首先要对产品进行性能/价格比较,其次对楼宇自控系统方案进行优化,根据业主的投资预算和实际需求,选择最具有节能功能、方便管理的楼宇自控系统方案。

楼宇自控系统的设备配置及选型优劣,不仅对楼宇机电设备的运转和能源利用的效率有影响,而且影响建筑物的楼宇自动化水平。选择合适的产品将有利于系统的建设及日后的维护。系统选型应遵循如下原则:

1)稳定性:保证系统不仅长期可靠地运行,而且各项指标也保持长期稳定,进而减少设备的维护维修费用。在满足成本控制后,关键部件(如:控制软件、各类控制器及扩展模块、传感器等)应选用技术成熟的产品。

2)经济性:在满足建筑物舒适性条件下,合理组织设备运行,降低大楼运行时产生的费用,体现出采用楼宇自控系统后所带来的经济效益。

3)先进性:选用的系统产品技术先进性、结构该简单,便于工程安装和系统调试、以及日后的维护与系统升级。

4)可扩展性:系统设计方案具前瞻性,充分考虑系统日后的扩充,当用户有新的需求时,可在不改变现有系统的前提下实现用户的扩充要求。

目前,楼宇自控系统品牌众多、产品多样化,市场上的主流产品以国外品牌为主,主要有霍尼韦尔(Honeywell)、江森自控(Johnson Control)、西门子(Siemens)、Delta、TAC、KMC等。其中,霍尼韦尔、江森自控和西门子三家公司因进入中国市场早、品牌知名度大等原因在我国的市场占有率高,但同时这几个品牌的产品价格也很高。相对楼宇自控领域的这“三大巨头”,加拿大Delta控制公司进入中国市场较晚(2002年进入中国市场),但该公司具有多年的楼宇自控经验,是一家生产楼宇自控系统产品的专业生产商,其产品性价比较高。根据工程的实际情况及投资预算,本项目楼宇自控系统的工程实现将采用加拿大Delta控制公司的ORCA系统。

3.2 楼宇自控系统的配置

本工程BA系统总I/O容量为1500~2000点,根据相关标准应按中型规模的BA系统定位。由于Delta ORCA系统大、中、小型软件对应的I/O监控点总数分别为无限点、500~2500点、500点以下,本项目应选用带历史数据的中型Web server 软件。

楼宇自控系统的硬件设备包括DDC控制器(含扩展模块、DDC辅控箱)、传感器及辅材。硬件?O备的配置选项除了要达到智能化系统招标文件的技术要求外,还应考虑系统工程造价,选用性价比较高的产品和配置方案。在配置控制器时,可结合各受控设备的楼层及分区分组进行配置,选用合适的应用控制器及扩展模块,每台控制器监控点数预留有不少于15%的裕量,以备系统今后的扩容。系统中DDC辅控箱为定制设备,由箱体、安装底板、空开熔断器、变压器、继电器及端子排等辅控元件组成,各箱体及元件数量根据实际需要而定。各类传感器应采用与DDC控制器相匹配的、灵敏度高、稳定性好、寿命长的传感器。为保障楼宇自控系统中信号的传输距离及质量,应选用合适的信号线和通信线。

根据本图书馆建筑功能分区,为便于建筑设备管理系统(BMS)对大楼内的BA系统、智能照明控制系统、安防监控系统等进行集成和管理,BA控制中心设置在负一层控制室,对全楼的设备行监视和控制。

由于本图书馆建筑结构及功能分区的实际需要,整个图书馆建筑各楼层均分为五个消防分区,大楼拥有五个弱电井。根据所选用的控制模块配置方案,BA控制箱安装在各楼层的弱电井。此外,由于本项目中工程现场总线距离长,整个BA系统采用五个系统管理器,组建五条子网,以保证网络结构的合理性及系统的实时性。

篇10

【关键词】医院建筑 节能应用 节能监控管理

引 言

节能控制步入21世纪,我国的医院正经历着前所未有的医疗保险体制、医学模式、知识经济的冲击。一个国家医院建筑水平的发展状况,直接反映了这个国家的经济和医疗技术水平。目前,医院建筑已经进入新的建设时期,新建以及改扩建的医院都相继提出了更高的建设目标与建设标准,从客观上反映出新时期医院工程建设有很大进步,但也构成了医院建筑能耗的持续上升。近年来,节能、环保、可持续发展的建设理念已受到普遍重视。在科学发展的宏观政策指导下,各国相继提出了绿色建筑与绿色医院的理念。我国医院建筑实际上已面临很大的能耗压力,因此,医院节能管理越来越重要。在注重医院建筑功能的重要性,满足复杂的医疗活动要求的同时,应最大限度考虑节能措施,使医疗资源、空间与设备达到最佳使用率,使未来的医院既满足使用功能的要求,又是一座低能耗的建筑。

1、OptiSYS PCS-300分布式可编程控制系统对医院建筑中机电设备节能监控管理

OptiSYS系列分布式控制系统主要由电源模块PS、CPU模块、数字量输入模块DI、数字量输出模块DO、模拟量输入模块AI、模拟量输出模块AO组成。

OptiSYS控制系统主要对医院建筑空调通风设备和动力设备进行节能监控管理。

1.1 医院的能源结构分析

医院类建筑的能源使用状况与一般住商建筑不同,需要大量的能源用于诊断、医疗、监视,及其他如食物储存饮食供应、热水供应及洗衣设备等,所以其主要消耗的能源有电能、天然气、燃油、水及医疗气体等。

1.2 医院建筑空调通风设备的特点

医院和医学能持续不断的进步,其中空调品质占有重要的地位,医学证据显示适当的空调能避免且有助于疾病治疗,所以医院空调除具有一般舒适的特性外,更应具有疾病预防及治疗等功能,但相对的需要专业的控制系统确保空调有效工作且节约能源。

一般医院会依其院方所提供的服务项目来设计空调环境,并符合医疗机构设计标准,如包括操作房间、急诊室、产房、育婴室等。

这种区分方式依不同功能环境及性质采取不同控制方式,以达到配合院方规划及医疗设备专家在设计院所需的设计条件。

(1)现况说明

冷水主机的台数调配,一般是以人为操控,因为不易判断实际负载,容易形成开机容量不足或是主机容量太大,使得运转效率不佳,如冷水主机耗电率规格0.632KW/RT,会因负载率太低而使实测在0.8KW/RT以上,增加电力能耗。

(2)改善建议

加装中央监控系统,以调整主机运转台数,并作为系统需量控制使用。台数控制以水温变化自动计算最佳台数控制,使主机维持高效运转,依主机厂商提供数据的最佳负载率约在80%~100%之间。

(3)效益

计算经由台数控制后,主机提高负载率后所得到效益,利用主机性能曲线公式,配合有无台数控制的曲线变化计算其能耗率差别,再由全年外气条件计算其空调负载率,由耗能率及负载率计算能耗量差别,因此得到全年节省效益约为总电量的3.3%。

空调负载控制采用二通阀以节省冷水泵的能耗

一般医院现场空调使用的空调箱及风机盘管的负载控制均是三通阀,因此不管空调负载变化如何,区域水泵必须耗用固定的满载电量,若以全年平均负载约50%计,即增加50%用电量,因此区域水泵功率即可增加一倍。

当系统为大型动力中心型式,输送管线长、阻抗大,因此冷冻水系统用三通阀定流量系统,也将明显加大冷冻水泵能耗。建议采用二通阀控制,则由负载端节流反应回路流量变化,可使冷冻水泵作台数控制或配合变频器控制,以节省冷冻水泵运转的耗电。

可变水量系统节能

每1kg的水每1℃温差为4.19千焦,一般冷冻水送回水温差为5℃。若能将温差提升至10℃,如利用储冰系统的冷能,就能减少送水量,减少泵的耗能,即低温送水系统。

另外一种节能方法为变流量系统(VWV),依空调需求改变送水量。变流量系统将热源(主机)与负载的送水系统分开控制,其控制介面作为一个共同管。主回路为空调主机机房内的水循环系统,各主机有一个泵负责定量送水,其总循环量为开启主机的总和。主机的开启依负载而定,负载小时减少主机的开启数。热源侧的送水距离短,且送水量随主机的开启数变化耗能较小。负载侧方面(二次回路)因送水距离长,为送水系统的主要耗能之处。可应空调需求改变送水量,即VWV系统节能之处。

可变风量系统节能

搬运的耗功率(压差X体积流量)成正比,送风的体积流量比送水的大很多,故送风系统的压损须比送水系统小,风管也远比水管大。一个较大型百货公司,空调送风机的电力装置373KW以上。风机所需的功率,在同一风管中,与送风量的三次方成正比,如能减少送风量则可节约大量送风耗能。管路太长,风管尺寸太小,会使所需的风压大而耗能。再者,如设计不当购置过大的风机,就需调管中的挡板平衡风压,造成不需要的浪费。

2、联网型风机盘管温控器FCU302对风机盘管集中管理的应用

医院建筑中门诊、医技楼的空调系统末端通常采用风机盘管的控制模式,现在普遍采用的控制模式为由医院工程管理人员统一进行主机的启/停控制,末端用户只能通过独立式风机盘管温度控制器调整房间中的温度设定值、风速高中低的调整、开关控制。而联网型风机盘管的群控功能可以帮助管理者更好的满足客户需求和节约能源。

近年来,夏季供电高峰与能源短缺成为大中城市的通病,而空调能耗又是医院的主要耗能元件。如何降低空调的能耗,节约有限能源是全体社会成员的共同责任。风机盘管是医院建筑中门诊、医技楼空调系统的重要组成部分,风机盘管的合理有效控制可以最大限度的节约能源。应用联网型温度控制器可以通过中央监控主机进行群控或单分区/统一控制,也可以根据管理者和用户的需求单独选择控制模式,达到方便控制,节约能源的效果。联网型风机盘管温控器在实际应用中受到客户的广泛喜爱,联网型温度控制器将成为风机盘管控制器的主导产品与流行趋势。

2.2 FCU302温控器系统介绍

方案一:当联网型风机盘管温控器直接连至监控中心时,监控计算机配上32路串口卡,则最多32条RS485总线,每条RS485总线可连接32台温控器(每条总线最长距离1200m), 即单台计算机配上32路串口卡:32路RS485总线×32台温控器=1024台温控器,超过1024台温控器时,可增加串口卡,每台温控器均有独立地址,方便分楼层、分区域控制。

方案二:当联网型风机盘管温控器连至OptiSYS系统时,每个DDC控制器(含CPU模块的)可连接32台温控器(即每个CPU模块的RS485口可以接16台温控器,CPU模块的RS232口经RS232/485转换后可以接16台温控器),每台温控器均有独立地址,方便分楼层、分区域控制。此方案DDC控制器中CPU模块对其带的I/O模块不受影响。在目前国内普遍采用的新风机组加风机盘管的空调系统中很适用。

2.3 基于联网型风机盘管温控器的空调计费系统

联网型风机盘管温控器FCU302对于高级病房楼的空调计费管理,可以根据病房的需要进行空调计量。通过联网型风机盘管温控器FCU302,直接对每个风机盘管进行监控,不仅方便了分域统一管理,还可以实现对中央空调的计量收费功能。

联网功能的风机盘管温控器,对每个区域的风机盘管分别进行有效运行时间的累计,即对每个风机盘管分别累计三个档位的运行时间,然后把三速开关有效时间按照各风机盘管高、中、低三档不同风量比例进行归一,再累加,形成单个风机盘管运行归一时间,再累计各层所有风机盘管的归一运行时间,形成各层总的盘管归一运行时间,通过与商铺区域总的空调能耗比较,按照比例去计算分摊每台风机盘管的空调费用,这样就实现了对每个计费区域进行空调计量的目的。

风机盘管信号的采集和处理是通过在每个计费区域安装可联网的风机盘管温控器,对风机盘管的运行时间和档位进行采集,并实时送到监控中心,进行数据的分析和累积,并可以增加远程控制功能。对风机盘管的启停进行远程控制,对拖欠空调使用费的用户实施停用空调的强制措施。采用联网型风机盘管产品,可以直接监控到每个风机盘管,优点在于当大楼在租售过程中格局发生变更时,只要对软件的业主设置和计费设置作相应的变更即可,运用方便、灵活,由于风机盘管温控器本来就是大楼暖通系统必备的设备,采用联网型风机盘管温控器,在少量增加投资成本的情况下,实现中央空调的计量收费功能,不失为一个价廉物美的空调计量解决方案。

3、基于CAN总线的模块化智能照明控制系统OptiLITE LCS-300系列产品的应用

医院的照明是体现医院现代化的重要体现,在设计中既要考虑医院各种治疗的照明要求,也要考虑病人对照明环境的反应,避免因照明布置或照度选择不当引起病人的不适和反感,尽可能营造一个和谐舒适的就医休养场所。

3.1 OptiLITE LCS-300系统对医院建筑照明的节能控制

OptiLITE LCS-300建筑智能照明控制系统通过各种不同的“预设置”控制方式,对不同时间不同环境的光照度进行精确设置和合理管理,根据不同场合、不同的人流量,进行时间段、工作模式的细分,关掉不必要的照明,在需要时自动开启,实现节能。这种自动调节照度的方式,充分利用室外的自然光,只有当必需时才把灯点亮或点到要求的亮度,利用最少的能源保证所要求的照度水平。

系统通过对不同工作场合的多种照明工作模式,在保证必要照明的同时,有效减少了灯具的工作时间,节省了不必要的能源开支,也延长了灯具的寿命,节电效果十分明显,一般可达30%以上。

典型医院场所的照明控制:

(1)门、急诊楼照明

门、急诊楼的大厅应处理好自然光与人工照明的平稳转换,避免引起视觉不适,由于大厅四周通常设有“挂号”、”付款”、”划价”等窗口,为便于病人准确看清划价付款的数量等要求,这些窗口内外的照度应在300Lx左右,宜以荧光灯为主,当然还应兼顾美观。所以采用室内光照度监测来调光节能,利用最少的电能满足照度要求。

(2)病房照明

病房的照明一般要求光线柔和,防止对病人产生刺激,避免灯光对卧床病人产生眩光,一般照度为100Lx。医生检查时可使用床头灯(安装在床头综合线槽上)做局部照明。为了便于护士夜间巡视,病房门下侧应设置脚灯,此灯应为双面,以使病房和走道都能照顾到,脚灯最好由护士站控制,也可在走廊控制。病房区走廊照明不同于门诊区走廊,照度一般在75Lx左右,夜间采取关掉部分灯盯或通过调光降低照度控制。

(3) 对庭院景观照明

对庭院景观照明采用“预设置”控制方式,平时、一般节日、重大节日开灯控制。

(1)开放性和互连性

智能化建筑是一项涉及多种技术设备行业的综合性工程,随着微电子、计算机和信息技术的发展和广泛应用建筑物内的各种控制设备都已具有数控技术,系统集成已被人们重视,它的集成从技术、经济管理上都具有广泛性和全局性,照明控制系统作为建筑物的自动化系统中是一个子系统,应与保安、火警、配电照明等等各个子系统纳入智能建筑的大楼自动控制或管理系统的范畴。这就意味着照明控制系统应有统一标准的接口,使不同厂商的产品可以互连,而具有互操作性。

(2)实用性

照明控制系统根据需要确定其控制功能,选择切实可行的要求,节省设备投资。这些功能包括:控制器能根据需要调光不同类型的光源灯,而且有良好的性能;有满足现场操作控制的各种控制界面;有与其他设备进行互连的各种输入/输出接口;方便直观的调试/监测软件。

(3)经济性

照明控制系统的经济性反映在系统的初始投资和系统运行后的节省电能,降低维护运行费。照明控制系统便于现场安装和控制,通过控制器有不同输出容量和不同输出回路的模块,使设备配置具有灵活性,从而控制系统的投资费用。由于照明控制器的控制性能特点改善了照明灯的运行工作条件,从而延长了灯的使用寿命,减少换灯量,降低维护费用,另一方面通过对照明灯的工作状态科学的管理和控制可节省电能。