数控机床技术范文
时间:2023-04-02 08:14:12
导语:如何才能写好一篇数控机床技术,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:数控机床;直流电机;伺服电机;工业控制
中图分类号:TG659 文献标识码:A 文章编号:1001-828X(2013)05-0-01
随着经济的发展,机床的自动化日益兴起,其中机床系统内的核心部分的驱动源,即电机,起着关键性的作用,数控机床借助于电机输出的角位移和角速度,执行相应的动作;直流电机应用于数控机床,亦具有广泛的应用价值,其启动转矩一般较大,调速性能也较好,但其制造成本较高,可靠性也较差,相当于马达,在直流电的作用下,执行相应的输出;伺服电机相当于机床数控系统的无级变速装置,区别于马达,马达一般是由直流或者交流电流直接驱动,无法实现调速性能,伺服电机则主要受到信号的控制,在信号的作用下,实现高速的动作,执行相关的功能,其精度高,几乎不受环境的影响。本文将针对数控机床的直流电机和交流伺服电机展开论述,全面而系统的分析和研究数控机床的驱动技术。
一、数控机床的直流电机驱动技术
过去,数控机床的主要驱动技术采用的是直流电机驱动,在实际应用中,也广泛的应用,例如现今的大型的化工、冶金工业、大型同步发电机等等都广泛的应用,直流电机有诸多的优点,其调速性能较好,特别对于航空、电力机车等应用较好;如今的汽车电瓶、一些电动工具,较为屡见不鲜的机械设备中,直流电机也较为应用广泛。对于直流电机驱动,其为了达到较高的精度和机床的高速运作,多应用于高档数控机床,对于一般的数控机床,直流电机驱动应用较少,主要是其维护成本较高,可靠性较差。
对于现今的数控机床,数控机床多为快速加工,实时的高校的加工一些磨具、金属加削处理等等,直流电机驱动调速方便快捷,启动转矩较大,主要在大型的起重行业较为应用多点,而对于数控机床本身而言,没有实质性的效果,直流电机一般都较大,使用和维护相对于交流伺服电机而言比较困难。
数控机床一般工艺流程较简单,执行简单可靠即可,直流电机自身制造工艺复杂,其制造的成本的较高,其次是由于其维护较困难,对于数控机床,其长时间的实时运作,柔度较大,应用实际中,一般不允许有较多的故障出现,直流电机驱动,经常性的出现卡机现象,也造成不便,其可靠性也较差。数控机床采用数控编程的思想,一般采用输入信号电压作为输入电压,电机根据输入的脉宽数进行相应的工作,对于数控机床本身而言,其自动化程度和可靠性和加工精度都较高,一般均采用伺服电机作为驱动源。
二、数控机床的伺服电机驱动技术
数控机床多采用的伺服电机技术,在日常生活中多使用交流电,而且可调,应用简单方便灵活。对于伺服电机的输出作为数控机床的驱动源,伺服电机通过接受到的电压信号,识别信号的占空比,从而实现伺服电机的转速的输出控制,其占空比比较大,时间常数相应比较小,能够快速的响应。
现今使用的多为交流伺服电机,交流伺服电机有着优良的特性,执行相应时间小,其功率值的调动.范围很大,相对于直流伺服电机而言,其执行的精度虽高,但在成本和实用下,性能比远远低于交流伺服电机,现如今,工业企业,机器人、流水线作业等等大小的实验,均采用的是交流伺服电机,交流伺服电机分为同步交流伺服电机和异步交流伺服电机。交流伺服电机采用的是单片机输入的脉宽数,执行相应的反应动作,交流伺服电机通过接收到的脉宽数,执行电机的主轴(输出轴)的转速的控制。
对于交流伺服电机,其驱动技术分为开环控制和闭环控制;对于开环交流伺服电机控制系统,交流伺服电机采用单片机输入的PWM脉宽数,交流伺服电机通过接收到的PWM脉宽数,执行电机的主轴的转速的控制,没有构成负反馈,直接通过接收到的脉宽数,由一个脉宽数对应的一个角度来计算,从而输出一个角位移或者是角速度,该开环控制系统精度不高,无法和系统之间的通讯连接起来,由于控制系统脉宽数存在缺失的情况,控制效果较差,系统稳定性不高,故开环交流伺服电机控制系统较难满足工业化设计的要求。
闭环交流伺服电机控制系统增加了负反馈的连接,其闭环控制系统亦是采用脉宽计数,从而实现控制电机轴的角位移和角速度的输出。由于交流伺服电机自身具有发送PWM脉宽数的功能,这个脉宽数在闭环控制系统中,和交流交流伺服电机接受到的脉宽数相互的影响,相互的调节,形成闭环控制系统,从而知道系统发送给了交流伺服电机多少脉宽数,交流伺服电机控制系统又收到了多少脉宽数,从而执行精确的电机轴的转速的输出,闭环交流伺服电机控制系统,控制误差较小,通过反馈回路,不断的调整系统响应参数,达到精确控制的目的,在现今的工业控制领域广泛应用。
三、结语
本文基于应用广泛的数控机床出发,浅析和探讨了其驱动动力的方式,即直流电机驱动和交流伺服电机驱动,对于直流电机驱动,其为了达到较高的精度和机床的高速运作,多应用于高档数控机床,对于一般的数控机床,直流电机驱动应用较少,主要是其维护成本较高,可靠性较差;对于交流伺服电机而言,其应用很广泛,大小企业都采用交流伺服电机进行控制,本文阐述了其控制技术的应用,交流伺服电机的控制技术主要基于半闭环交流伺服电机控制技术、闭环交流伺服电机控制技术全面而系统的说明了交流伺服电机控制技术。
参考文献:
[1]宋书中,胡业发,周祖德.直线电机的发展及应用概况[J].控制工程,2006,13(03) :199 -201.
[2]张初生.伺服电机控制技术.机电技术,2006.
篇2
我国从1958年开始研制数控系统技术,到1966年研制成功晶体管数控系统,1972年又研制出集成电路数控系统,但由于国产元器件不配套,加之工艺和技术还不够成熟,因此没有进行大规模生产.从1985年以后,我国的数控机床,在引进、消化国外技术的基础上,进行了大量的开发工作,尤其是进入上个世纪90年代,我国数控系统的各方面研究力量在集中优势、突破关键、以我为主、发展产业的原则基础上,逐步形成了以航天数控集团、机电集团、华中数控、蓝天数控等国有企业,在关键技术上己达到国际先进水平,数控机床可供品种己超过300种。
随着数控加工在机械制造业中的广泛应用,数控操作者的大量培训便成为迫切需要解决的问题.在传统的操作培训中,数控编程和操作的有效培训必须在实际机床上进行,这既占用了设备加工时间,又具有风险,培训中的误操作又经常会导致昂贵设备的损坏.而计算机技术的发展,尤其是虚拟现实技术和理念的发展,产生了可以模拟实际设备加工环境及其工作状态的计算机仿真培训系统.它用计算机仿真培训系统进行培训,不仅可迅速提高操作者的素质,而且安全可靠、费用低。
国外从上世纪80年代开始,在数控仿真方面做了大量研究工作.数控加工仿真涉及造型技术,经历了基于线框图形的几何仿真、基于直接实体造型的数控仿真以及基于离散空间的数控仿真.同时,数控仿真正从几何仿真走向加工过程物理仿真的研究,开发了基于数值分析和模拟来预测工件、刀具物理属性的原形软件,取得了许多研究成果.经过多年发展,国外的数控仿真技术己形成了商品化软件,如:日本的Sony公司研制的FREDAM系统可对球头铣刀加工自由曲面进行三维仿真,并进行干涉、碰撞检查;英国Delcam公司的产品PowerMILL,不仅提供五轴联动的实体切削仿真过程,而且提供五轴加工机床动作仿真过程,动态仿真五轴加工过程机床各轴各机构运动关系,仿真软件支持摆刀轴、双旋转工作台、摆刀轴与旋转工作台的组合;美国CGTech公司开发的数控仿真软件vERICUT,不仅实现多轴仿真,还增强了切削状态分析功能,还有法国Delmia公司的VNC,CIMCO公司的CIMCOEdit等其它数控仿真软件.此外,国外一些著名的CAo/CAM软件(如:UG.Pro/E.MasterCAM)也都具有NC加工仿真的能力.以色列的CAD/CAM软件Cimatron的数控加工技术一直处于世界领先的地位,它也提供了可视化的加工仿真模拟,以彩色图的形式显示当前加工结果及其加工余量,使用户可以检查加工过程的合理性与正确性;可以任意剖切旋转来观察加工的结果,还可以进行仿真校验、定量分析、加工工时估算等;也可以手动单步检查生成的刀具轨迹.著名软件UG的机床仿真模块Unisim也具有完善的数控加工仿真能力.但是这些软件大多价格昂贵,对硬件的要求也很高,而数控仿真也只是软件众多功能中的一部分。
目前,国内市场上也有一些功能较完善的数控仿真软件,如南京宇航自动化研究所的YHCNC系列数控仿真软件,支持多种数控系统,具有良好的用户界面,真实感图形显示的效果也较好,系统运行效率高.此外,还有上海天傲科技有限公司的TNS数控仿真系统,广州红地技术有限公司和韩国Cubictek公司合作开发的金银花从CNC仿真软件,上海盖勒普工程技术有限公司的数控加工编程校验和仿真软件PredatorVirtualCNC等。
我国数控仿真技术虽然发展迅速,但是仍然存在以下不足:
(1)仿真的速度和精度问题一直是数控仿真研究的难点,两者互相制约.降低精度提高速度会影响工件形状,从而影响图像真实感;反之,仿真真实感增强,但是随之带来CPU和内存资源等消耗增大的问题,会影响仿真实时性.此外,数控仿真也存在其它真实感问题,如仿真模型不能表现粗、精加工时的纹理形态,不能生成与实际形态一致的切削模型。
(2)数控加工仿真几何造型系统基本元素均由理想形状几何形体构成,不包含任何物理性质,体现不出物体相互作用时物质微观结构的物理变化(如力、热变形等)及其物体宏观形状(如工件形状、位置、表面质量)的改变。
(3)对数控加工过程没有进行实质性仿真,既没有考虑工艺系统中物体相互作用时的“消亡”.(如刀具磨损)与“派生”(如切屑等)问题,也没有真正考虑工艺系统中各部件在运动(切削和空程)过程中的“顺行”与“干涉”问题。
篇3
【关键词】数控机床,加工仿真技术,应用
中图分类号:C37 文献标识码:A
一、前言
在数控机床加工仿真技术得到广泛的应用后,不仅仅给工业生产带来了很大的利益,而且也常常应用到数控机床加工的教学实验中,其技术在应用中不断地完善和改变,到目前已有很大的提高。
二、数控机床加工仿真技术的发展现状
1773年法国科学家最早用仿真模拟方法做物理实验,估计π值;1876年美国统计学家第一次使用仿真模拟方法做随机实验;20世纪80年代,仿真模拟技术在高科技中所处的地位日益提高。数控技术可以说是部件加工过程中国比较常用的技术,但是,由于我国的工业发展比较的晚,在机械制造方面相对于西方的国家而言也是比较的落后,就我国现在所应用的数控机床来说吧。我国的工业中所采用的机床几乎都是从国外引进的,而我国自主研发的机床还未现世。对于数控机床的加工,仿真技术是一个非常主要的技术,此技术也是我国的科技人员学习外国的技术总结而来的。数控机床加工仿真技术的发展的道路是比较的曲折的,但是经过不断的探索研究,目前此技术也逐步的成熟,在实际的生产实践和教学过程中都得到了很大的应用,受到了广泛的青睐。
三、数控机床加工仿真技术简介
模拟技术的高级阶段称为仿真模拟或系统仿真,即用一数据处理系统来全部或部分地模拟某一数据处理系统,以致于模仿的系统能像被模仿的系统一样接受同样的数据、执行同样的程序、获得同样的结果。利用计算机技术来模拟实际的机床加工过程,它验证数控加工程序的可靠性和预测切削过程。数控机床加工仿真技术的系统的关键部分是虚拟数控机床,它是与计算机系统相连接的,通过输入的数控车床加工程序来实现车刀及其他部位的移动,以完成加工的目的,通过在该类系统上面完成的模拟零件的切削过程,可以清楚地理解到数控程序的运行是否正确,同时对于程序中运行所出现的错误可以在仿真系统上面进行调试、编辑、修改和跟踪,以完善数控机床加工系统。这种技术主要用于科学研究、工业设计、模拟生产、教学训练和考核鉴定等领域。
数控机床加工仿真技术中包括几何仿真和物理仿真。
1、几何仿真
它是一种没有考虑切削过程中各个参数以及切削力等待其它的物理因素的影响,在仿真的系统中,主要是仿真刀具和工件在空间中进行移动移完成各个加工要求,此过程的主要目的是验证NC程序是不是正确的;如果出现了一些问题就需要工作人员对其进行调试、修改使其完成各个要求。
2、物理仿真
这是一种相对于几何仿真的仿真方法。它也可以说是一种力学仿真,其原理是通过力学的特性来研究在数控机床加工过程中车刀的磨损情况以及摩擦力大小,以满足实际的构件的加工的需要。
四、数控机床加工仿真技术的好处
1、对数控机床加工零件的前期进行程序的检查、修改、防止在实际的加工过程中出现错误,给生产带来巨大的损失,耽误了生产的时间。
2、数控机床加工仿真技术的应用为机械工程学院的学生带来了极大的便利,可以通过数控机床加工仿真技系统来检测自己所设计的零件的程序是不是正确,有没有存在一些问题。另一方面,解决学校教学中实训设备少,学生多,设备无法分配的问题、解决实训教学的安全问题、减轻教师在实训教学中的工作量,提高教学效率。
3、数控机床加工仿真技术的应用节约了实际的生产中所进行实验的成本,同时也在一定的程度上降低了生产不合格率,保证了生产产品的质量。
4、避免的实际机械的危险性,保证了工作人员的人身安全,尤其是那些没用实际的操作经验的工作人员及学生,此系统可以说是非常的有益的。
五、数控机床加工仿真软件VERICUT应用
Vericut机床仿真系统在进行普通的机床加工仿真过程中,工作人员需要首先通过Machine Simulation系统建立机床运动学模型,系统提供部分控制文件库供使用者调用或修改以满足定制要求,然后利用建模模块建立机床的几何模型,按照图纸设定机床初始位置形成相应的控制文件、机床文件和工作文件。然后就是根据Vericut系统定义在加工中所要应用到的夹具和毛坯,在完成此步骤后,我们需要做的是对刀具形状和构件进行确定,同时还需要设定车刀的行走路径。设定相应的参数即可进行刀具轨迹的仿真。最后,我们的工作人员需要做的工作即使在Vericut系统中进入Machine Simulation,根据实际机床模型来添加机床实体,夹具和毛坯实体,设定过程中所要求的各个参数,经过充分的准备工作后就可以完成仿真加工了。
根据工作人员的在计算机中的设置,达到使仿真软件完成构件提前所要求的规格和参数,此过程执行到构件完全完成为止。
除了上述方法的介绍,我们在实际的应用中,在数控机床加工的仿真系统软件的应用时,必须要对每一个功能键进行详细的了解认识,这样才能避免在应用的过程中发生那种让人难以接受的错误,认识软件的所有功能只是数控机床加工仿真的基础,另外,我们还需要对机床的运动特性有一定的理解。
以下为计算机数控机床加工仿真软件的工作面板,我们从面板上面可以清楚地看到在实际的机械中我们常常使用到的功能键,通过计算机的软件程序的设定,以实现车刀及构件的移动,完成加工,在设置各个参数的过程中我们也可用进一步对数控机床的加工移动特点的理解认识。
六、数控机床加工仿真技术的应用及展望
虚拟数控机床的应用为科学研究行业带来了极大的飞跃。数控机床加工仿真技术是科学研究中所应用的主要技术之一。在近些年来,各个高校中的机械加工专业的学生,学院为了解决设备短缺的问题,常常会采用仿真设备来替代真正的机械。当然,仿真设备也是有一定的好处的,其在实际的应用中没有危险性,使得学生及工作人员的人身安全得到了很大的保障。另一方面,数控机床加工仿真技术的的应用为产品的质量提供了很大的保障。
虚拟数控技术是由许多先进学科、先进知识形成的综合技术系统,是一个极具潜力的前沿研究领域。由于多媒体技术和网络技术以及仿真技术的迅速发展,虚拟数控技术将获得更快的发展。虚拟机床是虚拟加工技术的核心,网络化、智能化、集成化是虚拟制造技术的发展方向。虚拟机床软件的发展目标应该是根据国内的现实情况和国外软件的发展趋势,根据机床开发的实际需求设计出不同的小型软件以满足机床中所要进行的各种工作任务。
计算机仿真技术不仅在传统的工程技术领域(航空、航天、化工等方面)继续发展,而且扩大到社会经济、生物等许多非工程领域,此外,并行处理、人工智能、知识库和专家系统等技术的发展正影响着仿真计算机的发展。
七、结束语
综上所述,数控机床加工仿真技术在科学技术的不断发展中已经得到了很大了进步,数控机床加工仿真技术的应用不仅仅解决了我国在高等教育中教学设备短缺的问题,而且还给工作人员带来了很大的便利,我们相信其技术将会在未来得到更广泛的应用,为人们的生活带来更大的便利。
参考文献:
[1] 杨胜群.VERICUT数控加工仿真技术[M].清华大学出版社,2011(4):191-237.
[2] 李云龙,曹岩.数控机床仿真系统VERICUT[M].西安交通大学出版社,2011(9):104-181.
[3] 陈海舟.数控铣削加工宏程序及应用实例[M].机械工业出版社,2011(12):153-181.
[4] 邓维鑫,周奎等.基于VERICUT的水轮机叶片五轴联动数控加工仿真技术研究[J].计算机应用技术,2012(7):28-30.
[5]闫杰,数控加工仿真系统在专业教学中的应用[J].辽宁经济职业技术学院学报,2012.
篇4
关键词:数控;机械;制造;应用
中图分类号:TG659 文献标识码:A
数控技术的水准、拥有和普及程度已经成为衡量一个国家综合国力和工业现代化水平的重要标志之一。随着科学技术的不断发展和进步,生产与自动化的观念逐渐深入人心。数控设备已遍布全世界,不仅工业发达国家已广泛采用,而且连发展中国家也大量采用。机械制造业是当前发展最快的行业之一,作为当代制造业的重要工具,数控机床在各个领域中广泛应用,越来越重要。准确掌握数控加工的概念和数控机床的特点,以理论和实践相结合的方法及时探索和总结数控机床的使用和维护的一些规律。
1 数控加工技术具有如下特点
1.1 生产效率高
由于计算机技术突飞猛进的发展,给数控设备提供了良好的技术基础。在现今科技发达的社会中,数控加工技术是重要组成部分,在现代模具制造业中具有重要作用。目前掌握先进的数控加工技术是模具专业人才适应社会飞速发展的关键,所以掌握数控加工特点与工艺显得尤为重要。它不但可以减轻操作者的劳动强度, 精确加工传统机床无法处理的复杂零件,有效提高加工质量和效率,而且也为改变传统机械行业的生产模式带来进步,同时也为人们的工作模式带来变革。而且还可以改善工人们的劳动条件。另外,数控机床加工足能再一次装夹中加工多个加工表面,一般只检测首件,所以可以省区普通机床加工时的不少中间工序,如划线、尺寸检测等,减少了辅助时间,其综合效率明显提高。
1.2 有利于生产管理的现代化,有利于经济效益的提高
当前,以微电子技术和计算机技术为基础的数控技术,将机械技术、现代控制技术、传感检测技术、信息处理技术、网络通信技术和成组技术等有机地结合在一起,使机器制造行业的生产方式和机器制造技术发生了深刻的、革命性的变化。众所周知,数控机床的应用不仅大大提高了机械加工性能,而且有利于生产管理的现代化,有利于经济效益的提高。机床数控化改造可降低采购数控机床的成本,为企业节约资金。且加工出的零件质量稳定,为后续工序带来方便。例如,数控技术加工质量稳定、可靠,一致性好。加工同一批零件,在同一机床,在相同加工条件下,使用相同刀具和加工程序,刀具的走刀轨迹完全相同,零件的一致性好,质量稳定,经济效益高。
1.3 加工精度高
数控机床在机械制造业中得到日益广泛的应用,是因为它有效地解决了复杂、精密、小批多变的零件加工问题,能满足高质量、高效益和多品种、小批量的柔性生产方式的要求,适应各种机械产品迅速更新换代的需要。同时,由于在数控机床加工过程中,是用数字程序控制实现自动加工,操作人员并不参与,所以消除了操作者的人为误差,工件的加工精度全部由数控机床保证。且加工误差还可以由数控系统通过软件技术进行补偿校正。同时,由于数控加工采用工序集中,减少了工件多次装夹对加工精度的影响。较容易保证一批零件尺寸的一致性,只要上艺设计和稃序正确合理,加之精心操作,就可以保证零件获得较高的加工精度。因此,采用数控加工可以提高零件加工精度和产品质量。
2 数控机床在机械制造业的应用
2.1 控制金属切削机床
当今机床行业的计算机数控化已成为技术进步的大趋势。数控机床是电子信息技术和传统机械加工技术结合的产物,它集现代精密机械、计算机、通讯、液压气动、光电等多学科技术为一体,具有高效率、高精度、高自动化和高柔性的特点。机床数控系统、质量与精度、零部件的材料性能等各项技术参数,是以各加工工位、上序的具体技术要求,分解成各个单一的技术指标,因而机床结构相对简洁、数控系统稳定可靠,其加工技艺数据库固化存数控系统中。而金属切削是研究金属切削加工过程中刀具与工件之间相互作用和各自的变化规律的一门学科。在设计机床和刀具、制订机器零件的切削工艺及其定额、合理地使用刀具和机床以及控制切削过程时,都要利用金属切削原理的研究成果,使机器零件的加工达到经济、优质和高效率的目的。
2.2 适合数控机床小批量加工的零件
随着数控机床制造成本的逐步下降,能缩短程序的调试时间和工装的准备时间也是提高效益的一种方式。如今,现代制造技术的发展,小批量生产型企业选用数控设备已是大势所趋。对机床数控系统、质量与精度、零部件的材料性能等各项技术参数,是以各加工工位、上序的具体技术要求,分解成各个单一的技术指标,因而机床结构相对简洁、数控系统稳定可靠,其加工技艺数据库固化存数控系统中。同时,积极引进数控机床,小批量生产型企业的规模化生产将给企业带来更大的发展后劲。数控机床的应用最充分的足在零部件自动生产线高速加工技术领域的应用,一些小批量生产型企业的CMT,在引进多条数控零部件加工生产自动线,可以使CMT加工制造得到发展。对机床数控系统、质量与精度、零部件的材料性能等各项技术参数,是以各加工工位、上序的具体技术要求,分解成各个单一的技术指标,因而机床结构相对简洁、数控系统稳定可靠,其加工技艺数据库固化存数控系统中。
2.3 数控机床的自动生产线技术应用
数控机床的使用不是简单的使用设备,是一项技术性很强的应用工程。在机床产品,尤其是高端机床产品中,自动化技术与产品几乎作用于从控制机构、执行机构到测量与反馈机构的各个部分,而目前这些应用于机床及机床生产线的各种自动化产品,几乎都在发生着推陈出新的变革。关键零件的多数加工工艺突破了传统机加工理念,其高速专用数控机床也突破了传统结构设计形式。同时,作为中高端机床的控制中心,数控系统包含了智能技术、运动控制、自诊断等多方面的技术,多轴多系统的数控装置已纷纷被研发出来并投入应用。伺服驱动器和电机也同样向数字化、交流化和智能化的方向不断发展。伺服系统的控制方式,也逐渐由常规信号型向总线型过渡。
结语
总之,数控机床的应用已日益广泛,如何“用好、管好、维护好”数控机床已成为亟待解决的重要问题。因此,只有科学的管理,充分了解数控机床的特点,协调好各生产环节的平衡,才能真正发挥出它的经济效益。
参考文献
篇5
【关键词】数控;机床;维修;技术分析
随着我国机械加工的快速发展,国内的数控机床也越来越多。由于数控机床的先进性和故障的不稳定性,大部分故障都是以综合故障形式出现,所以数控机床的维修难度较大,并且数控机床维修工作的不规范,使得数控维修工作处于一种混乱状态,为了规范数控维修工作,提高数控机床的利用价值,本文提出五步到位数控维修法。
1.数控机床维修技术分析
1.1故障记录具体
数控机床发生故障时,对于操作人员应首先停止机床,保护现场,并对故障进行尽可能详细的记录,并及时通知维修人员。
(1)故障发生时的情况记录。
1)发生故障的机床型号,采用的控制系统型号,系统的软件版本号。
2)故障的现象,发生故障的部位,以及发生故障时机床与控制系统的现象。
3)发生故障时系统所处的操作方式。
4)若故障在自动方式下发生,则应记录发生故障时的加工程序号,出现故障的程序段号,加工时采用的刀具号等。
5)若发生加工精度超差或轮廓误差过大等故障,应记录被加工工件号,并保留不合格工件。
6)在发生故障时,若系统有报警显示,则记录系统的报警显示情况与报警号。
7)记录发生故障时,各坐标轴的位置跟随误差的值。
8)记录发生故障时,各坐标轴的移动速度、移动方向,主轴转速、转向等。
(2)故障发生的频繁程度记录。
1)故障发生的时例与周期。
2)故障发生时的环境情况。
3)若为加工零件时发生的故障,则应记录加工同类工件时发生故障的概率情况。
4)检查故障是否与“进给速度”、“换刀方式”或是“螺纹切削”等特殊动作有关。
(3)故障的规律性记录。
(4)故障时的外界条件记录。
1.2故障检查方法
维修人员故障维修前,应根据故障现象与故障记录,认真对照系统、机床使用说明书进行各顶检查以便确认故障的原因。当数控设备出现故障时,首先要搞清故障现象,向操作人员了解第一次出现故障时的情况,在可能的情况下观察故障发生的过程,观察故障是在什么情况下发生的,怎么发生的,引起怎样的后果。搞清了故障现象,然后根据机床和数控系统的工作原理,就可以很快地确诊并将故障排除,使设备恢复正常使用。故障检查包括:
(1)机床的工作状况检查。
(2)机床运转情况检查。
(3)机床和系统之间连接情况检查。
(4)CNC装置的外观检查。
维修时应记录检查的原始数据、状态,记录越详细,维修就越方便,用户最好编制一份故障维修记录表,在系统出现故障时,操作者可以根据表的要求及时填入各种原始材料,供维修时参考。
1.3故障诊断
故障诊断是进行数控机床维修的第二步,故障诊断是否到位,直接影响着排除故障的快慢,同时也起到预防故障的发生与扩大的作用。首先维修人员应遵循以下两条原则:
(1)充分调查故障现场。这是维修人员取得维修第一手材料的一个重要手段。
(2)认真分析故障的原因。分析故障时,维修人员不应局限于 CNC部分,而是要对机床强电、机械、液压、气动等方面都作详细的检查,并进行综合判断,达到确珍和最终排除故障的目的。
1)直观法。2)系统自诊断法。3)参数检查法。4)功能程序测试法。5)部件交换法。6)测量比较法。7)原理分析法。8)敲击法。9)局部升温法。10)转移法。
除了以上介绍的故障检测方法外,还有插拔法、电压拉偏法、敲击法等等,这些检查方法各有特点,维修人员可以根据不同的现象对故障进行综合分析,缩小故障范围,排除故障。
1.4维修方法
在数控机床维修中,维修方法的选择到位不到位直接影响着机床维修的质量,在维修过程中经常使用的维修方法有以下几种:
(1)初始化复位法。由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障,若系统工作存贮区由于掉电、拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录,若初始化后故障仍无法排除,则进行硬件诊断。
(2)参数更改,程序更正法。系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。有时由于用户程序错误亦可造成故障停机,对此可以采用系统搜索功能进行检查,改正所有错误,以确保其正常运行。
(3)调节、最佳化调整法。调节是一种最简单易行的办法。通过对电位计的调节,修正系统故障。
(4)备件替换法。用好的备件替换诊断出坏的线路板,并做相应的初始化启动,使机床迅速投入正常运转,然后将坏板修理或返修,这是目前最常用的排故办法。
(5)改善电源质量法。目前一般采用稳压电源,来改善电源波动。对于高频干扰可以采用电容滤波法,通过这些预防性措施来减少电源板的故障。
(6)维修信息跟踪法。一些大的制造公司根据实际工作中由于设计缺陷造成的偶然故障,不断修改和完善系统软件或硬件。这些修改以维修信息的形式不断提供给维修人员。
(7)修复法。对数控机床的故障进行恢复性修复、调整、复位行程开关、修复脱焊、断线、修复机械故障等。
1.5维修记录到位
维修时应记录、检查的原始数据、状态较多,记录越详细,维修就越方便,用户最好根据本厂的实际清况,编制一份故障维修记录表,在系统出现故障时,操作者可以根据表的要求及时填入各种原始材料,供再维修时参考。
通常维修记录包括以下几方面的内容;(1)现场记录;(2)故障原因;(3)解决方法;(4)遗留的问题;(5)日期和停工的时间;(6)维修人员情况;(7)资料记录。
2.小结
数控机床维修技术的实施,提高重复性故障的维修速度,提高维修者的理论水平和维修能力,有利于分析设备的故障率及可维修性,改进操作规程,提高机床寿命和利用率,并能充分实现资源共享。使其具有可利用性、可持续发展性,为规范数控维修行业奠定坚实的基础。
【参考文献】
[1]孙伟.数控设备故障诊断与维修技术.北京国防工业出版社,2008.
[2]杨中力.数控机床故障诊断与维修.天津:天津理工大学出版社,2008.
[3]沈兵,历承兆.数控系统诊断与维修手册.北京机械工业出版社,2009.
篇6
[关键词]数控机床;精度;补偿
中图分类号:TG659 文献标识码:A 文章编号:1009-914X(2016)24-0008-01
0 引言
数控机床的应用标志着我国的加工制造业迈向了新台阶,是我国制造业发展的里程碑。数控机床的应用使零部件的加工更加精细化,在加工效率、加工精度、加工质量上都有了明显的提高,同时有效降低了生产成本,能够对复杂的零部件实现高质量的加工,满足了各行业领域对零部件生产加工的需求。数控机床的自动化系统实现了在线测量,自动化精度补偿,改变了以往传统的人工产品质量检测,有效降低了人工生产、加工、检测的误差。
机床在运行过程中,受多方面因素的影响,如刀具的磨损老化、温度的升降变化、夹具的变形等会带来一定的精度误差,这是正常现象。精度补偿技术是允许误差存在的,根据误差估算的结果,采用恰当的方法进行精度补偿来尽可能将误差消除或者降低,最终实现高精度的加工。
数控技术的不断发展进步,在线精度补偿技术应用越来越广泛,通过测头、传感器、光栅尺等补偿修正元件实现自动化精度补偿,以加工出高精度的产品。本文以加工某缸体零件为例,主要对测头在数控机床加工精度补偿中的应用进行研究。
1 主轴进给方向精加工精度补偿
在对缸体顶面进行精铣的过程中,机床的快速运转会导致温度快速升高,温度变化会造成数控机床主轴部件发生热变形,加速刀具的磨损,是夹具产生变形,这些都会对加工的精度造成不利的影响,难以满足厂家较高的加工精度要求,在主轴进给方向只能达到±0.15mm/500mm的稳定加工精度。本文经过多次的试验和研究,利用测头精度补偿技术,通过测头进给接触夹具上的测量基准块对坐标进行测量并对测量信息进行记忆,再将其与理论坐标加以比较得补偿信息数据进行补偿修正。参见下图1:
此项补偿设计要求测头在执行测量记忆补偿量工序所用的时间与实际修正的加工时间之间的时间差值要控制在10min以内,如果时间间隔过长会因为温差不均的问题而影响补偿量的准确性;另外补偿量的公差通常在0.4±0.2的范围之内,否则测头会出现异常报警。
2 主轴进给方向台阶面半精与精加工精度补偿
在对缸盖地面进行精铣加工的过程中,利用测头对已经加工完成额底面进行检测,能够对主轴变形伸长和夹具在主轴方面上的变形引起的误差进行测量和修正。提高主轴进给方向上的加工精度保持良好的稳定性。应用测头精度补偿技术,将变形误差消除或者最大程度的降低,实现主轴方面的稳定加工精度。应用精度补偿技术首先利用精铣刀对工件进行第一次的试切削,将部分加工余量预先去除掉,再利用测头对工件面进行进给检测,得到检测数据记忆后退回测头。再对半精加工表明进行二次检测,并对变量值进行记忆然后将测头退回,将测得的信息与加工理论坐标信息进行比对得出误差数据进行补偿修正,最后采用精铣刀以第一次试切面作为基准面,加入补偿量对工件进行精铣,最终完成工件的加工。补偿设计要同上。
3 孔加工精度补偿
在对缸体凸轮轴孔进行精加工的过程中,常用的方法是利用测头对加工后的内表面进行直接的检测,这样既能够对孔的位置进行准确的控制,也可以对孔的直径误差进行检测。当孔直径超出预先设定的公差范围时,测头会发生异常报警。主轴变形和夹具的变形都会造成孔加工误差的出现,使用测头精度补偿技术可以将其有效的消除,达到允许范围内的稳定精度,并可以根据检测的结果及时对刀具进行更换,以保证加工精度。
孔加工精度补偿的设计要求:孔径变化量的公差带范围通常在0.05±0.025的范围之内,过高或者过低都会引起测头异常发生报警。其余补偿要求同上。
4 多孔精加工精度补偿
在三轴有光栅尺的卧式数控机床的加工中心上进行缸盖、缸体定位销孔的精加工的过程中,一般来说定位销孔最高能够达到±0.05mm/500mm的位置精度,但是仅仅依靠加工中心的光栅尺是不能将因主轴和夹具的变形引起的加工误差予以彻底消除的。为了能够有效的修正变形引起的误差,保证多个定位销孔在位置精度上能够始终保持良好的稳定性,采用测头精度补偿技术同样能够达到良好的效果。
使用测头精度补偿技术首先在被检测的基准块上沿X方向选定一个点并利用测头进给进行检测,测头记忆变量后退回;再在被检测基准块沿Y方向选定一个点利用测头进给进行检测,记忆变量后将测头退回;更好加工刀具,在进行销孔精加工时根据与理论坐标信息的对比结果得到补偿量进行补偿修正。补偿设计要求同上。
5 结语
采用数控机床在进行工件切削加工的过程中,利用补偿元件可以对精度误差进行准确的检测并得出补偿量,以实现精度补偿修正。数控机床应用多种先进技术实现了加工的自动化,具有能够对加工刀具的磨损量自动检测,准确确定工件加工位置,自动找正工件基准面,自动设定坐标系等的能力。加工过程中,使用精度补偿技术,有效的提高了误差检测的准确率,并更加准确的进行精度补偿,有效的保障了工件加工的精度要求,对推动加工制造业的发展具有积极的作用。
参考文献:
[1] 张虎,周云飞等.数控机床空间误差球杆仪识别和补偿[J].机械工程学报,2013.
篇7
关键词 数控机床 维修技术
中图分类号:TG659 文献标识码:A
1数控机床维修技术分析
1.1故障记录具体
数控机床发生故障时,对于操作人员应首先停止机床,保护现场,并对故障进行尽可能详细的记录,并及时通知维修人员。
1.1.1故障发生时的情况记录
(1)发生故障的机床型号,采用的控制系统型号,系统的软件版本号。
(2)故障的现象,发生故障的部位,以及发生故障时机床与控制系统的现象。
(3)发生故障时系统所处的操作方式。
(4)若故障在自动方式下发生,则应记录发生故障时的加工程序号,出现故障的程序段号,加工时采用的刀具号等。
(5)若发生加工精度超差或轮廓误差过大等故障,应记录被加工工件号,并保留不合格工件。
(6)在发生故障时,若系统有报警显示,则记录系统的报警显示情况与报警号。
(7)记录发生故障时,各坐标轴的位置跟随误差的值。
(8)记录发生故障时,各坐标轴的移动速度、移动方向,主轴转速、转向等。
1.1.2故障发生的频繁程度记录
(1)故障发生的时例与周期。
(2)故障发生时的环境情况。
(3)若为加工零件时发生的故障,则应记录加工同类工件时发生故障的概率情况。
(4)检查故障是否与“进给速度”、“换刀方式”或是“螺纹切削”等特殊动作有关。
1.1.3故障的规律性记录。
1.1.4故障时的外界条件记录。
1.2故障检查方法
维修人员故障维修前,应根据故障现象与故障记录,认真对照系统、机床使用说明书进行各项检查以便确认故障的原因。当数控设备出现故障时,首先要搞清故障现象,向操作人员了解第一次出现故障时的情况,在可能的情况下观察故障发生的过程,观察故障是在什么情况下发生的,怎么发生的,引起怎样的后果。搞清了故障现象,然后根据机床和数控系统的工作原理,就可以很快地确诊并将故障排除,使设备恢复正常使用。故障检查包括:
(1)机床的工作状况检查。
(2)机床运转情况检查。
(3)机床和系统之间连接情况检查。
(4)CNC装置的外观检查。
维修时应记录检查的原始数据、状态,记录越详细,维修就越方便,用户最好编制一份故障维修记录表,在系统出现故障时,操作者可以根据表的要求及时填入各种原始材料,供维修时参考。
1.3故障诊断
故障诊断是进行数控机床维修的第二步,故障诊断是否到位,直接影响着排除故障的快慢,同时也起到预防故障的发生与扩大的作用。首先维修人员应遵循以下两条原则:
(1)充分调查故障现场。这是维修人员取得维修第一手材料的一个重要手段。
(2)认真分析故障的原因。分析故障时,维修人员不应局限于 CNC部分,而是要对机床强电、机械、液压、气动等方面都作详细的检查,并进行综合判断,达到确珍和最终排除故障的目的。
直观法;系统自诊断法;参数检查法;功能程序测试法;部件交换法;测量比较法;原理分析法;敲击法;局部升温法;转移法。
1.4维修方法
在数控机床维修中,维修方法的选择到位不到位直接影响着机床维修的质量,在维修过程中经常使用的维修方法有以下几种:
(1)初始化复位法。由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障,若系统工作存贮区由于掉电、拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录,若初始化后故障仍无法排除,则进行硬件诊断。
(2)参数更改,程序更正法。系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。有时由于用户程序错误亦可造成故障停机,对此可以采用系统搜索功能进行检查,改正所有错误,以确保其正常运行。
(3)调节、最佳化调整法。调节是一种最简单易行的办法。通过对电位计的调节,修正系统故障。
(4)备件替换法。用好的备件替换诊断出坏的线路板,并做相应的初始化启动,使机床迅速投入正常运转,然后将坏板修理或返修,这是目前最常用的排故办法。
(5)改善电源质量法。目前一般采用稳压电源,来改善电源波动。对于高频干扰可以采用电容滤波法,通过这些预防性措施来减少电源板的故障。
(6)维修信息跟踪法。一些大的制造公司根据实际工作中由于设计缺陷造成的偶然故障,不断修改和完善系统软件或硬件。这些修改以维修信息的形式不断提供给维修人员
(7)修复法。对数控机床的故障进行恢复性修复、调整、复位行程开关、修复脱焊、断线、修复机械故障等。
1.5维修记录到位
维修时应记录、检查的原始数据、状态较多,记录越详细,维修就越方便,用户最好根据本厂的实际清况,编制一份故障维修记录表,在系统出现故障时,操作者可以根据表的要求及时填入各种原始材料,供再维修时参考。
通常维修记录包括以下几方面的内容:现场记录;故障原因;解决方法;遗留的问题;日期和停工的时间;维修人员情况;资料记录。
2结语
数控机床维修技术的实施,提高重复性故障的维修速度,提高维修者的理论水平和维修能力,有利于分析设备的故障率及可维修性,改进操作规程,提高机床寿命和利用率,并能充分实现资源共享。使其具有可利用性、可持续发展性,为规范数控维修行业奠定坚实的基础。
参考文献
篇8
1制约数控机床机械加工效率提高的主要原因
1.1数控机床应用水平低
自我国制造业正式引进数控加工技术以来,制造业的生产水平获得明显提升。虽然在日常使用过程中,有基本的数控机床操作规范与维护措施,不过机床本身的精度损失是无法避免的。为进一步提高工作效率,改善生产质量,落实好机床维护保养工作十分重要。此外,由于许多工程并未明确每台设备的加工精度与加工任务,没有合理区分粗加工设备与细加工设备,设备资源没有得到合理安排,不但影响到数控机床的使用寿命,还会大大降低数控机床的生产效率。
1.2操刀频率与设置不合理
在开展大规模生产活动时,合理选择换到方式能有效缩短换刀的辅助时间,避免机床严重磨损,从而减少机床维护成本,提高机床生产的经济效益。从目前情况来看,大部分工厂的换到频率均存在不合理现象,同时,夹具选择、走刀线路、刀具排列位置以及刀具树勇顺序都没有具体细化,设计方案明显存在漏洞,如此一来,机床运行的工作效率自然也会受到影响。
1.3编程程序不符规范
数控机床的运行模式主要取决于计算机的编程程序,计算机编程主要负责控制机床工作步骤。随着信息技术的不断发展,计算机编程程序在数控机床加工中获得广泛应用,不过不得不承认的是,计算机编程目前仍未达到最理想化的运用程度。现有计算机编程十分复杂,给系统的调试与操作带来了诸多不便。也正因如此,数控机床机械技术加工效率始终无法得到提升。
2提高数控机床机械技术加工效率的根本途径
2.1人员管理方面
2.1.1提高操作人员业务水平
在数控机床加工环节中,操作人员的业务水平直接决定数控机床的工作效率。作为数控机床软件的操控着,其专业能力与职业素养均将对数控机床的加工效率产生深远影响。所以,提高数控机床一线操作人员业务水平很有必要。
2.1.2规范数控机床操作流程
相较于普通机床,数控机床的操作流程更为复杂,操作工艺也更加丰富多样化。为确保加工活动得以顺利开展,提前制定好科学、规范的数控机床操作流程很有必要。因此,加工企业有必要在实际工作中,制定规范数控机床的操作流程,要求全体操作人员在工作期间,严格按照相关规范执行各项操作。
2.1.3对现有管理模式进行改良
数控机床的稳定运行离不开科学管理,只有提高管理水平,才能充分发挥出数控机床的功能与优势,为生产加工活动做贡献。所以,在工作期间,有必要定期对数控机床管理模式进行调整与改良,根据生产加工活动的具体需求以及数控机床的规格、类型、加工工艺等方面,制定不同类型的管理模式,以确保在不同生产加工活动中,不同类型的数控机床能够得到有效利用。只有实现管理模式的与时俱进,才能更好地提高数控机床设备资源的有效利用率,进一步促进机械技术加工效率的不断提高。
2.2技术设备方面
实际上,加强对数控机床机械技术设备方面的研究,从技术层面着手是提高数控机床机械技术加工效率的根本途径。在对数控机床技术设备方面进行研究时,务必要结合数控机床的工作特点,针对具体情况采取具体的应对措施,在考虑到可操作性的同时,加强成本管理,以确企业的整体效益。
2.2.1恒定电网供电水平
数控机床集互联网技术与机床技术于一体,因此对电网供电系统有着极高的要求。以目前应用范围最广的数据机床为例,在电网供电极度不稳定的情况下,该装置内部的欠压保护装置报警系统根本无法发挥出正常作用。从技术可行性与经济性的层面来看,结合运行中数控机床的在自身特性,于电网系统中设置交流稳压器是解决该问题的唯一途径。交流稳压器的设置,能够有效避免在高峰或低谷时段供电不稳定现象,从而为数控机床的高效生产创造有利条件。
2.2.2正确选择合适设备
在数控机床运行期间,操作人员应重视数据机床设备的选型,特别是有关数控系统方面的选型,设备选型是否合理将直接决定数控机床的相关工作能否顺利开展。因此,相关工作人员在选择相关设备的型号时,务必要对工作环境、工作条件、生产需求等多方面因素进行充分考量。此外,为提高数控机床与各相关设备工作的协调性,企业在选购数控机床以及相关设备时,应尽量选择同一厂家的产品。同一厂家出产的产品有利于工艺之间的链接,且为后期维修保养工作减少了许多不必要的麻烦,从根本上解决了数控机床机械技术加工效率低的问题。
2.2.3落实机床维护管理工作
数控机床的管理与维护是确保数控机床得以正常工作的重要前提,也是延长数控机床使用寿命的关键。因此,相关工作人员可定期对机床进行维护与管理,通过机床等方式,对数控机床进行维护与保养。另外,部分数控机床运行环境较为特殊,为确保数控机床的应用价值得以充分发挥,务必对机床采取合适的方式进行保养。同时,不同型号的数控机床保养维护方式也不一样,油的类型与使用方式切不可混淆。只有认真落实好机床维护保养工作,才能有效提高数控机床机械技术加工效率。
3结语
篇9
关键词:数控机床 可靠性 技术研究
中图分类号:TG659 文献标识码:A 文章编号:1674-098X(2015)08(c)-0026-02
该文将对数控机床可靠性技术进行研究,分别从:数控机床可靠性内涵、数控机床可靠性技术存在的必要性、数控机床可靠性技术的研究、现阶段数控机床可靠性技术存在的问题、数控机床可靠性的设计准则、提高数控机床运行可靠性的具体措施、数控机床可靠性技术的展望7个部分进行阐述。
1 数控机床可靠性内涵
关于数控机床可靠性的定义,最初是由卢瑟尔提出的。所谓“可靠性”是指“产品能在规定条件及规定时间内完成的规定功能的能力。”可靠性很难用一个量来表示,因此在对可靠性进行定义时必须根据具体情况、具体场合来选择适当的指标。值得注意的是,可靠性是产品实际运行过程中所显露出的属性,且数控机床可靠性存在一定特殊性,它是集机、电、气等高新技术于一身的现代化工作母机,它对加工精度有一定要求。当前,数控机床在现场运行过程中最易发生的故障以功能性故障居多。所谓功能性故障一般指:加工中心刀库不转位、不执行程序指令、定位不准、旋转工作台不定位以及电气系统大量故障等,是当前广大机床用户亟待解决的。在机床用户看来,数控机床的可靠性涵义实际上指的就是机床在运行过程中故障频率出现次数相对较低。因此在开展数控机床可靠性工作时必须做些真实操作的实事,切实解决可靠性实际问题,让用户看到实效。高速、高精度以及高可靠性是现代数控机床发展的主要趋势,数控机床可靠性成为市场竞争的焦点,目前国内的数控机床研发方向主要朝高档次方向发展,提高数控机床可靠性成为当下最为急迫的事。
2 数控机床可靠性技术存在的必要性
2.1 数控机床可靠性技术满足市场发展需求
我国正处于工业化发展中,汽车、钢铁、机械等一批重工业为基础的行业发展势头越来越迅猛,导致对数控机床的需求也越来越大。为了满足市场发展需求,数控机床可靠性技术必须不断发展创新,使其功能日趋完善。
2.2 机床故障频率普遍偏高
由于我国数控机床现阶段的自主开发能力相对薄弱,自动化水平低,精度保持性相对较差,制约了我国数控机床的发展及销售,与国际现阶数控水平存在较大差距,对数控机床的运行故障不能及时准确的排除,此外还承受着市场巨大需求量的压力。因此为了解决这个问题就必须提高数控机床的可靠性。
2.3 数控机床可靠性技术的意义
数控机床的可靠性对用户来说十分关键,还在一定程度上影响了我国与国际水平间的较量,提高数控机床可靠性能促进数控机床市场的持续发展,对于改变我国机床工业现状有推动作用。数控机床可靠性技术的存在是必要的,它充分满足了市场发展需求,减少了数控机床运行故障的发生频率,它是实现民族装备制造业振兴的催化剂。数控机床作为复杂的机电液系统,它还没有相对成熟的可靠性理论与技术,加上我国数控机床可靠性技术研究起步较晚,涉足此行业的相关研究人员与研究机构相对较少,技术积累相对薄弱,处于发展阶段,相对德国等工业发达的国家来说还有很长一段发展距离,为了缩短与发达国家之间的差距,我们必须拿出实际行动。
3 现阶段数控机床可靠性技术存在的问题
3.1 数控机床可靠性研究者及相关机构普遍较少
由于我国在数控机床可靠性技术的研究人员与研究机构比较缺乏,加上数控机床可靠性技术研究的成本比较高,时间相对过长,其研究成果的获取相对过慢,导致我国数控机床可靠性技术体系缺乏完整性。
3.2 数控机床可靠性数据累积相对薄弱
制造业数控机床的可靠性的提高需要一定的数据作为实践基础,由于我国数控机床发展较晚,导致我国数控机床可靠性数据累积相对薄弱,从而不能为广大的数控机床用户可靠性技术的研究提供任何帮助,这也是我国数控机床可靠性技术发展相对滞后的主要原因。
3.3 数控机床的维修性及可用性得不到重视
要提高我国数控机床的可靠性技术就必须对数控机床的维修性及可用性重视起来,根据企业的需求去简化维修过程,缩短维修时间,将可靠性最大化,我国必须提高对其重视的程度,最大程度满足数控机床用户的需求,制定相关政策,奠定我国数控机床可靠性研究基础。
3.4 数控机床故障机理研究相对不足
当前我国对数控机床故障机理的研究相对不足,所谓故障机理研究主要是针对故障现象分析得出的反映故障本质的原因。但由于我国现阶段对故障机理研究相对缺乏,从而对产生故障的物力本质障碍直接的相关性以及故障问题认识不清,使改进成本不断增加,造成了经济资源浪费。
3.5 对机床整机功能部件缺乏重视
数控机床由各类功能部件及数控系统组成,其组成部件的可靠性制约着数控机床的整体可靠性,因此制造者必须对机床功能部件的质量加以重视。但由于国内机床功能部件企业技术比较薄弱,研究机构工作的重心又都放到了机床整机上,导致其功能部件得不到重视,无法提高数控机床可靠性技术发展。
3.6 数控机床电元器件质量相对较差
当前,国内机电元器件市场存在粗制滥造及恶意压价的现象,并且质量相对较差,温度特性差、电器反应不灵敏、使用寿命短等特点。如果将这些质量差的电元器件应用到数控机床,会造成严重的生产事故。
3.7 CNC安装不当
CNC是指数控系统,数控系统的正确安装对数控机床正常运行起到一定保障,如果没有按照相关要求进行安装则会造成驱动轴失控,引起机器报废,使数控机床免疫力降低,导致故障发生频率不断提高。
4 数控机床可靠性的设计准则
必须建立丰富的可靠性设计规范。
在对数控机床可靠性进行设计时,应建立起可靠性设计规范,设计规范的建立能在一定程度上对数控机床设计环节的可靠性设计以及分析工作进行约束管理,对不同的产品采取不同的可靠性设计。
4.1 建立可靠性设计评审大纲及流程
评审大纲的评审内容将会涵盖产品从概念到生产的所有开发阶段,它的重要性不言而喻,因此企业必须建立可靠性设计评审大纲及流程,并邀请一些在产品设计、制造、应力分析、安全维修等专业领域的专业研究人员参与到评审中来。
5 提高数控机床运行可靠性的具体措施
5.1 提高数控系统设计的可靠性
在设计数控系统时,应该按照不同机床功能需求来进行模块组建,可以在一定程度上提高机床使用的稳定性还能降低机床维护成本,兼顾人机对话以及机械故障自诊断,对机床起到自我保护作用。数控机床运行的速率与系统性能的好坏息息相关,因此必须提高数控系统设计的可靠性。
5.2 保证数控系统的正确操作
逻辑程序编写失误、参数配置的错误都会给数控机床埋下质量隐患,会给用户带来很多不便,对自己的信誉有一定影响。因此在对数控系统操作时必须保证一定正确性,否则会使误差累积,对机床转动链造成冲击。
5.3 采用有效隔离屏蔽技术
由于CNC系统的滤波环节降噪功能有限,因此必须配置相关隔离设备,尽量减小干扰信号。屏蔽干扰信号可以从两方面入手:一是取东西元件,将干扰源屏蔽起来,从而达到阻断静电与电磁信号传递的目的;二是利用双层金属屏蔽控制系统,以防高压线外在物质的干扰,促进数控机床可靠性大大提高。
5.4 合理布线与接地
由于数控机床地线相对比较复杂,系统中的机架箱体等结构件应予以接地。且接地电缆的横截面积不能小于10 mm2,布线必须遵循“强弱分开”原则,利用金属屏蔽线隔开输入信号线,严禁与其他设备接地。
5.5 运行可靠性控制
实验表明用户使用不当造成的故障占机床总体故障的20%左右。因此必须控制用户对机床的使用,预防用户对机床的超载使用,通过大修恢复机床精度与可靠性。
5.6 完善数控机床可靠性技术体系
要促进数控机床可靠性技术的发展必须对数控机床可靠性技术体系进行完善,以数控机床可靠性建模为基础,对数控机床的可靠性技术进行拓展,对研究成果进行严格筛选,构建故障案例库与数据库,促进我国数控机床可靠性技术的发展。
6 数控机床可靠性技术的应用研究
6.1 数控机床可靠性评定方法
数控机床可靠性的评定方法有三种,一是修正极大似然法和序贯压缩相结合的方法;二是指数寿命型串联系统法;三是基于信赖方法的数控机床可靠度的分析法。第一种的准确度比第二种更高,在数据充分的情况下,采用基于信赖方法的数控机床可靠度分析方法更为合理。
6.2 数控机床可靠性技术分析方法
加工中心是现代信息科学与传统机械技术相结合的典型产品,通过对其故障信息的科学分析,找出运行中的薄弱环节。将故障分析结果反映到各个部门,以提高产品可靠性为重要任务,将传统频次主次图分析方法与故障比重比方法相结合来解决故障问题。
6.3 重视数控机床可靠技术,更好促进机床的现代化
根据机床各部分组建的功能将经济、资源等内容进行综合考虑,来确定影响可靠性指标的因素,更好促进可靠性的提高,同时抓好改制改组工作,注重售后服务降低故障发生频率,一旦出现故障必须及时解决,重视质量与服务,积极引进国外先进技术,更好促进数控机床的现代化发展,努力掌握好数控机床可靠性技术,为机床质量提供一定保障。
6.4 数控机床可靠性信息体系及开发“可靠性数据库”和信息处理软件
开发出可靠性信息源,开发出可靠性信息存储、处理技术;数控机床可靠性数据库、可靠性评价软件、故障分析软件,为数控机床建立集成化可靠性信息体系。
6.5 建立可靠性指标(水平)评价体系
针对数控机床产品的特点,建立了数控机床可靠性指标评价体系,对平均故障间隔时间MTBF进行点估计和区间估计,并评估出平均修复时间MTTR和固有可用度Ai等具体数值,从而评价出数控机床可靠性水平。此项成果建立了完全针对数控机床行业特点的可靠性增长理论体系,开发出了实用技术以及可靠性增长的具体实施方法, 在国内外均属首创。
7 数控机床可靠性技术的展望
数控机床可靠性技术研究历经几十年,在可靠性设计、故障分析、可靠性建模、可靠性试验等方面取得了明显的进展。目前正在形成可靠性动态建模、可靠性综合设计、故障预警等数控机床可靠技术领域的研究热点。但由于从事数控机床可靠性研究的学者及相关机构普遍较少,对数控机床故障机理、数控机床维修性及可用性研究不够重视,从而导致数控机床可靠性技术一直得不到发展。随着科技的迅速发展,数控机床可靠性技术已经成为现代机床行业最关键的技术之一,我们必须从数控机床可靠性技术及行业需求角度进行技术展望。
7.1 强化全生命周期可靠性技术理念
数控机床可靠性技术的发展必须建立在可靠性建模、分析、设计等研究基础上,加强数控机床制造可靠性、早期故障排除、运输可靠性、维修性设计等可靠性技术研究,强化全生命周期可靠性技术理念,将其应用到数控机床可靠性技术的发展当中去。
7.2 构建数控机床可靠性技术体系
通过强化全生命周期可靠性技术理念,对研究成果不断进行完善,在此基础上制定数控机床可靠性技术规范,形成具有数控机床行业特色产品的可靠性技术体系。技术的研究离不开企业,在应用可靠性技术管理体系时应该保障可靠性技术研究成果在企业中的有效应用,使企业逐渐成为可靠性技术研发主体。
8 结语
可靠性有关学科发展始于20世纪50年代,并形成了相对完善的理论体系,要提高数控机床产品的可靠性,企业必须建立一定的可靠性保障能力,并且数控机床可靠性技术的发展离不开企业的支持,企业应该从战略角度出发,从零部件设计到故障数据分析方面做好调研工作,构建完善的管理体系,并给出相应改进意见,提高数控机床可靠性,促进数控机床可靠性技术的发展。在第十二个五年计划期间,我国的机械制造业逐渐朝着集成化、自动化、智能化方向发展,同时也为数控机床行业提供了良好机会。
参考文献
[1] 时振伟.数控机床可靠性技术分析与研究[J].机电信息,2013(6):87-88.
[2] 张根保,王立平.国产数控机床可靠性技术综述[J].航空制造技术,2013(5):26-31.
[3] 杨兆军,陈传海,陈菲,等.数控机床可靠性技术的研究进展[J].机械工程学报,2013(20):130-139.
[4] 张义民.数控机床可靠性技术评述(上)[J].世界制造技术与装备市场,2012(5):49-57.
[5] 李南,卢晓红,韩鹏卓,等.数控机床及其关键功能部件可靠性研究综述[J].组合机床与自动化加工技术,2012(11):105-108.
[6] 张义民.数控机床可靠性技术评述(下)[J].世界制造技术与装备市场,2012(6):56-63,67.
[7] 张义民.我国数控机床可靠性的研究“何去何从”?[J].世界制造技术与装备市场,2015(2):91-103.
[8] 岑华.数控机床可靠性技术的研究与发展[J].科技创新导报,2015(9):52.
[9] 李樟.数控机床的概况与可靠性设计分析[J].民营科技,2015(3):28.
[10] 孙厚春.数控机床可靠性技术的发展[J].山东工业技术,2015(2):169.
[11] 张根保,余武.“数控机床可靠性技术”专题(四)可靠性设计体系[J].制造技术与机床,2014(10):7-13.
[12] 张根保,柳剑.数控机床可靠性概述[J].制造技术与机床,2014(7):8-14-22.
篇10
关键词:数控机床;性能;发展趋势
数控机床随着电子技术和计算机技术的进步而飞速发展,数控机床正朝着高速度、高效率、高精度、高可靠性、模块化、智能化、高柔性、集成化、开放性等方向发展。数控机床的使用范围越来越大,数控机床技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控机床技术的不断发展和应用领域的不断扩大,数控机床技术对国计民生的一些重要行业(IT、航空、轻工、医疗等)的发展起着越来越重要的作用。目前我国数控机床技术主要朝以下几个方向发展。
一、高速、高效方向发展
数控机床要大幅提高加工效率,首先要提高切削和进给速度,同时,还要缩短加工时间、降低加工成本,提高零件的表面加工质量和精度。
数控机床只有通过缩短切削时间,才可能进一步提高其生产率。随着高效、大批量生产的需求和电子驱动技术的飞速发展,直线高速电动机的推广与应用,开发出许多高速、高效、高精度的数控机床以满足航空、航天、等行业的需要。由于新产品更新换代时间周期的缩短,航空、航空、军事等工业加工的零件不但复杂而且品种多,也需要高效的数控机床,实现优质、低成本的生产。
二、高精度方向发展
从精密加工发展到超精密加工(特高精密加工)是世界各工业强国致力发展的方向。加工精度范围从微米级到亚微米级,乃至纳米级(
当前,机械加工高精度的要求如下:普通数控机床的加工精度已由10μm提高到5μm,精密加工中心则从3~5μm提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.001μm)。
三、高可靠性方向发展
高可靠性是指数控系统的可靠性要高于被控设备的可靠性一个数量级以上。所以,并不是可靠性越高就越好,只要能满足产品精度需要就行。
四、模块化方向发展
为了适应数控机床加工结构比较复杂,精度要求较高以及产品更新频繁,生产周期要求短,品种多、批量小的特点,机床结构模块化,数控功能专业化,应提高并优化数控机床的性能。近几年来最明显的发展趋势就是个性化。
五、智能化方向发展
为提高加工效率和产品质量方面的智能化,如自适应控制、工艺参数自动生成等;为形成严密的制造过程闭环控制体系方面的智能化,如将计算机智能技术、网络技术、CAD、CAM、伺服控制、自适应控制、动态数据管理及动态刀具补偿、动态仿真等高新技术融于一体。
自适应控制智能化,根据切削条件的变化,自动调节工作参数,使加工过程中能保持最佳工作状态。具有自诊断、自修复功能,在整个工作状态中,系统随时对CNC系统本身以及与其相连的各种设备进行自诊断、检查。
六、柔性化和集成化方向发展
数控机床向柔性自动化发展的方向是:从点(数控单机、加工中心和数控复合加工机床)、线(柔性制造单元〈FMC〉、柔性制造系统〈FMS〉、柔性制造生产线〈FML〉、专用机床或数控专用机床组成的柔性制造〈FML〉)向面(工段车间独立制造岛、自动化工厂〈FA〉)、体(计算机集成制造〈CIMS〉、网络集成制造系统)的趋势发展,另一方面向实用性和经济性方面发展。柔性自动化技术是我国制造业发展的方向,是高端制造领域的基础技术。数控机床系统能方与计算机辅助设计〈CAD〉、计算机辅助制造〈CAM〉机床自动编程的编辑程序〈CAMP〉、信息系统〈MIS〉连接,向信息集成趋势发展,向智能化、网络化、开放式趋势发展。
七、开放性方向发展