光纤通信技术论文范文
时间:2023-03-23 06:53:37
导语:如何才能写好一篇光纤通信技术论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
为了适应网络发展和传输流量提高的需求,传输系统供应商都在技术开发上不懈努力。富士通公司在150km、1.3μm零色散光纤上进行了55x20Gbit/s传输的研究,实现了1.1Tbit/s的传输。NEC公司进行了132x20Gbit/s、120km传输的研究,实现了2.64Thit/s的传输。NTT公司实现了3Thit/s的传输。目前,以日本为代表的发达国家,在光纤传输方面实现了10.96Thit/s(274xGbit/s)的实验系统,对超长距离的传输已达到4000km无电中继的技术水平。在光网络方面,光网技术合作计划(ONTC)、多波长光网络(MONET)、泛欧光子传送重叠网(PHOTON)、泛欧光网络(OPEN)、光通信网管理(MOON)、光城域通信网(MTON)、波长捷变光传送和接入网(WOTAN)等一系列研究项目的相继启动、实施与完成,为下一代宽带信息网络,尤其为承载未来IP业务的下一代光通信网络奠定了良好的基础。
(一)复用技术
光传输系统中,要提高光纤带宽的利用率,必须依靠多信道系统。常用的复用方式有:时分复用(TDM)、波分复用(WDM)、频分复用(FDM)、空分复用(SDM)和码分复用(CDM)。目前的光通信领域中,WDM技术比较成熟,它能几十倍上百倍地提高传输容量。
(二)宽带放大器技术
掺饵光纤放大器(EDFA)是WDM技术实用化的关键,它具有对偏振不敏感、无串扰、噪声接近量子噪声极限等优点。但是普通的EDFA放大带宽较窄,约有35nm(1530~1565nm),这就限制了能容纳的波长信道数。进一步提高传输容量、增大光放大器带宽的方法有:(1)掺饵氟化物光纤放大器(EDFFA),它可实现75nm的放大带宽;(2)碲化物光纤放大器,它可实现76nm的放大带宽;(3)控制掺饵光纤放大器与普通的EDFA组合起来,可放大带宽约80nm;(4)拉曼光纤放大器(RFA),它可在任何波长处提供增益,将拉曼放大器与EDFA结合起来,可放大带宽大于100nm。
(三)色散补偿技术
对高速信道来说,在1550nm波段约18ps(mmokm)的色散将导致脉冲展宽而引起误码,限制高速信号长距离传输。对采用常规光纤的10Gbit/s系统来说,色散限制仅仅为50km。因此,长距离传输中必须采用色散补偿技术。
(四)孤子WDM传输技术
超大容量传输系统中,色散是限制传输距离和容量的一个主要因素。在高速光纤通信系统中,使用孤子传输技术的好处是可以利用光纤本身的非线性来平衡光纤的色散,因而可以显著增加无中继传输距离。孤子还有抗干扰能力强、能抑制极化模色散等优点。色散管理和孤子技术的结合,凸出了以往孤子只在长距离传输上具有的优势,继而向高速、宽带、长距离方向发展。
(五)光纤接入技术
随着通信业务量的增加,业务种类更加丰富。人们不仅需要语音业务,而且高速数据、高保真音乐、互动视频等多媒体业务也已得到用户青睐。这些业务不仅要有宽带的主干传输网络,用户接人部分更是关键。传统的接入方式已经满足不了需求,只有带宽能力强的光纤接人才能将瓶颈打开,核心网和城域网的容量潜力才能真正发挥出来。光纤接入中极有优势的PON技术早就出现了,它可与多种技术相结合,例如ATM、SDH、以太网等,分别产生APON、GPON和EPON。由于ATM技术受到IP技术的挑战等问题,APON发展基本上停滞不前,甚至走下坡路。但有报道指出由于ATM交换在美国广泛应用,APON将用于实现FITH方案。GPON对电路交换性的业务支持最有优势,又可充分利用现有的SDH,但是技术比较复杂,成本偏高。EPON继承了以太网的优势,成本相对较低,但对TDM类业务的支持难度相对较大。所谓EPON就是把全部数据装在以太网帧内传送的网络技术。现今95%的局域网都使用以太网,所以选择以太网技术应用于对IP数据最佳的接入网是很合乎逻辑的,并且原有的以太网只限于局域网,而且MAC技术是点对点的连接,在和光传输技术相结合后的EPON不再只限于局域网,还可扩展到城域网,甚至广域网,EPON众多的MAC技术是点对多点的连接。另外光纤到户也采用EPON技术。
二、光纤通信技术的发展趋势
对光纤通信而言,超高速度、超大容量、超长距离一直都是人们追求的目标,光纤到户和全光网络也是人们追求的梦想。
(一)光纤到户
现在移动通信发展速度惊人,因其带宽有限,终端体积不可能太大,显示屏幕受限等因素,人们依然追求陸能相对占优的固定终端,希望实现光纤到户。光纤到户的魅力在于它有极大的带宽,它是解决从互联网主干网到用户桌面的“最后一公里”瓶颈现象的最佳方案。随着技术的更新换代,光纤到户的成本大大降低,不久可降到与DSL和HFC网相当,这使FITH的实用化成为可能。据报道,1997年日本NTT公司就开始发展FTTH,2000年后由于成本降低而使用户数量大增。美国在2002年前后的12个月中,FTTH的安装数量增加了200%以上。在我国,光纤到户也是势在必行,光纤到户的实验网已在武汉、成都等市开展,预计2012年前后,我国从沿海到内地将兴起光纤到户建设。可以说光纤到户是光纤通信的一个亮点,伴随着相应技术的成熟与实用化,成本降低到能承受的水平时,FTTH的大趋势是不可阻挡的。
(二)全光网络
传统的光网络实现了节点间的全光化,但在网络结点处仍用电器件,限制了目前通信网干线总容量的提高,因此真正的全光网络成为非常重要的课题。全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性,并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。当然全光网络的发展并不可能独立于众多通信技术,它必须要与因特网、ATM网、移动通信网等相融合。目前全光网络的发展仍处于初期阶段,但已显示出良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。
三、结语
篇2
1.1SDH光纤通信在铁路通信系统中的应用
SDH光纤通信在铁路通信系统里的使用解决了PDH光纤通信使用存在的问题,并在此基础上有所突破,让铁路通信系统更加稳定和流畅。借助SDH设备构成的具备自愈保护作用的环网形式,能在传输媒体主要信号中断的时候自动利用自愈网及时恢复正常的通信状态。相较于与PDH技术,SDH技术有四个显著优点:一是网络管理能力更强;二是比特率和接口标准均统一,让各个厂家设备间的互联成为了可能;三是提出“自愈网”这一新理论,能在传输媒体主要信号中断时及时恢复正常;四是运用字节复接技术,简化网络各个支路信号。鉴于SDH光纤通信技术有诸多优点,所以在铁路通信网发展规划里,已经明确提出了要着重发展基于同步数字系列(SDH)基础上的传送网[2]。就以xx铁路为例,该铁路基于新敷设20芯光缆里的其中4芯光纤基础上,开设SDH2.5Gb/s(1+1)光同步传输系统为长途传输网,在铁路的相应经过点均设置了SDH2.5Gb/sADM设备,并借助622Mb/s光口同接入层传输设备相连,发挥上联和保护作用。此外,还借助2芯光纤开设了SDH622Mb/s(1+0)光同步传输系统,将其作为当地的中继网,并在铁路相应经过点以及新开设的各个中间站和线路新设置了SDH622Mb/s设备。
1.2DWDM光纤通信在铁路通信系统中的应用
DWDM光纤通信技术是借助单模光纤宽带与损耗低的特点,由多个波长构成载波,许可各个载波信道能同时在同一条光纤里传输,如此一来,在给定信息传输容量的情况西夏,就能降低所需光纤的总量。使用DWDM技术,单根光纤能传输的最大数据流量可以高达400Gb/s。DWDM技术最显著的优点就是其协议与传输速度是没有关联的,以DWDM技术为基础的网络可以使用IP协议、以太网协议、ATM等进行数据传输,每秒处理数据流量在100Mb~2.5Gb之间。也就是说,以DWDM技术为基础的网络能在同一个激光信道上以各种传输速度传输各种类型的数据流量。当前,在国内铁路通信网里DWDM技术得到了广泛应用,其中沪杭-浙赣铁路干线就是国内第一条使用DWDM光纤传输系统的铁路。此外,京九、武广等铁路的DWDM光纤传输系统也在建设与使用中。就拿京九铁路来说,京九铁路线使用的是具有开放性的DWDM系统和设备,能兼容各种工作波长以及厂商的SDH设备。波道数量为16,波道速率基础为每秒2.5Gb,借助京九线20芯光缆里的2芯G.652单模光纤,使用单纤单向传输的方式,也就是说相同波长在两个方向上都能多次使用,光接口满足ITU-TG.692协议的标准。
2结语
篇3
从光纤技术的使用状况进行分析,光纤通信技术作为激光通信技术的一部分,效率高、便捷、成本低是其基本特点,被各领域广泛使用。最初的通信行业中,作为电磁波的光就已经得到广泛运用,这使得通信的技术水准上了一个新的台阶。通常来讲,主要有两种不同的情况通过光进行通信,一是激光大气,其光源是激光,主要是将信息经过调制光的机器转变成信号,然后通过光学天线进行发送,接受信息的设备也是匹配的,如此信息就通过激光完成了传播。此类通信方式受温度和大气的制约,传输的距离不宜过大,所以,这种通信方式多适用于指定区域内。二是导光纤维,这种纤维通过玻璃拉直后进行信息的传输,也就是我们通常所指的光纤通信。
2、电力通信网的构成及特点
微波、光纤以及卫星电路是当前电力通信技术中的主要干线,电力系统特有的光缆和电力线载波等方式是不同支路完成通信的主要载体,并采用明线、电缆、无线等多种通信手段及程控交换机、调度总机等设备组成的多用户、多功能的综合通信网。电力通信的主要包括以下几种方式。
2.1电力线载波通信
对工频电流的传输是电力线路的工作重点。电力线载波完成通信的工作原理是:利用载波机将需要传输的信息转换为高频的弱电流,然后通过电力线路完成传输,其特点是:投资少、可靠性强、收效快,并且可以与电网同步发展建设。另外,此类通信方法还可以通过电力线将底线架空的方式来实现载波信号的传送,这叫绝缘地线载波法,这种载波方法与传统方法相比,具有脱离线路故障以及线路停电等因素的制约的优势,同时,这种绝缘地线还可以在很大程度上起到省电的作用。
2.2光纤通信
由于光纤通信具有抗电磁干扰能力强、传输容量大、频带宽、传输衰耗小等诸多优点,它一问世便首先在电力部门得到应用并迅速发展。除普通光纤外,一些专用特种光纤也在电力通信中大量使用。电力通信不仅包括上面两种,还包括音频电缆、曾经的明线电话和当前流行的扩频通信等。与专供通信的专门网络不通,电力通信的主要特点是:对灵活性与可靠性提出了更高的要求;种类繁多、信息传输量少、强大的实时性;抗冲击性强;具有更复杂的网络构造;机房多为无人看守、通信的范围广大。
3、光纤通信技术在电力通信中的应用
(1)光纤具有比电缆以及铜线更宽的频带面,传输的宽带较大,这对传输的信息量和传输速度都十分有利。人类的需求在信息技术的推动下日益增加,这也对电力通信的网络提出了更高的要求,使其面临的任务更加艰巨。当前电力系统飞速发展、电网实现数字化、信息化建设日趋完善,这对电力系统的信息量传输提出了更高的要求。因此,在整个电力通信中,具有较大传输量优势的光纤通信技术起到了关键性的作用。
(2)光纤通信技术在信息的传输过程中损耗远远低于其他材质的传输材料,还有光纤可以长距离传输,也就是说光纤通信技术可以在脱离中继站的情况下实现信息的远距离传输,大大的减少了中继站的建设费用。在国家经济的推动下,电力通信设计的范围也越来越广,常见的事例有:偏远乡村日益发展的有线电视,不断更新的数字电视等,当前中国,电信干线传输、电力通信和广播电视等网络的覆盖面积越来越广,规模越来越大,工程体系越来越繁杂。大规模的使用光纤通信技术,可以降低传输损耗、降低中继站数量,节省建站资金等。
(3)光纤具有抗腐蚀和绝缘的特性,并且在传输信号的过程中具有抗干扰、防窃听、防泄漏信息的优势,这在很大程度上对电力系统的稳定安全起了保护作用,这对社会运行的正常与否也有决定性的作用。
(4)相对于其他公用网公司,电力系统在通信技术方面有着自己的要求,所以通常电力通信在建设过程中,会根据其特有的要求采用不同类型的光纤进行通信建设。ADSS与OPGW是当前中国特种光缆的类型,这种特种通信光缆主要服务于电力通信。其与众不同的结构与安装情况决定了其与其他光缆的不同,这种材料的价格成本比较昂贵,但它具有低损耗、长寿命、较强安全性和与地线复合等优势,这在很大程度上节省了建设系统网络的成本,并且使电力通信的质量得到了质的飞越。
4、结语
篇4
关键词:光纤通信技术优势接入技术
引言
近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。
一、光纤通信技术定义
光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。
二、光纤通信技术优势
2.1频带极宽,通信容量大
光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。散波长窗口,单模光纤具有几十GHz·km的宽带。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。采用密集波分复术可以扩大光纤的传输容量至几倍到几十倍。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps,采用密集波分复术实现的多波长传输系统的传输速率已经达到单波长传输系统的数百倍。巨大的带宽潜力使单模光纤成为宽带综合业务网的首选介质。
2.2损耗低,中继距离长目前,实用的光纤通信系统使用的光纤多为石英光纤,此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。
如果将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。目前,由石英光纤组成的光纤通信系统最大中继距离可达200多km,由非石英系极低损耗光纤组成的通信系至数公里,这对于降低通信系统的成本、提高可靠性和稳定性具有特别重要的意义。
2.3抗电磁干扰能力强我们知道光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。它是一种非导电的介质,交变电磁波在其中不会产生感生电动势,即不会产生与信号无关的噪声。这样,就是把它平行铺设到高压电线和电气铁路附近,也不会受到电磁干扰。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。
2.4光纤径细、重量轻、柔软、易于铺设光纤的芯径很细,约为0.1mm,由多芯光纤组成光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。这样采用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题,节约了地下管道建设投资。此外,光纤的重量轻,柔韧性好,光缆的重量要比电缆轻得多,在飞机、宇宙飞船和人造卫星上使用光纤通信可以减轻飞机、轮船、飞船的重量,显得更有意义。还有,光纤柔软可绕,容易成束,能得到直径小的高密度光缆。
2.5保密性能好对通信系统的重要要求之一是保密性好。然而,随着科学技术的发展,电通信方式很容易被人窃听,只要在明线或电缆附近设置一个特别的接收装置,就可以获取明线或电缆中传送的信息,更不用去说无线通信方式。光纤通信与电通信不同,由于光纤的特殊设计,光纤中传送的光波被限制在光纤的纤芯和包层附近传送,很少会跑到光纤之外。即使在弯曲半径很小的位置,泄漏功率也是十分微弱的。并且成缆以后光纤在外面包有金属做的防潮层和橡胶材料的护套,这些均是不透光的,因此,泄漏到光缆外的光几乎没有。更何况长途光缆和中继光缆一般均埋于地下。所以光纤的保密性能好。此外,由于光纤中的光信号一般不会泄漏,因此电通信中常见的线路之间的串话现象也可忽略。
三、光纤接入技术
随着通信业务量的不断增加,业务种类也更加丰富,人们不仅需要语音业务,高速数据、高保真音乐、互动视频等多媒体业务也已经得到了更多用户的青睐。光纤接入网可分为有源光网络A(ON)和无源光网络((PON。)采用SDH技术、ATM技术、以太网技术在光接入网系统中称为有源光网络。若光配线网(ODN全)部由无源器件组成,不包括任何有源节点,则这种光接入网就是无源光网络。
现阶段,无源光网络P(ON)技术是实现FT-Tx的主流技术。典型的PON系统由局侧OLT光(线路终端)、用户侧ONUO/NT(光网络单元)以及ODN-OrgnizationDevelopmentNetwork(光分配网络)组成。PON技术可节省主干光纤资源和网络层次,在长距离传输条件夏可提供双向高带宽能力,接入业务种类丰富,运维成本大幅降低,适合于用户区域较分散而每一区域内用户又相对集中的小面积密集用户地区。
为实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达置的不同,有FTB、FTTC,FTTCab和FTTH等不同的应用,统称FTTx。
FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制定了FTTH的技术标准和建设标准,有的城市还制门了相应的优惠政策,这此都为FTTH在我国的发展创造了良好的条件。
在FTTH应用中,主要采用两种技术,即点到点的P2P技术和点到多点的xPON技术,亦可称为光纤有源接入技术和光纤无源接入技术。P2P技术主要采用通常所说的MC(媒介转换器)实现用户和局端的自接连接,它可以为用户提供高带宽的接入。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。
篇5
关键词:铁路通信系统;光纤通信技术;DWDM技术;波分复用技术;光纤接入技术 文献标识码:A
中图分类号:U285 文章编号:1009-2374(2017)06-0034-02 DOI:10.13535/ki.11-4406/n.2017.06.017
光纤通信技术作为当今社会不可缺少的一种信息传输载体,其不但在市场占有重要位置,且运用比较广泛,例如:光纤通信技术被运用于高质量彩色电视传输、工业生产场地监控与调度。特别是在铁路通信系统当中,光纤通信技术运用得比较多。在铁路通信系统中应用光纤通信技术可以提高通信传输的效率以及扩大光纤通信技术的运用,可是光纤通信技术还有很多不足之处,需要得到改善。所以,下文就光纤通信技术在铁路通信系统的运用以及优化举措进行了简单的阐述。
1 关于光纤通信技术情况分析
由于光纤通信是在高频率光波当中作为载波的这一前提条件下完成的,且由于光波频率必须要达到1000赫兹才可以,而光纤在进行发送信息时一般是被当作介质一样的东西存在的。之前有文献提到了这样一个理论:就是将光纤当作媒体,这样就可以完成信息输送。并且这篇论文提到,如果将其运用到通信当中,不但可以降低光纤损害程度,还可以降低成本运输。所以某企业为了真正实现这一想法,通过大量的研究和探索,对其进行想象和思考,最终判定假如有一天将其成功研发出来,可以获取高额的回报。而且对于通信未来发展有着非常重要的作用。随之而来的世界上就出现了损害低的光纤,并且这根光纤衰退系数是20~23db/km,也正是因为如此,人们进入了光纤时代。使用光纤技术的时候,与以往的通信技术相比较,光纤技术优势更大,尤其是光纤技术的损耗小、容量大、传输快等优点,这是传统的通信技术不能相比的。由于光纤通信具备了这部分优点:不会遭到电磁感染、不会出现串音,所以很多人喜欢光纤通信,且为了更好地运用光纤通信,人们花费大量的资金和先进技术,发展光纤通信技术。从光纤技术发展至今,只有20多年的时间,光纤通信的容量就提高了一万多倍,且传输速度也提高了数百倍,到目前为止,人们可以在各个行业当中看到光纤的身影。
1.1 波分复用技术分析
因为通过单模光纤消耗非常小的区域,使用波分复用能够带来很大的宽带资源,按照不一样的波长以及频率,不一样的信道就可以经过光纤消耗非常小的窗口进行改进而成。且因为信号载波就是光波,所以波分复用器使用在发送端,能够将不相同的波长光载波进行有效融合,然后发送到一根光纤之中。通过接收端,将不一样的波长采用分波器负荷不相同的信号载波进行有效分割。不相同的波长的光载波信号一同进行复用传输。从当今社会发展来看,波分复用已经运用于铁路通信体系之中,按照不一样的波长输送通信信号,不仅不会遭到电磁信号以及气候的干扰,还可以提高信息传输速度。
1.2 光纤接入技术分析
光纤接入网作为信息高速公路中的最后一个环节,其要想完成高速信息输送,关键点在于用户的接入这一环节,必须拥有主干宽带输送网,且信息高速输送到各家各户采用的技术就是光纤接入网络技术。当光纤宽带进行接入时,通常其输送方式不会是单一的,而是各种类型的同的方式,且光纤到户和FTTCab就是经常使用的传递模式。其能够让光纤在不同的位置进行信息传递。由于进行光纤宽带接入方式采用了光纤到户这一方法,其可以提供全光接入,所以对于不相同的宽带特点能够充分满足使用者对于宽带的各种不同需求,用户体验到不同的宽带需求。
2 运用的光纤通信技术情况分析
2.1 准同步数字系列光纤通信
于1980年左右,铁路光纤通信体系逐步发展和进步,由北京站到北京局间建立了一个10千米以上的试验段,并且二次体系也随之开通,且路段之间建立了多模光纤,采用8芯单模光缆将其运用于重载双线电气化大秦铁路。而该局限通信系统由二芯配置34Mb/sPDH设施组建而成,所以中国的第一条长途干线电缆数字通信系统功能出现了,这样大大促进了同轴模拟传输光缆数据通信在铁路通信网的进步和发展。但由于其复用结构相当复杂、没有网络管理能力等,进而直接影响到光缆通信系统发展和进步,在这样的情况下,相关人员研制出了同步数字体系技术,其逐渐出现在人们的视线里。同步数字体系可以有效实现光纤通信系统的运用价值。其是把光纤信号进行一同收集,接着采用不一样的频率来发出。
2.2 对于DWDM技术运用分析
相关人员开始于铁路通信系统中运用DWDM,这种技术能够采员工非常多的波长作为载波,其具备了消耗非常低与单模光纤的宽带的特点,可以让各个载波通信通道在一根光纤里一同进行传输,这样可以大大降低光纤的总数目。在DWDM当中,其协议和输送的速度没有任何联系,并且DWDM网络可使用以太网协议等来进行数据输送,且数据流量通常可以控制在2.0Gb/s~100Mb/s之间。并且DWDM能够在激光通道间,经过不一样的速度输送不一样的数据流量。从目前而言,这样的技术已经开始大面积地运用到铁路通信系y中。由于此技术不会受到天气的干扰,可以将波长和光纤频率相融合,使用DWDM系统和设施,让信息体系可以得到综合性的兼容。
相关人员使用SDH设施,开展信号波的传输,在一开始的时候,其信号传输不太稳定,但由于时间的上涨,所以输送的速度也会一直上涨。在这样的情形下,能够采用16波道以及2.0Gb/s以上的速度作为基础。采用单根光纤单向传输方式,能够把相同的波长在不同的两个位置进行重复性的使用功能。这项技术和数字传输体制的世界标准是相符的,能够符合很多的光纤信号。并且这种技术还能够把PDH与SDH的特征进行兼容,使用灵活的组网方式,可以有效降低联网费用。DWDM技术在多个新型行业都有业务方面的发展,不但可以推动铁路通信系统发展,还能够让通信技术行业上升一个档次,进而带来全新的发展局面。运用DWDM,把光纤通信技术相结合,且把光波频率和电磁信号相融合,将其运用于铁路通信当中,可以达到意想不到的效果。
3 光纤通信技术优化策略
3.1 采用光时分复用及密集波分复用技术提升传输容量
要想提升光纤传输系统中的传输容量,就一定要采用光时分复用技术以及密集波分复用技术,这是提升传输容量最好的方法之一,其能够经过单根光纤来使得传输信道数的传输容量增加,并且光时分复用技术是经过信道的传输速度来提升传输容量的。可是由于光时分复用技术以及密集波分复用技术传输的光纤通信系统的容量非常有限,所以相关人员可以把很多的光时分复用信号一起使用,这样可以在很大程度上提高传输的容量。其中偏振复用技术最大的作用在于降低相邻的信道之间的相互作用,在高速通讯系统当中归零编码信号里面所占去的空间非常小,并且对于色散管理分布相关要求很低,而且其对于光纤的偏振膜色散以及非线性归零编码信号之间的适应性很强。所以在当前的大容量通信系统当中运用归零编码传输方法比较好。
3.2 采用光孤子通信技术进行远距离传输
因光孤子通信技术拥有非常特别的PS数量级的很短的光脉冲,其方位一般是在光纤反常色散区域,可以将光纤的非线性和群速度色散进行有效地平衡,所以,针对光纤距离较远的输送,使用光孤子通信,就不会更改光纤速度和波长。使用功能光孤子通信能够进行远距离高速通讯,能够在时域很短的脉冲把控中使用已存在的速率,进而可以有效降低ASE,而其定时、整形等可以加大输送的距离。如果要提高光学滤波输送距离,其可以在性能非常高的掺铒光纤放大器方面输送比较低的噪音的掺铒光纤放大器。
3.3 采用全光网络技术提升速度传输
运用全光网络技术能够有效提升速度传输,实现高速传输。以往的光网络可以把节点间的全光化完成,可是在网络的节点处以往的方式运用的是电器件,这就严重局限了通信网络容量的提升,并且也给当前铁路通信系统造成了很大的麻烦。可是电节点会在全网络中被取代,且节点之间可以使用全光网,让信息可以进行高速的交换以及传输,对于用户的信息不会再按照以往的比特进行,而是根据波长来决定。采用全光网络技术还能够消除电光瓶颈产生的部分影响因素。
4 结语
在铁路通信系统中运用光纤通信技术可以提升传输效率,还可以推动通信行业的发展,并且素质和市场需求上升,能够促进光纤通信技术上升一个层次。所以运用光纤通信技术的时候,首要做的就是对其运用的相关情况进行仔细的分析,接着通过对实际情况的调查,对光纤通信技术进行优化,提升光纤通信技术传输容量、实现光纤通信技术远距离传输、实现光纤通信技术全光网。
参考文献
[1] 陈鼎.光纤通信技术在铁路通信系统中的应用[J].无线互联科技,2016,(18).
[2] 何静涛.试论光纤通信技术在铁路通信系统中的应用[J].中新通信,2016,(1).
[3] 李士军.铁路通信系统中的光纤通信技术分析[J].科技风,2015,(5).
篇6
关键词:光纤通信;课程教学;教学改革
作者简介:翟凤潇(1979-),男,河南永城人,郑州轻工业学院物理电子工程学院,讲师;郝蕴琦(1985-),女,河南扶沟人,郑州轻工业学院物理与电子工程学院,讲师。(河南 郑州 450002)
基金项目:本文系郑州轻工业学院第十批教改项目的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)05-0144-02
自从英(美)籍华人科学家高锟提出光纤用于通信领域之后,光纤通信技术以其独特的特点和优势得到了前所未有的快速发展。[1]我国光通信设备产业近年来—直保持较高增长速度,成为中国发展最快的产业之一。现在国家级的电信网骨干主要采用光纤通信系统,而光纤通信技术已深入到社会生活的各个层面,成为现代社会重要的关键基础设施。特别是2013年8月17日,国务院印发了“宽带中国”战略及实施方案的通知,必将对我国光纤通信技术发展起到了巨大的推动作用,也会对光纤通信人才培养产生影响。由于光纤通信技术在社会生活中占据的重要地位,因此“光纤通信”课程近年来一直作为国内外高校通信、电子学科的重点专业课程及相关专业的选修课程。这门课程系统主要介绍了光纤通信理论和技术。课程要求是通过这门课程的学习,可以使学生掌握光纤通信技术的基本原理、光纤通信系统的基本构成以及系统设计方法,了解光纤通信技术的实际应用和最新发展方向,为学生毕业后能够从事光纤数字通信设备的操作、维护、设计、施工或继续深造打下良好的基础。“光纤通信”作为一门应用性很强的课程,在实际课程教学中存在诸多问题。关于“光纤通信”课程理论与实践教学改革成为各高校研究的问题。[2-5]本文将从教学现状及存在的主要问题出发,对该课程的教学改革进行探讨。
一、“光纤通信”课程存在的问题
作为电子科学技术专业一门主要专业课,其特点是光纤通信科学技术发展迅速,新理论和新技术不断产生和发展。这需要及时更新教学实验内容、改革教学方法。由于种种原因,“光纤通信”这门课程在实际教学过程中存在诸多问题,主要表现在以下方面:
第一,从授课方面来看在传统的教学模式下,一般都是按照教材的自然顺序按部就班地进行讲解,由于本课程公式多、表格多、图形多,并且在课堂授课中,教师需在黑板上做大量的数学分析推导,课堂教学中过多的公式推导、证明导致课堂气氛沉闷,教学效果不佳。另外,课程成绩考核方式比较单一。目前“光纤通信”原理课程的考核多采取传统闭卷考试方式,考试内容以理论知识为主,导致学生的学习方法呆板,习惯死记硬背,表现出综合应用知识能力比较欠缺,不能充分反映出学生对课程知识进行融会贯通、创新思维解决实际问题的能力。以上原因都极大打击了学生学习的积极性。
第二,实践性教学环节欠缺。在工科院校“光纤通信”教学实践的过程中,实践教学环节向来是一个短板。随着光纤通信的新理论和新技术不断产生和发展,实验硬件更新升级落后、实验设备陈旧、实验项目单一、实验内容老化等原因,教学内容已经落后于光纤通信技术的发展。另外,采用封装性强、集成化程度实验箱型的实验方式在方便操作的同时却无法让学生深入了解光纤通信系统全貌。实践教学很难达到培养学生动手能力的目的,导致学生普遍对实验教学认识不足,严重影响了实验教学质量和效果。
第三,由于光纤通信技术涉及的物理基础知识较多如场论、光学原理、通信技术、激光技术等。故在学习本课程之前,学生应先修这些课程。但是由于这些课程本身都有比较深的难度,所以不少学生很难全面掌握。例如研究光纤中的模式分布通常是在圆柱坐标系下用分离变量法解给定边界条件下的亥姆霍兹方程来完成,要求学生有较好的数学功底和电磁波方面的知识,如果基础知识不够扎实这部分的学习就会出现困难。学生对知识的掌握仅仅限于简单地背结论、公式,做计算题。学生不了解理论的工程应用意义,不具体分析问题,导致学生对课程认识不足,出现不知道学了有什么用的现象,这些问题会使得学生逐步失去对这门课程的兴趣。
二、“光纤通信”课程的教学改革思路
鉴于教学现状和存在的问题,对“光纤通信”课程的教学内容和体系改革非常重要。下面将从教学内容、教学方法以及实验领域进行改革探索,在教学过程中培养学生的创新能力,为学生圆满完成学业打下坚实的基础。
1.创新教学方法
在授课的过程中应摒弃传统教学方法缺点,充分利用计算机多媒体技术在现代教育中的优势。从教学目标出发选择教学内容,把握理论上的度,对课程进行准确定位,突出技术实质。根据不同的教学内容精心制作教学课件,在讲课程前言和绪论部分宜采用声情并茂的图文、视频展示,突出基本理论基本分析方法和知识的应用,让学生在首次接触该课程时,接触到一个开阔的视野,有生动的发展历史和鲜活的应用基础,而不是让其产生理论堆积的错觉。在讲授光源时,采用flas来演示受激辐射机理。在讲授光纤无源(有源)器件时,可以现场演示一些器件。根据课程内容,把课程涉及的知识分成若干主题,如“低损耗光纤研究现状及进展”、“掺Er光纤放大器”、“光无源器件及市场调查”、“基于光纤传感器的研究进展”、“光纤通信的发展趋势”等。把班级学生分成若干小组,每组负责一个主题,查阅相关文献资料。当讲授先关内容时,小组负责人把写出的调查研究报告,以ppt的形式进行报告。这不仅可以拓宽学生的视野,提高学生获取资料的能力,也极大的调动了学习的积极性。让学生参与到教学中来,充分发挥以教师为主导,以学生为主体的作用。这些教学方法学生参与度高,为学生以后的毕业设计以及研究生学习奠定了良好的基础。这些教学手段改变了以往课堂教学气氛沉闷的现象,刺激了学生求知、探索的兴趣和激情。
2.优化教学内容
在教学内容上既要重视课程的理论性,也要强调课程的工程实用性。光纤课程的理论较多,在理论课讲授时,面面俱到,都讲深入也是不切实际的。这就要求对课程教学过程中抓住重点、突破难点,做到详略得当、主次分明。对于学生反映掌握比较困难的理论,可以适当地在课前进行一些知识的补充。比如在理论推导中用到的一些高等数学知识、电磁场理论中的麦克斯韦方程、导波光学等。这些可以让学生课前预习,在课堂上教师进行回顾复习来达到巩固知识的目的,这样学生在学习新的课程内容就显得容易接受了。在教学中,既注重理论分析的严谨性,又在一些理论分析难度较大的内容上,结合物理意义以简化分析,以突出“光纤通信”课程理论性和系统性强的特点。适当增加新技术、新理论的课时,使学生更多了解最新技术发展动态。比如在分析光纤中传输模式时候,可以不必要去细致分析每一步的公式推导,只需把结论及其物理含义进行解释。由于公式中用到了贝塞尔函数,函数的解比较复杂,对于方程的解可以利用计算机完成,尤其是相关计算机软件比如matlab具有可视化功能,[6]由学生自己动手编程解方程和绘图,既可以降低教师在教学中的劳动量还可以加深学生对知识的掌握和理解。
3.加强实验教学项目及硬件建设
“光纤通信”原理课程是一门理论性及实践性很强的课程,因此必须加强和改进“光纤通信”课程的实践环境教学内容,突出本课程重实践、强能力的培养特色。实验建设和实验教学的重视和完善,有利于培养和提高通信工程类大学本科生的应用能力、创新能力和科研能力。
光纤通信技术发展十分迅速,这使得教学内容更新周期越来越短,结合工程实际越来越密切。光纤通信的实验教学环节随着学科的发展显得越来越重要。由于实验硬件建设需要投入的资金较多,许多院校在实验教学环节严重落后于光纤通信技术的快速发展。因此在实验硬件建设方面,亟待改善实验教学条件,加大经费投入。逐步开设多层次实验教学项目如基础性实验、综合性实验、设计性实验等。基础性实验以验证内容为主,例如采用大恒光电GCS-FIB光纤技术基础综合实验平台进行“数值孔径测量”、“光纤准直”等实验。综合性实验对学生综合知识提出更高要求,例如“自组光纤马赫-曾德干涉仪”要求学生对马赫-曾德干涉仪有深入的理解,同时要有较强的动手能力。创新性实验主要结合教师的科研项目以及大学生创新项目,有兴趣的学生可以进行此类研究性实验。考虑到实验建设资金限制,对于一些实验可以用软件模拟的方式进行验证,例如“光纤中模式的传输”、“光的偏振状态”可以采用matlab可视化模拟的方法验证,这些实验可以由学生参与程序的编写,提高学生对所学内容的理解。学生参加实验建设活动,可以在其课程成绩中给予体现,以提高学生参加的热情和积极性。
4.建立全面的评价体系
重理论,轻实践,重结果,轻过程是传统评价方式的特点。因此建立能够反映学习本课程情况的全面评价体系十分必要。建议提高学生学习过程的成绩比重,提高学生实验部分的成绩比重。在理论课成绩部分可以采用期末考试、主题报告、课堂讨论几项成绩的综合方法,这充分体现了学生的学习过程和学习效果。实验成绩采用包括基础实验、综合性实验和设计性实验以及模拟实验建设部分组成。对于设计性实验要有更高的要求,实验结果按照科技论文的形式撰写,为学生后期的毕业论文和研究生学习打下基础。总而言之,建立全面的考核评价体系有助于全面考查学生对课程的学习情况,激发学生学习的积极性。
三、结束语
“光纤通信”是一门多学科交叉的理论性和实践性都很强的课程,在教学过程中,做到理论教学和实践教学并重。通过这门课的学习使学生成为知识面宽,实践能力强和具有创新能力的技术人才,这需要在“光纤通信”课程的教学方法、教学内容、实践环节等方面进行改革和探索。
参考文献:
[1]白显东.光纤通信技术特点及未来发展趋势[J].电脑知识与技术,2012,(34).
[2]谭振建,王志明,洪梅.《光纤通信》课程体系的思考实践[J].南京工程学院学报(社会科学版),2006,(2).
[3]龙青云,左敬龙,肖明.基于大工程观的光纤通信实验教学改革探索[J].实验室研究与探索,2012,(8).
[4]耿涛,冉天纲.基于项目式的光纤通信实验教学改革[J].实验室科学,2011,(5).
篇7
关键词:光纤通信;理论教学;实验教学
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2017)08-0167-03
当代信息高速公路的骨干网络是由光纤通信网络构成的,若没有光纤的发明及相关有源和无源光纤器件的发明和发展,当今的高速信息网络是无法想象的。但是当今信息产业的高速发展得益于微电子学、光电子学、计算机技术及通信工程等多门学科的快速发展及它们之间的交叉融合。因此,要想成为一名信息技术领域的电子信息工程师、计算机工程师或通信工程师,除了需要掌握本专业的课程知识以外,也应该熟悉现代信息技g的其他相关主要知识,比如光纤通信网络及其相关器件等。本文从光纤通信技术的研究内容、应用及发展等方面说明其在电子信息工程专业教育中的重要性,并研讨电子信息工程专业中的光纤通信课程的理论和实验教学方法。
一、光纤通信技术简介
1960年,美国人梅曼(Maiman)发明了第一台红宝石激光器[1],给光通信带来了新的希望。和普通光相比,激光具有波谱宽度窄,方向性极好,亮度极高,以及频率和相位较一致的良好特性。激光是一种高度相干光,它的特性和无线电波相似,是一种理想的光载波。继红宝石激光器之后,氦―氖(He-Ne)激光器、二氧化碳(CO2)激光器先后出现,并投入实际应用。激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。
1966年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤(Optical Fiber)进行信息传输的可能性和技术途径,奠定了现代光通信――光纤通信的基础[2]。在以后的10年中,波长为1.55μm的光纤损耗:1979年是0.20 dB/km,1984年是0.157 dB/km,1986年是0.154 dB/km,接近了光纤最低损耗的理论极限。1970年,作为光纤通信用的光源也取得了实质性的进展。1977年,贝尔实验室研制的半导体激光器寿命达到10万小时(约11.4年),外推寿命达到100万小时,完全满足实用化的要求。由于光纤和半导体激光器的技术进步,使1970年成为光纤通信发展的一个重要里程碑之年。在今后的几十年中,光纤通信网络的逐步商用化带动了相关信息产业链的蓬勃发展[3]。
由于在光纤通信系统中,作为载波的光波频率比电波频率高得多,而作为传输介质的光纤又比同轴电缆或波导管的损耗低得多[4],因此相对于电缆通信或微波通信,光纤通信具有许多独特的优点。综上所述,可见光纤通信技术在现代信息产业技术中的重要地位,因此,光纤通信技术这门课程不仅是光学工程专业的基础必修课程[5],也应该作为电子信息工程专业的专业选修课程来开设。
二、光纤通信课程教学研究
(一)光纤通信课程的理论教学
电子信息工程专业的光纤通信课程的理论知识可以分为四个相互关联的层次和内容,它们分别是:第一部分,光纤技术的基础;第二部分,光纤通信器件技术基础;第三部分,光纤通信系统和网络;第四部分,光纤与光纤通信系统测量。这四个部分的关系层层递进,逐渐深入。理论学时总共32学时。
第一部分,光纤技术的基础。可以先讲解光纤通信技术的一些概念性和历史性的知识,比如:电信技术的发展,光通信的必要性及技术基础,光纤通信技术的历史、现状与未来。此处,可详细介绍人类对光通信探索的历史及现代光纤通信技术从学术研究到商业应用的发展里程,并附带介绍微波通信的发展里程,然后通过比较使用光波进行通信和使用微波进行通信的优缺点及使用光纤材料和使用同轴电缆进行通信的优缺点,让学生了解光纤通信的巨大优势。然后可以简单介绍光纤传输的基础理论――电磁场与电磁波理论中的一些基本概念和现象,重点介绍麦克斯韦方程。最后介绍光纤的模式理论、光纤的结构和类型、光纤的传输特性、光纤制造技术与光缆等知识。其中,光纤传输特性包括光纤的损耗特性和色散特性,这是该部分的重点知识。总之,笔者认为,第一部分内容的讲解方法和手段是非常重要的,不宜讲得深奥,而应该结合动画或者视频讲解光纤的传光原理,使学生易于接受,才能提高学生对这门课程的兴趣,从而继续学习往后部分的相对枯燥的知识。该部分学时安排为6H。
第二部分,光纤通信器件技术基础。这部分讲述光纤通信系统中的有源和无源光通信器件,这些器件是构成一个完成的光纤通信系统必不可少的部件,学好这部分内容有利于理解后面学习的光纤通信网络的内容。这部分内容包括:基本光纤器件、光学滤波器、光纤放大器和半导体光电子器件。基本光纤器件包括分波/合波器、光纤活动连接器、光隔离器、环形器和衰减器等;光学滤波器的内容包括Fabry-Perot滤波器、介质膜滤波器、HiBi光纤Sagnac滤波器、Mach-Zender型滤波器、光纤光栅等;光纤放大器的内容包括:掺饵光纤放大器(EDFA)、光纤Raman放大器等。半导体光电子器件的内容包括:普通的半导体激光器(LD)和发光二极管(LED)、FP型双异质结构激光器、动态单纵模激光器、半导体光放大器(OSA)、PN结光电二极管、PIN光电二极管、APD雪崩光电二极管等。对于每一个光纤器件,讲解内容包括这些光纤器件的结构、工作原理、具体参数、应用场合等,应结合动画或者视频讲解,甚至如果有条件的话,可以在课题上带上一些体积很小的光纤器件实物给学生讲解,比如光纤活动连接器、LD、LED、光纤光栅、PIN光电二极管价格便宜、体积小的光纤器件。该部分学时安排为10H。
第三部分,光纤通信系统和网络。这部分是本门课程的核心和精华部分,包括光纤传输系统、光纤通信网、全光网技术及其发展三大部分。其中,光纤传输系统的内容包含:光纤传输系统的基本组成、光发送机组件、光接收机组件、光放大噪声及其级联、色散调节技术、光纤传输系统设计、光纤传输系统性能评估。光通信网络的内容包含:通信网的拓扑结构和分类、准同步数字系统(PDH)、同步数字系统(SDH)、异步传输模式(ATM)、互联网协议、光纤通信网的管理/保护/恢复。全光网技术及其发展的内容包含:通信网络的发展过程、全光网络中的传输技术(WDM、OTDM、OCDMA和分组交换技术)、无源光网络(G-PON、E-PON、WDM-PON)、光传送网(G.709OTN)、自动交换光网络、全光网的网络管理、全光网的安全问题。对于每一种光纤网络技术,讲解内容包括这些光纤网络结构、功能、应用场合等,应尽量使用PPT的图片、动画进行讲解,PPT上要尽量避免文字上描述。该部分学时安排为12H。
第四部分,光纤与光纤通信系统测量。该部分主要介绍光纤通信工程实施、检测中一些常用的设备和仪器,在本门课程的实验教学中都要使用到这些设备,是培养光纤通信工程师的基础技能知识部分。该部分的内容包括:光功率计的使用、光纤几何参数的测量、光纤衰减测量、光纤色散测量、光纤偏正特性测量、光纤的机械特性和强度测量、光时域反射计(OTDR)的使用;光接收机灵敏度和动态范围的测量、光纤通信系统误码率和功率代价的测量、眼图及其测量、光谱分析仪、光纤通信系统的在线监测技术。其中,重点讲解光功率计、OTDR、眼图示波器、光谱分析仪等仪器设备的功能和使用方法。该部分学时安排为4H。
(二)光纤通信课程的实验教学
对于电子信息工程本科专业而言,毕竟培养的学生不属于光学工程或光电子技术领域的人才,而且电子信息工程专业本身都有很多属于自己专业的实验课程及课程设计,因此,笔者认为光纤通信技术课程的实验教学应根据该专业学生的理论基础和将来他们最可能需要的工程能力而设置。因而,笔者建议光纤通信课程的总学时设置为48学时,理论教学学时为32学时,7个实验的教学学时为16学r。
根据笔者10年来给电子信息工程专业本科学生讲授这门课的经验,认为具体的实验课程设置如下。
1.插入法测光纤的平均损耗系数。采用插入法测量待测光纤在1310nm和1550nm处的平均损耗系数。掌握插入法测量光纤损耗系数的原理,熟悉光纤多用表的使用方法。学时设置为2个课时。
2.光时域反射计(OTDR)测光纤链路特性。用光时域反射计测量光纤链路的平均损耗、接头损耗、光纤长度和故障点位置。了解光时域反射计工作原理及操作方法,学习用光时域反射计测量光纤平均损耗、接头损耗、光纤长度和故障点位置。学时设置为2个课时。
3.光波分复用(WDM)系统实验及其误码率测量构建1310nm/1550nm光纤波分复用系统并测试其误码率,了解光波分复用传输系统的工作原理和系统组成熟悉误码、误码率的概念及其测量方法。学时设置为2个课时。
4.数字光纤通信系统信号眼图测试。构建数字光纤通信系统并且用数字示波器观测系统的信号眼图,并从眼图中确定数字光纤通信系统的性能。了解眼图产生的基础,根据眼图测量数字通信系统性能的原理;学习通过数字示波器调试、观测眼图;掌握判别眼图质量的指标;熟练使用数字示波器和误码仪。学时设置为3个课时。
5.光纤切割与焊接技术演示实验。利用全自动熔接机向学生演示光纤熔接的全过程,了解光纤的结构和光纤电弧放电焊接原理;了解全自动焊接光纤的过程和使用方法。学时设置为2个课时。
6.光纤光栅光谱特性测试系统的设计实验。测量光环行器的插入损耗、隔离度、方向性、回波损耗参数;利用PC光谱仪、光环行器和光纤光栅设计光纤光栅光谱特性的测试系统;了解光环行器的工作原理和主要功能;了解光环行器性能参数的测试原理;了解光纤光栅的光谱特性;学习PC光谱仪的使用方法。学时设置为3个课时。
7.光带通滤波器的设计。测量光耦合器的插入损耗、分光比和附加损耗等参数;利用光耦合器或者光环行器和光纤光栅设计光带通滤波器。了解2X2光耦合器的工作原理,了解光耦合器各项参数的测试方法。学时设置为2个课时。
通过以上实验课程,能够使电子信息工程本科学生对光纤通信系统的基本器件、基本测量系统等有一个比较感观的认识,而且能够更加深刻地掌握它们工作的基本原理和基本特性,为将来在具体的工程设计及进一步深造中奠定基础。
三、结束语
光纤通信技术在国家的信息产业、国防工业中具有举足轻重的地位,电子信息技术与光学信息技术的结合也越来越紧密。对于当今的电子信息工程专业的学生而言,除了需要掌握本专业牢固的知识和技能以外,了解和掌握光纤通信技术的基础知识和相关的技术发展趋势也是必不可缺的。本文通过对电子信息工程专业特点和光纤通信课程内容的分析,讨论了该门课程与该专业的内在联系,分析其重要性,并根据笔者10年来在重庆理工大学电子信息工程专业讲授该门课程的经验,提出了本门课程在电子信息工程专业中的理论及实验的教学内容、教学重点、教学方法及课程设置等方面的一些意见和建议。
参考文献:
[1]高D.激光技术应用现状与分析[J].物理通报,2007,(11):50-52.
[2]龙泉.光通信发展的回顾与展望电信网技术[J].2008,(2):30-32.
[3]曲鹏.光纤通信技术的应用及展望[J].硅谷,2014,7(24):2-2.
篇8
论文关键词:高职教育,教学设计,工作项目
高职院校“光纤通信技术与设备”课程理论知识深奥,实践内容广泛,涉及到多学科知识。现在的高职学生缺少主动学习的热情,课程内容难以引起学生的兴趣,学生难以学以致用。深究其主要的原因是课程的设置采用学科体系,没有与企业的工作过程有机的结合起来,与社会的职业需求还没有建立有机的联系,没有完全达到高等职业院校设定的人才培养目标。本文根据“基于能力培养,面向岗位群”的高职教育理念,对“光纤通信技术与设备”这门课程进行教学设计,提出基于工作项目的设计理念,将教学任务细化成一个个具体的可操作实施的项目,从而培养学生的自学能力,锻炼学生的实践能力和创新能力。
“光纤通信技术与设备”是本校光纤通信专业的专业核心课程之一,主要给学生建立光纤通信的基本概念、基本理论和基本分析方法;通过本课程的学习,学生能够掌握光纤通信的基础知识,包括光纤通信系统的组成、光纤和光缆、有源光器件、无源光器件、光端机、系统设计、SDH传输网、光纤通信相关新技术。除了相关理论的学习,本课程注重实训操作,其中包含了光纤通信系统灵敏度测试以及光传输业务的开通等相关内容,使学生能够掌握常用测试仪器的使用,在此基础上,培养学生分析问题解决问题的能力,为他们将来从事光纤通信工作打下坚实的基础。
1 课程的教学内容设计
本课程的教学内容设计分为三个项目,每个项目具体分为若干个任务。
项目一:光纤通信系统。子项目如下。任务一 认知光纤通信系统;任务二 认知光纤和光缆;任务三 通信用光器件;任务四 光端机。
项目二:光传输网业务开通。子项目如下。任务一SDH概述;任务二 SDH帧结构与复用;任务三 SDH网元与拓扑结构分析;任务四SDH网同步与管理;任务五SDH传输设备认知与配置。
项目三:光纤通信系统设计与新技术认知。子项目如下。任务一 光纤通信系统设计;任务二 光纤通信新技术认知。
从教学内容设计可以看出项目二在整个教学内容中占有很大的比重,因此研究光传输网业务开通项目设计很有必要。
2 能力训练项目
基于工作过程的课程教学近年来成为了高职教学的新方向,以工作中发生的真实工作任务为中心,在教学中让学生在一个个典型“工作任务”驱动下展开活动,从而掌握清晰的思路、方法和知识脉络,在完成“工作任务”过程中,培养学生分析问题、解决问题能力,培养学生创新意识、创新能力以及自主学习习惯,站在完成任务中掌握知识,带动知识和技能发展的学与教方式。根据教学计划以及学生的学习特点设计了能力训练项目,如表1所示。
3 实践项目设计
根据学生的学习特点和思维能力,项目二光传输网业务开通的实践项目按照由浅入深,由简到难的思路进行设计:任务1 E300网管的基本操作→任务2链型网的建立与连接→任务3环型网的建立与连接→任务4链型网2M业务配置→任务5 环型网2M业务配置→任务6链型网2M业务保护配置→任务7 环型网2M业务保护配置→任务8业务配置测试。
4 实践项目实施举例
下面以链型网的业务配置为例进行说明。现有A、B、C共三个站组成二纤链形网,A-B-C,链路速率为STM-1,各站之间的距离均在50KM左右,各站业务均采用 ZXMPS320设备进行组网。业务需求: A<->C:1个2M。
能力目标:
1.会创建链型网络。
2.会进行2M业务的配置。
重点:创建链型网络。
难点:时隙配置。
实践步骤:
实验步骤1:启动网管,启动Server,启动GUI。
实验步骤2:创建网元
在客户端操作窗口中,单击【设备管理-创建网元】选项,或单击工具条中的按钮,弹出创建网元的对话框。通过定义网元的名称、标识、IP地址等参数,在网管客户端创建网元。
实验步骤3:安装单板
在客户端操作窗口中,双击拓扑网中的网元标识。根据待安装单板的类型,在单板类型选择区单击相应的板按钮,板按钮高亮显示,同时,模拟子架区中可以安装该类型单板的空闲槽位变为亮黄色,单击某个亮黄色槽位,该单板安装完毕。依次安装其他单板。
实验步骤4:连接网元
在客户端操作窗口中,选择SDH网元单击【设备管理-公共管理-网元间的连接配置】菜单项,或单击工具条中的按钮,弹出连接配置对话框,增加网元间的连接关系。
实验步骤5:业务配置
在客户端操作窗口中,选择SDH网元,单击【设备管理-SDH管理-业务配置】菜单项或单击工具条中的按钮。弹出业务配置对话框。
在如图所示的业务配置对话框中,将支路时隙与群路时隙连接起来,两者之间会出现红色虚线,然后单击<确定>、<全量下发>按钮,将命令下发到网元NCP单板上。连线会变成绿色实线。
实验步骤6:检查业务配置是否正确
(1)选择SDH网元,在客户端操作窗口中,单击【业务管理-电路业务管理】菜单项,弹出电路业务管理对话框。
篇9
【关键词】光纤Bragg光栅光通信PZT
一、引言
光纤通信是人类20世纪最伟大的发明之一。自从本世纪70年代初第一根实用化光纤问世以来,光纤通信这项高技术得到了迅猛的发展,并对人类社会生活产生了巨大的影响。人类社会正迈步进入信息时代,光纤无可质疑地成为信息交换中最重要的传输媒介。1978年,加拿大通信研究中心的K. O. Hill等人首次利用窄带488 nm的激光制作了光纤Bragg光栅(Fiber Bragg Grating,FBG)。光纤特性如张力、温度、偏振发生变化,将会使光栅有效折射率或栅距改变,从而影响Bragg波长,这是光纤光栅应用于传感器的基础。
二、光纤Bragg光栅的制作
目前,光纤光栅的制作技术已经趋于成熟。但是全息干涉制作光纤光栅方法的提出,预示着光纤光栅具有实用化的商业前途,激起了研究者们的极大兴趣,加、美、日、澳等国相继投入了相当的研究力量。继全息干涉法制作光纤光栅后,光纤光栅制作技术朝方便灵活、稳定可靠、光栅参数可控等方向发展,新的制作技术不断涌现,如相位Mask技术、单脉冲技术、点-点光栅写入技术。其中相位Mask技术普遍被人们看好,且目前的工艺较为成熟。相位掩模板是经刻蚀的玻璃光栅,对紫外光透明,并且相位掩模板经特殊处理,使得零级衍射光被抑制,大部分衍射光集中在+ 1级和- 1级。紫外光照射时,掩模板的±1级衍射光互相干涉,沿光纤方向就形成了周期性的光强调制,从而形成光纤光栅。
相位Mask技术不仅能高效、可靠地制作光纤光栅,还能用于制作有特定频谱响应特性要求的光栅。比如,普通均匀光栅的反射频谱在主峰两侧会有次极大(即旁瓣)的存在,在用于波分复用时,上述效应会降低通道隔离度,引起串扰。但是,通过被称为变迹的过程,使沿光纤长度方向的折射率调制呈钟形曲线分布,可以有效地抑制旁瓣。因此本实验采用Mask技术制作光纤Bragg光栅。相位Mask技术还可用于制作所谓的啁啾光栅,啁啾是指沿光纤长度方向改变光栅周期以期展宽反射谱或改善时域、谱域特性。光纤光栅用于色散补偿时,啁啾显得特别重要。
三、结构设计
光纤Bragg光栅通信系统的结构图如图1所示。宽带光源出射的激光通过光隔离器进入3dB耦合器,在经过FBG时由于其高反射特性,而被反射回3dB耦合器,通过光电探测器接收反射信号光,光电探测器将接收到的光信号转换为电信号,供计算机提供参考光的作用。FBG与压电陶瓷(PZT)紧密粘贴在一起,计算机通过锯齿波扫描电压驱动PZT而影响FBG的折射率。而FBG收到外部应力过程中会产生反射中心波长的漂移,因此光电探测器接收到新的反射信号,再经由计算机对PZT重新驱动。
通信系统中计算机驱动PZT时FBG和未驱动PZT时的反射谱并不一样。计算机驱动PZT导致的形变会引起FBG中心反射波长的变化,其中心波长在1553.2nm。在PZT加载驱动电压后,其中心波长漂移到1553.6nm,其漂移范围在400nm。因此,根据通信系统所需要的有效波长而给出相应的驱动电压,可以很好的解决通信系统中噪声对信号的干扰。光纤Bragg光栅制作方式简单,材料来源广泛,其成本很低。在大规模光通信系统中,可以使用光纤Bragg光栅阵列来实现多个通信波长的调制。其波长漂移范围较大,完全可以实现未来的长距离、大容量、宽信道的通信系统。
四、结论
本文对光纤Bragg光栅的制备技术进行了阐述,并采用Mask技术制作光纤Bragg光栅。利用光纤Bragg光栅的窄带滤波和高反射特性,设计了以光纤Bragg光栅为基础的光纤通信系统,并分析了该系统的工作原理以及未来的发展趋势。本论文的提出,可以为未来光纤通信技术提供实验支持。
参考文献
篇10
论文摘要:光电子器件和部件广泛应用于长距离大容量光纤通信、光存储、光显示、光互联、光信息处理、激光加工、激光医疗和军事武器装备,预期还会在未来的光计算中发挥重要作用。本文将介绍国内外光电子技术及光电子产业的发展。
如果说微电子技术推动了以计算机、因特网、光纤通信等为代表的信息技术的高速发展,改变了人们的生活方式,使得知识经济初见端倪,那么随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。美国商务部指出:“90年代,全世界的光子产业以比微电子产业高得多的速度发展,谁在光电子产业方面取得主动权,谁就将在21世纪的尖端科技较量中夺魁”。日本《呼声》月刊也有类似的评论:“21世纪具有代表意义的主导产业,第一是光电子产业,第二是信息通信产业,第三是健康和福利产业……”,可以断言,光电子技术将继微电子技术之后再次推动人类科学技术的革命。
1世界光电子技术和产业的发展
光纤通信技术的发展速度远远超过当初人们的预料,光纤已经成为通信网的重要传输媒介,现在世界上大约有60%的通信业务经光纤传输,到20世纪末将达到85%,但从目前光纤通信的整体水平来看,仍处于初级阶段,光纤通信的巨大潜力还没有完全开发出来。目前,各种新技术层出不穷,密集波分复用技术(DWDM,在同一根光纤内传输多路不同波长的光信号,以提高单根光纤的传输能力)、掺铒光纤放大器技术(EDFA,可将光信号直接放大,具有输出功率高、噪声小,增益带宽等优点)已取得突破性进展并得到广泛的应用。现在DWDM系统和光传输设备中,光电技术的比例将从过去比重不到10%达到90%。一种全新的、无需进行任何光电变换的光波通信——“全光通信”,由于波分复用技术和掺铒光纤放大器技术的进展,也日趋成熟,将在横跨太平洋和大西洋的通信系统上首次使用,给全球的通信业带来蓬勃生机。为此提供支撑的就是半导体光电子器件和部件。光电子器件和技术已形成一个快速增长的、巨大的光电子产业,对国民经济的发展起着越来越大的作用。美国光电子产业振兴协会估计,到2003年,光电子产业的总产值将达2000亿美元。
Internet应用的飞速增长对电信骨干网带宽提出越来越高的需求,为满足需求的增长,人们可以铺设更多的光纤,或靠提高单路光的信息运载量(现在主干网可以分别工作在2.5Gbps和10Gbps,并已有40Gbps的演示性设备)。但更主要的方法却是靠发展波分复用技术,增加光纤内通光的路数(光波分复用的实验记录已经达到2.64Tbps)。波分复用技术的普遍运用为光电子器件和部件提供了广阔的、快速增长的市场。无限战略公司的报告指出:“信号传输用1.31μm和1.55μm激光器市场1999年达到13亿美元,比去年增加23%;1.48μm信号放大用激光器1999年市场份额达到1.6亿美元,比去年增加33%;980nm信号放大用激光器销售额达2.9亿美元,比去年增长121%。整个激光器市场的份额1999年达18亿美元,预期2003年将达到30亿美元”。美国通信工业研究公司(CIR)的研究预测,北美市场光电子部件的市场规模将由目前的28亿美元增长到2003年的61亿美元,约每年增长18.5%。密集波分复用设备销售额也将从1998年的22亿美元增加到2004年的94亿美元。报告称虽然10年内全光通信还不会全面商业化,但是全光交换将在几年内成为市场主流,报告也指出尽管光学部件市场被大公司所占据,但仍有创新性公司进入的可能。
2我国的光电子技术和产业
近10年来我国光电子技术研究在国家“863”计划和有关部门的支持下有了突飞猛进的进展,在很多领域同国外先进国家只有两三年的距离,个别领域还处于世界领先地位国内光电子有关产业基地在光电子器件、部件和子系统(如激光器、探测器、光收发模块、EDFA、无源光器件)等已经占领了国内较大的市场份额,初步具备同国外大公司竞争的能力,在毫无市场保护的情况下,靠自己的力量争得了一席之地,市场营销逐年有较大的增长,个别产品还取得国际市场相关产品中的销量最大的成绩。我国相应研究发展基地和本领域高技术公司的许多产品填补了国内相关产品的空白,打破国外产品在市场上的垄断地位,同时争取进入国际市场。
掺铒光纤放大器(EDFA)是高速大容量光纤通信系统必需的关键部件,国内企业产品占国内市场40%的份额。我国也是目前国际上少数几个有能力研制PIC和OEIC的国家。808nm大功率激光器及其泵浦的固体绿光激光器,670nm红光激光器已产品化和商品化并批量占领国际市场。国内移动通信的光纤直放站所用的光电器件,90%使用国产器件,国产1.55μmDFB激光器战胜了国外器件,占领了100%的国内市场。
但是,我们应当认识到在我国光电子技术发展中,光电子器件、部件虽是光通信、光显示、光存储等高技术产业的关键部分,但在整个系统和设备成本中所占的比重较小,其产值较低,目前科研开发主要处于跟踪和小批量生产阶段,光电子产业所需的规模化、产业化生产技术目前还未有实质突破;国内研究生产的光电器件和部件有相当部分还未能满足整机和系统的要求,导致国外器件占据国内市场相当多的份额;在机制上仍未摆脱科研、生产、市场相互脱离的状况。