初中数学答案范文

时间:2023-03-26 22:46:40

导语:如何才能写好一篇初中数学答案,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

初中数学答案

篇1

题号 1 2 3 4 5 6 7 8 9 10

选项

1.下列现象是数学中的平移的是

A.树叶从树上落下 B.电梯由一楼升到顶楼

C. 碟片在光驱中运行 D.卫星绕地球运动

2.若∠1与∠2是内错角,∠1=40°,则

A.∠2=40° B.∠2=140° C.∠2=40°或∠2=140° D.∠2的大小不确定

3.下列计算中正确的是

A. B. C. = D.

4.下列各式能用平方差公式进行计算的是

A. B. C. D.

5.如图,直线 、 被直线 所截,若 ∥ ,∠1=135°,则∠2等于

A.30° B.45° C.60° D.75°

6.如图,不能判断 ∥ 的条件是

A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°

7.若 则

A. B. C. D.

8.已知三角形的三边分别为2,a,4,那么 的取值范围是

A. B. C. D.

9.下列方程组是二元一次方程组的有( )个

(1) (2) (3) (4)

A.1个 B.2个 C.3个 D.4个

10. 从边长为 的大正方形纸板中挖去一个边长为 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为

A.

B.

C.

D.

二、填一填(3分×10=30分)

11. 若0.0000102=1.02 ,则n=_______ .

12.化简 的结果是______________.

13.已知 =4, =3,则 =__________.

14.若(x+P)与(x+2)的乘积中,不含x的一次项,则P的值是 .

15.等腰三角形两边长分别为3、6,则其周长为 .

16.如图2所示,是用一张长方形纸条折成的。如果∠1=100°,那么∠2=______°.

(第16题图)

17. 一个正多边形的每个外角都等于24°,则它是_____边形.

18.已知 是方程5x-( k-1)y-7 = 0的一个解,则k = .

19.如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为_______cm2.

20.如图,它是由6个面积为1的小正方形组成的长方形,点A、B、C、D、E、F是小正方形的顶点,以这六个点中的任意三点为顶点,可以组成________个面积是1的三角形.

三、做一做

21.计算:(4分×6=24分)

(1) (2)

(5) (6) (a-2b+c)(a+2b+c)

22.因式分解:(4分×4=16分)

(1) (2)

23.(本题6分)在正方形网格中,每个小正方形的边长均为1个单位长度,ABC的三个顶点的位置如图所示,现将ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.

(1)请画出平移后的A′B′C′.并求A′B′C′的面积.

(2)若连接AA′,CC′,则这两条线段之间的关系是________.

24.(本题6分)已知 ,求n的值.

25.(本题6分)已知a=2-555,b=3-444,c=6-222,请用“>”把它们按从大到小的顺序连接起来,并说明理由.

26.(本题8分)已知 ,

求:①

②xy的值.

27.(本题12分)如图甲,在ABC中,ADBC于D,AE平分∠BAC.

(1)若∠B=30°,∠C=70°,则∠DAE=________.

(2)若∠C-∠B=30°,则∠DAE=________.

篇2

21、(本小题满分8分)如图,直线AB,CD被直线EF所截,若∠BGE=∠DHE,且GP,HQ分别是∠AGF和∠DHE的角平分线,则GP和HQ平行吗?请说明理由。

22、(本小题满分8分)阅读小故事,并解答问题:唐朝时,有一位懂数学的尚书叫杨损,他曾主持一场考试,其中有一道题是:“有一天,几个盗贼正在商议怎样分配偷来的布匹,贼首说,若每人分六匹布,则还剩下五匹布;若每人分七匹布,就还少了1匹布。这些话被躲在暗处的衙役听到了,他飞快地跑回官府,报告了知府,但知府不知道有多少盗贼,不知派多少人去抓捕他们。聪明的你知道有盗贼几人,布几匹吗?

23、(本小题满分10分)利用我们学过的知识,可以导出下面这个形式优美的等式: ,该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美。(1)请你检验说明这个等式的正确性。(2)若a=2011,b=2012,c=2013,你能很快求出 的值吗?(3)若 , , ,求 的值。《卷二》(满分20分)1、(3分) 如果 的乘积中不含一次项,则m 为( )A、2 B、-2 C、0.5 D、-0.52、(3分)已知m为正整数,且关于x,y的二元一次方程组 有整数解,则 的值为( )A、4 B、1,4 C、1,4,49 D、无法确定3、(3分)将一条两边沿互相平行的纸带按如图折叠,设∠1=50°,则∠α= 。4、(3分)如图为杨辉三角系数表,它有许多规律,如指导读者按规律写出形如 (其中n为正整数)展开式的系数,请你仔细观察下表中的规律,填出 展开式中所缺的项。 则 5、(本小题满分8分)阅读下列材料,并解决后面的问题。材料:一般地,n个相同的因数 相乘: 。如23=8,此时,3叫做以2为底8的对数,记为 。一般地,若 ,则n叫做以 为底b的对数,记为 ,则4叫做以3为底81的对数,记为 。问题:(1)计算以下各对数的值: ; ; 。(2)通过观察(1),请直接写出 之间满足的等量关系。(3)由(2)的结果,你能归纳出一个一般性的结论吗? (4)根据幂的运算法则: 以及对数的含义说明上述结论。

七年级数学答案卷一、仔细选一选(本题有10小题,每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 B C A B C D C D A C二、认真填一填(本题有6小题,每题3分,共18分)11、 相交 ; 平行 12、a= 1 ;b= -1 。13、 ② ; ③ ; ① 。14、∠2= 35 度。15、 -4 。16、 23 ; 12 。(备注:11题,12题和16题答对一空给2分,答对2空给3分)三、全面答一答(本题有7小题,共52分)17、(本小题6分)计算: ① ② 解:原式= (3分) 原式= (3分) 18、(本小题6分)解下列方程: ⑴ ⑵ ⑴解:①+②,得4x=8,解得x=2(1分) ⑵解:原方程组可化为: (2分)把x=2代入①得y= (1分)原方程组的解是 (1分) 原方程组的解是 (1分)

篇3

一、选择题(本大题共有6小题,每小题 3分,共18分)1. 下列每组数据表示3根小木棒的长度,其中能组成一个三角形的是() A.3cm,4cm,7cm B.3cm,4cm,6cm C.5cm,4cm,10cm D.5cm,3cm,8cm2.下列计算正确的是() A.(a3)4=a7 B.a8÷a4=a2 C.(2a2)3•a3=8a9 D.4a5-2a5=23.下列式子能应用平方差公式计算的是( ) A.(x-1)(y+1) B.(x-y)(x-y) C.(-y-x)(-y-x) D.(x2+1)(1- x2)4.下列从左到右的变形属于因式分解的是() A.x2 –2xy+y2=x(x-2y)+y2 B.x2-16y2=(x+8y)(x-8y) C.x2+xy+y2=(x+y)2 D. x4y4-1=(x2y2+1)(xy+1)(xy-1)5. 在ABC中,已知∠A:∠B:∠C=2:3:4,则这个三角形是( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形 6.某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:捐款(元) 4 68 10人 数 6 7表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有 名同学,捐款8元的有 名同学,根据题意,可得方程组() A. B. C. D.  二、填空题 (本大题共有10小题,每小题3分,共30分)7.( )3=8m6. 8.已知方程5x-y=7,用含x的代数式表示y,y= .9. 用小数表示2.014×10-3是 .10.若(x+P)与(x+2)的乘积中,不含x的一次项,则常数P的值是 .11.若 x2+mx+9是完全平方式,则m的值是 .12. 若 ,则 的值是 .13.若一个多边形内角和等于1260°,则该多边形边数是   .14.已知三角形的两边长分别为10和2,第三边的数值是偶数,则第三边长为 .15.如图,将一副三角板和一张对边平行的纸条按下列 方式摆放,两个三角板的一直角边重合 ,含30°角 的直角三角板的斜边与纸条一边重合,含45°角的三 角板的一个顶点在纸条的另一边上,则∠1的度数 是 . 16.某次地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐 篷,若所搭建的帐篷恰好 (即不多不少)能容纳这60名灾民,则不同的搭建方 案有 种. 三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤) 17.(本题满分12分) (1)计算: ; (2)先化简,再求值: ,其中y= .18.(本题满分8分) (1)如图,已知ABC,试画出AB边上的中线和AC边上的高; (2)有没有这样的多边形,它的内角和是它的外角 和的3倍?如果有,请求出它的边数,并写出 过这个多边形的一个顶点的对角线的条数. (第18(1)题图)19.(本题满分8分)因式分解: (1) ; (2) .20.(本题满分8分)如图,已知AD是ABC的角平分线,CE是ABC的高,AD与CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数.21.(本题满分10分)解方程组: (1) (2)22.(本题满分10分)化简: (1)(-2x2 y)2•(- xy)-(-x3)3÷x4•y3; (2)(a2+3)(a-2)-a(a2-2a-2).新课 标第 一 网23.(本题满分10分) (1)设a-b=4,a2+b2=10,求(a+b)2的值; (2)观察下列式子:1×3+1=4,2×4+1=9,3×5+1=16,4×6+1=25,…, 探索以上式子的规律,试写出第n个等式,并说明第n个等式成立.24.(本题满分10分)某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程. 25.(本题满分12分)“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%.该专业户去年实际生产小麦、玉米各多少吨?  (1)根据题意,甲和乙两同学分别列出了如下不完整的方程组: 甲: 乙: 根据甲、乙两位同学所列的方程组,请你分别指出未知数x,y表示的意义,然后在上面的横线上分别补全甲、乙两位同学所列的方程组: 甲:x表示   ,y表示   ; 乙:x表示   ,y表示    ;(2)求该专业户去年实际生产小麦、玉米各多少吨?(写出完整的解 答过程, 就甲或乙的思路写出一种即可) 26.(本题满分14分)如图①,ABC的角平分线BD、CE相交于点P. (1)如果∠A=70°,求∠BPC的度数; (2)如图②,过P点作直线MN∥BC,分别交AB和AC于点M和N,试求 ∠MPB+∠NPC的度数(用含∠A的代数式表示);

(3)在(2)的条件下,将直线MN绕点P旋转. (i)当直线MN与AB、AC的交点仍分别在线段AB和AC上时,如图③,试 探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由; (ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的 延长线上时,如图④,试问(i)中∠MPB、∠NPC、∠A三者之间 的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请 给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.

一、选择题(本大题共有6小题,每小题3分,共18分)二、填空题(本大题共有10小题,每小题3分,共30分)7.2m2;8.5x-7;9.0.002014;10.-2;11.±6;12.9;13.9;14.10;15.15°;16. 6.三、解答题(共10题,102分.下列答案仅 供参考,有其它答案或解法,参照标准给分.) -4a(4a2-4ab+b2)(2分)=-4a(2a-b)2(2分).20.(本题满分8分)AD是ABC的角平分线,∠BAC=66°,∠BAD=∠CAD= ∠BAC=33°(1分);CE是ABC的高,∠BEC=90°(1分);∠BCE=40°,∠B=50°(1分),∠BCA=64°(1分),∠ADC=83°(2分),∠APC=12 3°(2分).(可以用外角和定理求解)21.(本题满分10分)(1)①代入②有,2(1-y)+4y=5(1分),y=1.5 (2分),把 y=1.5代入①,得x=-0.5(1分), (1分);(2)②×3-①×5得: 11x=-55(2分),x=-5(1分).将x=-5代入①,得y=-6(1分), (1分)22.(本题满分10分)(1)原式=4x4 y2•(- xy)-(-x9)÷x4•y3(2分)=- x5y3+x5y3(2分)=- x5y3(1分);(2)原式=a3-2a2+3a-6-a3+2a2+2a(4分)=5a-6( 1分). 25.(本题满分12分)(1)甲: 乙: (4分,各1分);甲:x表示该专业户去年实际生产小麦吨数,y表示该专业户去年实际生产玉米吨数;乙:x表示原计划生产小麦吨数,y表示原计划生产玉米吨数;(4分,各1分)(2)略.(4分,其中求出方程组的解3分,答1分,不写出设未知数的扣1分).26. (本题满分14分)(1)125°(3分);(2)利用平行线的性质求解或先说明∠BPC=90°+ ∠A,∠MPB+∠NPC=180°-∠BPC=180°-(90°+ ∠A)=90°- ∠A(3分);(3)(每小题4分)(i)∠MPB+∠NPC= 90°- ∠A(2分).理由:先说明∠BPC=90°+ ∠A,则∠MPB+∠NPC=180°-∠BPC=180°-(90°+ ∠A)= 90°- ∠A(2分);(ii)不成立(1分),∠MPB-∠NPC=90°- ∠A(1分).理由:由图可知∠MPB+∠BPC-∠NPC=180°,由(i)知:∠BPC=90°+ ∠A,∠MPB-∠NPC=180°-∠BPC=180°-(90°+ ∠A)= 90°- ∠A(2分).

篇4

1、下列语句中,正确的是(  )

A.一个实数的平方根有两个,它们互为相反数 B.负数没有立方根

C.一个实数的立方根不是正数就是负数 D.立方根是这个数本身的数共有三个

2、下列图案是轴对称图形的有( )

A.1个 B.2个 C.3个 D.4个

3、如图:D、E是ABC的边AC、BC上的点,ADB≌EDB≌EDC,下列结论:①AD=ED;②BC=2AB;③∠1=∠2=∠3;④∠4=∠5=∠6.其中正确的有( )

A.4个 B.3个 C.2个 D.1个

4、如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是( )

A.1 号袋 B.2 号袋 C.3 号袋 D.4 号袋

5、下列实数 、 、1.4142、 、1.2020020002…、 、 中,有理数的个数有( )

A.2个 B. 3个 C. 4个 D. 以上都不正确

6、如图,在ABC中,AB= AC,点D、E在BC上,BD = CE,图中全等的三角形有 ( )对

A、0   B、1   C、2   D 、3

7、如图,在ABC与DEF中,已有条件AB=DE,还需添加两个条件才能使ABC≌DEF,不能添加的一组条件是( ).

A.∠B=∠E,BC=EF B.BC=EF,AC=DF C.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF

8、如果等腰三角形的两边长是10cm和5cm,那么它的周长为( ).

A.20cm B.25cm C.20cm或25cm D.15cm

9、 的平方根是( ).

A.9 B.±9 C.3 D.±3

10、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是( ).

A.75°或15° B.75° C.15° D.75°和30°

二、填空题(每小题4分,共24分)

11、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明 的依据是 .

12、一辆汽车的车牌号在水中的倒影是: , 那么它的实际车牌号是: .

13、使 有意义的 的取值范围是 .

14、已知点A(a,2)和B(-3,b),点A和点B关于y轴对称,则 .

15、若 的立方根是4,则 的平方根是 .

16、直线 l1、 l2、 l3 表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有 处.

2009-2010学年度上期(初2011级)八年级数学期中测试题

(总分:150分 考试时间:100分钟)

卷Ⅱ(答题卷)

题 号 一 二 三 四 五 总 分

得 分

一、 选择题(每小题4分,共40分)

题 号 1 2 3 4 5 6 7 8 9 10

答 案

二、填空题(每小题4分,共24分)

11、 .12、 .13、 .14、 . 15、 . 16、 .

三、解答题(每小题6分,共24分,解答题应出必要过程、步骤)

17、计算:(1) (2)

18、作图:请你在下图中用尺规作图法作出一个以线段AB为一边的等边三角形.(要求:写出已知、求作,保留作图痕迹,下结论,不写作法)

已知:

求作:

19、如图,AB、CD相交于点O,AO=BO,AC∥DB.求证:AC=BD..

20、如图,已知ABC中,AB

四、解答题(每小题10分,共40分,解答题应出必要过程、步骤)

21、已知 、 是实数,且 .解关于x的方程: .

22、如果等腰三角形的两个内角之比为1︰4,求这个三角形三个内角各是多少度?

23、如图,在平面直角坐标系中,A(-1,5)、B(-1,0)、C(-4,3).

(1)在图中作出ABC关于 轴的对称图形A1B1C1.

(2)写出点A1、B1、C1的坐标.

24、已知:∠A=90°,AB=AC,BD平分∠ABC,CEBD,垂足为E. 求证:BD=2CE.

五、解答题(25题10分,26题12分,共22分,解答题应出必要过程、步骤)

25、阅读下列材料:

,即 ,

的整数部分为2,小数部分为 .

请你观察上述的规律后试解下面的问题:

如果 的小数部分为a, 的小数部分为b,求 的值.

篇5

(2)

(3)已知 ,求整式 的值.

18.(8分)检修小组从A地出发,在东西路上检修线路,若规定向东行驶的路程为正数,向西行驶的路程为负数,一天中行驶记录(单位;千米)如下: (1)收工时检修小组在A地的哪侧,距A地多远?

(2)若每千米耗油0.3升,从出发到收工共耗油多少升?

19.(8分)已知a,b互为相反数,c,d互为倒数, ,求: 的值. 20.(9分)用棋子摆出如图所示的一组图形。 ① ② ③(1)摆第一个图形用__________枚棋子,摆第2个图形用_________枚棋子,摆第3个图形用_________枚棋子;(2)按照这样的方式摆下去,摆第n个图形用多少枚棋子.

(3)摆第2016个图形用多少枚棋子. 21.(8分)有理数 a,b,c在数轴上的位置如图所示.

(1)① ______0 ② ______0 ③ ______0(填“>”“ ;”连接起来。 解: -----4分 -------------2分16.(每小题5分,共15分)(1) 解:原式=-7.3+25.7-13.7+7.3----------------2分 =-7.3+7.3+25.7-13.7 =0+12---------------------------------4分 =12-------------------------------------5分(2) 解:原式 (3) 解:原式=-9+6+1+4×2----------------3分 =-9+6+1+8-------------------4分 =6-- ------------------------5分17.(本题满分16分,第1,2题每题5分,第3题6分)(1)化简

篇6

一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在相应的位置上)1. 下列计算正确的是 ( ) A.a+2a2=3a2 B.a8÷a2=a4 C.a3•a2=a6 D.(a3)2=a62. 下列各式从左到右的变形,是因式分解的是: ( )A. B. C. D. 3. 已知a=344,b=433,c=522,则有 ( )A.a<b<c B.c<b<a C.c<a<b D.a<c<b4. 已知三角形三边长分别为3,x,14,若x为正整数,则这样的三角形个数为() A.2 B.3 C.5 D.7 5. 若 是完全平方式,则常数k的值为 ( )A. 6 B. 12 C. D. 6. 如图,4块完全相同的长方形围成一个正方形. 图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的式子是………………………………………………( )A.(a+b)2-(a-b)2=4ab B.(a+b)2-(a2+b2)=2abC.(a+b)(a-b)=a2-b2 D.(a-b)2+2ab=a2+b27. 如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B;④AD∥BE,且∠D=∠B.其中能说明AB∥DC的条件有 ( ) A.4个 B.3个 C. 2个 D.1个8. 已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值 为( ) A.1 B.2 C.3 D.4二、填空题 (本大题共12小题,每小题2分,共24分.) 9. 十边形的内角和为 ,外角和为 10. (-3xy)2= (a2b)2÷a4= .11. ,则 , 12. 把多项式 提出一个公因式 后,另一个因式是 .13. 生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表 示为 .14. 在ABC中,三个内角∠A、∠B、∠C满足2∠B=∠C+∠A,则∠B= .15.如图,在宽为20m,长为30m的矩形地块上修建两条同样宽为1m的道路,余下部分作 为耕地.根据图中数据计算,耕地的面积为 m2.16.如图,将含有30°角的三角尺的直角顶点放在相互平行的两条直线的其中一条上,若∠ACF=40°,则∠DEA=___ __°. 17. 如果a-2=-3b, 则3a×27b的值为 。18. 如果等式 ,则 的值为 。19. 如图,将一个长方形纸条折成如图所示的形状,若已知∠2=50°,则∠1= __ _____。 20.如图,BA1和CA1分别是ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线CA2是∠A1CD的角平分线,BA3是A2BD∠的角平分线,CA3是∠A2CD的角平分线,若∠A=α,则∠A2016为 。三、解答题(本大题共8小题,共72分.把解答过程写在相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用铅笔)21. (本题12分)计算(1)-22+(- )-2-(π-5)0-|-3| (2) (3) (4) (m+2)2(m-2)2 22. (本题8分)因式分解: (1)16m2-25n2 (2) 23. (本题8分)先化简,再求值:(2a+b)2-(3a-b)2+5a(a-b), 其中24. (本题8分)已知a-b=4,ab=3(1)求(a+b)2 (4分)(2)a2-6ab+b2的值. (4分)25. (本题8分)如图所示,在四边形ABCD中,∠A=∠C=90°,BE、DF分别平分∠ABC、∠ADC.判断BE、DF是否平行,并说明理由. 26.(本题10分))画图题: (1)画出图中ABC的高AD(标出点D的位置); (2)画出把ABC沿射线CD方向平移3 cm后得到的A1B1C1;(3)根据“图形平移”的性质,得BB1= cm ,AC与A1C1的位置关系是 .27. (本题8分)如图,在ABC中,D是BC上的一点,∠1=∠2,∠3=∠4,∠B=40°,求∠BAC的度数.28. (本题10分)生活常识如图,MN、EF是两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,则∠1=∠2。旧知新意:(1)若光线BC经镜面EF反射后的反射光线为CD;试判断AB与CD的位置关系,并给予证明。

尝试探究:(2)如图,有两块互相垂直的平面镜MN、EF,有一束光线射在其中一块MN上,经另外一块EF反射,两束光线会平行吗?若平行,请给予证明。 E F拓展提升1: ( 3 )如图,两面镜子的夹角为α°(0<α<90)时,进入光线与离开光线的夹角为β° (0<β<90).试探索α与β的数量关系.直接写出答案._________ ___________ 拓展提升2:(4)如图,有两块互相垂直的平面镜MN、EF,另有一块平面镜斜放在前两块镜子上,若光线通过三块镜面三次反射后,两条光线a、b可能平行吗?直接写出答案._______ ______。

一、 选择题(本大题共8小题,每小题3分,共24分).1 D 2 C. 3 B 4 C. 5 D. C 6 A 7 B 8 二、填空题 (本大题共12小题,每小题2分,共24分)9. __ 1440° , 360 ° 10. _ 9x2y 2 , b2 __ 11. ___ 3 _, __-28 _____12. ___2 -5 _ 13. _4.32 ×10-6___ 14. __60 ° __ _ 15. __ 551 __ 16. ___20___ _ 17. ____ 9 _ 18. __ 1,-2, 0, _ 19. _____100_ _ 20. ____ _三、解答题(本大题共8小题,共72分.21. (本题12分)计算(1)-22+(- )-2-(π-5)0-|-3| (2) =-4+4-1-3 …………..2分 ………..1分 =-4----------3分 ………..2分 ………..3分 (3) (4) (m+2)2(m-2)2 …………..2分 …………..2分 …………..3分 ……….3分22. (本题8分)因式分解: (1)16m2-25n2 (2) ----------4分 …………..2分 ---------4分23. (本题8分)先化简,再求值:(2a+b)2-(3a-b)2+5a(a-b), 其中解:(2a+b)2-(3a-b)2+5a(a-b)---------3分 = ---------6分 当 时, 原式= ---------8分 24. (本题8分)已知a-b=4,ab=3(1)求(a+b)2 (2)a2-6ab+b2的值. …………..1分 …………..5分 ………..2分 ………..6分 ……..4分 ……..8分25. (本题8分)如图所示,在四边形ABCD中,∠A=∠C=90°,BE、DF分别平分∠ABC、∠ADC.判断BE、DF是否平行,并说明理由. 解:BE∥DF.…………..1分.理由如下:∠A=∠C=90°(已知),∠ABC+∠ADC=180°(四边形的内角和等于360°).…………..2分BE平分∠ABC,DF平分∠ADC,∠1=∠2= ∠ABC,∠3=∠4= ∠ADC(角平分线的定义).…………..3分∠2+∠4= (∠ABC+∠ADC)= ×180°=90°(等式的性质).…………..4分又∠1+∠CEB=90°(三角形的内角和等于180°),∠4=∠CEB(等量代换).…………..6分BE∥DF(同位角相等,两直线平行).…………..8分26.(10分) 解:(1),(2)如图:(1) ………..2分 (2)画图………..6分(3)根据“图形平移”的性质,得BB1=3cm……….. 8分, AC与A1C1的位置关系是平行……… 10分. 27 (8分)解:∠1=∠2,∠B=40°,∠2=∠1=(180°﹣40°)÷2=70°………..2分,又∠2是ADC的外角,∠2=∠3+∠4………..3分∠3=∠4,∠2=2∠3∠3= ∠2=35°………..5分∠BAC=∠1+∠3=105°………..8分28. (本题10分) (1) 解:如图,AB与CD平行.…………..1分理由如下:∠1=∠2,∠ABC=180°﹣2∠2,光线BC经镜面EF反射后的反射光线CD,∠3=∠4,∠BCE=∠DCF,∠BCD=180°﹣2∠BCE,MN∥EF,∠2=∠BCE,∠ABC=∠BCD,AB∥CD.…….. 3分(2)解:(2)如图,如图,a与b平行.………..4分理由如下:∠1=∠2,∠5=180°﹣2∠2,光线BC经镜面EF反射后的反射光线CD, ∠3=∠4,∠BCE=∠DCF,∠6=180°﹣2∠3, ∠2+∠3=90°,∠5+∠6=180°﹣2∠2+180°﹣2∠3=360°﹣2(∠2+∠3 )= 180° a∥b.…….. 6分( 3 ) α与β的数量关系为:2α+β=180°…….. 8分如图有∠5=180°﹣2∠2,∠6=180°﹣2∠3,∠2+∠3=180°﹣∠α,∠β=180°﹣∠5﹣∠6=2(∠2+∠3)﹣180°=2(180°﹣∠α)﹣180°=180°﹣2∠α,α与β的数量关系为:2α+β=180°.

(4)不会…….. 10分解:如图,如图,a与b不可能平行。若a∥b.做c∥b, a∥b, c∥a∠4+∠5+∠6+∠7=360°2∠1+2∠2+2∠3=540°﹣360°=180°∠1+∠2+∠3=90°------------ (1)∠EAB=∠2+∠1,∠EBA=∠2+∠3∠EAB+∠EBA=∠2+∠1+∠2+∠3MNEF∠EAB+∠EBA=90°,即∠2+∠1+∠2+∠3=90°------------(2)结合(1),(2)考虑得,∠2=0°,即,不可能经过三次反射后,两条直线平行。

篇7

一、选择题(每题3分,共30分)

1、在ABC和DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使ABC≌DEF,则补充的条件是()

A、BC=EFB、∠A=∠DC、AC=DFD、∠C=∠F

2、下列命题中正确个数为()

①全等三角形对应边相等;

②三个角对应相等的两个三角形全等;

③三边对应相等的两个三角形全等;

④有两边对应相等的两个三角形全等.

A.4个B、3个C、2个D、1个

3、已知ABC≌DEF,∠A=80°,∠E=40°,则∠F等于()

A、80°B、40°C、120°D、60°

4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()

A、70°B、70°或55°C、40°或55°D、70°或40°

5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()

A、10:05B、20:01C、20:10D、10:02

6、等腰三角形底边上的高为腰的一半,则它的顶角为()

A、120°B、90°C、100°D、60°

7、点P(1,-2)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为()

A、(1,-2)B、(-1,2)C、(-1,-2)D、(-2,-1)

8、已知=0,求yx的值()

A、-1B、-2C、1D、2

9、如图,DE是ABC中AC边上的垂直平分线,如果BC=8cm,AB=10cm,则EBC的周长为()

A、16cmB、18cmC、26cmD、28cm

10、如图,在ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若ABC的面积为12,则图中阴影部分的面积为()

A、2cm²B、4cm²C、6cm²D、8cm²

二、填空题(每题4分,共20分)

11、等腰三角形的对称轴有条.

12、(-0.7)²的平方根是.

13、若,则x-y=.

14、如图,在ABC中,∠C=90°AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为__.

15、如图,ABE≌ACD,∠ADB=105°,∠B=60°则∠BAE=.

三、作图题(6分)

16、如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.

(1)若要使自来水厂到两村的距离相等,厂址P应选在哪个位置?

(2)若要使自来水厂到两村的输水管用料最省,厂址Q应选在哪个位置?

请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.

四、求下列x的值(8分)

17、27x³=-34318、(3x-1)²=(-3)²

五、解答题(5分)

19、已知5+的小数部分为a,5-的小数部分为b,求(a+b)2012的值。

六、证明题(共32分)

20、(6分)已知:如图AE=AC,AD=AB,∠EAC=∠DAB.

求证:EAD≌CAB.

21、(7分)已知:如图,在ABC中,AB=AC,∠BAC=120o,AC的垂直平分线EF交AC于点E,交BC于点F。

求证:BF=2CF。

22、(8分)已知:E是∠AOB的平分线上一点,ECOA,EDOB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线。

23、(10分)(1)如图(1)点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R。请观察AR与AQ,它们相等吗?并证明你的猜想。

(2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明。

一、选择题(每题3分,共30分)

CCDDBABCBC

二、填空题(每题3分,共15分)

11、1或312、±0.713、214、4cm15、45°

三、作图题(共6分)

16、(1)如图点P即为满足要求的点…………………3分

(2)如图点Q即为满足要求的点…………………3分

四、求下列x的值(8分)

17、解:x³=………………………………2分

x=…………………………………2分

18、解:3x-1=±3…………………………………2分

①3x-1=3

x=……………………………………1分

②3x-1=-2

x=……………………………………1分

五、解答题(7分)

19、依题意,得,

a=5+-8=-3……………2分

b=5--1=4-……………2分

a+b=-3+4-=1…………2分

==1…………………1分

六、证明题(共34分)

20、(6分)证明:∠EAC=∠DAB

∠EAC+∠DAC=∠DAB+∠DAC

即∠EAD=∠BAC………………2分

在EAD和CAB中,

……………3分

EAD=CAB(SAS)…………1分

21、(7分)解:连接AF

∠BAC=120°AB=AC

∠B=∠C=30°………………1分

FE是AC的垂直平分线

AF=CF

∠FAC=30°…………………2分

∠BAF=∠BAC-∠CAF

=120°-30°

=90°……………………1分

又∠B=30°

AB=2AF…………………………2分

AB=2CF…………………………1分

22、(9分)证明:(1)OE平分∠AOBECOAEDOB

DE=CE………………………2分

∠EDC=∠ECD………………1分

(2)∠EDC=∠ECD

EDC是等腰三角形

∠DOE=∠CDE………………………………1分

∠DEO=∠CEO………………………………1分

OE是∠DEC的角平分线…………………2分

即DE是CD的垂直平分线…………………2分

23、(12分)解:(1)AR=AQ…………………………………………1分

ABC是等腰三角形

∠B=∠C……………………………………1分

RPBC

∠C+∠R=90°

∠B=∠PQB=90°………………………………1分

∠PQB=∠R……………………………………1分

又∠PQB=∠AQR

∠R=∠AQR……………………………………1分

AQ=AR…………………………………………1分

(2)成立,依旧有AR=AQ………………………1分

补充的图如图所示………………1分

ABC为等腰三角形

∠C=∠ABC………………1分

PQPC

∠C+∠R=90°

∠Q+∠PBQ=90°…………1分

PBQ=∠ABC

篇8

一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号哦字母填入题后括号内1.如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作( )A.﹣3m B.3m C.6m D.﹣6m2.在0,﹣2,5, ,﹣0.3中,负数的个数是( )A.1 B.2 C.3 D.43.在数轴上表示﹣2的点与表示3的点之间的距离是( )A.5 B .﹣5 C.1 D.﹣14.|﹣ |的相反数是( )A. B.﹣ C.3 D.﹣35.地球绕太阳每小时转动经过的路程约为1 10000米,将110000用科学记数法表示为( )A.11×104 B.0.11×107 C.1.1×106 D.1.1×1056.下列说法错误的是( )A.3.14×103是精确到十位B.4.609万精确到万位C.近似数0.8和0.80表示的意义不同D.用科学记数法表示的数2.5×104,其原数是250007.下列说法中,正确的是( )A. 不是整式B.﹣ 的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式8.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( ) A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1

二、填空题(每小题3分,共21分)9.有理数中,的负整数是__________.10.如图,数轴的单位长度为1,如果R表示的数是﹣1,则数轴上表示相反数的两点是__________. 11.在数1,0,﹣1,|﹣2|中,最小的数是__________.12.已知|a+2|与(b﹣3)2互为相反数,则ab=__________.13.在式子 ,﹣1,x2﹣3x, , 中,是整式的有 __________个.14.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7个单项式为__________.15.多项式 x+7是关于x的二次三项式,则m=__________.

三、解答题(本大题共8小题,满分65分)16.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来.|﹣3|,﹣5, ,0,﹣2.5,﹣22,﹣(﹣1).17.单项式 x2ym与多项式x2y2+ y4+ 的次数相同,求m的值.18.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数 7 6 7 8 2 售价(元) +5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?19.将多项式 按字母X的降幂排列.20.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25 (4) .21.已知ab2<0,a+b>0,且|a|=1,|b|=2,求 的值.22.观察:4×6=24,14×16=224,24×26=624,34×36=1224…,(1)上面两数相乘后,其末尾的两位数有什么规律?(2)如果按照上面的规律计算:124×126(请写出计算过程).(3)请借助代数式表示这一规律!23.已知x、y为有理数,现规定一种新运算,满足xy=xy+1.(1)求24的值;(2)求(14)(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列和中,并比较它们的运算结果:和;(4)探索a(b+c)与ab+ac的关系,并用等式把它们表达 出来.

一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号哦字母填入题后括号内1.如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作( )A.﹣3m B.3m C.6m D.﹣6m【考点】正数和负数. 【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在0,﹣2,5, ,﹣0.3中,负数的个数是( )A.1 B.2 C.3 D.4【考点】正数和负数. 【分析】根据小于0的是负数即可求解.【解答】解:在0,﹣2,5, ,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.【点评】本题主要考查了正数和负数,熟记概念是解题的关键.注意0既不是正数也不是负数.3.在数轴上表示﹣2的点与表示3的点之间的距离是( )A.5 B.﹣5 C.1 D.﹣1【考点】数轴. 【分析】根据正负数的运算方法,用3减去﹣2,求出在数轴上表示﹣2的点与表示3的点之间的距离为多少即可.【解答】解:3﹣(﹣2)=2+3=5.所以在数轴上表示﹣2的点与表示3的点之间的距离为5.故选A【点评】此题主要考查了正负数的运算方法,关键是根据在数轴上表示﹣2的点与表示3的点之间的距离列出式子.4.|﹣ |的相反数是( )A. B.﹣ C.3 D.﹣3【考点】绝对值;相反数. 【专题】常规题型.【分析】一个负数的绝对值是它的相反数,求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:|﹣ |= , 的相反数是﹣ .故选:B.【点评】本题考查了相反数的意义,求一个数的相反数就是在这个数前面添上“﹣”号,不要把相反数的意义与倒数的意义混淆.同时考查了绝对值的性质:一个负数的绝对值是它的相反数.5.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为( )A.11×104 B.0.11×107 C.1.1×106 D.1.1×105【考点】科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1 时,n是负数.【解答】解:110000=1.1×105,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.下列说法错误的是( )A.3.14×103是精确到十位B.4.609万精确到万位C.近似数0.8和0.80表示的意义不同D.用科学记数法表示的数2.5×104,其原数是25000【考点】近似数和有效数字;科学记数法—原数. 【分析】根据近似数的精确度对A、B、C进行判断;根据科学记数法对D进行判断.【解答】解:A、.14×103是精确到十位,所以A选项的说法正确;B、4.609万精确到十位,所以B选项的说法错误;C、近似数0.8精确到十分位,0.80精确到百分位,所以C选项的说法正确;D、用科学记数法表示的数2.5×104,其原数为25000,所以,D选项的说法正确.故选B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有 效数字.7.下列说法中,正确的是( )A. 不是整式B.﹣ 的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式【考点】整式;单项式;多项式. 【分析】利用单项式、多项式及整式的定义判定即可.【解答】解:A、是整式,错误;B、﹣ 的系数是﹣ ,次数是3,错误;C、3是 单 项式,正确;D、多项式2x2y﹣xy是三次二项式,错误;故选C【点评】本题主要考查了单项式、多项式及整式,解题的关键是熟记单项式、多项式及整式的定义.8.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( ) A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1【考点】代数式求值. 【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.二、填空题(每小题3分,共21分)9.有理数中,的负整数是﹣1.【考点】有理数. 【分析】根据小于零的整数是负整数,再根据的负整数,可得答案.【解答】解:有理数中,的负整数是﹣1,故答案为:﹣1.【点评】本题考查了有理数,根据定义解题是解题关键.10.如图,数轴的单位长度为1,如果R表示的数是﹣1,则数轴上表示相反数的两点是P,Q. 【考点】相反数;数轴. 【分析】首先根据R表示的数是﹣1,求出P、Q、T三点表示的数各是多少;然后根据相反数的含义,判断出数轴上表示相反数的两点是多少即可.【解答】解:R表示的数是﹣1,P点表示的数是(﹣3,0),Q点表示的数是(3,0),T点表示的数是(4,0),﹣3和3互为相反数,数轴上表示相反数的两点是:P,Q.故答案为:P,Q.【点评】此题主要考查了相反 数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”,并能求出P、Q、T三点表示的数各是多少.11.在数1,0,﹣1,|﹣2|中,最小的数是﹣1.【考点】有理数大小比较. 【专题】计算题.【分析】利用绝对值的代数意义化简后,找出最小的数即可.【解答】解:在数1,0,﹣1,|﹣2|=2中,最小的数是﹣1.故答案为:﹣ 1.【点评】此题考查了有理数的大小比较,弄清有理数的比较方法是解本题的关键.12.已知|a+2|与(b﹣3)2互为相反数,则ab=﹣8.【考点】非负数的性质:偶次方;相反数;非负数的性质:绝对值. 【分析】根据非负数的性质解答.有限个非负数的和为零,那么每一个加数也必为零,即若a1,a2,…,an为非负数,且a1+a2+…+an=0,则必有a1=a2=…=an=0.【解答】解:|a+2|与(b﹣3)2互为相反数,|a+2|+(b﹣3)2=0,则a+2=0,a=﹣2;b﹣3=0,b=3.故ab=(﹣2)3=﹣8.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.13.在式子 ,﹣1,x2﹣3x, , 中,是整式的有 3个.【考点】整式. 【分析】单项式和多项式统称整式,准确理解其含义再去判断是否为整式,式子 , 中,分母中含有字母,故不是整式.问题可求.【解答】解:式子 ,和x2﹣3x是多项式,﹣1是单项式,三个都是整式; , 中,分母有字母,故不是整式.因此整式有3个.【点评】判断是否为整式,关键是看分母是否含有字母,有则不是;圆周率π或另有说明的除外,如 就是整式.14.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7个单项式为﹣13x8.【考点】单项式. 【专题】规律型.【分析】根据规律,系数是从1开始的连续奇数且第奇数个是负数,第偶数个是正数,x的指数是从2开始的连续自然数,然后求解即可.【解答】解:第7个单项式的系数为﹣(2×7﹣1)=﹣13,x的指数为8,所以,第7个单项式为﹣13x8.故答案为:﹣13x8.【点评】本题考查了单项式,此类题目,难点在于根据单项式的定义从多个方面考虑求解.15.多项式 x+7是关于x的二次三项式,则m=2.【考点】多项式. 【分析】由于多项式是关于x的二次三项式,所以|m|=2,但﹣(m+2)≠0,根据以上两点可以确定m的值.【解答】解:多项式是关于x的二次三项式,|m|=2,m=±2,但﹣(m+2)≠0,即m≠﹣2,综上所述,m=2,故填空答案:2.【点评】本题解答时容易忽略条件﹣(m+2)≠0,从而误解为m=±2.三、解答 题(本大题共8小题,满分65分)16.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来.|﹣3|,﹣5, ,0,﹣2.5,﹣22,﹣(﹣1).【考点】有理数大小比较;数轴. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【解答】解:如图所示, ,由图可知,|﹣3|>﹣(﹣1)> >0>﹣2.5>﹣22>﹣5.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.17.单项式 x2ym与多项式x2y2+ y4+ 的次数相同,求m的值.【考点】多项式;单项式. 【分析】利用多项式及单项式的次数列出方程求解即可.【解答】解:单项式 x2ym与多项式x2y2+ y4+ 的次数相同,2+m=7,解得m=5.故m的值是5.【点评】本题主要考查了多项式及单项式,解题的关键是熟记多项式及单项式的次数.18.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数 7 6 7 8 2 售价(元) +5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?【考点】正数和负数.【分析】首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.【解答】解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元.【点评】本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.19.将多项式 按字母X的降幂排列.【考点】多项式. 【专题】计算题.【分析】按x的降幂排列就是看x的指数从大到小的顺序把多项式的各个项排列即可,【解答】解:将多 项式 按字母x的降幂排列为:﹣7x4y2+3x2y﹣ xy3+ .【点评】本题考查了对多项式的有关知识的理解和运用,注意按字母排列是要带着各个项的符号.20.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25 (4) .【考点】有理数的混合运算. 【分析】(1)先化简,再计算加减法;(2)按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4),先将乘法变为乘法,再运用乘法的分配律计算.【解答】解:(1)原式=﹣4+1﹣3=﹣6; =﹣3.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序 :先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.21.已知ab2<0,a+b>0,且|a|=1,|b|=2,求 的值.【考点】绝对值. 【分析】计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下1组.a=﹣1,b=2,所以原式=|﹣1﹣ |+(2﹣1)2= .【解答】解:ab2<0,a+b>0,a<0,b>0,且b的绝对值大于a的绝对值,|a|=1,|b|=2,a=﹣1,b=2,原式=|﹣1﹣ |+(2﹣1)2= .【点评】本题是绝对值性质的逆向运用,此类题要注意两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下1组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.22.观察:4×6=24,14×16=224,24×26=624,34×36=1224…,(1)上面两数相乘后,其末尾的两位数有什么规律?(2)如果按照上面的规律计算:124×126(请写出计算过程).(3)请借助代数式表示这一规律!【考点】规律型:数字的变化类. 【分析】(1)仔细观察后直接写出答案即可;(2)将124×126写成12×(12+1)×100+24后计算即可;(3)分别表示出两个因数后即可写出这一规律.【解答】解:(1)末尾都是24;(2)124×126=12×(12+1)×100+24=15600+24=15624;(3)(10a+4)(10a+6)=100a2+100a+24=100a(a+1)+24.【点评】本题考查了数字的变化类问题,仔细观察算式发现规律是解答本题的关键.23.已知x、y为有理数,现规定一种新运算,满足xy=xy+1.(1)求24的值;(2)求(14)(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列和中,并比较它们的运算结果:和;(4)探索a(b+c)与ab+ac的关系,并用等式把它们表达出来.【考点】有理数的混合运算. 【专题】压轴题;新定义.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)24=2×4+1=9;(2)(14)(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)5=﹣1×5+1=﹣4,5(﹣1)=5×(﹣1)+1=﹣4;(4)a(b+c)=a(b+c)+1=ab+ac+1,ab+ac=ab+1+ac+1.a(b+c)+1=ab+ac.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.

篇9

一、选择题(本大题共有6小题,每小题 3分,共18分)1. 下列每组数据表示3根小木棒的长度,其中能组成一个三角形的是() A.3cm,4cm,7cm B.3cm,4cm,6cm C.5cm,4cm,10cm D.5cm,3cm,8cm2.下列计算正确的是() A.(a3)4=a7 B.a8÷a4=a2 C.(2a2)3•a3=8a9 D.4a5-2a5=23.下列式子能应用平方差公式计算的是( ) A.(x-1)(y+1) B.(x-y)(x-y) C.(-y-x)(-y-x) D.(x2+1)(1- x2)4.下列从左到右的变形属于因式分解的是() A.x2 –2xy+y2=x(x-2y)+y2 B.x2-16y2=(x+8y)(x-8y) C.x2+xy+y2=(x+y)2 D. x4y4-1=(x2y2+1)(xy+1)(xy-1)5. 在ABC中,已知∠A:∠B:∠C=2:3:4,则这个三角形是( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形 6.某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:捐款(元) 4 68 10人 数 6 7表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有 名同学,捐款8元的有 名同学,根据题意,可得方程组() A. B. C. D.  二、填空题 (本大题共有10小题,每小题3分,共30分)7.( )3=8m6. 8.已知方程5x-y=7,用含x的代数式表示y,y= .9. 用小数表示2.014×10-3是 .10.若(x+P)与(x+2)的乘积中,不含x的一次项,则常数P的值是 .11.若 x2+mx+9是完全平方式,则m的值是 .12. 若 ,则 的值是 .13.若一个多边形内角和等于1260°,则该多边形边数是   .14.已知三角形的两边长分别为10和2,第三边的数值是偶数,则第三边长为 .15.如图,将一副三角板和一张对边平行的纸条按下列 方式摆放,两个三角板的一直角边重合 ,含30°角 的直角三角板的斜边与纸条一边重合,含45°角的三 角板的一个顶点在纸条的另一边上,则∠1的度数 是 . 16.某次地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐 篷,若所搭建的帐篷恰好 (即不多不少)能容纳这60名灾民,则不同的搭建方 案有 种. 三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤) 17.(本题满分12分) (1)计算: ; (2)先化简,再求值: ,其中y= .18.(本题满分8分) (1)如图,已知ABC,试画出AB边上的中线和AC边上的高; (2)有没有这样的多边形,它的内角和是它的外角 和的3倍?如果有,请求出它的边数,并写出 过这个多边形的一个顶点的对角线的条数. (第18(1)题图)19.(本题满分8分)因式分解: (1) ; (2) .20.(本题满分8分)如图,已知AD是ABC的角平分线,CE是ABC的高,AD与CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数.21.(本题满分10分)解方程组: (1) (2)22.(本题满分10分)化简: (1)(-2x2 y)2•(- xy)-(-x3)3÷x4•y3; (2)(a2+3)(a-2)-a(a2-2a-2).新课 标第 一 网23.(本题满分10分) (1)设a-b=4,a2+b2=10,求(a+b)2的值; (2)观察下列式子:1×3+1=4,2×4+1=9,3×5+1=16,4×6+1=25,…, 探索以上式子的规律,试写出第n个等式,并说明第n个等式成立.24.(本题满分10分)某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程. 25.(本题满分12分)“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%.该专业户去年实际生产小麦、玉米各多少吨?  (1)根据题意,甲和乙两同学分别列出了如下不完整的方程组: 甲: 乙: 根据甲、乙两位同学所列的方程组,请你分别指出未知数x,y表示的意义,然后在上面的横线上分别补全甲、乙两位同学所列的方程组: 甲:x表示   ,y表示   ; 乙:x表示   ,y表示    ;(2)求该专业户去年实际生产小麦、玉米各多少吨?(写出完整的解 答过程, 就甲或乙的思路写出一种即可) 26.(本题满分14分)如图①,ABC的角平分线BD、CE相交于点P. (1)如果∠A=70°,求∠BPC的度数; (2)如图②,过P点作直线MN∥BC,分别交AB和AC于点M和N,试求 ∠MPB+∠NPC的度数(用含∠A的代数式表示);

(3)在(2)的条件下,将直线MN绕点P旋转. (i)当直线MN与AB、AC的交点仍分别在线段AB和AC上时,如图③,试 探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由; (ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的 延长线上时,如图④,试问(i)中∠MPB、∠NPC、∠A三者之间 的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请 给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.

一、选择题(本大题共有6小题,每小题3分,共18分)二、填空题(本大题共有10小题,每小题3分,共30分)7.2m2;8.5x-7;9.0.002014;10.-2;11.±6;12.9;13.9;14.10;15.15°;16. 6.三、解答题(共10题,102分.下列答案仅 供参考,有其它答案或解法,参照标准给分.) -4a(4a2-4ab+b2)(2分)=-4a(2a-b)2(2分).20.(本题满分8分)AD是ABC的角平分线,∠BAC=66°,∠BAD=∠CAD= ∠BAC=33°(1分);CE是ABC的高,∠BEC=90°(1分);∠BCE=40°,∠B=50°(1分),∠BCA=64°(1分),∠ADC=83°(2分),∠APC=12 3°(2分).(可以用外角和定理求解)21.(本题满分10分)(1)①代入②有,2(1-y)+4y=5(1分),y=1.5 (2分),把 y=1.5代入①,得x=-0.5(1分), (1分);(2)②×3-①×5得: 11x=-55(2分),x=-5(1分).将x=-5代入①,得y=-6(1分), (1分)22.(本题满分10分)(1)原式=4x4 y2•(- xy)-(-x9)÷x4•y3(2分)=- x5y3+x5y3(2分)=- x5y3(1分);(2)原式=a3-2a2+3a-6-a3+2a2+2a(4分)=5a-6( 1分). 25.(本题满分12分)(1)甲: 乙: (4分,各1分);甲:x表示该专业户去年实际生产小麦吨数,y表示该专业户去年实际生产玉米吨数;乙:x表示原计划生产小麦吨数,y表示原计划生产玉米吨数;(4分,各1分)(2)略.(4分,其中求出方程组的解3分,答1分,不写出设未知数的扣1分).26. (本题满分14分)(1)125°(3分);(2)利用平行线的性质求解或先说明∠BPC=90°+ ∠A,∠MPB+∠NPC=180°-∠BPC=180°-(90°+ ∠A)=90°- ∠A(3分);(3)(每小题4分)(i)∠MPB+∠NPC= 90°- ∠A(2分).理由:先说明∠BPC=90°+ ∠A,则∠MPB+∠NPC=180°-∠BPC=180°-(90°+ ∠A)= 90°- ∠A(2分);(ii)不成立(1分),∠MPB-∠NPC=90°- ∠A(1分).理由:由图可知∠MPB+∠BPC-∠NPC=180°,由(i)知:∠BPC=90°+ ∠A,∠MPB-∠NPC=180°-∠BPC=180°-(90°+ ∠A)= 90°- ∠A(2分).

篇10

_____年级

_____班

姓名_____

得分_____

一、填空题

1.

一副中国象棋,黑方有将、车、马、炮、士、相、卒16个子,红方有帅、车、马、炮、士、相、兵16个子.把全副棋子放在一个盒子内,至少要取出____个棋子来,才能保证有3个同样的子(例如3个车或3个炮等).

2.

一桶农药,第一次倒出2/7然后倒回桶内120克,第二次倒出桶中剩下农药的3/8,第三次倒出320克,桶中还剩下80克,原来桶中有农药____克.

3.

把若干个自然数1、2、3…乘到一起,如果已知这个乘积的最末13位恰好都是零,那么最后出现的自然数最小应该是_____.

4.

在边长等于5的正方形内有一个平行四边形(如图),这个平行四边形的面积为_____(面积单位).

5.

两个粮仓,甲粮仓存粮的1/5相当于乙粮仓存粮的3/10,甲粮仓比乙粮仓多存粮160万吨.那么,乙粮仓存粮_____万吨.

6.

六位数能被11整除,是0到9中的数,这样的六位数是______.

7.

已知两数的差与这两数的商都等于7,那么这两个数的和是______.

8.

在10×10的方格中,画一条直线最多可穿过_____个方格?

9.

有甲、乙、丙三辆汽车各以一定的速度从地开往地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分追上丙.那么甲出发后需用____分钟才能追上乙.

10.

把63表示成个连续自然数的和,试写出各种可能的表示法:______.

二、解答题

11.

会场里有两个座位和四个座位的长椅若干把.某年级学生(不足70人)来开会,一部分学生一人坐一把两座长椅,其余的人三人坐一把四座长椅,结果平均每个学生坐1.35个座位.问有多少学生参加开会?

12.

有一个由9个小正方形组成的大正方形,将其中两个涂黑,有多少种不同的涂法?(如果几个涂法能够由旋转而重合,这几个涂法只能看作是一种,比如下面四个图,就只能算一种涂法.)

13.

某蓄水池有甲、丙两条进水管和乙、丁两条排水管.要灌满一池水,单开甲管需要3小时,单开丙管需要5小时;要排光一池水,单开乙管需要4小时,单开丁管需要6小时.现在池内有1/6池水,如果按甲、乙、丙、丁的顺序,循环开各水管,每次每管1小时.问多少时间后水开始溢出水池?

14.

黑板上写着数9,11,13,15,17,19.每一次可以擦去其中任何两个数,再写上这两个数的和减1(例如,可以擦去11和19,再写上29).经过几次之后,黑板上就会仅剩下一个数.试问,这个所剩下的数可能是多少?试找出所有可能的答案,并证明再无别的答案.

———————————————答

案——————————————————————

案:

1.

17.

如只取16个,则当将帅各1,车马士相炮卒兵各2时,没有3个同样的子,那么无论再取一个什么子,这种子的个数就有3个3.故至少要取17个子.

2.

728.

用递推法可知,原来桶中有农药

[(320+80)÷(1-)-120]÷(1-)=728(克).

3.

55.

在1×2×…×55中,5的倍数有[]=11个,其中25的倍数有[]=2个.即在上式中,含质因数5有11+2=13(个).又上式中质因数2的个数多于5的个数.从而它的末13位都是0.

4.

14.

平行四边形的面积等于正方形面积与四个直角三角形面积之差:

5×5-(2××2×4+2××1×3)=14.

5.

320.

甲粮仓是乙粮仓的,甲粮仓比乙粮仓多的是乙粮仓的,故乙粮仓存粮160÷=320(万吨).

6.

666666.

因6+6+6=18与的差是11的倍数.又是一位数,只能取6.故原六位数是666666.

7.

9.

这两数中,较小的一数为7÷(7-1)=1,较大的一数为,其和为9.

8.

19.

一条直线与一个方格最多只有2个交点,故在10×10的方格中,有纵横各11条直线段.一条直线与这22条线段至多有10+10=20个交点,故它们穿过19个正方形.

9.

500.

由已知,乙40分钟的路程与丙50分钟路程相等.故乙速:丙速=50:40=25:20;又甲100分钟路程与丙130分钟路程相等.故甲速:丙速=130:100=26:20.从而甲速:乙速:丙速=26:25:20.

设甲乙丙的速度每分钟行26,25,20个长度单位.则乙先出发20分钟,即乙在甲前20×25=500个长度单位.从而甲追上乙要500÷(26-25)=500(分钟).

10.

63=20+21+22=6+7+8+9+10+11+12=3+4+5+6+7+8+9+10+11

11.

设有人每人坐一把两坐长椅.有人每三人坐一把四座长椅,则开会学生有人,另用座位共个.依题意有

,即.

因不能超过70,故只能有,共有学生1+39=40(人).

12.

分类计算如下:当涂黑的两个方格占两角时,有2种涂法;当占两边时,也有2种涂法,当占一边一角时,有4种涂法;当占一角一中心时,有1种涂法;当占一边一中心时,也有1种涂法.

合计共有2+2+4+1+1=10(种)涂法.

13.

据已知条件,四管按甲乙丙丁顺序各开1小时,共开4小时,池内灌进的水是全池的;加上池内原来的水,池内有水.

再过四个4小时,即20小时后,池内有水,还需灌水.此时可由甲管开(小时).

所以在(小时)后,水开始溢出水池.