数学教案范文
时间:2023-03-30 19:15:57
导语:如何才能写好一篇数学教案,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
1.理解分数指数的概念,掌握有理指数幂的运算性质.
(1)理解n次方根,n次根式的概念及其性质,能根据性质进行相应的根式计算.
(2)能认识到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化.
(3)能利用有理指数运算性质简化根式运算.
2.通过指数范围的扩大,使学生能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力.
3.通过对根式与分数指数幂的关系的认识,使学生能学会透过表面去认清事物的本质.
教学建议
教材分析
(1)本节的教学重点是分数指数幂的概念及其运算性质.教学难点是根式的概念和分数指数幂的概念.
(2)由于分数指数幂的概念是借助次方根给出的,而次根式,次方根又是学生刚刚接触到的概念,也是比较陌生的.以此为基础去学习认识新知识自然是比较困难的.且次方根,分数指数幂的定义都是用抽象字母和符号的形式给出的,学生在接受理解上也是比较困难的.基于以上原因,根式和分数指数幂的概念成为本节应突破的难点.
(3)学习本节主要目的是将指数从整数指数推广到有理数指数,为指数函数的研究作好准备.且有理指数幂具备的运算性质还可以推广到无理指数幂,也就是说在运算上已将指数范围推广到了实数范围,为对数运算的出现作好了准备,而使这些成为可能的就是分数指数幂的引入.
教法建议
(1)根式概念的引入是本节教学的关键.为了让学生感到根式的学习是很自然也很必要的,不妨在设计时可以考虑以下几点:
①先以具体数字为例,复习正整数幂,介绍各部分的名称及运算的本质是乘方,让它与学生熟悉的运算联系起来,树立起转化的观点.
②当复习负指数幂时,由于与乘除共同有关,所以出现了分式,这样为分数指数幂的运算与根式相关作好准备.
③在引入根式时可先由学生知道的平方根和立方根入手,再大胆写出即谁的四次方根等于16.指出2和-2是它的四次方根后再把指数换成,写成即谁的次方等于,在语言描述的同时,也把数学的符号语言自然的给出.
(2)在次方根的定义中并没有将次方根符号化原因是结论的多样性,不能乱表示,所以需要先研究规律,再把它符号化.按这样的研究思路学生对次方根的认识逐层递进,直至找出运算上的规律.
教学设计示例
课题根式
教学目标:
1.理解次方根和次根式的概念及其性质,能根据性质进行简单的根式计算.
2.通过对根式的学习,使学生能进一步认清各种运算间的联系,提高归纳,概括的能力.
3.通过对根式的化简,使学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想.
教学重点难点:
重点是次方根的概念及其取值规律.
难点是次方根的概念及其运算根据的研究.
教学用具:投影仪
教学方法:启发探索式.
教学过程:
一.复习引入
今天我们将学习新的一节指数.指数与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展.
下面从我们熟悉的指数的复习开始.能举一个具体的指数运算的例子吗?
以为例,是指数运算要求学生指明各部分的名称,其中2称为底数,4为指数,称为幂.
教师还可引导学生回顾指数运算的由来,是从乘方而来,因此最初指数只能是正整数,同时引出正整数指数幂的定义..然后继续引导学生回忆零指数幂和负整数指数幂的定义,分别写出及,同时追问这里的由来.最后将三条放在一起,用投影仪打出整数指数幂的概念
2.5指数(板书)
1.关于整数指数幂的复习
(1)概念
既然是一种运算,除了定义之外,自然要给出它的运算规律,再来回顾一下关于整数指数幂的运算性质.可以找一个学生说出相应的运算性质,教师用投影仪依次打出:
(2)运算性质:;;.
复习后直接提出新课题,今天在此基础上把指数从整数范围推广到分数范围.在刚才的复习我们已经看到当指数在整数范围内时,运算最多也就是与分式有关,如果指数推广到分指数会与什么有关呢?应与根式有关.初中时虽然也学过一点根式,但不够用,因此有必要先从根式说起.
2.根式(板书)
我们知道根式来源于开方,开方是乘方的逆运算,所以谈根式还是先从大家熟悉的乘方说起.
如
如果给出了4和2进行运算,那就是乘方运算.如果是知道了16和2,求4即,求?
问题也就是:谁的平方是16,大家都能回答是4和-4,这就是开方运算,且4和-4有个名字叫16的平方根.
再如
知3和8,问题就是谁的立方是8?这就是开方运算,大家也知道结果为2,同时指出2叫做8的立方根.
(根据情况教师可再适当举几个例子,如,要求学生用语言描述式子的含义,I再说出结果分别为和-2,同时指出它们分别称为9的四次方根和-8的立方根)
在以上几个式子会解释的基础上,提出即一个数的次方等于,求这个数,即开次方,那么这个数叫做的次方根.
(1)次方根的定义:如果一个数的次方等于(,那么这个数叫做的次方根.
(板书)
对定义理解的第一步就是能把上述语言用数学符号表示,请同学们试试看.
由学生翻译为:若(,则叫做的次方根.(把它补在定义的后面)
翻译后教师在此基础上再次提出翻译的不够彻底,如结论中的的次方根就没有用符号表示,原因是什么?(如果学生不知从何入手,可引导学生回到刚才的几个例子,在符号表示上存在的问题,并一起研究解决的办法)最终把问题引向对的次方根的取值规律的研究.
(2)的次方根的取值规律:(板书)
先让学生看到的次方根的个数是由的奇偶性决定的,所以应对分奇偶情况讨论
当为奇数时,再问学生的次方根是个什么样的数,与谁有关,再提出对的正负的讨论,从而明确分类讨论的标准,按的正负分为三种情况.
Ⅰ当为奇数时
,的次方根为一个正数;
,的次方根为一个负数;
,的次方根为零.(板书)
当奇数情况讨论完之后,再用几个具体例子辅助说明为偶数时的结论,再由学生总结归纳
Ⅱ当为偶数时
,的次方根为两个互为相反数的数;
,的次方根不存在;
,的次方根为零.
对于这个规律的总结,还可以先看的正负,再分的奇偶,换个角度加深理解.
有了这个规律之后,就可以用准确的数学符号去描述次方根了.
(3)的次方根的符号表示(板书)
可由学生试说一说,若学生说不好,教师可与学生一起总结,当为奇数时,由于无论为何值,次方根都只有一个值,可用统一的符号表示,此时要求学生解释符号的含义:为正数,则为一个确定的正数,为负数,则为一个确定的负数,为零,则为零.
当为偶数时,为正数时,有两个值,而只能表示其中一个且应表示是正的,另一个应与它互为相反数,故只需在前面放一个负号,写成,其含义为为偶数时,正数的次方根有两个分别为和.
为了加深对符号的认识,还可以提出这样的问题:一定表示一个正数吗?中的一定是正数或非负数吗?让学生来回答,在回答中进一步认清符号的含义,再从另一个角度进行总结.对于符号,当为偶数是,它有意义的条件是;当为奇数时,它有意义的条件时.
把称为根式,其中为根指数,叫做被开方数.(板书)
(4)根式运算的依据(板书)
由于是个数值,数值自然要进行运算,运算就要有根据,因此下面有必要进一步研究根式运算的依据.但我们并不过分展开,只研究一些最基本的最简单的依据.
如应该得什么?有学生讲出理由,根据次方根的定义,可得Ⅰ=.(板书)
再问:应该得什么?也得吗?
若学生想不清楚,可用具体例子提示学生,如吗?吗?让学生能发现结果与有关,从而得到Ⅱ=.(板书)
为进一步熟悉这个运算依据,下面通过练习来体会一下.
三.巩固练习
例1.求值
(1).(2).
(3).(4).
(5).(
要求学生口答,并说出简要步骤.
四.小结
1.次方根与次根式的概念
2.二者的区别
3.运算依据
五.作业略
六.板书设计
2.5指数(2)取值规律(4)运算依据
1.复习
篇2
一组对边平行而另一组对边不平行的四边形叫做梯形.平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高.一腰垂直于底的梯形叫直角梯形,两腰相等的梯形叫等腰梯形.
2.梯形的性质及其判定
梯形是特殊的四边形,它具有四边形所具有的一切性质,此外它的上下两底平行.
一组对边平行且另一组对边不平行的四边形是梯形,但要判断另一组对边不平行比较困难,一般用一组对边平行且不相等的四边形是梯形来判断.
3.等腰梯形的性质和判定
性质:等腰梯形在同一底上的两个角相等,两腰相等,两底平行,两对角钱相等,是轴对称图形,只有一条对称轴,底的中垂线就是它的对称轴.
判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;对角钱相等的梯形是等腰梯形.
梯形重难点分析
本节的重点是等腰梯形的性质和判定.梯形仍是具有特殊条件的四边形,它与平行四边形同属于特殊的四边形,它只有一组对边平行,而另一组对边不平行,但平行四边形两组对边分别平行.而等腰梯形又是特殊的梯形,它的许多性质和判定方法与矩形、菱形、正方形这些特殊的平行四边形有一定的相似性和可比性.
本节的难点也是等腰梯形的性质和判定.由于等腰梯形又是特殊的梯形,它的许多性质和判定方法与矩形、菱形、正方形这些特殊的平行四边形有一定的相似性和可比性,虽然学生在小学时已经接触过等腰梯形,在认识和理解上有一定的基础,但还是容易同特殊的平行四边形混淆,再加上梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,学生难免会有无从下手的感觉,往往会有对题目一讲就明白但自己不会分析解答的情况发生,教师在教学中要加以注意.
梯形的教学建议
1.关于梯形的引入
生活中有许多梯形的例子,小学又接触过梯形内容,学生对梯形并不陌生,梯形的引入可从下面几个角度考虑:
①从生活实例引入,如防洪堤坝、飞机机翼,别致窗户、音箱外形等等;
②从小学学习过的旧知识复习引入;
③从发现的角度引入,比如给出一组图形,告诉学生这就是梯形,然后寻找这些图形的共同点,根据共同点对梯形进行定义以及性质、判定的研究;
④可用问题式引入,开始时设计一系列与梯形概念相关的问题由学生进行思考、研究,然后给出梯形的定义和性质.
2.关于梯形的概念
梯形的相关概念小学就已经接触过,但并不深入,在研究梯形的概念时可设计如下问题加深对梯形相关概念的理解:
①一组对边平行的四边形是不是梯形?
②一组对边平行一组对边相等的图形是不是梯形?
③一组对边相等的图形是不是梯形?
④一组对边相等一组对边不相等的图形是不是梯形?
⑤对角线相等的图形是不是梯形?
⑥有两个角是直角的梯形是不是直角梯形?
⑦两个角相等的梯形是不是等腰梯形?
⑧对角线相等的梯形是不是等腰梯形?
一、教学目标
1.掌握梯形、等腰梯形、直角梯形的有关概念.
2.掌握等腰梯形的两个性质:等腰梯形同一底上的两个角相等;两条对角线相等.
3.能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力.
4.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想
二、教法设计
小组讨论,引导发现、练习巩固
三、重点、难点
1.教学重点:等腰梯形性质.
2.教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线).
四、课时安排
1课时
五、教具学具准备
多媒体,小黑板,常用画图工具
六、师生互动活动设计
教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的性质,归纳小结梯形转化的常见的辅助线
七、教学步骤
复习提问
1.什么样的四边形是平行四边形?平行四边形有什么性质?
2.小学学过的梯形是什么样的四边形.
(让学生动手画一个梯形,并找3名同学到黑板上来画,并指出上、下底和腰,然后由学生总结出梯形的概念).
引入新课(板书课题)
梯形同样是一个特殊的四边形,与平行四边形一样,它也有它的特殊性,今天我们就重点来研究这个问题.
1.梯形及梯形的有关概念
(l)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.
(2)底:平行的一组对边叫做梯形的底(通常把较短的底叫上底,较长的底叫下底).
(3)腰:不平行的一组对边叫做梯形的腰.
(4)高:两底间的距离叫做梯形高.
(5)直角梯形:一腰垂直于底的梯形.
(6)等腰梯形:两腰相等的梯形.
(以上这一过程借助多媒体或投影仪演示)
提醒学在注意:
①梯形与平行四边形同属于特殊的四边形,因为它们具有不同的特殊条件,所以必然有不同的性质.
②平行四边形的对边平行且相等,而梯形中,平行的一组对边不能相等(让学生想一想,为什么不能相等).
③上、下底的概念是由底的长短来定义的,而并不是指位置来说的.
2.等腰梯形的性质
例1如图,在梯形中,,,求证:.
分析:我们学过“等腰三角形两底角相等”,如果能将等腰梯形在同一底上的两个角转化为等腰三角形的两个底角,问题就容易解决了.
证明:(略)
由此得出等旧梯形的性质定理:等腰梯形在同一高上的两个角相等.
例2如图,求证:等腰梯形的两条对角线相等.
已知:在梯形中,,,求证:.
分析:要证,只要用等腰梯形的性质定理得出,然后再利用,即可得出.
证明过程:(略).
由此得到多腰梯形的第一条性质:等腰梯形的两条对角线相等.除此之外,等腰梯形还是轴对称图形,对称轴是过两底中点的直线.
3.解决梯形问题常用的方法
在证明梯形性质定理时,我们采取的方法是过点作交于,从而把梯形问题转化成三角形来解,实质上是相当于把采取平行移动到的位置,这种方法叫做平行移动(也可移对角线),这是解决梯形问题常用的方法之—(让学生想一想,还可以用什么样的方法作辅助线来解决梯形问题,多找几名学生回答,然后教师总结,可借助多媒体演示见图).
(1)“作高”:使两腰在两个直角三角形中.
(2)“移对角线”:使两条对角线在同一个三角形中.
(3)“延腰”:构造具有公共角的两个等腰三角形.
(4)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形.
综上所述:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.
总结、扩展
小结:(以提问的方式总结)
(1)梯形的有关概念.
(2)梯形性质(①-③).
(3)解决梯形问题的基本思想和方法.
(4)解决梯形问题时,常用的几种辅助线.
八、布置作业
教材P179中2、3、4
九、板书设计
篇3
(一)教材分析
1、知识结构
2、重点、难点分析
重点:找出命题的题设和结论.因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础.
难点:找出一个命题的题设和结论.因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题.但有些命题的题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果……那么……”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点.
(二)教学建议
1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假.
2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:
(1)假命题可分为两类情况:
①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题.
②题设有多种情形,其中至少有一种情形的结论是错误的.例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形:第一种情形是两个内错角都等于90°,这时两直线平行;第二种情形是两个内错角不都等于90°,这时两直线不平行.整体说来,这是错误的命题.
(2)是否是命题:
命题的定义包括两层涵义:①命题必须是一个完整的句子;②这个句子必须对某件事情做出肯定或者否定的判断.即命题是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成.
另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的平行线.”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题.
(3)命题的组成
每个命题都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果…,那么…”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.
有些命题,没有写成“如果…,那么…”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果…那么…”的形式.
另外命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.
教学设计示例1
教学目标
1.使学生对命题、真命题、假命题等概念有所理解.
2.使学生理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题改写成“如果……,那么……”的形式.
3.会判断一些命题的真假.
教学重点和难点
本节的重点和难点是:找出一个命题的题设和结论.
教学过程设计
一、分析语句,理解命题
1.教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:
(1)我是中国人.
(2)我家住在北京.
(3)你吃饭了吗?
(4)两条直线平行,内错角相等.
(5)画一个45°的角.
(6)平角与周角一定不相等.
2.找出哪些是判断某一件事情的句子?
学生答:(1),(2),(4),(6).
3.教师给出命题的概念,并举例.
命题:判断一件事情的句子,叫做命题,分析(3),(5)为什么不是命题.
教师分析以上命题中,每句话都判断什么事情.所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清.在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说.(不要让说过的再说)
如:
(1)对顶角相等.
(2)等角的余角相等.
(3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线.
(4)如果a>0,b>0,那么a+b>0.
(5)当a>0时,|a|=a.
(6)小于直角的角一定是锐角.
在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题.
(7)a>0,b>0,a+b=0.
(8)2与3的和是4.
有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解.
4.分析命题的构成,改写命题的形式.
例两条直线平行,同位角相等.
(l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为“题设”,由已知推出的事项为“结论”.
(2)改写命题的形式.
由于题设是条件,可以写成“如果……”的形式,结论写成“那么……”的形式,所以上述命题可以改写成“如果两条平行线被第三条直线所截,那么同位角相等.”
请同学们将下列命题写成“如果……,那么……”的形式,例:
①对顶角相等.
如果两个角是对顶角,那么它们相等.
②两条直线平行,内错角相等.
如果两条直线平行,那么内错角相等.
③等角的补角相等.
如果两个角是等角,那么它们的补角相等.(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等.)
以上三个命题的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等.”
提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出.
如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:
“如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直.”
二、分析命题,理解真、假命题
1.让学生分析两个命题的不同之处.
(l)若a>0,b>0,则a+b>0.
(2)若a>0,b>0,则a+b<0.
相同之处:都是命题.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论.
不同之处:(1)中的结论是正确的,(2)中的结论是错误的.
教师及时指出:同学们发现了命题的两种情况.结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.
2.给出真、假命题定义.
真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题.
假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题.
注意:
(1)真命题中的“一定成立”不能有一个例外,如命题:“a≥0,b>0,则ab>0”.显然当a=0时,ab>0不成立,所以该题是假命题,不是真命题.
(2)假命题中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时命题不正确,所以也是假命题。
(3)注意命题与假命题的区别.如:“延长直线AB”.这本身不是命题.也更不是假命题.
(4)命题是一个判断,判断的结果就有对错之分.因此就要引入真假命题,强调真假命题的大前提,首先是命题.
3.运用概念,判断真假命题.
例请判断以下命题的真假.
(1)若ab>0,则a>0,b>0.
(2)两条直线相交,只有一个交点.
(3)如果n是整数,那么2n是偶数.
(4)如果两个角不是对顶角,那么它们不相等.
(5)直角是平角的一半.
解:(l)(4)都是假命题,(2)(3)(5)是真命题.
4.介绍一个不辨真伪的命题.
“每一个大于4的偶数都可以表示成两个质数之和”.(即著名的哥德巴赫猜想)
我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确.我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”.即已经证明了“1+2”,离“1+1”只差“一步之遥”.所以这个命题的真假还不能做最好的判定.
5.怎样辨别一个命题的真假.
(l)实际生活问题,实践是检验真理的唯一标准.
(2)数学中判定一个命题是真命题,要经过证明.
(3)要判断一个命题是假命题,只需举一个反例即可.
三、总结
师生共同回忆本节的学习内容.
1.什么叫命题?真命题?假命题?
2.命题是由哪两部分构成的?
3.怎样将命题写成“如果……,那么……”的形式.
4.初步会判断真假命题.
教师提示应注意的问题:
1.命题与真、假命题的关系.
2.抓住命题的两部分构成,判断一些语句是否为命题.
3.命题中的题设条件,有两个或两个以上,写“如果”时应写全面.
4.判断假命题,只需举一个反例,而判断真命题,数学问题要经过证明.
四、作业
1.选用课本习题.2.以下供参选用.
(1)指出下列语句中的命题.
①我爱祖国.
②直线没有端点.
③作∠AOB的平分线OE.
④两条直线平行,一定没有交点.
⑤能被5整除的数,末位一定是0.
⑥奇数不能被2整除.
⑦学习几何不难.
(2)找出下列各句中的真命题.
①若a=b,则a2=b2.
②连结A,B两点,得到线段AB.
③不是正数,就不会大于零.
④90°的角一定是直角.
⑤凡是相等的角都是直角.
(3)将下列命题写成“如果……,那么……”的形式.
①两条直线平行,同旁内角互补.
②若a2=b2,则a=b.
③同号两数相加,符号不变.
篇4
概念及其记法
.(2)使学生初步了解“属于”关系的意义
.(3)使学生初步了解有限集、无限集、空集的意义
能力目标:(1)重视基础知识的教学、基本技能的训练和能力
的培养;
(2)启发学生能够发现问题和提出问题,善于独立
思考,学会分析问题和创造地解决问题;
(3)通过教师指导发现知识结论,培养学生抽象概
括能力和逻辑思维能力;
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示
一些简单的集合
授课类型:新授课
课时安排:2课时
教具:多媒体、实物投影仪
教学过程:
一、复习导入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)。
二、新课讲解:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念(例题见课本):
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合。
(2)元素:集合中每个对象叫做这个集合的元素。
2、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合。记作N
(2)正整数集:非负整数集内排除0的集。记作N*或N+
(3)整数集:全体整数的集合。记作Z
(4)有理数集:全体有理数的集合。记作Q
(5)实数集:全体实数的集合。记作R
注意:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括
数0。
(2)非负整数集内排除0的集。记作N*或N+。Q、Z、R等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0
的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,
或者不在,不能模棱两可。
(2)互异性:集合中的元素没有重复。
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
2、“∈”的开口方向,不能把a∈A颠倒过来写。
练习题
1、教材P5练习
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数。(不确定)
(2)好心的人。(不确定)
(3)1,2,2,3,4,5.(有重复)
阅读教材第二部分,问题如下:
1.集合的表示方法有几种?分别是如何定义的?
2.有限集、无限集、空集的概念是什么?试各举一例。
(二)集合的表示方法
1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的
方法。
例如,由方程的所有解组成的集合,可以表示为{-1,1}
注:(1)有些集合亦可如下表示:
从51到100的所有整数组成的集合:{51,52,53,…,100}
所有正奇数组成的集合:{1,3,5,7,…}
(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只
有一个元素。
描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条
件写在大括号内表示集合的方法。
格式:{x∈A|P(x)}
含义:在集合A中满足条件P(x)的x的集合。
例如,不等式的解集可以表示为:或
所有直角三角形的集合可以表示为:
注:(1)在不致混淆的情况下,可以省去竖线及左边部分。
如:{直角三角形};{大于104的实数}
(2)错误表示法:{实数集};{全体实数}
3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。
注:何时用列举法?何时用描述法?
(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。
如:集合
(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。
如:集合;集合{1000以内的质数}
注:集合与集合是同一个集合
吗?
答:不是。
集合是点集,集合=是数集。
(三)有限集与无限集
1、有限集:含有有限个元素的集合。
2、无限集:含有无限个元素的集合。
3、空集:不含任何元素的集合。记作Φ,如:
练习题:
1、P6练习
2、用描述法表示下列集合
①{1,4,7,10,13}
②{-2,-4,-6,-8,-10}
3、用列举法表示下列集合
①{x∈N|x是15的约数}{1,3,5,15}
②{(x,y)|x∈{1,2},y∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}
注:防止把{(1,2)}写成{1,2}或{x=1,y=2}
③
④{-1,1}
⑤{(0,8)(2,5),(4,2)}
⑥
{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}
三、小结:本节课学习了以下内容:
1.集合的有关概念
(集合、元素、属于、不属于、有限集、无限集、空集)
2.集合的表示方法
(列举法、描述法、文氏图共3种)
篇5
1.进一步理解采用法定计量单位的重要意义.
2.复习长度、面积、体积、质量、时间单位.
3.复习各种计量单位间的进率.
教学重点
指导学生汇总整理学过的计量单位,牢固掌握各种计量单位及单位间的进率.
教学难点
掌握各种计量单位的实际大小及进率,正确使用计量单位.
教学步骤
一、直接导入.
提问导入:同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能说说这是为什么吗?(学生自由回答)
教师归纳:我国从1990年起废除原来的计量单位,采用国际上通用的法定计量单位,目的是为了便于国际交流,扩大开放,不断发展面向世界的外向型经济.因此,我们要认真学好有关计量的知识.这节课我们整理和复习“量的计量”.(教师板书课题)
二、归纳整理.
(一)启发学生回忆:我们学过了哪些量的计量?
教师板书:
长度质量时间
面积
体积(容积)
(二)复习长度、面积、体积单位及进率.
1.启发学生回忆:已学过的长度单位有哪些?每个长度单位实际有多大?相邻单位间的进率是多少?
2.启发学生回忆:已学过的面积单位有哪些?每个面积单位实际有多大?相邻单位间
的进率是多少?
学生讨论:相邻面积单位之间的进率为什么都是100?
师生归纳:面积单位是根据长度单位确定的,长度单位间的进率是10,面积单位间的进率就是100.
3.启发学生回忆:已学过的体积(容积)单位有哪些?相邻单位间的进率是多少?
学生思考:相邻体积单位之间的进率为什么是1000?
教师说明:面积单位体积(容积)单位都是依据长度单位确定的,长度单位间的进率是10,面积单位间的进率是100,体积(容积)单位间的进率是1000,要注意它们之间的联系与区别,在实际计量时做到准确无误.
4.练习.
(1)在()里填上适当的计量单位名称.
一枝铅笔长176()一个篮球场占地420()
一张课桌宽52()一个火柴盒的体积是21()
一间教师的面积是48()一种保温瓶的容量是2()
(2)一个正方体的体积是1立方米,它的棱长是多少?它的每个面的面积是多少?
(3)用棱长1厘米的小正方体木块堆成一个棱长1分米的正方体,需要多少块?把这些小正方体木块排成一行,有多长?
(三)复习质量单位.
1.启发学生回忆:学过的质量单位有哪些?它们之间的进率是多少?(并填写下表)
2.练习.
①10麻袋大米约1()
②l个鸡蛋约6.5()
③1棵白菜约2.5()
④1名六年级学生体重是40()
(四)复习时间单位.
1.启发学生回忆:学过的时间单位有哪些?它们之间的进率是多少?(并填写下表)
名称
世纪
年月
日
时分
秒
进率
()年
()月
31日(各月)
30日(各月)
29日(年二月)
28日(年二月)
()时
()分
()秒
2.教师强调:
①时间单位间的进率不像前两种计量单位间的进率那么有规律,要记牢、用准.
②“小时”的单位名称按规定应记作“时”.
3.思考.
①怎样判断某一年是闰年还是平年?
②21世纪从什么时间开始?
4.练习.
(1)一年有()个月,分成()个季度.
(2)一个月分成()旬、()旬和()旬.一月的下旬是()天,平年二月的下旬是()天.
(3)采用24时计时法,下午1时就是()时,夜里12时就是()时,也就是第二天的(
)时.
(五)名数的改写.
1.出示5米.(引导学生,说出各部分名称)
2.单名数、复名数的复习,并举例.
3.填写例1.
(1)3时20分=()分
(2)=()吨()千克
(3)3080克=()千克()克
(4)5分40秒=()分
4.练习.
3千克50克=()克3千克50克=()千克
3050米=()千米()米3050米=()千米
2.4时=()时()分2.4时=()分
2时40分=()时2元4分=()分
三、全课小结.
本节课整理和复习了哪些知识?在理解和运用这些知识时应注意什么?
四、课堂练习.
1.填空.
(1)1米=()厘米
(2)1公顷=()平方米
(3)1平方米=()平方分米=()平方厘米
(4)1升=()毫升
(5)1吨=()千克
(6)平年的第一季度天数是()天.
2.判断.
(1)2000年是21世纪的第一年.()
(2)1992年是闰年.()
(3)数学课本长18分米,宽13分米.()
(4)钟表上时针转动的速度是分针的.()
五、布置作业.
1.测量两件家具,记录各边的长度,算出表面积和体积.
2.称出两件炊具的质量并记录下来.
3.调查父母的出生年、月、日,算一算平年还是闰年?
篇6
1、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
2、使学生在解决实际问题的过程中体会集合的思想。
3、培养学生善于观察、善于思考,养成良好的学习习惯。
教具、学具
多媒体课件,答题纸每人一张。
教学过程
一、创设情境,引入新课。
师:课余时间,同学们喜欢参加什么体育活动?(各自说:跑步、跳绳、打球……)
师:刚才同学们都说了自己喜欢的体育活动,今天老师也带来了三(1)班喜欢跳绳和跑步的名单。(出示课件一)
师:请同学们仔细观察,你能从中获得哪些信息?(喜欢跳绳的有8人,喜欢跑步的有9人,有3人既喜欢跳绳,又喜欢跑步)还有呢?喜欢跳绳和跑步的同学一共有多少人?(板书问题)
(让学生说这个问题:有的说一共有17人,还有的说一共有14人……)
师:喜欢跳绳和喜欢跑步的同学到底有多少人呢?那今天就让我们一起走进数学广角,去解决这个问题。(板书课题:数学广角)
二、探究学习,发现规律。
师:刚才同学们对这个问题产生了不同的意见。(教师指着黑板上的问题)那么,我们能不能借助图、表以及你喜欢的其他方式,把这份名单整理一下。要让我们很清楚的看出喜欢跳绳的、喜欢跑步,这两种活动都喜欢的的是哪些同学。
学生画图、表,思考并回答。
(1)先自己想一想,再和小组的同伴们交流一下。
(2)小组讨论:说一说计划用什么方案?
(3)动手在空白纸上画出方案。
(4)小组代表汇报各自的方案,展示并介绍方案。
师:看了这组同学的方案,你有什么想法?有什么问题要问的?
师:现在同学们展示了很多不同的方案,看来用图来表示这份名单,确实很清楚。(指着集合图圈)通常我们就用这种图来表示,同学们请看!(出示课件二,边演示边讲解)这个图表喜欢跳绳的,这个图表示喜欢跑步的。(指着两个圈交叉部分)问:中间这部分表示什么?(表示既喜欢跳绳又喜欢跑步的同学)
师:现在喜欢跳绳和跑步的同学一共有多少人呢?你会列式计算了吗?(在图纸上列式计算)
学生汇报,教师板书列式。
8+9-3=145+3+6=14
8-3+9=149-3+8=14
师:大家用了不同的方法解决了这个问题,这道题目的答案是14人。
三、巩固提高,练习应用。
师:(出示课件三)像这类数学问题在我们生活中常常出现。瞧!贝贝一家人去看电影时就碰上了这样的问题,谁来说一说这是为什么?这样列式计算?(2+2-1=3人)
师:同学们,你们喜欢动物吗?(出示课件四)让我们一起走进动物世界,这些动物你们认识吗?(把书打开)请同学们按要求把图填好。
师:为什么3号动物要填在中间?下面我们去野生动物园看看吧!(出示课件五)动物园这一年一共住了多少种动物?你会列式计算吗?(在答题纸上列式计算)
学生汇报列式,教师板书列式:
5+5-3=7
2+2+3=7
5-3+5=7
师:(出示课件六)前段日子三(1)班还组织了参加了社会实践活动,咱们先看看,他们开展了什么活动?(参观军营,摘草莓)
(1)有25名学生参观了军营;
(2)有30名学生去摘草莓;
(3)有10名学生两项活动都参加了;
(4)有2名学生因病请假,两项活动都没参加。
学生汇报,能提出什么问题,如何列式计算。
四、全堂小结,自我评价。
教者反思——周敬凯
在教材处理上,我选择了更贴近学生生活实际的题材——喜欢的体育活动,改编了教材中的内容,课前先通过调查同学们自己喜欢的体育活动,从学生的实际生活出发,让学生从就感兴趣的题材中感受集合的思想,教学中我联系学生的生活实际,在新旧知识的连接点上设计问题情境,形成学生在认知上的冲突,内心处于一种“平衡——不平衡——探究发现——解决问题——新的平衡”的学习过程。本节课以“喜欢跳绳和喜欢跑步的同学一共有多少人”这一问题,让学生自己提问、解答,当学生解答这问题出现分歧时,再引导学生,借助一种图、表来帮助学生解决这一问题。新授中安排学生们分成小组设计各种图、表以及其他方式,能更清楚的看出喜欢跳绳的、喜欢跑步的和两种都这的同学名单。
现代教育技术已成为学生学习数学和解决问题的强有力的工具。本节课充分利用了多媒体课件,先分别出示两个集合图,分别表示喜欢跳绳的、喜欢跑步的,再把两个集合图进行合并,让学生发现有3人两种活动都喜欢,进而在讲解列式计算时,说明有3人重复计算了,,要8+9-3=14人,并且引导学生用不同的方法解答这个问题。这样将多媒体和网络技术引入教学过程,通过声音、色彩、图像、动画等多渠道传递信息,刺激学生的感官,化抽象为具体,寓趣味性、技巧性和知识性为一体,既活跃了课堂气氛,又让学生轻松、愉快的获取了数学知识,取得了很好的效果。
本节课在练习安排上,我选择了有关动物——这一学生喜欢的题材,通过看动物电影时出现的重叠数学问题的解答,动物园入住动物的总数的解答,让学生通过多层次的练习,进一步学会用集合的数学思想解答这一类数学问题。在本节课最后,我还安排了从“走进社区”的社会实践活动入手,从中发现数学信息,提出数学问题,并用本节课所学的知识解决这些问题。
总之,数学来源于生活,又反过来服务于生活,培养学生解决实际生活问题的应用能力,是数学学科的根本目标。
评课教师——丛喜峰
“数学广角”中的重叠问题是借助学生熟悉的题材,渗透集合有关的思想,并借助直观图解决一些实际问题。本节课的教学有以下几个特点:
一、在探究中领悟数学思想
教师以“喜欢跳绳和喜欢跑步的同学一共有多少人”这一问题让学生思索寻求答案,在寻求答案的过程中,学生出现了分歧和争议。老师并不急于宣布答案,而是引导学生用图、表及其他方式来清楚的表示喜欢跳绳、喜欢跑步和两种活动都喜欢的同学名单。同学们想到的表示方式很多,在探究、交流的过程中,对集合的数学思想有了初步的感悟和认识。
篇7
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象能力。
(二)单元教学重难点
1.重点:
(1)掌握因数、倍数、质数、合数等概念的联系及其区别。
(2)掌握2.5.3的倍数的特征。
2.难点:
质数和奇数的区别
第一课时
因数与倍数
教学内容:教材第1——14页例1和例2。
教学目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。了解一个数的因数是有限的,倍数是无限的;能较熟练地找一个数的因数和倍数。
2.培养学生的观察能力,抽象、概括的能力。
3.渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
教学重点:
1、理解因数和倍数的含义。
2、掌握找一个数的因数和倍数的方法。
教学难点:能熟练地找一个数的因数和倍数。
教学过程:
一、创设情境,引入新课
在数学中,数与数之间也存在着多种关系。如在乘法算式中,两个因数相乘得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系。在整数乘法中还有另外一种关系,这一节课我们就来一起探讨因数与倍数关系。(板书课题:因数与倍数)
二、认识因数与倍数
(出示12页的图1)观察上面的图,你看到了什么?用算式怎样表示?
师:像这样,我们就说2和6是12的因数,12是2的倍数,也是6的倍数。
问:因为2×6=12,所以12是倍数,2和6是因数,这种说法正确吗?为什么?
师:在描述因数或倍数时,必须说清楚谁是谁的倍数或因数。不能单独说谁是倍数或因数,也就是说:因数和倍数不能单独存在,它们是相互依存的。
(出示12页的图2)从图上你可以列出怎样的算式?
根据算式,你知道谁是谁的因数,谁又是谁的倍数吗?
想一想,还有哪些数是12的因数?(组织学生在小组中讨论独立自交流,然后汇报。)
可以说12是12的因数吗?为什么?(12×1=12,1和12都是12的因数。)
11÷2=5……1。问:11是2的倍数吗?为什么?(不是,因为11除以2有余数。)
师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?
小结:在研究因数和倍数时,我们所说的数一般指整数,不包括0。根据上面的分析,我们可以得出:如果两个非零整数相乘得另一个整数,我们就说,前两个整数是另一个整数的因数,另一个整数是前两个数的倍数。
三、找因数。
1、出示例1:18的因数有哪几个?
从上面三组算式中,我们知识道12的因数有1、2、3、4、6和12。那么怎样求一个数的因数呢?下面让我们一起找找18的因数有哪些?
学生尝试完成,然后全班交流。[板书:18的因数有:1,2,3,6,9,18]师说明:我们在写的时候一般都是从小到大排列的。
师:说说看你是怎么找的?(预设:方法一用乘法一对一对找,如1×18=18,2×9=18…;方法二用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;)教师引导学生按照一定的规律来找。
其实写一个数的因数除了这样写以外,还可以用集合表示:
师:18的因数中,最小的是几?最大的是几?
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
3、你还想找哪个数的因数?(30、5、42……)请你选择其中的一个在自练本上写一写,然后指名个别全班交流,其它同桌互查。
4、观察思考:一个数的最小因数是什么?最大的因数是什么?一个数的因数的个数是无限的吗?
5、小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?(汇报:2、4、6、8、10、16、……)
师:表示一个数的倍数情况,除了上面这种表示的方法外,还可以用集合来表示
怎么找到这些倍数的?为什么找不完?强调要写省略号。(只要用2去乘1、乘2、乘3、乘4、…因为整数的个数是无限的,所以一个数倍数的个数也是无限的)
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题。
补充提问:3和5的最小倍数分别是多少?有最大倍数吗?
由此大家可以总结出什么结论?
师总结:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?请学生对此部分教学内容疑问。如学生没有疑问,则教师提出下面问题,引发学生思考:因为5×0.8=4,所以5和0.8是4的因数,
4是5和0.8的倍数,对吗?为什么?
四、独立作业:
完成练1、4、5题
板书设计:
因数和倍数
(1)18的因数有:1、2、3、6、9、18
(2)2的倍数有2、4、6……
一个数最小因数是1
一个数的最小倍数是它本身
最大因数是它本身
没有最大倍数
一个数的因数个数是有限的
一个数的倍数个数是无限的。
教学反思:
有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。因此,在教学中,我有两点最深的体会:研读教材,走进去;活用教材,走出来。
有关“数的整除”我已教学过多次,仅第一课时就与原教材有以下两方面的区别:(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。(2)“约数”一词被“因数”所取代。这样的变化原因何在?教师必须要认真研读教材,深入了解编者意图,才能够正确、灵活驾驭教材。因此,我通过学习了解到以下信息:
[研读教材]
学生的原有知识基础是在已经能够区分整除与余数除法,对整除的含义有比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本教材中删去了“整除”的数学化定义。
彼“因数”非此“因数”。
在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数。而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“X是X的因数”时,两者都只能是整数。
“倍数”与“倍”的区别。
“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”,但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都是指整数倍。(以上几段话,均引自于《教参》)
[教学感悟]根据乘法算式说明因数和倍数的概念比以往用“约数和倍数”来描述,学生掌握得更快、更好。我想成功源自于充分利用了“因数”与“因数”、“倍数”与“倍”之间的共同点,使学生找到学习新概念的助推器。
[活用教材]
虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:
11÷2=5……1。问:11是2的倍数吗?为什么?
因为5×0.8=4,所以5和0.8是4的因数,
4是5和0.8的倍数,对吗?为什么?
特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比,所以别看题少,它所承载的数学问题还真不少呢?
[练习反馈]
练第1题“15的因数有哪些?15是哪些数的倍数?”第二问许多学生看到“倍数”不假思索,直接写出15的倍数。因此,此题教师应加强引导,帮助学生明确求“15是哪些数的倍数”其实质也就是求“15的因数有哪些”。
篇8
整数、小数、分数、百分数的含义等。
复习目标
1、使学生系统地掌握整数、小数、分数、百分数的意义。
2、使学生熟练的掌握十进制计数法和整数、小数数位顺序表,并能正确的熟练的读、写整数与小数,会比较数的大小。
3、能熟练地进行小数、分数与百分数的互化。
复习过程
一、回顾与交流
1、复习数的意义。
(1)你学过哪些数?说一说它们在生活中的应用。
①学生说出自己的认识和理解。
如:整数、小数、分数、百分数、负数等等。
②联系课文情境图,说出各种数的具体含义。
如:1722是自然数。这里表示词典页码的数量:有1722个1页。
8844.43是小数。表示八千八百四十四又百分之四十三。
是分数。这里表示把全年天数平均分成5份,空气质量良好的占其中的3份。
40%、60%是百分数。这里分别表示羊毛和化纤成分占总成分的百分率。
-25℃是负数。它表示比0℃还低的气温度数。
(2)什么是整数?
①学生说一说什么是整数,整数包括哪些数。
②师生共同概括说明。
像…,-3,-2,-1,0,1,2,3,…这样的数统称整数。整数的个数是无限的。自然数是整数的一部分。“1”是自然数的单位。
③做一做
()是正数,()是负数。
()是自然数,()是整数。
2、数的读、写
(1)数位顺序表。
整数部分小数点小数部分
…亿级万级个级
数位…个位十分位…
计数单位…︵个
︶十分之一…
①填一填,读一读。
②什么是数位?数位与位数相同吗?
③什么是计数单位?相邻的计数单位之间的进率是多少?
④做一做。
27046=2×()+7×()+4×()+6×()
(2)读法和写法。
①读出下面各数。
1060000000.00625.08
a、读一读。
b、说一说读数的方法、要点。
②写出下面各数。
九十万三千二十亿五千零十八零点二零零八
a、写一写
b、说一说你是怎么做的。
(3)改写。
①把540000改写成以“万”作单位的数。
②把24940000000改写成以“亿”作单位的近似数。
过程要求:
a、学生改写。
b、说一说改写的方法、要点。
3、数的大小。
(1)怎样比较两个数的大小?
(2)完成练习十三第6题。
4、分数、小数、百分数的互化。
(1)填一填。
小数分数百分数
0.25
12.5%
(2)说一说你是怎么做的。
二、巩固练习
完成课文联系十三第1~5题。
过程要求:
(1)学生独立完成,教师巡视,了解情况,进行个别指导
(2)同学之间互相交流。
(3)提问:说一说你是怎么做的,发现问题及时纠正。
三、课堂小结
本节课中你有什么收获?还有什么疑问,请和同学交流。
复习内容:数的认识(二)
复习目标:
1、使学生进一步理解和掌握分数、小数的基本性质。
2、使学生进一步理解因数、倍数、质数、合数等意义,能熟练地找出两个数的公因数、公倍数等。
3、熟练掌握2、3、5倍数的特征,并正确解决有关问题。
复习过程:
一回顾与交流
1、分数的基本性质与小数的基本性质。
(1)分数的基本性质。
①分数的基本性质是什么?
板书:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。
②填一填。
③分数大小不变,但什么变了?(分数单位变了)
(2)小数的基本性质。
①小数的基本性质是什么?
板书:小数末尾添上0或者去掉0,小数的大小不变。
②把下面的小数改写成两位小数。
0.3002.54.3000
③小数大小不变,但什么变了?(小数计数单位变了)
(3)小数的基本性质与分数的基本性质是一致的.
如:0.3=0.30=0.300
==
(3)小数点移动位置,小数的大小会发生什么变化?
如果把小数点向右移动一位、两位、三位……这个小数比原来的数就扩大10倍、100倍、1000倍……如果把小数点向左移位一位、两位、三位……这个数就比原来的数缩小10倍、100倍、1000倍……
2.倍数与因数。
(1)什么是倍数?什么是因数?举例说明。
①4×5=20
20是5和4的倍数。4和5都是20的因数。
②20的因数还有哪些?一共有多少个?
20的因数有1,20,2,10,4,5。一共有6个。
③4的倍数还有哪些?一共有几个?
4的倍数有4,8,12,……,有无数个。
④着重说明:
最小最大个数
因数1本身有限
倍数本身/无限
(2)2、3、5倍数的特征。
①2的倍数特征是什么?举例说明。什么是偶数?什么是奇数?
个位上是0,2,4,6,8的数都是2的倍数。是偶数。
②5的倍数特征是什么?举例说明。
个位上是0或5的数,都是5的倍数。如:10,25,45,60等。
④3的倍数特征是什么?举例说明。
各个数位上的数字之和是3的倍数,这个数是3的倍数。如123,303等。
(3)什么是质数?什么是合数?
①什么是质数?最小的质数是什么?
②什么是合数?最小的合数是什么?
③1是什么数?(1是奇数。既不是质数也不是合数)
(4)公因数与公倍数
12的因数20的因数50以内6的倍数50以内8的因数
12和20的公因数50以内6和8的公倍数
(5)对于“倍数和因数”这一单元,你还知道哪些知识?还有什么疑问?
同学之间互相交流,教师巡视指导,发现问题及时纠正。
二巩固练习
完成课文练习十三第7~9题。
复习内容:数的运算(一)
复习目标:
1.通过复习使学生进一步系统地理解掌握加、减、乘、除四则运算的意义和计算方法。从而培养学生概括能力与计算能力。
2.能综合运用所学的知识和技能解决问题,发展应用意识。
复习过程:
一回顾与交流
1.四则运算的意义。
A我们折了36颗红星,还折了28颗蓝星。
B我们买了40瓶矿泉水,每瓶0.9元。
C我们有24m彩带,用做蝴蝶结,用做中国结。
(1)创设情境,让学生结合情境图提问题。
问:你能提出哪些用计算解决的问题?
学生提出问题,并说明解决方法。如:
①一共折了多少颗星?36+28
②折的红星比蓝星多多少颗?36-28
③买矿泉水用了多少钱?0.9×40
④做蝴蝶结用了多少彩带?做中国结用了多少彩带?
24×24×
⑤做蝴蝶结用的彩带是中国结的几分之几?
÷
(2)结合算式说明每一种运算的含义:
①什么叫做加法?小数加法、分数加法的意义相同吗?
②什么叫做减法?小数减法、分数减法的意义相同吗?
③整数乘法的意义是什么?小数、分数乘法的意义同整数乘法的意义相同吗?
④什么叫做除法?小数除法、分数除法的意义相同吗?
小结:整数、小数、分数的加法意义、减法意义与除法意义都分别相同。只有小数、分数乘法(第二个因数小于1时)是求一个数的几分之几是多少/
3.四则运算的方法。
(1)整数、小数加法、减法的计算方法各是什么?
(2)分数加法、减法的计算方法各是什么?
(3)它们有什么相同点?
整数加减时,数位对齐;
小数加减时,小数点对齐;计数单位相同才能相加减。
分数加减时,分数单位相同。
(4)整数、小数乘法的计算方法是什么?有什么相同之处,有什么不同之处?
小数乘法,先按照整数乘法的计算方法算出积,再看乘数中有几位小数,然后在积中点上小数点。
(5)说一说整数、小数除法的计算方法。
(6)说一说分数乘法和除法的计算方法。
4.在四则运算中,应注意一些特殊情况。
出示以下内容:
a+0=()a×0=()0÷a=()
a-0=()a×1=()a÷a=()
a-a=()a÷1=()1÷a=()
注意:当a作除数时不能为0。
以上交流基础上,让学生进行归纳。
整数、小数分数(百分数)
加法意义
计算方法
特殊情况
减法意义
计算方法
特殊情况
乘法意义
计算方法
特殊情况
除法意义
计算方法
特殊情况
5.四则运算的关系。
四则运算的关系可概括如下:(以提问方式完成下面关系网)
和-一个加数=另一个加数
被减数-差=减数
减数+差=被减数
加减减法
求相同加数和的算便运算求相同减数个数的算便运算
乘法除法
积÷一个因数=另一个因数
商×除数=被除数
被除数÷商=除数
小结:加法是在计数的基础上发展起来的一种连续性计数,是最基本的运算。减法是加法的逆运算,也是加法的还原。乘法又是加法的发展,是求相同加数的加法简便算法。除法是乘法的逆运算,也是乘法的还原,它是减法是发展是求相同减数的减法的简便运算。
二巩固练习
1.完成课一做。
2.完成课文练习十四第1、2题
3.课堂小结。
复习内容:数的运算(二)
复习目标:
1、通过复习使学生熟练地掌握四则运算定律和性质,并能根据题目灵活运用这些知识使计算简便。
2、使学生能正确地掌握整数、小数、分数四则混合运算顺序,并能熟练地进行计算。
复习过程:
一回顾与交流。
1、运算定律。
问:我们学过哪些运算定律?
(1)学生回顾曾经学过的运算定律,并与同学交流。
(2)根据表格,填一填。
名称举例用字母表示
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法分配律
(3)算一算。
①计算:2.5×12.5×4×8
=(2.5×4)×(12.5×8)……应用乘法交换律、结合律
=10×100
=1000
②计算:4×
=4×……应用乘法分配律
=4×1
=4
③计算:(21-
=21……应用乘法分配律
=3-
=
④计算:5.03-2.14-1.86
=5.03-(2.14+1.86)
=5.03-4
=1.03
2.混合运算.
(1)说一说整数四则混合运算顺序.
算一算:(710-18×4)÷2
板书(710-18×4)÷2
=(710-72)÷2
=638÷2
=319
(2)分数、小数四则混合运算顺序与整数一样吗?
算一算:
=
=
=
二巩固练习。
1.做一做
2.完成课文练习十四第3~7题。
复习内容:综合练习
练习目标:
1、通过综合复习使学生能牢固地掌握四则混合运算的顺序;能选择合理、灵活的计算方法。
2、能理解四则运算中的数学术语,列综合算式解答文字题;进一步提高计算能力。
练习过程:
一选择合理的算法进行四则混合运算
1、四则混合运算的顺序是怎样的?
在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。
在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。
2、练习。(让学生先练习并讲出算法,然后讲评)
(1)(2)
==
==
==
=3
二文字题的列式计算
1、例:用去除3与2.25的差,所得的商再减去0.9,结果是多少?(先让学生列综合算式,然后讲解)
(1)这里的“结果”是表示什么?(差)
(2)什么数与什么数的差?(商与0.9的差)
(3)那么商是多少?怎么算?
(4)在老师的引导下列出综合算式:
(3-2.25)-0.9
=0.75-0.9
=1-0.9
=0.1
0.75除以,虽然是小数与分数混合运算,但是像这样情况还是要让学生掌握,以提高他们的运算能力。
2.练习
(1)25.16除以3.7的商,减去乘20的积,结果是多少?
25.16+3.7-×20
=6.8-4
=2.8
问:这里“的商”“的积”为什么可以不添上括号?
(2)174.8减去74.7,所得的差除以0.91,得出的商再减去100.95,结果是多少?
(174.8-74.7)÷0.91-100.95
=100.1÷0.91-100.95
=110-100.95
=9.05
问:这里“的差”为什么要添上括号?
从以上练习中可以看出,在文字题中数学术语的理解非常重要,特别是在除法中有几种不同的表达方式要着重掌握。
例如:
a÷b可以读着:
(1)a除以b;(2)b除a;
(3)a被b除;(3)b去除a。
可以看出:“a被b除”与“a除以b”是一样的;“b去除a”与“b除a”是一样的。
3.总结:四则混合运算要认真审题,观察题目里的运算符号决定运算顺序,选择合理的简捷算法。对于文字题列成综合算式,审题时要注意最后一步求的是什么?在列式时如果要改变运算顺序,就要合理地使用括号,以及注意题目中的叙述,如“除”与“除以”等。
复习内容:解决问题
复习目标:
1、使学生进一步理解、掌握运用分数乘法、除法知识解决有关问题,发展应用意识。
2、形成解决问题的一些策略、方法,提高学生分析问题和解决问题的能力。
3、形成评价与反思的意识。
4、对不懂的地方或不同的观点有提出疑问的意识,并愿意对数学问题进行讨论。
复习过程
一基础练习
1、算一算。
出示算式:
过程要求:
(1)利用计算卡片逐一出示算式。
(2)学生口算,直接说出计算结果。
(3)选择部分算式,说一说计算的过程、方法。
2、列式计算。
(1)200的是多少?(2)200减少后是多少?
(3)甲数是500,乙数是甲数的,乙数是多少?
(4)甲数是500,乙数比甲数多,乙数是多少?
(5)甲数是500,乙数比甲数多,乙数比甲数多多少?
过程要求:
①利用电脑课本或幻灯逐一出示以上题目。
②认真读题,说一说题中分率表示的意义。
③求一个数的几分之几是多少,用什么方法计算?
④列式计算。
二知识梳理
1、说一说解决问题,有哪些主要步骤。
学生回答时,不必要求统一表述,让学生说出自己的理解。只要内容正确都应该予以肯定。
如:
(1)认真读题,理解题意;
(2)分析题目中的数量关系;
(3)判断解决问题的方法,列出算式;
(4)计算;
(5)验算。
2、说一说分析数量关系的方法。
过程要求:
(1)学生回顾解决问题时,所采用的方法;
(2)与同学交流,互相探索、整理;
(3)不必作统一要求,让学生找到自己所理解的方法。
3、举例说明。
(1)出示例题。
六年级举行“小发明”比赛,六(1)班同学上交32件作品,六(2)班比六(1)班多交。六(2)班交了多少件作品?
(2)解决问题。
①认真读题,弄清题意。
②分析数量关系。
A、这里的表示什么?
(表示把六(1)班作品平均分成4份,六(2)班的作品比六(1)班多其中的1份)
B、画线段图表示。
C、六(2)班作品是六(1)班的几分之几?
(六(2)班的作品是六(1)班的“1+”)
D、求六(2)班交了多少件作品,实际是求什么?
(实际是求六(1)班的“1+”是多少,也就是求32件作品的“1+”是多少件)
E、求一个数的几分之几是多少,用什么方法计算?请列出算式,并计算结果。
三练习。
1、完成课本做一做。
2、完成课文练习十四第6、7题。
教学内容:式与方程
复习目标:
1、通过复习使学生进一步理解用字母表示数的意义和方法,能用字母表示常见的数量关系,运算定律,几何形体的周长、面积、体积等公式。
2、能根据字母所取的数值,算出含有字母的式子的值。
3、理解方程的含义,会较熟练地解简易方程,能通过列方程和解方程解决一些实际问题。
复习过程
一回顾与交流。
1、用字母表示数。
(1)请学生说一说用字母表示数的作用和意义。
(2)教师说明。
用字母表示数可以简明地表示数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。
(3)说一说你会用字母表示什么。
学生回顾曾经学过的用字母表示数的知识,进行简单的整理后再与同学交流。然后汇报交流情况。
①说一说,在含有字母的式子里,书写数与字母、字母相乘时,应注意什么?
如:a乘4.5应该写作4.5a;
s乘h应该写作sh;
路程、速度、时间的数量关系是s=vt.
②你还知道哪些用字母表示的数量关系或计算公式?
学生汇报,教师板书。
如:用字母表示运算定律。
加法交换律:a+b=b+a
加法结合律:a+(b+c)=(a+b)+c
乘法交换律:ab=ba
乘法结合律:a(bc)=(ab)c
乘法分配律:a(b+c)=ab+ac
用字母表示公式。
长方形面积公式:s=ab
正方形面积公式:s=a平方
长方体体积公式:V=abh
正方体体积公式:V=a三次方
圆的周长:C=2πr
圆的面积:S=πR²
圆柱体积:v=sh
圆锥体积:v=sh
(4)做一做。
完成课一做。
2.简易方程。
(1)什么叫做方程?
①含有未知数的等式叫做方程。
②举例。
如:X+2=164.5X=13.5X÷=30
(2)什么叫做解方程?什么叫做方程的解?
方程的解:使方程左右两边相等的未知数的值叫做方程的解.
解方程:求方程的解的过程,叫做解方程.
(3)解方程。
过程要求:
①学生独立解方程。
②请一位学生上台板演。
③师生共同评价,强调书写格式。
3.用方程解决问题。
(1)出示例题。
学校组织远足活动。原计划每小时行走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?
(2)结合例题说一说用列方程的方法解决问题的步骤。
(3)学生列方程解决问题。
(4)全班反馈、交流。
路程不变
原速度×原时间=实际速度×实际时间
3.8×=实际速度×2.5
(5)做一做。
二巩固练习
完成课文练习十五。
复习内容:常见的量。
复习目标:
1.通过复习使学生能熟练掌握长度、面积、体积的计量单位,质量单位,时间单位等。能正确使用学过的计量单位解决实际问题。
2.熟练掌握有关计量单位之间的进率关系,并能正确进行单位换算。
复习过程:
一常见的量与计量单位
师:这一节课,我们来复习常见的量。
板书:常见的量。
问:我们学过哪些量?它们各有哪些计量单位?
过程要求:
(1)由小组同学共同分类整理。
(2)教师引导学生列表整理,并巡视课堂进行个别指导。
(3)全班交流。
分类整理结果如下:
1.长度、面积、体积单位。
(1)板书:
长度单位毫米厘米分米米
面积单位平方毫米平方厘米平方分米平方米
体积单位立方毫米立方厘米立方分米立方米
容积单位毫升升
(2)说一说。
①什么是长度?什么是面积?什么是体积?
长度:两点之间的距离。
面积:物体表面(图形)的大小。
体积:物体所占空间的大小。
②1厘米有多长?1分米有多长?1米呢?
③1平方厘米有多大?1平方分米有多大?1平方米呢?
④1立方厘米有多大?1立方分米有多大?1立方米呢?
要求:学生用手比划或举例说明。
(3)单位之间的进率是多少?有什么联系?
1米=10分米1分米=10厘米1米=100厘米
1平方米=100平方分米1平方分米=100平方厘米
1立方米=1000立方分米1立方分米=1000立方厘米
(1升=1000毫升)
(4)你还知道哪些长度、面积或体积单位?
①学生回顾曾经学过的有关单位。
如:千米、平方千米、公顷等。
②与同学交流,说一说你对这些计量单位的理解。
2.质量单位。
(1)常见单位:克(g)千克(kg)吨
(2)进率:1吨=1000千克
1千克=1000克
(3)估一估。
①1只梨大约有多少克?1块橡皮擦大约有多少克?
②你的体重是多少千克?
3.时间单位。
(1)常见单位:年、月、日、时、分、秒。
(2)进率:1年=12个月1月有31日、30日、28日或29日
1年=365天(闰年366天)
1日=24时
1时=60分
1分=60秒
(3)说一说
①1节课有多长?1小时大约有多长?
②1秒是多长?你跑100米大约要多少秒?
4.人民币单位。
(1)人民币单位:元、角、分
(2)进率:1元=10角
1角=10分
二单位换算
1.说一说。
(1)如何把高级单位的名数改写成低级单位的名数?
(2)如何把低级单位的名数改写成高级单位的名数?
2.练一练。
(1)3时20分=()分
(2)2.6吨=()吨()千克
(3)3080克=()千克()克
(4)7立方分米8立方厘米=()立方分米=()升
把高级单位的名数改写成低级单位的名数要乘进率,把低级单位的名数改写成高级单位的名数要除以进率。
在学生理解单位改写的原理的基础上,再引导运用小数点移动的方法进行改写。
3.做一做
三巩固练习
完成课文练习十六
复习内容:比和比例(一)
复习目标:
1.通过复习使学生进一步理解比和比例的意义与基本性质,能够正确、迅速地求出比值和化简比。
2.进一步理解掌握比和分数、除法的关系。能够应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。
复习过程:
一回顾与交流
1.比和比例的意义与性质。
出示表格,通过提问进行填空。
比比例
意义
各部分名称
基本性质
引导提问:
(1)什么叫做比?举例说明。各部分名称是什么?
(2)什么叫做比的基本性质?举例说明。
(3)什么叫做比例?举例说明。各部分名称是什么?
(4)什么叫做比例的基本性质?举例说明
2.比和分数、除法的关系?
(1)比和分数有什么关系?
(2)比和除法有什么关系?
(3)出示表格。根据学生回答,适时填空。
比、分数与除法的关系
比前项比号后项比值
分数
除法
(4)举例。
5:6=()÷)
3.比、比例的基本性质的用处。
(1)比的基本性质的用处?
①化简比。
0.12:2
②化简比与求比值有什么不同之处?
一般方法结果
求比值
化简比
(2)比例的基本性质有什么用处?解比例:
过程要求:
①学生独立练习,教师巡视.
②请一位学生上台板演,并说明根据.师生共同评价.
4.比例尺.
(1)什么叫做比例尺?
板书:图上距离=比例尺
实际距离
(2)说出下面各比例尺的具体意义.
①比例尺1:3000000表示
②比例尺20:1表示
③比例尺03060km表示
(3)求比例尺.
一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图纸的比例尺是多少?
(4)求实际距离。
在比例尺是的地图上,量得A地到B地的距离是5厘米。求AB两地的实际距离。
二巩固练习。
1.求图上距离。
甲乙两地相距200千米,在比例尺是的地图上,甲乙两地用多少厘米表示?
2.完成课本练习十七第1、2题。
复习内容:比和比例(二)
复习目标:
1.使学生进一步理解正、反比例的意义,能正确判断两种量是否成正比例或反比例。
2.使学生能熟练地运用比例来解决有关问题。
复习过程:
一回顾与交流
1.正、反比例的意义。
(1)你是怎样判断两种量成正比例还是成反比例的?
学生回答要点:
正比例:
①两种相关联的量;
②其中一种量增加,另一种量也随着增加,一种量减少,另一种量也减少;
③两种量的比值一定。
反比例:
①两种相关联的量;
②其中一种量增加,另一种量反而减少,一种量减少,另一种量反而增加;
③两种量的积一定。
(2)你能用字母表示正、反比例的关系吗?
板书:(一定)……正比例
(一定)……反比例
(3)举例说明。
①牛奶的袋数与质量的变化情况如下。
牛奶的袋数12345
质量(g)2204406608801100
说一说:
A这里两种量的变化情况。
B什么量是一定的?
C这两种量成什么比例?
D写一个等量关系式。
②每袋面包个数与所装袋数。
每袋面包个数2346
所装袋数2416128
说一说:
A这里两种量的变化情况。
B什么量是一定的?
C这两种量成什么比例?
D写一个等量关系式。
(4)判断下列各题中两种量是否成比例,成什么比例。
①速度一定,路程和时间。
②正方形的边长和它的面积。
③订《少年报》数量和所需钱数。
④小明从家到学校,行走的速度和时间。
⑤圆的周长和半径。
⑥圆的面积和半径。
2.用比例解决问题。
(1)说一说用比例解决问题的步骤。
①学生回顾用比例解决问题的过程、步骤。
②师生共同概括。
A认真审题找出两种相关联的量;B判断两种量成什么比例;C设未知数X;D列出比例式(含有未知数);E解比例;F检验。
(2)举例。
修一条公路,全长12千米,开工3天修了1.5千米。照这样计算,修完这条公种一共需要多少天?
要求按照解题步骤一步一步完成。
①两种相关联的量是什么?路程(工作量)和时间
②两种量成什么比例?说明理由:路程(工作量)
工作时间=工作效率(一定)
③题中的等量关系应该怎样表示?
3天工作量=全部工作量
3天全部时间
=
④设未知数X,解比例。(过程略)
⑤栓验。
二巩固练习
完成课文练习十七第3~5题。
复习内容:数学思考(一)
复习目标:
1.使学生学会用数学思想方法解决问题,形成一些基本策略,发展实践能力与创新精神。
2.进一步体验数学活动充满着探索与创造。
复习过程:
一回顾与交流
1.教学例5。
6个点可以连多少条线段?
(1)学生根据题意,画图连线。
问:这样连线方便吗?如果是8个点、10个点呢?
(2)探索解决问题的方法。
①教师引导学生探索点的个数与连线条数的关系。
②小组交流。
③汇报思维的过程与结果。
教师整理后板书。
3个点连成线段的条数:1+2=3(条)
4个点连成线段的条数:1+2+3=6(条)
5个点连成线段的条数:1+2+3+4=10(条)
6个点连成线段的条数:1+2+3+4+5=15(条)
④你有什么发现?
⑤根据规律,你知道8个点、12个点、20个点能连成多少条线段?
学生交流后得出结果:
8个点连成线段的条数:1+2+3+4+5+6+7=28(条)
12个点连成线段的条数:1+2+3+4+5+6+7+8+9+10+11=66(条)
20个点连成线段的条数:1+2+3+……+19=190(条)
2.教学例6。
学校为艺术节选送节目,要从3个合唱节目中选出2个,2个舞蹈节目中选出1个。一共有多少种选送方案?
(1)说一说你的思路。
第一步:从3个合唱节目中选出2个,看有几种选法。
第二步:从2个舞蹈节目中选出1个,看有几种选法。
第三步:把两次选法进行搭配,看共有几种选法。
(2)小组合作,画示意图说明各种选法。
(3)汇报,师生共同完成。
第一步:从3个合唱节目中选出2个。
有3种选法。
第二步:从2个舞蹈节目中选出1个,有2种选法。
第三步:把第一步的3种选法和第二步的2种选法进行搭配。
所以,选送的方案共有6种。
二巩固练习
完成练习十八第1~4题。
复习内容:数学思考(二)
复习目标:
1.使学生学会用列表的方法解决有关问题,提高学生分析能力和解决问题的能力。
2.形成一些解决问题的策略,发展学生的实践能力。
复习过程:
一回顾与交流。
教学例6。
六年级有三个班,每班有2个班长。开班长会时,每次每班只要一个班长参加。第一次到会的有A、B、C;第二次有B、D、E;第三次有A、E、F。
请问哪两位班长是同班的?
1、通过读题你能判断出哪两位班长是同班的?
学生很难做出判断。
2、可以用什么方法把题意给整理、表示出来?
教师引导学生用列表的方法把题意表示出来。
如:用“∕”表示到会,用“”表示没到会。
ABCDEF
第一次///
第二次///
第三次///
3、引导提问。
(1)从第一次到会的情况,你可以看出什么?可以看出:A只可能和D、E或F同班。
(2)从第二次到会的情况,你可以判断出什么?可以判断:A只可能和D或E同班。
(3)从第三次到会的情况,你可以判断出什么?可以判断:A只可能和D同班。
4、那么B和C分别与谁同班。
从第一次到会的情况可以看出,B只可能和E或F同班。
所以,C只可能与E同班。
篇9
幂函数是继指数函数和对数函数后研究的又一基本函数。通过本节课的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待以前已经接触的函数,进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合检测。
二.学情分析
学生通过对指数函数和对数函数的学习,已经初步掌握了如何去研究一类函数的方法,即由几个特殊的函数的图象,归纳出此类函数的一般的性质这一方法,为学习本节课打下了基础。
三.教学目标
1.知识目标
(1)通过实例,了解幂函数的概念;
(2)会画简单幂函数的图象,并能根据图象得出这些函数的性质;
(3)了解幂函数随幂指数改变的性质变化情况。
2.能力目标
在探究幂函数性质的活动中,培养学生观察和归纳能力,培养学生数形结合的意识和思想。
3.情感目标
通过师生、生生彼此之间的讨论、互动,培养学生合作、交流、探究的意识品质,同时让学生在探索、解决问题过程中,获得学习的成就感。
四.教学重点常见的幂函数的图象和性质。
五.教学难点画幂函数的图象引导学生概括出幂函数性质。
六.教学用具多媒体
七.教学过程
(一)创设情境(多媒体投影)
问题一:下列问题中的函数各有什么特征?
(1)如果张红购买了每千克1元的蔬菜w(kg),那么她应支付p=w元.这里p是w的函数.(2)如果正方形的边长为a,那么正方形的面积为S=a2.这里S是a的函数.(3)如果立方体的边长为a,那么立方体的体积为V=a3.这里V是a的函数.(4)如果一个正方形场地的面积为S,那么这个正方形的边长为a=.这里a是S的函数.(5)如果某人t(s)内骑车行进了1km,那么他骑车的平均速度为v=t-1(km/s).这里v是t的函数.由学生讨论、总结,即可得出:p=w,s=a2,a=,v=t-1都是自变量的若干次幂的形式.
问题二:这五个函数关系式从结构上看有什么共同的特点吗?
这时,学生观察可能有些困难,老师提示,可以用x表示自变量,用y表示函数值,上述函数式变成:y=xa的函数,其中x是自变量,a是实常数.由此揭示课题:今天这节课,我们就来研究:§2.3幂函数
(二)、建立模型
定义:一般地,函数y=xa叫作幂函数,其中x是自变量,a是实常数。(投影幂函问题二:数的定义。)
深化认知(1)下列函数是幂函数的是:
A.y=2x+1B.y=3x2C.y=x-3D.y=1
(2)幂函数与指数函数有什么联系和区别?
学生回答,老师点评。
引导:有了幂函数的概念后,我们接下来做什么?―――研究幂函数的性质。
通过什么方式来研究?――――――画函数的图象。
为使作图高效,我们可先做点什么―――分析函数的定义域、奇偶性。
(三)问题探究1.对于幂函数y=xa,讨论当a=1,2,3,,-1时的函数性质.填表
以上问题给学生留出充分时间去探究,教师引导学生从函数解析式出发来研究函数性质.2.在同一坐标系中,画出y=x,y=x2,y=x3,y=,y=x-1的图像,并归纳出它们具有的共同性质.
学生回答,老师点评:幂函数的性质.
(1)函数y=x,y=x2,y=x3,y=,y=x-1的图像都过点(1,1);(2)函数y=x,,y=x3,y=x-1是奇函数,函数y=x2是偶函数;(3在(0,+∞)上,函数y=x,y=x2,y=x3,y=是增函数,函数y=x-1是减函数;(4)在第一象限内,函数y=x-1图像向上与y轴无限接近;向右与x轴无限接近。
(四)解释应用
例1.写出下列函数的定义域,并指出奇偶性:(投影)
①y=x②y=x③y=x④y=x
学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。(演示)
例2.比较下列各组中两个值的大小,并说明理由:
①0.75,0.76;②(-0.95),(-0.96);
③0.23,0.24;④0.31,0.31
学生思考、作答,教师引导学生叙述语言的逻辑性。注意:由于学生对幂函数还不是很熟悉,所以在讲评中要刻意体现出幂函数图像的画法,即再一次让学生体会根据解析式来画图像例题这一基本思路.
(五)拓展延伸
探究:①已知(a+1)<(3-2a),试求a的取值范围。
②观察幂函数的定义域对其奇偶性有什么影响?
(六)归纳小结
今天的学习内容和方法有哪些?你有哪些收获和经验?
(七)布置作业:
课本第87页2、3题
思考:幂函数y=(m-3m-3)x在区间上是减函数,求m的值。
附:板书设计
课题…………
问题一
(1)……………….
(2)………………
(3)……………….
(4)………………
(5)……………….
问题二:
………………………
……………………….
定义:…………
…………………
填表
幂函数的性质.
(1)………………
(2)………………
(3)………………
(4)………………
例1……………
①y=x②y=x③y=x④y=x
例2.
(1)………………
(2)………………
(3)………………
(4)………………
拓展延伸……………
布置作业…………….
教学后记
(1)本节课开始时要注意用相关熟悉例子引入新课。
(2)画函数图象时,如果学生已能够运用计算器或相关计算机软件作图,可以让学生自己操作,以提高学生探索问题的兴趣和能力,并提高教学效率。
篇10
1.使学生能把简单的与数量有关的词语用代数式表示出来;
2.初步培养学生观察、分析和抽象思维的能力.
教学重点和难点
重点:把实际问题中的数量关系列成代数式.
难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1.用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(4)乙数比x大16%.((1+16%)x)
(应用引导的方法启发学生解答本题)
2.在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式.本节课我们就来一起学习这个问题.
二、讲授新课
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%.
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数.
解:设甲数为x,则乙数的代数式为
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x.
例2用代数式表示:
(1)甲乙两数和的2倍;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积.
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式.
解:设甲数为a,乙数为b,则
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a).
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律.但a与b的差指的是(a-b),而b与a的差指的是(b-a).两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序.
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数.
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2.
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备).
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;
(3)这个数的5倍与7的和的一半;
分析:启发学生,做分析练习.如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”列成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”.
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力.)
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
三、课堂练习
1.设甲数为x,乙数为y,用代数式表示:(投影)
(3)甲乙两数之积与甲乙两数之和的差;
(4)甲乙的差除以甲乙两数的积的商.
2.用代数式表示:
(1)比a与b的和小3的数;
(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;
(4)比a除b的商的3倍大8的数.
3.用代数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
四、师生共同小结
首先,请学生回答:
1.怎样列代数式?2.列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备.要求学生一定要牢固掌握.
五、作业
1.用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1:10,教练人数是多少?
2.已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积.
相关期刊
精品范文
10数学小故事