数学思想论文范文

时间:2023-04-06 02:37:14

导语:如何才能写好一篇数学思想论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数学思想论文

篇1

对于教育管理部门来说,要提高对于数学思想渗透教学的认识,对教师加强相关培训是必不可少的。与此同时,还要督促学校建立数学思想渗透教学的考核,增加数学思想渗透教学方法和教学过程在考核中所占的比例,努力使数学思想渗透成为数学教学的考核重点和教学重点。对于数学教师来说,首先要明确在小学阶段,教材涉及的主要数学思想有哪些,明确了这些数学思想,还要完善具体的教学策略。本文以苏教版教材为例,总结了以下几点:

第一,在学习新内容时要渗透数学思想。在设计教案时教师要有意识地增加数学思想的启发,将数学思想与新的数学知识结合起来,避免只讲知识表面不讲数学原理,只讲习题不讲思想。在讲授新内容时,不能直接将相关概念和定理告诉学生,而是通过一定的方法引导和启发学生逐步探索、猜测,慢慢接近,掌握知识形成过程中的相关思想,锻炼学生的数学思维。这样学生可以发挥数学思维能力去推理,对所学知识理解得更加透彻,记忆也更加深刻。

第二,在解题中渗透数学思想。数学离不开解题,但是解题的方法不止一种,多一种方法就可能多一种数学思想。如苏教版的练习册中有这样一道题:1998×3.14+199.8×31.4+19.98×314。先让学生观察数字的关联性,学生会很容易看出数值1998小数点在往左移动,3.14的小数点在往右移动,两个数值相乘,根据小数点移动的知识,学生能够推断出三个乘积是相等的,无论它们怎么变动,小数点后面一共是两位,只要算出1998×3.14再乘以3就可以了。这个解题思路实际上渗透了划归的数学思想。教师要在解题之前就开始向学生渗透,解题之后还要进行深化点睛,久而久之,学生就掌握了这种方法。

第三,经常讲,反复讲。数学思想渗透是需要潜移默化的,教师要坚持这一过程,在讲课时不断举一反三,帮助学生深刻领会。

第四,要引导学生从生活中发现数学思想,鼓励学生将课堂中学到的思想运用到生活中,将生活中的问题带到课堂上。

二、结束语

篇2

1.一致性原则

分类应该按同一标准进行,也就是每次分类不能使用几个不同的分类根据。例如:把三角形分为等边三角形和不等边三角形是按边分类的。但是直角三角形、钝角三角形、锐角三角形、等腰三角形、等边三角形,这种分类就不正确,此种分类既是按边分类也按角分类。

2.相斥性原则

分类后的每一个子项应具备互不相容的原则,也就是不能出现有一项既属于这一类又属于那一类。例如学校举行运动会,规定每个学生只能参加一项比赛,初一三班的6名同学报名参加200和400米的赛跑,其中有4人参加200米比赛,3人参加400米比赛,那么就有1人既参加200米又参加400米比赛,这道题目的分类就违背了相斥性原则。

3.完善性原则

分类应当完善,即划分后子项的总和应当与母项相等。如:有人把实数分为正实数和负实数两类,这个分类是不完善的,因为子项的总和小于母项。事实上实数中还包括零。

4.递进性原则

分类后的子项还可以继续再进一步分类,直到不能再分为止,层次分明。例如实数可以分为无理数和有理数,有理数还可以分为整数和分数,整数又可以分为正整数,零和负整数。我们在运用分类讨论的思想解决问题时,首先要审清题意,认真分析可能产生的不同因素,进行讨论时要确定分类的标准,每一次分类只能按照一个标准来分,不能重复也不能遗漏,另外还要逐一认真解答。

二、分类思想在初中数学教学中的应用

1.概念分类

例如在学习完负数、有理数的概念后,针对于不同的标准,有理数有多种的分类方法,若按定义来分类有理数可以分为分数和整数,分数又可以分为正分数和负分数,整数又可以分为正整数、负整数和零;若按正负来分类有理数可以分为正有理数、负有理数和零,正有理数又分为正整数、正分数,负有理数又分为负整数、负分数。

2.在解题方法上分类讨论

例如:解方程∣x+3∣+∣4-x∣=7解析:对于绝对值问题,往往要对绝对值符号内的内容分为正数、负数、零三种,在此方程中出现两个数的绝对值;∣x+3∣和∣4-x∣,∣x+3∣应分为x=-3,x<-3,x>-3;∣4-x∣应分为x=4,x<4,x>4,在数轴上可见该题应划分为三种情形:①x<-3,②-3≤x≤4,③x>4。解:①若x<-3,化简-(x+3)+4-x=7得x=-3,与x<-3矛盾,所以x<-3时方程无解。②若-3≤x≤4,原方程x+3+4-x=7恒成立,满足-3≤x≤4的一切实数x都是方程的解。③若x>4,化为x+3-(4-x)=7,得x=4,与x>4矛盾,所以x>4时无解。综上所述,原方程的解为满足-3≤x≤4。3.在几何中图形位置关系不确定的分类:例如:已知a的绝对值是b绝对值的3倍,且在数轴上a、b位于原点的同侧,两点之间的距离为16,求这两个数;若数轴上表示这两数的点位于原点两侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的同侧”意味着甲乙两数符号相同。那么究竟是正数还是负数,我们应该用分类讨论的数学思想解决这一问题。解:由题意得:∣a∣=3∣b∣,∣a-b∣=16

(1)数轴上表示这两数的点位于原点同侧:若a、b在原点左侧,即a<0,b<0,则-2b=16,所以b=-8,a=-24若a、b在原点右侧,即a>0,b>0,则2b=16,所以b=8,a=24。

篇3

1用字母表示数的思想

用字母表示数是由特殊到一般的抽象,是中学数学中重要的代数方法。初一教材第一章代数初步知识的引言中,就蕴涵用字母表示数的思想,先让学生在引言实例中计算一些具体的数值,启发学生归纳出用字母表示数的思想,认识到字母表示数具有问题的一般性,也便于问题的研究和解决,由此产生从算术到代数的认识飞跃。

学生领会了用字母表示数的思想,就可顺利地进行以下内容的教学:(1)用字母表示问题(代数式概念,列代数式);(2)用字母表示规律(运算定律,计算公式,认识数式通性的思想);(3)用字母表示数来解题(适应字母式问题的能力)。因此,用字母表示数的思想,对指导学生学好代数入门知识能起关键作用,并为后续代数学习奠定了基矗

2分类思想

数学问题的研究中,常常根据问题的特点,把它分为若干种情形,有利问题的研究和解决,这就是数学分类的思想。初一教材中的分类思想主要体现在:(1)有理数的分类;(2)绝对值的分类;(3)整式分类。教学中,要向学生讲请分类的要求(不重、不漏),分类的方法(相对什么属性为类),使学生认识分类思想的意义和作用,只有通过分类思想的教学,才能使学生真正明确:一个字母,在没有指明取值范围时,可以表示大于零、等于零、小于零的三种情形。这是学生首次认识一个有理数的取值讨论的飞跃,不要出现认为一个字母就是正数、一个字母的相反数就是个负数的片面认识。这样,学生做一些有关分类讨论的题也就不易出错,使学生养成运用分类思想解题的习惯,培养严谨分析问题的能力。

3.数形结合的思想

将一个代数问题用图形来表示,或把一个几何问题记为代数的形式,通过数与形的结合,可使问题转化为易于解决的情形,常称为数形结合的思想。初一教材第二章的数轴就体现数形结合的思想。教学时,要讲清数轴的意义和作用(使学生明确数轴建立数与形之间的联系的合理性)。任意一个有理数可用数轴上的一个点来表示,从这个数形结合的观点出发,利用数轴表示数的点的位置关系,使有理数的大小,有理数的分类,有理数的加法运算、乘法运算都能直观地反映出来,也就是借助数轴的思想,使抽象的数及其运算方法,让人们易于理解和接受。所以,这样充分运用数形结合的思想,就可突破有理数及其运算方法的教学困难。

4方程思想

所谓方程的思想,就是一些求解未知的问题,通过设未知数建立方程,从而化未知为已知(此种思想有时又称代数解法)。初一代数开头和结尾一章,都蕴含了方程思想。教学中,要向学生讲清算术解法与代数解法的重要区别,明确代数解法的优越性。代数解法从一开始就抓住既包括已知数、也包括未知数的整体,在这个整体中未知数与已知数的地位是平等的,通过等式变形,改变未知数与已知数的关系,最后使未知数成为一个已知数。而算术解法,往往是从已知数开始,一步步向前探索,到解题基本结束,才找出所求未知数与已知数的关系,这样的解法是从把未知数排斥在外的局部出发的,因此未知数对已知数来说其地位是特殊的。与算术解法相比,代数解法显得居高临下,省时省力。通过方程思想的教学,学生对用字母表示数及代数解法的优越性得到深刻的认识,激发他们学好方程知识,运用方程思想去解决问题。由此,学生用代数方法解决问题和建立数学模型的能力得到了培养。

5化归思想

化归思想是把一个新的(或较复杂的)问题转化为已经解决过的问题上来。它是数学最重要、最基本的思想之一。初一数学中的化归思想主要体现在:

(1)用绝对值将两个负数大小比较化归为两个算术数(即小学学的数)的大小比较。

(2)用绝对值将有理数加法、乘法化归为两个算术数的加法、乘法。

通过这样的化归,学生既对绝对值的作用、有理数的大小比较和运算有清晰的认识,而且对知识的发展与解决的方法也有一定的认识。

(3)用相反数将有理数的减法化归为有理数的加法。

(4)用倒数将有理数除法化归为有理数的乘法。

篇4

能力是指主体能胜任某项任务的主观条件。在数学学习中,学生的数学能力与他们的知识基础和心理特征有关。技能是指依据一定的规则和程序去完成专门任务(解决特定的问题)的能力。显然,技能和能力都与知识密不可分;但学生在任务(问题)面前如何对知识和运用这些知识的途径进行选择,使得完成任务(解决问题)达到多快好省,则是一项超越知识本身的心理活动。因此,把知识、技能和能力三者并列起来是合理的;但也应看清楚,这三者的顺序是由低到高,在教育、教学的意义下是后者更重于前者。

一、历史的回顾

我国的中学数学教学大纲,对于数学思想和数学方法的重要性的认识也有一个从低到高的过程。

由中华人民共和国教育部制订、1978年2月第1版的《全日制十年制学校中学数学教学大纲(试行草案)》,在第2页“教学内容的确定”的第(三)条中首次指出:“把集合、对应等思想适当渗透到教材中去,这样,有利于加深理解有关教材,同时也为进一步学习作准备。”这一大纲在1980年5月第2版时维持了上述规定。

由中华人民共和国国家教育委员会制订、1986年12月第1版的《全日制中学数学教学大纲》,在第2页“教学内容的确定”的第(三)条中,把上述大纲的有关文字改成一句话:“适当渗透集合、对应等数学思想”。1990年修订此大纲时,维持了这一规定。

由中华人民共和国国家教育委员会制订、1992年6月第1版的《九年义务教育全日制初级中学数学教学大纲(试用)》,在第1页“教学目的”中规定:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。”这份大纲还第一次把资深的数学工作者们熟知的提法“数学,它的内容、方法和意义”改为数学的“内容、思想、方法和语言已广泛渗入自然科学和社会科学,成为现代文化的重要组成部分”,并把这段话放入总论的第一段。在第9页上又指出,要“使学生掌握消元、降次、配方、换元等常用的数学方法,解决某些数学问题,理解‘特殊棗一般棗特殊’、‘未知棗已知’、用字母表示数、数形结合和把复杂问题转化成简单问题等基本的思想方法”;在第6页上还指出,“要注意充分发挥练习的作用,加强对解题的正确指导,应注意引导学生从解题的思想方法上作必要的概括。”

由国家教育委员会基础教育司编订、1996年5月第1版的《全日制普通高级中学数学教学大纲(供试验用)》,在第2页“教学目的”中也规定:“高中数学的基础知识是指:高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。”在界定“思维能力”一词的四个主要层面时,指出第三层面是“会合乎逻辑地、准确地阐述自己的思想和观点”;第四层面是“能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质”。这份大纲维持了数学的“内容、思想、方法和语言已成为现代文化的重要组成部分”的提法(第1页);并指出数学规律“包括公理、性质、法则、公式、定理及其联系,数学思想、方法和语言”(第24页);坚持在对解题进行指导时,应该“对解题的思想方法作必要的概括”(第25页)。这是建国以来对数学思想和数学方法关注最多的一份中学数学教学大纲,充分体现了数学教育工作者对于数学课程发展的一些共识。

二、数学思想方法

(一)思想、科学思想和数学思想

思想是客观存在反映在人的意识中经过思维活动而产生的结果。它是从大量的思维活动中获得的产物,经过反复提炼和实践,如果一再被证明为正确,就可以反复被应用到新的思维活动中,并产生出新的结果。本文所指的思想,都是那些颠扑不破、屡试不爽的思维产物。因此,对于学习者来说,思想就成为他们进行思维活动的细胞和基础;思想和下面述及的方法都是他们的思维活动的载体。每门科学都逐渐形成了它自己的思想,而科学法则概括出各门科学共同遵循和运用的一些科学思想。

所谓数学思想,是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识。首先,数学思想比一般说的数学概念具有更高的抽象和概括水平,后者比前者更具体、更丰富,而前者比后者更本质、更深刻。其次,数学思想、数学观点、数学方法三者密不可分:如果人们站在某个位置、从某个角度并运用数学去观察和思考问题,那么数学思想也就成了一种观点。而对于数学方法来说,思想是其相应的方法的精神实质和理论基础,方法则是实施有关思想的技术手段。中学数学中出现的数学观点(例如方程观点、函数观点、统计观点、向量观点、几何变换观点等)和各种数学方法,都体现着一定的数学思想。

数学思想是一类科学思想,但科学思想未必就单单是数学思想。例如,分类思想是各门科学都要运用的思想(比方语文分为文学、语言和写作,外语分为听、说、读、写和译,物理学分为力学、热学、声学、电学、光学和原子核物理学,化学分为无机化学和有机化学,生物学分为植物学、动物学和人类学等;中学生见到的最漂亮的分类应该是在学习哺乳纲动物时所出现的门(亚门)、纲(亚纲)、目(亚目)、属、科、种的分类表,它不是单由数学给予的。只有将分类思想应用于空间形式和数量关系时,才能成为数学思想。如果用一个词语“逻辑划分”作为标准,那么,当该逻辑划分与数理有关时(可称之为“数理逻辑划分”),可以说是运用数学思想;当该逻辑划分与数理无直接关系时(例如把社会中的各行各业分为工、农、兵、学、商等),不应该说是运用数学思想。同样地,当且仅当哲学思想(例如一分为二的思想、量质互变的思想和肯定否定的思想)在数学中予以大量运用并且被“数学化”了时,它们也可以称之为数学思想。

(二)数学思想中的基本数学思想

在数学思想中,有一类思想是体现或应该体现于基础数学中的具有奠基性和总结性的思维成果,这些思想可以称之为基本数学思想。基本数学思想含有传统数学思想的精华和近现代数学思想的基本特征,并且也是历史地形成和发展着的。

基本数学思想包括:符号与变元表示的思想,集合思想,对应思想,公理化与结构思想,数形结合的思想,化归的思想,对立统一的思想,整体思想,函数与方程的思想,抽样统计思想,极限思想(或说无限逼近思想)等。它有两大“基石”棗符号与变元表示的思想和集合思想,又有两大“支柱”棗对应思想和公理化与结构思想。有些基本数学思想是从“基石”和“支柱”衍生出来的,例如“函数与方程的思想”衍生于符号与变元表示的思想(函数式或方程式)、集合思想(函数的定义域或方程中字母的取值范围)和对应思想(函数的对应法则或方程中已知数、未知数的值的对应关系)。所以我们说基本数学思想是体现或应该体现于“基础数学”(而不是说“初等数学”)的具有奠基性和总结性的思维成果。基本数学思想及其衍生的数学思想,形成了一个结构性很强的网络。中学数学教育、教学中传授的数学思想,应该都是基本数学思想。

非科学思想当然也是大量存在的。例如,“崇洋”的思想就是一种非科学思想。

中学数学教科书中处处渗透着基本数学思想。如果能使它落实到学生学习和运用数学的思维活动上,它就能在发展学生的数学能力方面发挥出一种方法论的功能。

(三)思路、思绪和思考

我们在中学数学教育、教学中,还经常使用着“思路”和“思绪”这两个词语。一般说来,“思路”是指思维活动的线索,可视为以串联、并联或网络形状出现的思想和方法的载体,而“思绪”是指思想的头绪。“思路”和“思绪”实际上是同义词,并且它们都是名词。

那么,另一个词语“思考”又是什么意思呢?“思考”就是进行比较深刻、周到的思维活动。作为动词,它反映了主体把思想、方法、串联、并联或用网络组织起来以解决问题的思维过程。由此可见,“思考”所产生的有效途径就是“思路”或“思绪”;“思路”或“思绪”是“思考”的结果,是思想、方法的某种选择和组织,且明显带有程序性。对思路及其所含思想、方法的选择和组织的水平,反映了学习者能力的差异。(四)方法和数学方法

所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式。人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序。同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,便成为数学方法。数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算和分析,以形成解释、判断和预言的方法。

数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性。

数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁精确的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具。现代科学技术特别是电脑的发展,与数学方法的地位和作用的强化正好是相辅相成。

宏观的数学方法包括:模型方法,变换方法,对称方法,无穷小方法,公理化方法,结构方法,实验方法。微观的且在中学数学中常用的基本数学方法大致可以分为以下三类:

(1)逻辑学中的方法。例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等。这些方法既要遵从逻辑学中的基本规律和法则,又因运用于数学之中而具有数学的特色。

(2)数学中的一般方法。例如建模法、消元法、降次法、代入法、图象法(也称坐标法。代数中常用图象法,解析几何中常用坐标法)、向量法、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法、同一法、数学归纳法(这与逻辑学中的不完全归纳法不同)等。这些方法极为重要,应用也很广泛。

(3)数学中的特殊方法。例如配方法、待定系数法、加减法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等。这些方法在解决某些数学问题时起着重要作用,不可等闲视之。

(五)方法和招术

如上所述,方法是解决思想、行为等问题的门路和程序,是思想的产物,是包含或体现着思想的一套程序,它既可操作又可仿效。在选择并实施方法的前期过程中,反映了学习者的能力和技能的高低;而在后期过程中,只反映了学习者的技能的差异。

所谓“招术”“招”字应正为“着”字,本文仍用传统的“一招一式”的说法。是指解决特殊问题的专用计策或手段,纯属于技能而不属于能力。“招”的教育价值远低于“法”(这里的“法”指“通法”)的价值。“法”的可仿效性带有较为“普适”的意义,而“招”的“普适”要差得多;实施“招”要以能实施管着它的“法”为前提。

例如,待定系数法是一种特别有用的“法”。求二次函数的解析式时,用待定系数法根据图象上三个点的坐标求出解析式可看作第一“招”;根据顶点和另一点的坐标求出解析式可看作第二“招”;根据与x轴交点和另一点的坐标求出解析式可看作第三“招”。这三“招”各有奇妙之处。哪一“招”更好使用,要看条件和管着它们的“法”而定。教师授予学生“用待定系数法求二次函数的解析式”,最根本、最要紧的“法旨”就在于让学生明确二次函数的解析式中自变量、函数值和图象上点的横、纵坐标的对应关系;对于一般的点和特殊的点(例如顶点及与x轴的交点),解析式可以有什么不同的反映。而这样的“法旨”,恰恰体现了对应思想和数形结合的思想。由此看来,我国古代传说中经常提到的某些师傅对待弟子“给‘招’不给‘法’”的现象,在现代的数学教育、教学中应该尽量避免。

三、中学数学教科书中应该传授的基本数学思想和方法

(一)中学数学教科书中应该传授的基本数学思想中学数学教科书担负着向学生传授基本数学思想的责任,在程度上有“渗透”、“介绍”和“突出”之分。1.渗透。“渗透”就是把某些抽象的数学思想逐渐“融进”具体的、实在的数学知识中,使学生对这些思想有一些初步的感知或直觉,但还没有从理性上开始认识它们。要渗透的有集合思想、对应思想、公理化与结构思想、抽样统计思想、极限思想等。前三种基本数学思想从初中一年级就开始渗透了,并贯彻于整个中学阶段;抽样统计思想可从初中三年级开始渗透,极限思想也可从初中三年级的教科书中安排类似于“关于圆周率π”这样的阅读材料开始渗透。至于公理化与结构思想,要注意根据人类的认识规律,一开始就采取扩大的公理体系。例如,教科书既可以把“同位角相等,两直线平行”和它的逆命题都当作公理,也可以把判定两个三角形全等的三个命题“边角边”、“角边角”和“边边边”都当作公理。

这种渗透是随年级逐步深入的。例如集合思想,初中是用文氏图或列举法来表示集合,不等式(组)的解集可以用数轴表示或用不等式(组)表示;高中则是列举法、描述法、文氏图三者并举,并同时允许用不等式(组)、区间或集合的描述法来表示实数集的某些子集。又如对应思想,初中只用文字、数轴或平面直角坐标系来讲对应;高中则在此基础上引入了使用符号语言的对应法则。至于公理化与结构思想、抽样统计思想和极限思想在初、高中阶段的不同渗透水平,则是众所周知的。“渗透”到一定程度,就是“介绍”的前奏了。

2.介绍。“介绍”就是把某些数学思想在适当时候明确“引进”到数学知识中,使学生对这些思想有初步理解,这是理性认识的开始。要介绍的有符号与变元表示的思想、数形结合的思想、化归的思想、函数与方程的思想、抽样统计思想、极限思想等。这种介绍也是随年级逐步增加的。有的思想从初中一年级起就开始介绍(例如前四种基本数学思想),有的则是先渗透后介绍(例如后两种基本数学思想)。“介绍”与“渗透”的基本区别在于:“渗透”只要求学生知道有什么思想和是什么思想,而“介绍”则要求学生在此基础上进而知道为什么叫做思想(含思想的要素和特征)、用什么思想(含思想的用途)并学会运用。作为补充,也可以就问题适时地向学生介绍如何运用一分为二的思想和整体思想。

3.突出。“突出”就是把某些数学思想经常性地予以强调,并通过大量的综合训练而达到灵活运用。它是在介绍的基础上进行的,目的在于最大限度地发挥这些数学思想的功能。要突出的有数形结合的思想、化归的思想、函数与方程的思想等。这些基本数学思想贯穿于整个中学阶段,最重要、最常用,是中学数学的精髓,也最能长久保存在人一生的记忆之中。“介绍”与“突出”的基本区别在于:“介绍”只要求学生知道用什么和会用,而“突出”则要求学生在此基础上进而知道选用和善用。作为补充,也可以就数学问题经常向学生突出分类思想的运用。

(二)中学数学教科书中应该传授的基本数学方法在传授基本数学方法方面,仍如义务教育初中数学教学大纲所界定的,有“了解”、“理解”、“掌握”和“灵活运用”这四个层次。这四个层次的含义也可以遵照该大纲中的提法(第8页脚注),新的高中数学教学大纲(供试验用。本文下面所述“高中大纲”均指此大纲)维持了这些提法(第4页脚注)。分别属于这四个层次的基本数学方法的例子有:“了解数学归纳法的原理”(高中大纲第9页),“了解用坐标法研究几何问题”(高中大纲第10页);“理解‘消元’、‘降次’的数学方法”(初中大纲第19页);“掌握分析法、综合法、比较法等几种常用方法证明简单的不等式(高中大纲第6页)”;“灵活运用一元二次方程的四种解法求方程的根”(初中大纲第17页。四种解法指直接开平方法、配方法、公式法和因式分解法)。在这方面,大纲的规定是比较明确的。

篇5

第一,“懂得基本原理使得学科更容易理解”。心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习。”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了。下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即新知识能够较顺利地纳入到学生已有的认知结构中去。学生学习了数学思想、方法就能够更好地理解和掌握数学内容。

第二,有利于记忆。布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记。”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的。无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法随时随地发生作用,使他们受益终生。”

第三,学习基本原理有利于“原理和态度的迁移”。布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识。”曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移。”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中。”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。

二、中学数学教学内容的层次

中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识。表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法。表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的以及具有较强操作性的知识。学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识。深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识。教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性。那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛。因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质。

三、中学数学中的主要数学思想和方法

数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识。由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高。我们认为,在中学数学中应予以重视的数学思想主要有三个:集合思想、化归思想和对应思想。其理由是:

(1)这三个思想几乎包摄了全部中学数学内容;

(2)符合中学生的思维能力及他们的实际生活经验,易于被他们理解和掌握;

(3)在中学数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多;

(4)掌握这些思想可以为进一步学习高等数学打下较好的基础。

此外,符号化思想、公理化思想以及极限思想等在中学数学中也不同程度地有所体现,应依据具体情况在教学中予以渗透。数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握情况密切相关。从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变换法、函数法和类分法等。一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的。

四、数学思想方法的教学模式

数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性。基于上述认识,我们给出数学思想方法教学的一个教学模式:操作——掌握——领悟对此模式作如下说明:

(1)数学思想、方法教学要求教师较好地掌握有关的深层知识,以保证在教学过程中有明确的教学目的;

(2)“操作”是指表层知识教学,即基本知识与技能的教学。“操作”是数学思想、方法教学的基础;

(3)“掌握”是指在表层知识教学过程中,学生对表层知识的掌握。学生掌握了一定量的数学表层知识,是学生能够接受相关深层知识的前提;

(4)“领悟”是指在教师引导下,学生对掌握的有关表层知识的认识深化,即对蕴于其中的数学思想、方法有所悟,有所体会;

(5)数学思想、方法教学是循环往复、螺旋上升的过程,往往是几种数学思想、方法交织在一起,在教学过程中依据具体情况在一段时间内突出渗透与明确一种数学思想或方法,效果可能更好些。

参考文献:

[1]布鲁纳.教育过程.上海人民出版社.

[2]崔录等.现代教育思想精粹.光明日报出版社..

[3]邵瑞珍等.教育心理学.上海教育出版社.

篇6

数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。初中数学思想方法教育,是培养和提高学生素质的重要内容。新的《课程标准》突出强调:“在教学中,应当引导学生在学好概念的基础上掌握数学的规律(包括法则、性质、公式、公理、定理、数学思想和方法)。”因此,开展数学思想方法教学应作为新课改中所必须把握的教学要求。

中学数学知识结构涵盖了辩证思想的理念,反映出数学基本概念和各知识点所代表的实体同抽象的数学思想方法之间的相互关系。数学实体内部各单元之间相互渗透和维系的关系,升华为具有普遍意义的一般规律,便形成相对的数学思想方法,即对数学知识整体性的理解。数学思想方法确立后,便超越了具体的数学概念和内容,只以抽象的形式而存在,控制及调整具体结论的建立、联系和组织,并以其为指引将数学知识灵活地运用到一切适合的范畴中去解决问题。数学思想方法不仅会对数学思维活动、数学审美活动起着指导作角,而且会对个体的世界观、方法论产生深刻影响,形成数学学习效果的广泛迁移,甚至包括从数学领域向非数学领域的迁移,实现思维能力和思想素质的飞跃。

可见,良好的数学知识结构不完全取决于教材内容和知识点的数量,更应注重数学知识的联系、结合和组织方式,把握结构的层次和程序展开后所表现的内在规律。数学思想方法能够优化这种组织方式,使各部分数学知识融合成有机的整体,发挥其重要的指导作用。因此,新课标明确提出开展数学思想方法的教学要求,旨在引导学生去把握数学知识结构的核心和灵魂,其重要意义显而易见。

二、对初中数学思想方法教学的几点思考

1、结合初中数学课程标准,就初中数学教材进行数学思想方法的教学研究。

首先,要通过对教材完整的分析和研究,理清和把握教材的体系和脉络,统揽教材全局,高屋建瓴。然后,建立各类概念、知识点或知识单元之间的界面关系,归纳和揭示其特殊性质和内在的一般规律。例如,在“因式分解”这一章中,我们接触到许多数学方法—提公因式法、运用公式法、分组分解法、十字相乘法等。这是学习这一章知识的重点,只要我们学会了这些方法,按知识──方法──思想的顺序提炼数学思想方法,就能运用它们去解决成千上万分解多项式因式的问题。又如:结合初中代数的消元、降次、配方、换元方法,以及分类、变换、归纳、抽象和数形结合等方法性思想,进一步确定数学知识与其思想方法之间的结合点,建立一整套丰富的教学范例或模型,最终形成一个活动的知识与思想互联网络。

2、以数学知识为载体,将数学思想方法有机地渗透入教学计划和教案内容之中。

教学计划的制订应体现数学思想方法教学的综合考虑,要明确每一阶段的载体内容、教学目标、展开步骤、教学程序和操作要点。数学教案则要就每一节课的概念、命题、公式、法则以至单元结构等教学过程进行渗透思想方法的具体设计。要求通过目标设计、创设情境、程序演化、归纳总结等关键环节,在知识的发生和运用过程中贯彻数学思想方法,形成数学知识、方法和思想的一体化。

应充分利用数学的现实原型作为反映数学思想方法的基础。数学思想方法是对数学问题解决或构建所做的整体性考虑,它来源于现实原型又高于现实原型,往往借助现实原型使数学思想方法得以生动地表现,有利于对其深人理解和把握。例如:分类讨论的思想方法始终贯穿于整个数学教学中。在教学中要引导学生对所讨论的对象进行合理分类(分类时要做到不重复、不遗漏、标准统一、分层不越级),然后逐类讨论(即对各类问题详细讨论、逐步解决),最后归纳总结。教师要帮助学生掌握好分类的方法原则,形成分类思想。

数学思想方法的渗透应根据教学计划有步骤地进行。一般在知识的概念形成阶段导入概念型数学思想,如方程思想、相似思想、已知与未知互相转化的思想、特殊与一般互相转化的思想等等。在知识的结论、公式、法则等规律的推导阶段,要强调和注重思维方法,如解方程的如何消元降次、函数的数与形的转化、判定两个三角形相似有哪些常用思路等。在知识的总结阶段或新旧知识结合部分,要选配结构型的数学思想,如函数与方程思想体现了函数、方程、不等式间的相互转化,分数讨论思想体现了局部与整体的相互转化。在所有数学建构及问题的处理方面,注意体现其根本思想,如运用同解原理解一元一次方程,应注意为简便而采取的移项法则。

3、重视课堂教学实践,在知识的引进、消化和应用过程中促使学生领悟和提炼数学思想方法。

数学知识发生的过程也是其思想方法产生的过程。在此过程中,要向学生提供丰富的、典型的以及正确的直观背景材料,创设使认知主体与客体之间激发作用的环境和条件,通过对知识发生过程的展示,使学生的思维和经验全部投人到接受问题、分析问题和感悟思想方法的挑战之中,从而主动构建科学的认知结构,将数学思想方法与数学知识融汇成一体,最终形成独立探索分析、解决问题的能力。

概念既是思维的基础,又是思维的结果。恰当地展示其形成的过程,拉长被压缩了的“知识链”,是对数学抽象与数学模型方法进行点悟的极好素材和契机。在概念的引进过程中,应注意:①解释概念产生的背景,让学生了解定义的合理性和必要性;②揭示概念的形成过程,让学生综合概念定义的本质属性;③巩固和加深概念理解,让学生在变式和比较中活化思维。

在规律(定理、公式、法则等)的揭示过程中,教师应注重数学思想方法,培养学生的探索性思维能力,并引导学生通过感性的直观背景材料或已有的知识发现规律,不过早地给结论,讲清抽象、概括或证明的过程,充分地向学生展现自己是如何思考的,使学生领悟蕴含其中的思想方法。

数学问题的化解是数学教学的核心,其最终目的要学会运用数学知识和思想方法分析和解决实际问题。例如“平行四边形的面积求法”的问题,通过探求解决问题的思想和策略,得到以化归思想指导将思维定向转化成求已知矩形的面积。这样以问题的变式教学,使学生认识到求解该问题的实质是等积变换,即要在保持面积不变的情形下实现化归目标,而化归的手段是“三角形位移”,由此揭示了解决问题的思维过程及其所包含的数学思想,同时提高了学生探索性思维能力。在数学知识的引进、消化和运用的过程中,要利用单元复习和阶段性总结的时间,以适当集中的方式,从纵横两方面整理、概括和提炼出数学思想方法纲要和系统。以分散方式的渗透性教学为基础,集中强化数学思想方法教育的形式,促使学生对数学思想方法由个别的具体感悟上升到一般的理性认识,这有利于提高教学效果。

4、通过范例和解题教学,综合运用数学思想方法。

一方面要通过解题和反思活动,从具体数学问题和范例中总结归纳解题方法,并提炼和抽象成数学思想;另一方面在解题过程中,充分发挥数学思想方法对发现解题途径的定向、联想和转化功能,举一反三,触类旁通,以数学思想观点为指导,灵活运用数学知识和方法分析问题、解决问题。

篇7

小学阶段是学生学习知识的启蒙时期,在这一阶段注意给学生渗透研究数学的基本思想和方法便显得尤为重要。然而在小学阶段,学生的逻辑思维和抽象思维能力较弱,而研究数学的许多思想和方法都是逻辑性强、抽象度高,小学生不易理解。那么在小学数学教学中,如何对学生进行数学的一些基本思想和方法的渗透呢?

一、在讲能被2、5、3整除的数时,第一节课先讲了能被2整除的数的特征是:“个位上是0、2、4、6、8的数,都能被2整除。”能被5整除的数的特征是:“个位上是0或5的数,都能被5整除。”

接下的第二节课要讲能被3整除的数的特征是:“一个数的各位上的数的和能被3整除,这个数就能被3整除。”

这两节课要讲的结论对于学生来说,在思维上存在着一段跳跃。因为第一节课学生们注意和观察的是一个数个位上的数学有什么特征,而第二节课则变成了观察一个数的各位上数的和有什么特征。如果教师按照教材上的顺序开始就例举能被3整除的数的特征,那么,在学生的头脑中就会产生一个疑虑:“一个数的个位上是0、3、6、9的数是否也能被3整除呢?”因此这节课的开始时,教师就应首先提出这个问题,并举出例子,得出结论,打消学生们头脑中的这个疑虑。

如:看下面个位是0、3、6、9的两组数。

(附图{图})

由上面的例子可以得出结论:一个数个位上是0、3、6、9的数不一定能被3整除。

上述的结论,学生们会很自然接受的,然而,他们并不知道这个结论的获得是用了一个数学中很常用的重要证明方法——举反例的证明方法。这时,教师应该及时地把这种方法点拨给学生,指出:“要证明一个结论是不是成立时,只要找出一个实例来说明这个结论不正确即可。”这种方法叫做举反例的证明方法。这样,举反例的证明方法就会在学生们的头脑中深深地留下了印象。

二、计算:1/2+1/4+1/8+1/16这道题从形式上看是一道分数连加法的计算题,计算过程如下:

1/2+1/4+1/8+1/16=8/16+4/16+2/16+1/16=(8+4+2+1)/16=15/16

然而,这道题的本意并不在此,其目的是要寻求一种简便的算法。如(图一),用一正方形表示单位“1”,这样,学生们通过观察图形再经过老师的讲解会得出:

1/2+1/4+1/8+1/16=1-1/16=15/16

至此,本题的目的已经达到,但学生们还没有得到此题的精髓,也就是题中所包含着什么样的规律,体现了怎样的数学思想,教师还应该给学生们渗透和点拨出来。

实质上,此题是求数列:

1/2,1/4,1/8……1/2[n]……的前几项和问题,其前几项的和是S[,n]=1-1/2[n]=(2[n]-1)/2[n]

由于学生没有极限的思想,不理解无穷的概念,因此,字母“n”的意义无法给他们讲解清楚。但教师可以借助图形的直观性,把上述极限思想渗透给学生。如在上题的基础上,让学生计算下列几题:

1.计算1/2+1/4+1/8+1/16+1/32

2.计算1/2+1/4+1/8+1/16+1/32+1/64

3.计算1/2+1/4+1/8+1/16+1/32+1/64+1/128

观察图形,使用前面例题的简便算法,学生们会很快算出结果。

1/2+1/4+1/8+1/16+1/32=1-1/32=31/32

1/2+1/4+1/8+1/16+1/32+1/64=1-1/64=63/64

1/2+1/4+1/8+1/16+1/32+1/64+1/128=1-1/128=127/128

这时,教师再继续让学生计算1/2+1/4+1/8+1/16+……+1/512

如果学生能很快得出结果是:1-1/512=511/512这就说明了在学生的头脑中已经初步形成了数列的概念。此时教师将前面的几道题进行比较归纳,得出结论:如果以分子是1,分母是前一个加数的分母的2倍的规律,再继续加下去,不论再加什么数,结果总是得:1-最后一个加数。并且其结果总是不超过1。

篇8

随着社会的发展,为了满足人们的审美和情感表达的需要,艺术设计也随之而产生。除此之外,艺术设计不仅要满足人们审美的要求,还要满足人们心理和生理方面的要求,要充分的表达出人们所有表达的感情思想。具体来说,艺术设计是人们情感外在表现形式的一种,人们将自己的情感需求与具体的事物进行了创造性的结合,从不同角度来表达自己的感情需求,再设计的同时,力求将情感表达和科技融为一体,使其相对平衡,使得艺术设计产品在今后的销售当中既满足人们的审美需求又满足商家的利益需求。例如,手机作为一款大众化的产品,正逐渐从功能的追求向艺术设计需要转型。所以,手机市场上出现了很多具有丰富内涵的产品。例如LG的巧克力手机就受到了恋爱中的客户的青睐,究其原因,主要是因为设计中包含了情感,是情感和科技完美融合的一种体现。

2、实际应用中的形式美与功能美

2.1艺术设计中形式美的表现

在艺术设计中,相对于功能美来说,形式美更为抽象,功能美表现在外在形体中,而形式美却是对具体设计产品抽象美的创造,主要表现为在创造产品过程中,物体自然属性随机组合或者有机组合产生规律的集中反映,这种美的表现不仅是体现在实际物体上的,还要从实体产品上感受其观念的形成。从根本上来讲,形式美的审美观念超出了一般意义上的设计内容,除了需要保留设计产品本身的性格特点外,还要反映超越产品本身的审美含义。形式美的具体内容不仅包括了构图形式,还包括了色彩、造型以及艺术技巧这三个方面,这三者可以说你中有我,我中有你,是不可分割的整体,由他们共同组成了艺术设计中的形式美。产品要想脱颖而出,那么对形式美的要求也就应该越高。艺术设计产品的本质属性决定着形式美的高低,首先人们观察到的形式美表现为自然美,这种美属于人们对形式美的初级认识,通过艺术技巧将自然美升级,表现为更为高层次的美,这种艺术技巧就是产品的设计与审美统一,通过特殊的艺术表现形式来展现所要设计的内容,是功能美展现的艺术表现方式。

2.2艺术设计功能美的表现

功能美主要指的是人们在日常生活中产生的审美感受,任何物体之所以产生都具有一定的实际意义,从最初的简单造物到现在的科技造物,这不仅是设计产品功能应用的提升,更是产品设计产生功能美的过程。从一开始的应用造物,到现在结合艺术美进行的创造行为,无一不是对功能美的加工和提炼,这是一个漫长而悠久的发展历程。一般人们对功能美的定义为产品完成人们对预定功能的需求即可,只要艺术设计与功能完美的结合,人们就会认为产品具有功能美。因此当人们在运用设计产品的时候就可以既满足对产品功能的需求,又达到人们对产品审美的体验。所以,在艺术设计当中功能美相比形式美要更具有功利性的特点,具体表现在人们使用设计产品的过程当中,使其感到满足和快乐。从本质上理解,功能美其实就是人们在进行产品设计时目的性与规律性的有机结合,从而创造或者改造某些物品。

3、结语

篇9

掌握判定相似形的条件和解决相似形问题的基本规律,能够利用影长测量物高,增强对盲区理解及应用的实践生活能力。相似图形的特征与识别,相似三角形的有关概念及相似的表示方法和相似比的概念。

二、【学习难点】

学生将实际情境印象转化为课堂数学模型,通过对平行投影的理解来解决实际问题,准确判断出相似三角形的对应边和对应角。

三、【导学提纲】

想一想:

运用日常现象引导学生开动脑筋,分析产生这些现象的原因,并逐步探索解决问题的有效途径。

1、在阳光下行走,去发现影子的变化规律,阐述光线在直线传播过程中,遇到不透明的物体,在这个物体的背光区域便产生阴影。夜晚在路灯下行走,影子随着人与路灯距离的拉长而逐渐变长,引导学生多列举生活中的实例。

2、向楼下教室外观看,能够看到哪些事物,一些视线外的东西看不到是为什么,怎样才能看到哪些东西,引导学生多列举生活中的实例。

3、如果同一时刻的物高与影长成比例,高为5米的测竿的影长为10米,那么影长为30米的旗杆的高应该是()。(A)20米(B)18米(C)16米(D)15米。

4、如图,在ABC中,点D、E、F分别是边AB、BC、CA的中点,那么DEF【学习重点】

掌握判定相似形的条件和解决相似形问题的基本规律,能够利用影长测量物高,增强对盲区理解及应用的实践生活能力。相似图形的特征与识别,相似三角形的有关概念及相似的表示方法和相似比的概念。

四、【学习难点】

学生将实际情境印象转化为课堂数学模型,通过对平行投影的理解来解决实际问题,准确判断出相似三角形的对应边和对应角。

五、【导学提纲】

想一想:

运用日常现象引导学生开动脑筋,分析产生这些现象的原因,并逐步探索解决问题的有效途径。

1、在阳光下行走,去发现影子的变化规律,阐述光线在直线传播过程中,遇到不透明的物体,在这个物体的背光区域便产生阴影。夜晚在路灯下行走,影子随着人与路灯距离的拉长而逐渐变长,引导学生多列举生活中的实例。

2、向楼下教室外观看,能够看到哪些事物,一些视线外的东西看不到是为什么,怎样才能看到哪些东西,引导学生多列举生活中的实例。

3、如果同一时刻的物高与影长成比例,高为5米的测竿的影长为10米,那么影长为30米的旗杆的高应该是()。(A)20米(B)18米(C)16米(D)15米。

4、如图,在ABC中,点D、E、F分别是边AB、BC、CA的中点,那么DEF3、一个三角形的各边之比为2∶5∶6,和它相似的另一个三角形的最大边为24,求它的最小边。

4、已知四边形ABCD∽四边形A’B’C’D’,且AB∶BC∶CD∶DA=7∶6∶5∶4,若四边形A’B’C’D’周长为44,则A’B’=,B’C’=,C’D’=D’A’=。

5、两个相似三角形,已知其中一个三角形的边分别为4、5、6,另一个三角形的一边长为2,求另一个三角形的其它两边。

六、【盘点收获】

通过思考、观察实验、亲身操作和拓展练习等学习活动,使学生充分了解了平行投影和中心投影的意义,进一步探究了中心投影与平行投影的区别,并运用平行投影和中心投影的相关知识解决一些生活上的实际问题。进一步巩固相似三角形的有关知识,了解相似图形、相似三角形、相似比、相似多边形等概念(注意相似定义中“对应”两字、相似三角形对应角相等,对应边成比例)

七、【延展练习】

1、如图,P是ABC内一点,D、E、F、G分别是PB、PC、AC、AB上的一点,且DE∥BC,FE∥AP,GD∥A。

求证:四边形DEFG是平行四边形。

篇10

1.1课堂缺乏情境创设与师生的互动交流

多媒体教学的显著优势是将文字、图片、音频结合起来,以一种立体的形式呈献给学生。在这一过程中,需要师生的互动交流与情境创设。个别教师在多媒体教学过程中,没有摆正教师、学生、多媒体三者的关系,不能根据政治理论课的教学特点与内容创设合适的教学情境。如,在讲授《中国近代史纲要》国共合作的知识点时,教师只是利用多媒体展示知识点,却忽视了必要的情境创设。教师忙于播放预先制作的PPT,完全忽略了学生的感受,课堂上教师不提问,学生不问问题,师生缺乏信息与情感交流,多媒体教学变成了“填鸭式”教学。这极大地影响了思想政治课的教学效果,不利于提高学生的学习兴趣。

1.2多媒体课件设计不科学

多媒体课件的设计要与教学内容相辅相成,课件要以政治理论课的内容为基础,要根据课程标准、教学内容、学生情况等多方面因素来设计教学内容,课件不但要完整地展现政治课的教学内容,更要有清晰的思路、完整的结构,要始终为教学内容服务。个别教师在设计多媒体课件时,盲目将书本内容电子化,并没有考虑到具体的教学目标与学生的实际需要。多媒体课件内容单一,形式单调,不能触发学生的思考能力,不利于培养学生的抽象思维能力③。

2高校思想政治教学中运用多媒体技术的优势

2.1有利于提高学生的学习兴趣与认知能力

兴趣是学习最好的教师,培养学生学习思政课的兴趣对促进思政教学工作具有重大意义。高校思政课是我国培养学生正确的世界观、人生观、价值观,对学生进行爱国主义、社会主义、集体主义教育,宣传党的路线、方针、政策的一门基础课,其理论性强,内容抽象,需要学生具有较好的思维抽象能力。一些问题用传统的授课方式难以讲清楚,也不能激发学生的学习情绪。多媒体教学集合了文字、音频,它可以将抽象、模糊的政治概念具体化、直观化,将枯燥的内容通过视频、音频的形式展示出来,有很强的表现力与真实感,能够调动学生的眼、手、脑等多种感官参与到学习中来,极大地激发学生的学习兴趣。多媒体教学使学生变得爱思考,善于思考,改变了以往思政课枯燥无味的课堂气氛,增强了课堂的吸引力与感染力。多媒体教学不仅创造了生动和谐的学习情绪,更提高了思政课的教学效果④。此外,多媒体教学也是提高学生认知能力的重要手段。教师通过展示大量生动、鲜活的事实案例,使学生们明白了哪些是正确的价值观、哪些是应该遵守的道德规范。如,在《思想道德修养与法律基础》的课程中,教师利用多媒体播放的视频资料,能够促使学生形成正确的恋爱观、家庭观,增强学生的认知能力。

2.2有助于培养学生的创新思维

创新是一个民族进步的灵魂,是国家兴旺发达的不竭动力。高校思政课要着力培养学生的创新能力,而思政课理论性强,传统教学方式对培养学生创新思维效果不大,多媒体教学恰好弥补了这一缺陷。心理学研究表明,培养创新思维需要人体多个器官的参与、配合,人的心理活动要与外界刺激相互结合才能形成认知。多媒体教学作为一种综合性的教学手段,集合了视、听、读、写各个要素,能够从多方面调动学生的积极性,刺激大脑的活跃程度,大大增强对思政内容的理解能力。同时,多媒体将大量的画面、场景集中在一节课中,扩展了学生的视野,有利于培养学生发现问题、解决问题的能力,增强自主学习的创造性思维⑤。

2.3有助于加强思政课的亲和力与时代气息

长期以来,人们对思政课的印象是枯燥无味、空洞说教,教师在课堂上只是言传口授,采用板书的形式将深奥的原理表述出来,学生缺乏认同感,课堂气氛缺乏亲和力与时代气息。学生认为,思政课只是背,通过死记硬背掌握一些考试必考的知识点,并不深究知识的内涵,对思政课本中的思想、价值观并不理解,认为那是虚无缥缈、无法触及的东西,甚至一些学生认为思政课就是骗人的把戏。多媒体教学会极大地改变这一状况,因为多媒体教学可将各种信息融入到课堂教学中,将教学内容与学生身边事、国内外形势、社会热点话题结合起来,使学生明白思政课与我们的生活息息相关。如,在讲解《资本论》中社会生产总值这一知识点时,教师可以通过多媒体展示我国社会经济生活中的数据,使学生形成直观影响,从而提高课堂的亲和力。又如,在近代史纲要中,介绍我国新时期取得巨大成就时,教师可以配以青藏铁路建成通车、神舟飞船成功发射、体育健儿奥运夺金等图片或视频,让学生切实感受到祖国的强盛与伟大。这些事例不但增强了思政课的认同感与时代气息,更调动了学生学习的主动性,有利于提高思政课的教学效果。

3高校思想政治教学中运用多媒体技术的原则

3.1平衡性原则

教师在高校思政课运用多媒体技术时要掌握好平衡点,不能超过一定的限度。平衡性原则包括课件使用与老师讲解的平衡、课件信息量与学生独立思考时间的平衡、课件使用与板书的平衡等多个方面。当前高校教师对多媒体教学依赖性越来越强,几乎每节课必用多媒体教学,但要注意的是思政课并非每节课都需要多媒体,对于一些理论性强的章节,教师的耐心讲解、循循善诱会取得更好的教学效果。同时,教师要正确把握课件的信息量,PPT承载的信息量要与教学内容、目标、学生的理解能力结合起来,课堂上不能一味地播放PPT,学生不能被课件牵着鼻子走,要给学生留足自由思考的时间,这样学生才能加深对知识的理解程度,教师课堂授课才会张弛有度、重点突出。

3.2有效性原则

多媒体教学是一种辅助教学手段,是为思政课教学目标服务的。因此,在思政课上运用多媒体要遵循有效性的原则。多媒体教学内容要与思政课内容高度相关,并有一定程度的延伸与扩展,起到锦上添花的作用。这要求教师在制作课件时,要选好材料,针对课堂内容与学生特点有针对性地备课。要考虑素材的思想性与时代性,将抽象的原理转化为通俗浅显、易于学生接受的内容。此外,课件不能太过于花哨,过多的图片与背景音乐,不但不利于教学目标的实现,反而会降低学生的学习兴趣。

3.3趣味性原则

多媒体教学是一种集知识性、趣味性、创造性于一体的教学手段。多媒体课堂要有一定的趣味性,才能引起学生的兴趣,激发他们学习的乐趣。思政课抽象性强、部分内容深奥,课堂上真正想学习的学生往往会被思政课高深的理论性吓倒。因此,教师在利用多媒体教学时,要加强教学的趣味性,充分发挥多媒体教学的优势,创设多种教学情境,激发学生的好奇心,调动他们的积极性,让他们主动参与到课堂教学中来⑥。如,在教授“追求远大理想,坚定崇高信念”时,教师让学生们说出自己的理想,鼓励他们为实现理想而奋斗,这不仅激发了他们的学习热情,也增强了课堂教学的趣味性。

4多媒体技术在高校思想政治教学中合理运用的策略

4.1提升教师的专业素质与技术能力

思政课教师在运用多媒体教学的过程中,要不断提高自身的专业素质与技术能力。教师要对思政课的教学内容有深刻的把握与理解,能够解答同学的思想困惑,将枯燥的理论讲解得深入浅出,引导学生树立正确的世界观、人生观、价值观。同时,教师要提高课堂驾驭能力,通过富有激情的讲解启发与感染学生,使学生产生思想共鸣。个别教师在上思政课时只是对着电脑念PPT,完全忽略学生感受的做法是不可取的,教师要利用深厚的专业素养感染学生,激发他们对思政课的兴趣。同时,教师要不断提高计算机操作能力,能够将课本内容与多媒体课件有限结合起来,不能简单地将板书变成电子版。增强素材的搜集、整理能力,丰富课件内容,形成图文并茂、声像结合、视听结合的全方面教学模式。教师只有将深厚的专业素质与高超的技术能力相结合,才能取得良好的教学效果。

4.2加强师生的互动交流

运用多媒体教学并不是忽略师生的互动交流,恰恰相反,多媒体课堂更需要师生的交流与合作。师生交流要贯穿教学课程的始终。当前,个别教师忽略师生交流,教学课堂气氛沉闷,学生不提问题,老师更不问问题,这不利于教学目标的实现。教师应通过多种手段加强与学生的课堂交流,了解学生的听课状态,把握学生的知识掌握程度。如教师通过鼓励学生提问、课堂师生互动游戏、学生分角色模拟教学内容、师生共同讨论话题等方式加强互动,从而激发学生的学习主动性,创造良好的教学效果⑦。

4.3优化多媒体教学的内容与形式