污泥处理新技术范文

时间:2024-05-23 17:43:02

导语:如何才能写好一篇污泥处理新技术,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

污泥处理新技术

篇1

【关键词】 污泥 新技术 资源化

随着我国社会经济和城市化的发展,城市污水处理规模逐渐扩大,污水处理能力逐渐增加,污水处理所产生的污泥量也随之增加。由于污泥产量较大,性状粘稠,含有重金属和病原微生物等有害物质,如处理处置不当,会给环境带来严重的二次污染。据报道,2010年污泥产量达到3665万吨(以含水率80%计),用于对污泥处理的投入达到350亿。我国目前污泥处置的现状是70%以上弃置,20%填埋,其次是不到10%的污泥进行堆肥农用,少量进行污泥干化焚烧。污泥作为一种固体废弃物,已经成为继城市垃圾污染的第二大固体废物污染源。传统的污泥的主要处置方式有填埋、焚烧、排海、农用等。但是传统的处理方法也存在一些弊端,无法对污泥进行资源化利用,因此对污泥处理资源化利用新技术的研发具有重要的现实意义。

1 传统污泥处理技术

传统的污泥处理方法主要包括污泥堆肥、污泥干化、污泥焚烧和污泥填埋。但是,由于污泥组分复杂、重金属含量高、病原微生物含量多等特点,传统的污泥处理技术已经表现出其本身的局限性,随着国家对污泥处理处置技术的标准越来越高,传统技术已经不在适应社会发展的要求。其主要表现在以下几个方面。

1.1 污泥填埋

污泥填埋指的是污泥经过长期的物理、化学和生物作用使其达到稳定状态。污泥填埋分为单独填埋和混合填埋,在欧洲脱水污泥与城市垃圾混合填埋比较多,而在美国多数采用单独填埋。在我国主要是以混合填埋为主。实践表明,污泥填埋具有以下的缺点:(1)对污泥土力学性质要求比较高;(2)需要占用大面积的场地;(3)地基需做防渗处理以免污染地下水;(4)不可资源化利用。填埋目前仍然是我国污泥处置的重要方法之一。但是从长远看,污泥填埋是一种不可循环的最终处置方式,其应用比例将会逐渐减少,应用前景存在局限。

1.2 污泥焚烧

污泥焚烧指的是将污泥置入焚烧炉内,在过量空气加入情况下,进行完全焚烧, 使有机物全部碳化,最大限度地减小了污泥体积,使污泥最终处置极为便利。焚烧法有以下几个突出的优点:(1)可以大幅度减少污泥的体积和重量,同时焚烧灰可制成有用的产品;(2)处理速度快,不需长期堆积和储存;(3)污泥可就地焚烧,不需长距离运输,节约运费;(4)可以回收能量用于发电和供热。但是污泥焚烧也有其致命的缺点:(1)焚烧炉投资巨大、设备运转费用高;(2)装置复杂;(3)焚烧过程不容易控制,产生二恶英类剧毒物质。由于焚烧过程产生的剧毒位置难以控制,需要对烟气进行特殊处理,因此限制了其使用和发展。

1.3 污泥土地利用技术

污泥土地利用主要是将污泥用于堆肥农用、用于园艺绿化施肥、用于废弃矿场等地的土地改良等。堆肥主要是利用微生物的作用,将不稳定的有机质降解,转化为较稳定的有机质,并使挥发性物质含量降低,减少臭气的产生,污泥物理性状明显改善,便于储存、运输和使用。该技术主要考虑到污泥中含有丰富的的有机物和N、P、K等营养元素及植物所必须的各种微量元素Ca、Mg、Cu、Zn、Fe等,能够改良土壤结构,增加土壤肥力,促进作物的生长。但处理后的污泥产品含大量病原体、寄生虫、多氯联苯和二恶英,且产品的高含水率(30%~40%)可使病原体复活,同时污泥中也含有毒有害物,直接应用于农业会造成土壤以及水体的二次污染。故堆肥法不足以保证安全性。针对污泥土地利用这种方式的不良后果,欧美各国根据各自具体情况制定了严格的无害化技术标准及污泥农用重金属浓度标准,我国制定了《农用污泥中污染物控制标准》(GB4284-84)。由于未解决好污泥土地利用可能带来的重金属污染问题,所以污泥土地利用目前仍存在一定风险,在相关技术未成熟的情况下污泥土地利用还是有其局限性。

2 污泥处理处置新技术

污泥污所散发出的臭气、污泥所带病原菌、重金属、有毒物质等都严重威胁人类的健康。因此,因此迫切需要寻求新的、有效的污泥处置方法。现介绍几种新发展的污泥处置技术:

2.1 污泥低温热解制油技术

污泥低温热解制油技术指的是在300~500℃、常压(或高压) 和缺氧条件下,借助污泥中所含的硅酸铝和重金属(尤其是铜)的催化作用将污泥中的脂类和蛋白质转变成碳氢化合物,最终产物为油、碳、非冷凝气体和反应水。该技术的环境效益和资源化效益均是很可观的,主要表现在:(1)能有效控制重金属排放,特别是Hg、Ti,在灰烬和炭中来自污泥的重金属被钝化;(2)可回收易利用、易储藏的液体燃油,回收的液体燃油可提供700kW/t的净能量;(3)可破坏有机氯化物的生成,反应器中燃烧温度应维持尽可能低(

2.2 污泥熔化技术

针对污泥焚烧过程中存在的二次污染,科研工作者开发出了污泥熔化技术,该技术使污泥处于焚烧灰熔点温度(通常为1300~1800℃)之上燃烧,不仅可完全分解污泥中的有机物、杀灭病菌,同时所形成的熔渣密度比焚烧灰的高2/3,达到了灰渣大幅度减容的效果。污泥中的重金属因被固定在玻璃态的熔渣中而具有不熔出的活性,所以污泥熔化后的熔渣可用作建材。

2.3 污泥电弧等离子体处理技术

所谓污泥电弧等离子技术指的是在一个密闭的空间里,通过强大的电弧使空气电离产生等离子体,然后在另外一个缺氧密闭空间里面对垃圾进行加热,其温度可到16000℃,在无氧的条件下,垃圾中的无机物很快被玻璃化,最后产生的无害熔渣可作为建筑材料。污泥中的有机物被高温分解。在有氧条件下,分解能产生大量的二氧化碳;若在无氧的条件下,固体废料中的有机物就会转化为氢气和一氧化碳的混和物,这种混合物,可以像天燃气一样作为一般汽轮引擎的能源,其中的氢气进一步纯化分离,则可以作为单独的燃料。对这种气体混合物作进一步的处理,降低其中污染物质的含量,如氮化物和二氧(杂)芑等直接进入涡轮机或释放到大气层中。由于该技术能把污泥转化为能源同时降低污染物的含量,因此有很大的发展前景。

2.4 污泥超声波处理技术

超声波可以分解生物固体, 改善膨胀活性污泥絮体沉降性, 提高脱水能力。经过超声处理的污泥消化时间减少,比容积消化率提高,生物产气量增加,并且超声反应器可以与其它污泥处理工艺任意组合,具有广阔的应用前景。

2.5 污泥水解热干化技术

污泥水热干化技术通过将污泥加热,在一定温度和压力下使污泥中的粘性有机物水解,破坏污泥的胶体结构,可以同时改善脱水性能和厌氧消化性能。随水热反应温度和压力的增加,颗粒碰撞增大,颗粒间的碰撞导致了胶体结构的破坏,使束缚水和固体颗粒分离。经过水热处理的污泥在不添加絮凝剂的情况下机械脱水的含水率大幅度降低。污泥的水解宏观上表现为挥发性悬浮固体浓度减少和COD、BOD以及氨氮等浓度增加。水热干化技术采用浆化反应器,通过闪蒸乏汽返混预热浆化、蒸汽与机械协同搅拌,提高了系统的处理效率;在水热反应器中,采用蒸汽逆向流直接混合加热的方式,强化了传质传热过程,可以避免局部过热结焦碳化;在连续闪蒸反应器中,实现了系统能量的有效回收。

2.6 污泥制活性炭技术

活性炭是以含碳物质为原料,经过高温碳化活化后制成的。污泥具备制造活性炭的客观条件,制备活性炭的路径是先对污泥炭化,然后活化。所以污泥制活性炭的主要研究问题是最佳炭化、活化条件以及提高质量、降低成本等。目前,污泥炭化方式除了传统的高温炭化外,也有用工业废弃的硫酸来催化炭化的,污泥活化方式以高温水蒸气物理活化和ZnCl2化学活化为主。由于最佳碳化、活化条件难以控制,所制作出来的活性炭不如商品活性炭,但在一些消耗炭的气体净化场合,其应用比传统的活性炭更经济。而且,污泥活性炭如果不再生,可以考虑烧掉,同时可固化其中的重金属,因此有一定的应用前景。

2.7 超临界水氧化技术

超临界水氧化( Supercritical Water Oxidation,简称SCWO) 技术是在水的温度和压力均高于其临界温度TC(374.3℃)和临界压力PC(22.05MPa)时,以超临界水作为反应介质与溶解于污泥中的有机物发生强烈的氧化反应,使有机物最后被氧化成无毒小分子化合物的过程。超临界水能与空气、氧气和有机物以任意比混溶形成均一相,即气液的相界面消失,也就消除了相间的传质阻力,反应速度不再受氧的传质控制,因此加快了反应速度而缩短了反应时间,大多数有机物在几分钟之内去除率可达99.99%,有些有机物在1min的时间内去除率就可达99.99%。由于超临界水氧化技术充分利用了超临界水所具有的特性,所以具有其他有机废水处理技术无可比拟的优越性:效率高、处理彻底、反应速度快、反应容器小、无二次污染,且当有机物含量大于2%时就可完全自热,不需外加热量。超临界水氧化技术虽然具有诸多优点,但是它的反应条件要求苛刻(高温、高压),投资大,且其反应机理、反应动力学等还有待于深入研究。

3 结语

随着经济的不断发展, 世界各国的污泥排放将大大的增加, 污泥处置也将成为全球关注的重大环境问题。污泥的处理处置应从环境污染、卫生安全和经济效益等多方面综合考虑。具备能源回收利用的污泥处理新技术在污泥处理处置中发挥着不可替代的作用。虽然这些技术目前还存在一些待解决的问题,但应用前景却十分光明。

参考文献:

[1]朱书景,薛改凤,张垒.污泥处理技术与发展趋势[J].武钢技术,2010,48(3):1-3.

[2]韩晓芳,顾建新,李燕.污泥处置现状及新技术探讨[J].国外建材科技,2006,27(5):43-47.

[3]昝元峰,王树众,沈林华,段百齐,林宗虎.污泥处理技术的新进展[J].中国给水排水,2004, 20(6):25-29.

篇2

【关键词】城市 污泥 处理处置

1 污泥处理处置现状

在我国的污水处理发展历程中,由于长期的认识不足以及忽视,我国城市污水处理厂的污泥处置问题被长期搁置,污泥处置的发展相当滞后,一方面,我国污泥处理处置的技术路线尚不清楚;另一方面,我国也未建立起污泥处理处置的政策体系,历史遗留问题使得污泥困境越来越严重。

目前,全国城镇污水处理厂污泥只有一小部分进行卫生填埋、土地利用、焚烧和建材利用等,而大部分(约占80%)未进行规范化的处理处置,污泥随意堆放及所造成的污染与再污染问题已经凸显出来,并且引起了社会的关注。

2 污泥成分分析

类比北京市2011年各污水处理厂污泥指标的平均值(来自《北京市污水处理厂污泥特性分析》),见表1、表2。

3 污泥处理方案

3.1 污泥填埋

污泥填埋指的是污泥经过长期的物理、化学和生物作用使其达到稳定状态。具有经济、简便的显著特点,但需大面积的场地和大量运输费用,不可资源化利用,而且如果地基防渗处理不当,易造成土壤和地下水的污染。

3.2 污泥焚烧

污泥焚烧技术是对污泥实现最彻底的减量化、无害化的处置方法,但其投资及运行成本太高,同时二次污染问题较为严重,对一些经济较为发达的城市才考虑污泥焚烧的处置技术。

3.3 污泥土地利用技术

我国主要是以土地利用填埋处置方式为主,土地利用不仅使污泥得到最终处置,而且可以利用污泥中的营养物质,用以农田绿地施肥,土壤结构改造等,是污泥资源化的有效途径,但如果污泥施用前未经过适当的无害化处理,易造成二次污染,致使土壤板结、盐化,农作物富集重金属并通过食物链影响人体健康等。典型污泥处理处置方案对比见表3。注:表格中的数据均摘自中国住房和城乡建设部与国家发改委《城镇污水处理厂污泥处理处置技术指南》(试行)

4 结语

随着经济的不断发展, 城市的污泥排放将大大的增加, 污泥处置也将成为备受关注的重大环境问题。污泥的处理处置应从环境污染、卫生安全和经济效益等多方面综合考虑。具备能源回收利用的污泥处理新技术在污泥处理处置中发挥着不可替代的作用。虽然这些技术目前还存在一些待解决的问题,但应用前景却十分光明。

参考文献:

[1] 吴晓云,王育峰.城市污泥无害化处置的研究[J].能源研究与信息,2011(02).

篇3

关键词:污水深度处理,新工艺

 

0.概述

焦化废水中因含有酚、氰等有毒有害物质,如酚氰污水处理不达标而直接排放,或将未达到回用水质标准甚至根本没达标的酚氰污水回用生产,都会造成污染的转移和扩散,对人身健康,设备安全及周边的环境造成严重的危害。为了尽可能地降低污染,提高水资源的利用效率,使企业生产逐步地向清洁型生产方向迈进,我们综合了国内外水处理行业的新技术、新工艺,针对焦化污水的特点,向大家推荐两种焦化污水深度处理的新技术。

1.工艺简述

1.1生物吸附活性性污泥法与电解气浮法的组合应用

1.1.1工艺流程

原水 除油池 调节池 浮选池 两段曝气池 沉淀池 电解气浮池

干化池

过滤 出水回用

1.1.2工艺说明

该工艺的特点是充分利用了生物活性污泥法水处理的稳定性,对含酚氰污水先进行好氧生物降解,使原水经过预处理,生物吸附降解沉淀后,出水水质达到国家二级排放标准,然后再对出水进行深度处理。

其中预处理包括对原水中油类的去除,含酚量的调配,PH值的调节和水温的控制。对调配后的水质要求含酚在200mg/l左右,油类小于50mg/l;PH值7.0左右,水温在30℃左右。论文参考网。

对于生物曝气池,其作为生物降解污水中有机物及有毒有害物质的主要场所,是整个活性污泥系统的关键,所以要严格规范对曝气池的管理,控制好各项工艺指标。一般要求曝气池内DO在4mg/l左右,SV值控制在30%为佳,因焦化污水中磷盐含量低,为了保证微生物的生长繁殖,曝气池内磷含量应在3mg/l左右为宜。论文参考网。

污水经过上述处理再经沉淀池进行泥水分离后,污泥回流到前段曝气池,污水则进入后续深度处理系统,即电解气浮池。电解气浮池是在直流电的作用下,用不溶性阳极和阴极直接电解废水。正负两极产生的氢和氧的微气泡,将废水中呈颗粒状的污染物带至水面以进行固液分离的一种技术。此种方法除用于固液分离外,还有降低BOD、氧化、脱色和杀菌作用,对废水负荷变化适应性强,生成污泥量少且占地省,无噪音等特点。另外,为了减少电耗,可采用脉冲电解气浮法。经过电解气浮后,出水再经过砂滤池,就可直接回用于生产。

1.2臭氧氧化法与电解法的组合

1.2.1工艺流程

浸出液

紫外光刮沫 干化 堆肥

原水 调节池 臭氧氧化 电解 自然分离 过滤 出水回用

篇4

关键词:污水处理;技术创新;节能降耗;生物膜

工艺在我国工业发展和经济增速呈现迅猛发展态势的今天,对高能耗产业的治理已经成为国策,被视为国家发展和建设的头等大事予以重视。在众多高能耗产业中,污水处理牵扯到的是经济命脉及人民的健康和生存质量,因此是当今众多能耗治理事项中最为重要的一项。但是,现实情况并不容乐观,污水的排放量与日俱增,污水治理技术却相对滞后。很多污水处理技术依然保持着高能耗、重污染的状态。这对当前面对能源危机和生态污染严重的我国是非常不利的,必须狠下力气予以整治。

1新时期先进污水处理工艺及创新技术

在污水处理工艺的创新上,为了达到先进的工艺技术水平,采用的技术必须是建立在常用技术基础上的创新技术。从目前的技术使用情况来看,活性污泥法、生物菌群法、生物膜法等处理工艺拥有独特的优势,在污水处理应用技术上发挥了重大的作用。但是在现行技术的基础上还应继续加强创新工作,确保工艺的不断更新,保障水质水量得到不断的维护,同时也要对工艺和设备进行升级和改造,达到真正的节能降耗要求。在进行技术的深度处理之前,首先应对技术的可行性进行论证,确保技术效益的最大化。在当前的工艺处理中,污水中的有害化学物质必须要经过深度处理,才能真正达到去除有机物的效果。深度处理的核心技术就是生物法工艺。在小规模分散型污水处理中,广泛应用的生物膜污水处理工艺比使用活性污泥工艺更有优势,具体体现在以下2方面:①微生物生长方面,各种生物膜工艺中参与净化反应的微生物多种多样,微生物的食物链较长,代谢时间较长的微生物易于存活,在分段运行中,每段都能够形成优势菌种;②在处理工艺上,各种生物膜工艺对水质水量变化均有较强的适应性,污泥沉降性能良好,易于固液分离,能够处理低浓度的污水,易于维护、节能。水泵是污水处理中的主要设备,对于处理成本来说是十分关键的。这是由于水泵在污水处理设备中数量较多,节能降耗的任务较重。如果能够实现变频泵工艺的控制,就能保证工艺参数的设置满足相应的需求。这就需要不断改进工艺,灵活地运用设备的调节功能实现节能降耗的目标。污水处理的核心环节占到了总能耗的50%以上。在当今技术革新后,采用机械曝气的方式是较为常见的,调节池的调节作用也可以使得生物反应得到净化,空气悬浮颗粒鼓风机的使用能够有效调节风量,而且这些设备不需要经常维护,节约了成本。另外,在曝透设备的选择上,尽量使用氧利用率高的设备,例如橡胶膜片式的微孔设备,能够在满足降耗要求的同时避免爆裂问题发生,延长了设备的使用寿命。

2掌握生物填料挂膜及污性污泥培养、管理

生物填料挂膜的结构是将醛化纤维或涤纶丝、塑料圆片压扣改成双圈大塑料环,在环圈上均匀分布纤维束;内圈的挂膜能有效切割气泡,水气生物膜使得污水中的有机物得到高效处理。生物膜的载体是污水处理工艺的核心,填料在不同的水质条件下,通过粗细不同的组装形式,对废水中的厌氧、好氧生物进行处理。附着在载体上的生物膜,可以有效地净化有机废水,在工业、食品加工、生活污水的处理上,收到了很好的效果。给水量的大小对该技术的实施没有特别大的影响,而且这种技术耐冲击,相关设备占地面积小,运行管理方便、快捷。目前,最新的污水处理生物膜法当属多孔生物悬浮球填料技术。采用科学配方合成的生物填料属于新型的生物活性载体,经过特殊处理后,能够根据污水的性质融合多种微生物中的微量元素,有效性高,生物附着量大,简化了污泥回流,可对氨氮等进行高效脱除,提高出水的水质,工艺流程较短,被广泛应用在生活污水处理中,且特别适用于养殖产业,有效期可以达到数十年。污性污泥法是利用悬浮生长的微生物絮体上的好氧生物处理有机废水的方法对废水进行处理。在废水中连续通入空气后,形成具有好氧性生物繁殖特点的污泥状絮状物,利用上面栖息的微生物菌胶团进行污染物和有机物的吸附与氧化。在活性污泥污水处理方法的使用上,要注意控制活性污泥量和供氧量,调节曝气池中的活性污泥浓度,防止污泥随着水流进入沉淀池,破坏水质。

3掌握工艺运行中的异常现象及控制措施

活性污泥法的运行管理比较复杂,影响系统工作效率的因素很多,往往因运行管理不善出现一系列异常现象,使水质变差,污泥流失,系统工作破坏。常出现的典型的异常现象为污泥膨胀、污泥上浮、泡沫问题。出现这些异常现象时,首先要判明原因,然后采取调整参数,控制曝气量、营养比和进水量,调整污泥负荷进行短期内间歇曝气等措施。活性污泥法在污水处理方面具有其他处理方法不可替代的优势,成效显著、成本低廉、无公害、天然环保。与生物膜法并行为生物治污的新型技术,污水处理菌的种类包括硝化细菌、反硝化细菌等。由于有些特殊水质中活性菌种难以培养,可借助当地科研力量,利用专业的工业微生物研究所培养菌种后再接种培养,接着进行污水处理,例如PVA(聚乙烯醇)好氧消化即有专门的好氧菌。在有毒或难降解的工业废水中培菌时,可以先以生活污水培菌,然后再采用将工业废水逐步引入、逐步驯化的方式进行。在干泥中接种培菌时,取水质相同且已正常运行的污水系统脱水后的干污泥作菌种源进行接种培养,一般按曝气池总容积1%的干泥量加适量水捣碎,然后再加适量工业废水和浓粪便水。

4结束语

污水处理工艺技术能够保证节能降耗的顺利实施,并且对我国环境保护的可持续发展发挥着重要作用。今后还需不断革新污水处理工艺技术,合理选择处理设备,并落实运行和维护工作,确保各项技术和设备同时良性运行,提高污水处理的综合效益。

作者:谢德来 单位:蕉岭县蕉城污水处理厂

参考文献

[1]曹胜玉,蔡芝斌,王飞,等.污水处理技术创新论坛[J].通用机械,2015(6):20-26.

[2]赵颖.污水处理中技术创新和节能降耗[J].化工管理,2015(25):172.

篇5

关键词:油田采出水;处理;新技术;新工艺

中图分类号:TD122 文献标识码:A

前言

文章对油田采出水对油田的影响和油田采出水的特性进行了介绍,对油田采出水处理系统的工作原理进行了阐述,通过分析,并结合自身实践经验和相关理论知识,对油田采出水处理中的新技术新工艺进行了探讨。

二、油田采出水对油田的影响

油田采出水的化学成分复杂,无论是对开采回注设备还是对地层以及外排时油田周边等都具有侵蚀、污染的破坏作用。油田采出水破坏了老油田工作人员的工作环境,加快了老油田开采设备的磨损程度,增加了老油田对采出水的处理费用。另外,如果处理不当并回注到地下开采层,会造成开采层地质成分改变,给开采工作带来不可预料的危险。而如果不进行处理直接进行地上排水,会造成老油田周边环境的恶化,不利于环保。

三、油田采出水的特性

油田采出水是油田开采过程中的副产物,也是采油过程中最大的废水[1]。这种副产物随着油田地点不同、回注水水质不同、地质条件不同、采油方法不同等,采出水的特性不完全相同,其大致的特性如下:

3.1.含油量高

老油田的开采经过二次甚至三次开采,采出水中含有大量的油,成为油水混合液,这种混合液需要经过一定的油水分离设备,利用重力分离技术或旋流分离技术进行油水分离,才能得到开采的石油。因此,这种采出水含油量较高,一般采油污水含有1000~2000mg/L的原油,有些含油量可达5000mg/L以上。

3.2.含颗粒性杂质

采出水是油田开采的副产物,是从地下开采出来的水,由原有地下水、开采回注水等组成,这些水本身就含有一定的颗粒性杂质,再经过压力的作用,其中悬浮的固体颗粒有所增加。主要是细碎砂、粘土颗粒、粉砂等。

3.3.无机盐含量高

采出水中无机盐含量非常高,但随着油田位置的不同,无机盐含量或有差异。从几千到几万甚至十几万mg/L,这种无机盐有些对设备具有腐蚀性,对环境具有破坏性,因此,需要经过处理后,才能进行再利用或排放。

3.4.其它特性

油田采出水除上述特性外,还含有细菌,有的含表面活性剂、具有高COD、高水温、高pH的特点。这些特点表明,采出水的成分复杂,不能直接利用。因此,油田需要经过研究,将这种副产物化废为宝,进行再利用,既达到环保的目的,还具有经济效益。

四、油田采出水处理系统的工作概述

首先,活性污泥法处理进水的磷浓度比出水高,这是因为实际上活性污泥法的原理就是利用生物化学的原理使污水中的有机或无机污染物的浓度降低,从而污水中的污染物浓度降低。所以理论上进水的C、P等的污染物浓度一定会大于出水的浓度。此外活性污泥法还分好多的处理工艺,并且每种处理工艺的周期也不尽相同。建议根据具体时间周期和所需环境完全反应后再行测试。

其次,油田采出水呈碱性,但是水中硫化氢比较高,这是由于油田单井采出水,测得pH值呈碱性,单井套管气中硫化氢达到800左右毫克每立方米,水中硫化氢(硫化物)10毫克/L左右,气中的硫化氢较高,水中也溶解了很多硫化氢才对,同时水中硫化物含量达到10mg/L而溶液呈碱性是因为和温度压力等因素有关系。

第三,在系统工作过程中,一般而言,污水处理系统沉降比从30%下降到20%,出水浑浊,污泥沉降很快,5分钟就能沉降到30%左右,这是污泥活性过低导致的,最好做一下污泥镜检看看菌群是否正常。降温对污泥来说会降低菌群的活性,温度过高又会导致生长过快。与此同时,是否曝气过量还应该根据镜检结果判断,另外,在系统工作过程中,因为降温原因,每天增加了4个小时曝气时间,污泥沉降很快主要是菌群的活性过低,形成的絮体过少,污泥的沉降速度就会过快,所以沉降比也可以作为判断菌群活性的一个指标。

五、油田采出水存在的主要问题

5.1.采出水中矿化度较高,造成污水处理设施腐蚀结构严重

采出水中矿化度较高,且含有较高的钙、镁等成垢离子,水中含有大量硫酸钠、碳酸氢钠等,具有明显的结垢、腐蚀特征。部分区块地面系统及井筒结构受影响较为严重,个别站场在运行1~2年后出现运行不正常的状况,油水井及地面管网维护工作量较大。

5.2.部分站点脱水系统不正常,影响油水分离效果

油水分离对药品浓度、处理温度、明水高度等参数要求较高,部分站点加药浓度较高、沉降温度较低、沉降罐多年不清理、明水控制不合理等多种因素导致采出水中含油量高、杂质较多,给采出水处理系统带来沉重负担。

5.3.部分站点采出水处理规模及工艺流程有待完善和改进

部分区块因产出量上升导致采出水处理系统能力明显不足,设施超负荷运行,系统配套能力不够。部分除油罐由于多年不清理、附件损坏、不定期排污等多种原因导致除油效率较低。较多精细过滤设备出现故障,过滤器污染严重,设备维修跟不上导致水质不达标。

5.4.采出水带来的环保问题

采出水经过改性处理后虽然实现了水质达标,但由此而产生的大量污泥由于尚无成熟的配套技术和可利用的途径,日积月累,堆积如山,粉尘四散,造成地面环境的严重污染。

六、油田采出水处理中的新技术新工艺

由于油田采出水处理技术关系到提高油田生产效率和降低水污染,所以油田采出水处理技术得到了应有的重视,在发展过程中朝着高效率、低成本、优质化的方向发展。通过了解发现,油田采出水处理技术的新工艺主要体现在以下几个方面:

6.1.新型水处理药剂得到了大力的研制和开发

目前油田采出水处理过程中,混凝剂得到了重要应用。为了提高混凝剂的处理效果,并有效降低混凝剂的生产成本,关于混凝剂的研制和开发取得了最新的进展。混凝剂如何在多种污水环境下都能取得预期处理效果成为了未来的研究重点和方向。

6.2.新型水处理设备和技术得到了大面积的应用

目前油田采出水处理设备正朝着高科技的方向发展,主要设备有横向流含油污水除油器,主要技术有光催化氧化技术、电絮凝技术等。此外,微波能技术和超声波技术也成为了未来水处理的技术的重要发展方向,促进了水处理技术的全面发展。

6.3.生物水处理技术利用率得到了提高

基于目前生物水处理技术的诸多优点,在水处理技术发展过程中,生物水处理技术作为重要的技术方式得到了重要发展。目前生物水处理技术已经实现了重点和难点的突破,生物细菌的繁育和基因重组成为了生物水处理技术新的发展方向。

6.4.膜分离技术取得了突破和进展

膜分离技术在油田采出水处理过程中还属于研究和实验阶段,目前遇到的困难是膜的成本较高,并且膜的污染问题没有得到很好的处理。但是从目前的研究结果来看,膜分离技术已经取得了重要突破,膜的材质发生了变化,成本得到有效降低,并且膜造成的污染得到了有效控制。

6.5.水处理反应器的效率变得越来越高

水处理反应器是处理油田采出水的重要设备之一,现有的水处理反应器虽然种类较多,但是在处理效率方面处于较低水平。随着水处理反应器技术的不断发展,水处理反应器的效率会逐渐得到提高,将逐步达到油田采出水处理的要求。

结束语

众所周知,石油对于经济发展具有极强的推动作用,随着油田开采的不断深入,油层伴水问题逐渐显现,因此,研究油田采出水处理新技术与新工艺是非常有必要的。然而油田采出水处理是一个非常复杂的工艺,既要考虑采出水中油量的回收,又要考虑污泥的采集与排放,所以新技术的重点是要为了提高了油田污水处理效果,达到低渗透油层回注水标准,实现效益最大化的目标。

参考文献

[1] 李秋实,吴汉宁,张金功,等.陕北特低渗油田工业油流标准确定及意义[J].西北大学学报(自然科学版),2010,34(3):345-348

篇6

关键词:生物脱氮除磷,城市污水,发展趋势

中图分类号:U664.9+2 文献标识码:A

随着化肥、农药和洗涤剂等的广泛应用,氮磷污染及水体富营养化日趋严重。据近年来环境质量公报的消息,水体中的主要污染物为含氮磷的有机物。这些污染物进一步加剧了水资源短缺的矛盾,对可持续发展战略的实施带来了严重的负面影响。环境污染和水体富营养化问题的尖锐化迫使越来越多的国家和地区制定严格的氮磷排放标准,这也使污水脱氮除磷技术一度成为污水处理领域的热点和难点。因此,研究和开发高效、经济的生物脱氮除磷工艺成为当前城市污水处理技术研究的热点。本文致力于研究现阶段新型的脱氮除磷工艺,讨论该类工艺发展的可能性,为实际工程中脱氮除磷工艺的优化提供理论依。

1.城市污水脱氮除磷技术现状

目前含氮磷污水的处理技术可分为物理法、化学法、物理化学法和生物法[1]。化学法与物理化学法是最早的脱氮除磷方法,但由于成本高,对环境易造成二次污染。所以污水生物脱氮除磷技术是20世纪70年代美国和南非等国的水处理专家们在化学、催化和生物方法研究的基础上提出的一种经济有效的处理技术,该技术由于处理过程可靠,处理成本低,操作管理方便等优点而被广泛使用。微生物脱氮除磷技术按微生物在系统中的不同状态,可分为活性污泥法和生物膜法,通过设立好氧区、缺氧区和厌氧区来实现硝化、反硝化、释磷和放磷以达到脱氮除磷的目的。

具体的生物脱氮除磷工艺有:巴颠甫同步脱氮除磷工艺(Bardenpho)、Phoredox同步脱氮除磷工艺、A2/O法同步脱氮除磷工艺、UCT工艺、SBR工艺、氧化沟工艺、A/B法、生物转盘同步脱氮除磷工艺等。

2.污水生物脱氮除磷新技术及其应用

常规的污水生物处理技术主要去除有机物和悬浮固体,对氮和磷的去处效率较低。实际应用中经常出现脱氮效果好时除磷效果较差,而除磷效果好时脱氮效果不佳[2]。因此,常规生物脱氮除磷工艺流程存在着影响该工艺有效运行的相互影响和制约的因素,主要表现为:

①厌氧与缺氧段污泥量的分配比影响磷释放或硝态氮反硝化的效果,厌氧段污泥量比例大则磷释放效果好,但反硝化效果差;反之,则反硝化效果好,而磷释放效果差;

②原污水经厌氧段进入缺氧段,磷释放与硝态氮反硝化争夺碳源,当原水中碳源不足时,磷释放或反硝化不完全;

③硝化菌世代繁殖时间长,要求较长的污泥龄,但磷从系统中被去除主要是通过剩余污泥的排放,因此要提高除磷效率则要求短污泥龄。

这就要求我们在实验研究中结合实践努力尝试新的生物脱氮除磷工艺,有效避免以上因素的影响,已达到更好的脱氮除磷效果。下面就目前现有的新型脱氮除磷技术进行简要说明。

2.1生物膜与活性污泥结合

图1 生物膜与活性污泥结合水处理工艺流程图

常规生物脱氮除磷工艺存在相互影响和制约的因素,因此脱氮和除磷效果难以同时达到最佳。生物膜与活性污泥结合新工艺的特点是缺氧段采用生物膜法,反硝化菌均匀分布在整个缺氧池内,反硝化反应充分;好氧和厌氧段采用悬浮污泥法便于对污泥龄的控制,有利于硝化菌和除磷菌的生长繁殖。生物膜与活性污泥结合工艺将常规工艺中相互影响和制约的因素分解,使不同的菌类生长在各自最佳环境条件下,因而在本工艺中脱氮和除磷效果可以同时达到最佳,而且工艺的可控性增强,图1。

2.2 反硝化除磷工艺

反硝化除磷是一些聚磷菌在缺氧的条件下,以硝酸盐作电子受体,过度摄磷,从而实现反硝化除磷的脱氮除磷过程。

2.2.1 DEPHANOX工艺

该工艺首次采用交替的厌氧和缺氧条件并结合单独的固定生物膜,来实现生物除磷的思想,并将其运用到反硝化除磷工艺中。

它在厌氧池和缺氧池之间增加了沉淀池和固定膜反应池,污水在厌氧池中释磷,在沉淀池中进行泥水分离,含氨较多上清液进入固定膜反应池进行硝化,污泥则跨越固定膜反应池进入缺氧段,完成反硝化除磷。

该工艺具有能耗低,污泥产量低且COD消耗量低的特点。但该工艺中磷的去除效果很大程度上取决于缺氧段硝酸盐的浓度,当缺氧段硝酸盐不充足时,磷的过量摄取受到限制;反之硝酸盐又会随回流污泥进入厌氧段, 干扰磷的释放和聚磷菌体的PHB 的合成[3]。

图2 DEPHANOX工艺流程图

2.2.2 BCFS工艺

图3 BCFS工艺流程图

BCFS工艺较UCT工艺增加了2个反应池,第一个增加的反应池介于厌氧池与缺氧池中间,起到选择器的作用,可以吸附剩余的COD,同时迅速反硝化自回流污泥的硝酸氮,可防止丝状菌的生长; 第二个反应池是混合池(缺氧或好氧) ,介于UCT工艺缺氧池与好氧池之间,目的是形成低氧环境以获得同时硝化与反硝化,从而保证出水含有较低的总氮浓度[4]。

BCFS工艺还增加了2个内循环QB和QC,从好氧池设置内循环QB 到缺氧池十分必要,起辅助回流污泥向缺氧池补充硝酸氮的作用; 内循环QC的设置能在好氧池与混合池间建立循环,以增加硝化或同时硝化反硝化的机会,为获得良好的出水氮浓度创造条件。

3.结语

以上所介绍的工艺,皆是从理论角度出发,对不同处理工艺的机理进行阐述。但在实际工程中,需根据处理水质,地形、经济等限制因素选择处理工艺。脱氮除磷技术没有最好的,只有做适合的,至于对处理工艺的选择,需要在研究工作中慢慢积累经验。

生物除磷脱氮工艺的发展已不仅仅是要求较高的氮磷去除率,而且要求处理效果稳定可靠、工艺控制调节灵活、运行维护管理方便、投资运行费用节省。因此,目前,国内外生物除磷脱氮工艺正是向着这一简洁、高效、经济的方向发展,各类构筑物从工艺到结构都趋向于合建一体化[5]。现如今,污水排放标准的不断严格是目前世界各国普遍发展的趋势,以控制水体富营养化为目的的氮、磷脱除技术开发已成为世界各国主要的奋斗目标。我国对生物脱氮除磷技术的研究起步较晚,投入的资金也十分有限,研究水平仍处于发展阶段。目前我国在生物脱氮除磷技术基础理论没有重大革新之前,充分利用现有的工艺组合,开发技术成熟、经济、高效且符合国情的工艺应是今后我国脱氮除磷工艺发展的主要方向。

参考文献

[1] 刘萍莲,城市污水脱氮除磷技术与展望,山西建筑,2007年第33卷第6期:179

[2] 刘俊新、夏世斌、郑祥,经济高效的污水生物脱氮除磷新技术研究,世界科技研究与发展,2003年第2期:37-40

[3] 尹 军、吴相会,污水生物除磷技术若干研究进展,中国资源综合利用,2009年1月Vol.27 NO.1:24-27

篇7

关键词:污泥 焚烧过程 污染物排放及控制 分析

1.污水污泥焚烧处理技术概述

污泥是一种由有机残片、微生物、无机颗粒、胶体等组成的非均质体,污泥含有有毒有机物、致病微生物和重金属,会对环境产生严重危害,随着污泥产量的急剧增加,污泥的减量化越来越受到人们的重视。污泥组成成分包括固相中的无机相和有机相,流动相中的水分和水溶性成分。污泥减量主要是减少流动相中的水分,其中毛细水、空隙水和吸附水可以通过物理化学方法对污泥进行改性而减量或去除,但对于内部水只有通过焚烧干化处理技术才能去除。污泥焚烧是最彻底的处理方法,它能将有机物全部氧化分解,彻底杀死病原体,大大提高重金属的稳定性,污泥焚烧后剩余灰的体积只有机械脱水污泥体积的10%并且污泥的处理速度快,不需要长时间储存,减少占地面积。

污泥焚烧主要分直接焚烧、干化后焚烧和混合焚烧三类,直接焚烧技术由于污泥的含水率较高,因此会消耗大量的辅助燃料,物耗和能耗都较高,运行费用高;干化后焚烧设备投资成本较大,但是处理成本较低,从经济性与安全考虑,具有价格优势;污泥混合焚烧技术是指将污泥与其他可燃物进行混合燃烧,既充分利用了污泥的热值,又达到了固体废物综合循环利用的目的,只需建立污泥输送系统,系统简单,操作方便,从固体废物综合利用的角度考虑,混合焚烧技术成为污泥焚烧处理的首选工艺。

国外在污泥焚烧技术方面有许多值得借鉴的经验,德国是污泥产量最高的欧洲国家之一,目前在德国每年约有250~300万t的污泥产生,其中14%用于焚烧,30%用于农业堆肥,56%用于填埋;且污泥的填埋处理比例在近十年来大幅度下降,焚烧比例逐年提高。日本因其国土面积小,因此对于污泥处理以达到最大减量化作为终极目标。据统计,运用焚烧处理工艺污水处理厂处理的污泥量约占日本全国污泥产量的60%以上,在世界各国中名列前茅。

污泥焚烧过程中产生的污染物如重金属、二英、酸性气体及焚烧灰渣容易对环境造成二次污染,下面将对这些污染物分别进行分析阐述。

2.重金属排放机理及控制分析

2 . 1排放机理

污泥中重金属种类较多,参考国内外对污泥中重金属总量研究的数据,重金属在污泥中主要以氧化物、氢氧化物、硅酸盐、不可溶盐或有机络合物的形式存在,其次为硫化物。

重金属的挥发性大小为:Hg>Se>Cd>Pb>As>Sb>Cr>Cu>Mn>Co>Ni。重金属在焚烧过程中可以凝聚在较大颗粒上以固态形式排出,不能完全凝聚在较大的颗粒上的以气态和气溶胶的形式排出焚烧炉,以气态或气溶胶形式排出的重金属对人体的危害最大。为了控制重金属以气态或气溶胶形式从焚烧炉中后处理系统逃逸,可将重金属富集在粒度较大的焚烧底渣上,减轻重金属污染对环境的压力。

2 . 2排放影响因素及其控制

污泥焚烧过程中影响重金属排放的因素主要是焚烧温度及外加的吸附剂。焚烧温度对重金属的外在影响主要体现在不同焚烧温度和升温速率对重金属捕集的影响和温度提高对焚烧渣物相的改变两个方面,内在影响主要体现在重金属化合物的热力学稳定性。

不同焚烧温度和升温速率对重金属在底灰上的残留率影响较大,低熔点金属如Na 和K 主要富集在细小的微粒上,而高熔点金属如Al 和Ca 主要富集在粗颗粒上。温度引起污泥焚烧渣物相发生变化后对重金属排放也有影响,如挥发性较高的Hg、As在较低温度时就会以气体形式挥发;沸点比较高的Cr和Ni及其化合物其挥发性受水分的影响;Cr的氧化态热力学稳定性大于氯化态,在焚烧过程中首先形成氧化物,以Cr2O3的形式富集在灰分颗粒表面;有些金属的挥发温度较高,主要以残渣态富集在粗颗粒上。

在焚烧的过程中添加吸附剂如石灰石、高岭土等增强对重金属的俘获能力,使重金属发生凝聚时快速的富集在吸附剂上,沉积到底灰中,降低重金属向大气中的挥发,减少对大气和人体的危害,是最安全最理想去除重金属的方式。

3.二英排放机理及控制分析

二英的形成和控制排放是污泥焚烧技术推广的另一个重要的制约因素。二英通常在焚烧过程中以气态或者沉积在飞灰上排出。

3 . 1形成机理

二英的形成机理相当复杂,污泥焚烧过程中生成的可能途径主要有三种:一是包含有PCDD/PCDF 的化合物在燃烧室内的不完全燃烧;二是含氯化合物(如氯酚、氯苯等)在500~800℃温度条件下会热解重排反应,迅速(0.1~0.2 s)产生大量二英,即所谓的“高温同相合成机理”,而在高温下(大于850℃)二英的分解速率远大于由前体合成二英的速率。三是由无机氯化物和有机化合物在催化剂的参与下反应合成,包括从头反应(de-novo反应)和异相前体生成机理,存在灰上的金属化合物在较低的温度范围内(250~400℃)催化生成二英。

3 . 2排放影响因素及其控制

二英的生成受焚烧温度、停留时间、含氧量、含硫/氯量的影响,只要严格控制生产条件和工艺参数,就可有效控制二英的生成。

①当控制燃烧温度大于 850℃,停留时间超过2s二英时,烟气中二英的分解率大于98%。因此生产中控制焚烧温度和停留时间就可以有效控制二英的生成。

②二英再合成的峰值温度区间250~500℃,因此通过烟气的高流速、锅炉的大小以及与猝熄反应器的直接联合或使用急冷塔等措施将烟气迅速降温,以避开二英生成速率最大的温度区间,使焚烧烟气迅速降温到200℃以下,从而减少二英的生成。

③二英生成随氧含量的减少而降低,没有O2则没有二英生成,减少50%的O2就可以减少30%的二英的再次形成,因此一般工程中建议控制含氧量在 8%以下。

④二英的氯主要是以Cl2或HCl形式存在,不完全燃烧时氯的含量和S/Cl比是影响PCDD/PCDF 释放的2个重要参数,参与形成随着污泥中氯含量的增加烟气中PCDD/PCDF 的排放量增加。因此可以通过添加CaO、石灰石等来控制二英前驱物HCl的生成以达到控制的目的。氯气的形成主要是通过Deacon反应生成,SO2可以抑制Deacon 反应,随着污泥中S/Cl比的增加,二英和呋喃的生成浓度降低,从而抑制二英的生成。

4.酸性气体排放机理及控制分析

近期雾霭带来的环境影响,使烟气排放标准日益严重。污泥焚烧过程产生的烟气中含有NOx、SOx等酸性大气污染物,这些污染物的排放与焚烧污泥的成分、焚烧工况等有关。

污泥焚烧过程产生的NOx 分为燃料型和燃烧型两类且以燃烧型为主。研究发现通过控制焚烧温度可以减少NOx的生成,通过加入碱性吸附剂可以吸附NOx,因此通过研究烟气选择性催化反应降低NOx向大气中的排放。

焚烧过程中SOx 的生成主要是由于污泥中的硫元素在焚烧过程中与氧的化合,燃烧过程脱硫通过添加固硫剂使之固定下来,通过烟气脱硫装置进行烟气净化除硫。目前很多的研究表明硫元素和污泥焚烧重金属控制以及二英控制有一定的关联,因此在控制重金属和二英的同时考虑到SOx的去除才符合清洁焚烧的要求。

5.灰渣排放机理及控制分析

污泥焚烧产生的烟尘包括黑烟、飞灰和灰渣三部分,污泥中的重金属在焚烧后沉积在焚烧灰渣上(包括底渣和飞灰),使污泥焚烧灰渣具有较大的危害性。因此,对灰的安全处置是污泥焚烧灰渣环境安全性的重要组成环节,可通过灰渣熔融处理技术将灰渣送入温度为1200℃以上的熔化炉内熔化过后, PCDD/ PCDF 的分解率达到99.77%,是一种较为有效的灰渣处理手段,保障污泥焚烧环境安全性。

近年来,国内外都加大了对污泥减量化程度最高的焚烧技术的研究,尤其是针对一些产泥量大而且难于资源化处理的行业,如造纸、皮革等,以解决日益紧张的人口和土地问题。我国焚烧技术不成熟普及率不高,经费和技术上的不足,尤其是对焚烧尾气治理落后导致我国污泥焚烧处理落后于其他国家。通过对污染物产生机理分析,可以通过控制污泥焚烧过程中的焚烧温度、焚烧环境、工艺参数及外加吸附剂等条件来抑制污染物产生,从而降低污泥焚烧二次污染的风险,推进污泥焚烧处理工艺。总体来说我国的污泥焚烧处理仍需要更加长久的发展,更需要当代科技工作者继续努力。

参考文献:

[1]周旭红,郑卫星,祝坚,等.污泥焚烧技术的研究进展.能源环境保护,2008;22(4):5-8.

[2]刘沪滨.各种焚烧炉在市政下水污泥焚烧中的应用.中国高新技术企,2009;(15):34-35.

[3]黄祥,姜言欣,蒋文举.城市污水处理厂污泥焚烧处理技术综述.四川化工,2012;(2):26 -29.

[4]Werther J,Ogada T. Sewage sludge combustion.Progress in energy and combustion science,1999;(25)55-116.[5]秦翠娟,李,钟学进.我国污泥焚烧技术的比较与分析.能源与环境,2001;(1):52- 56.

[6]王静,卢宗文,田顺,等.国内外污泥研究现状及进展.市政技术,2006;24(3):140-142.

[7]刘沪滨.各种焚烧炉在市政下水污泥焚烧中的应用.中国高新技术企,2009;(15):34-35.

[8]周旭红,郑卫星,祝坚,等.污泥焚烧技术的研究进展.能源环境保护,2008;22(4):5-8.[9]唐小辉,赵力.污泥处置国内外进展.环境科学与管理,2005;30(3):68-70.

[10]李金红,何群彪.欧洲污泥处理处置概况.中国给水排水,2005;21(1):101-103.[11]李媛.斯图加特市污水处理厂污泥焚烧工艺.节能与环保,2004;(7):16-18.

[12]刘则华,刘锡建,陈思浩,肖稳发.日本的污泥处理现状及对策.上海工程技术大学学报,2006;20(4):291- 294.

[13]尹军,韩卫泽.日本的污泥处理现状及展望.中国给水排水,1995;(3):48-49.

[14]陈涛,孙水裕,刘敬勇,陈敏婷,城市污水污泥焚烧二次污染物控制研究进展.化工进展, 2010:29(1):157- 162.

[15]张岩,池涌,李建新,等.污泥焚烧过程中重金属排放特性试验研究.电站系统工程,2005;21(3):27-30.

篇8

关键词:膜生物反应器、中水回用、污水处理新技术

中图分类号:TV文献标识码: A

一、前言

随着我国科学技术和经济水平的不断提高,高科技也逐渐融入污水处理中,同时不断的涌现出新型的污水处理技术。膜生物反应器就是一种新兴高效污水处理技术,在城市污水处理等方面发挥着作用,该种技术优势十分显著,具有广阔的发展空间。本文首先对膜生物反应器工艺进行了概述;然后对膜生物反应器的三种工艺以及膜生物反应器在中水回用系统中进行了应用;最后分析了膜生物反应器在中水回用工程中的经济效益。

二、膜生物反应器工艺概述

膜生物反应器(简称MBR)是将生物降解作用与膜的高效分离技术结合而成的一种新型高效的污水处理与回用工艺。通常回用技术需多种污水处理技术的合理组合,即各种水处理方法结合起来深度处理污水,这是因为单一的某种水处理方法一般很难达到回用水水质要求。即:污水格栅调节池膜生物反应器(MBR)(活性污泥池+超滤膜)消毒中水

1、工艺作用机理

膜生物反应器是利用膜组件进行固液分离,将截流的污泥回流至生物反应器中,透过水外排。膜组件是膜生物反应器中最主要的部分,它是把膜以某种形式组装成一个基本单元,相当于传统生物处理系统中的二沉池。在膜组件中,活性微生物与污水充分接触,不断氧化污水中的那部分能被其降解的有机物,而不能被微生物降解的有机物和无机物及活性污泥、悬浮物、各类胶体、大部分细菌则被截留,从而实现对污水处理净化的目的。膜是具有选择性分离的功能材料。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,常用于膜生物反应器工艺的膜有微滤膜和超滤膜。根据材料的不同,可分为无机膜和有机膜,无机膜只有微滤级别的膜,主要是陶瓷膜和金属膜。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等。

2、膜生物反应器的工艺特点

膜生物反应器工艺作为一种新型污水处理技术,尤其是应用于中水回用工程中,具有以下特点:

(1)去除率高,出水稳定。由于膜生物反应器膜的截留作用,避免了微生物的流失,生物反应器内可保持高的污泥浓度,从而提高了体积负荷,降低了污泥负荷,具有极强的抗冲击能力。又由于膜的截留作用,使SRT延长,营造了有利于增殖缓慢的微生物生长,如硝化细菌生长的环境,可以提高系统的硝化能力,同时有利于提高难降解大分子有机物的处理效率和促使其彻底的分解。在运行过程中,较大的水力循环,导致了污水的均匀混合,因而使活性污泥有很好的分散性,大大提高了活性污泥的比表面积。

(2)处理负荷高,剩余污泥量少。由于SRT很长,生物反应器又起到了“污泥硝化池”的作用,从而显著减少了污泥的产量,剩余污泥产量低,污泥处理费用低;膜生物反应器曝气池的活性污泥不会随出水流失,在运行过程中,活性污泥会因进入有机物浓度的变化而变化,并达到一种动态平衡,这使系统出水稳定,并有耐冲击负荷的特点。

(3)操作方便,占地面积小。膜生物反应器使微生物完全截留在生物反应器内,实现反应器的水力停留时间(HRT)和污泥停留时间(SRT)完全分离,使设计简化,易于一体化,实现自动控制,运行控制较灵活。并可省去二沉池、砂滤池,节省了占地面积和土建投资。

(4)解决了剩余污泥处置难的问题。剩余污泥的处置问题,是污水处理厂运行好坏的关键问题之一,在膜生物反应器工艺中,污泥负荷非常低,反应器内营养物质相对缺乏,微生物处在内源呼吸区,污泥产率低,因而使得剩余污泥的产生量很少, SRT得到延长,排除的剩余污泥浓度大,可不用进行污泥浓缩,而直接进行脱水,这就大大节省了污泥处理的费用。

由上述可知,膜生物反应器工艺所具有的优越性,是目前其他处理工艺无法比拟的,该工艺在城市污水或生活污水处理高浓度有机废水、难降解有机废水以及中水回用等方面都具有广阔的应用前景。

三、膜生物反应器的三种工艺及应用

目前,实践中应用工艺较多的三种膜生物反应器工艺主要是一体式膜生物反应工艺(S-MBR)、分置式膜生物反应工艺(R-MBR)和复合式膜生物反应工艺(H-MBR)三种。下面就这三种工艺原理、特点及实际应用进行了探讨:

1、一体式膜生物反应工艺

一体式膜生物反应器最早是由日本学者Yamamoto等在1989年首先开发的。这种工艺是将膜组件直接放置在生物反应器中,然后通过工艺泵的负压抽吸功能将膜过滤出水。这种工艺的一个显著特点就是将膜浸没在反应器的混合液里面,因此又被称为淹没式MBR或者浸没式MBR。林丰、张林生通过一体式膜生物反应器处理城镇生活污水后效果显著:COD的去除率保持在90%以上,而生物反应器的贡献值达到70%-85%,膜截留的贡献值在12%-25%之间;进水平均COD为573.6mg/L,出水平均COD为122.0mg/L,具有很好的抗冲击负荷能力;当一体式膜生物反应器运行一定时间后,将污泥回流入水解酸化池,使得反应器内的污泥浓度保持在一个稳定值范围内,实现了不需排泥的效果,节省了污泥处置费用。

2、分置式膜生物反应工艺

分置式膜生物反应器是将膜组件与生物反应器分开放置,膜组件与生物反应器相对独立,二者通过泵和管路相连接,这种工艺又称交叉流式MBR。其工作流程首先是将生物反应器中的混合液由泵增压后进入膜组件,在压力作用下膜过滤液成为系统处理出水,活性污泥,大分子物质等则被膜截留,并随着浓缩液回流到生物反应器内。姚宏等采用分置式膜生物反应器处理城市污水,经过试验后发现,该工艺对于化学需氧量的去除率达到了90%以上,出水水质COD的质量浓度小于20mg/L,对氨氮的去除率甚至达到了95%以上,出水水质氨氮浓度小于1mg/L,浊度小于0.1,出水水质完全符合城市污水再生回用景观环境用水水质标准。

3、复合式膜生物反应工艺

复合式膜生物反应器工艺严格来说是属于一体式膜生物反应器的一种,其工艺特点是通过曝气对水流的循环作用实现膜表面截留的污泥与硝化液的自动回流,简化A/O系统的运行。与严格意义上的一体式膜生物反应器所不同的是需要在生物反应器内加装填料,形成复合式的膜生物反应器,通过改变生物反应器的一些性状,从而实现增加了生物反应器中的污泥浓度,实现污水处理效率的提高。王春玲等以印染污水为例,采用复合式膜生物反应器与水解酸化预处理联用工艺处理印染废水,发现:出水水质良好,而且水质较为稳定,出水中的COD、氨氮、色度较低,无SS。

四、膜生物反应器在中水回用系统中的应用

开发中水系统的主要目的是将建筑生活污水进行适当的处理后,作为冲厕、洗车、空调冷却水和绿化等用水加以回用。由于受使用目的和城市建筑的限制,要求中水回用水的水质良好,不会产生卫生问题,感官性状佳,同时还要求处理流程简单、占地少、运行稳定、易于管理且适应性强。膜生物反应器工艺具备了上述特点,因此80年代后在日本等国得到了广泛应用。

日本某公司对膜生物反应器工艺的污水处理效果进行了全面研究,结果表明活性污泥-平板膜组合工艺不仅可以高效去除BOD5和CODCr,且出水中不含细菌,可直接作为中水回用。目前,日本已有近100处高楼的中水回用系统采用MBR处理工艺。

五、膜生物反应器在中水回用工程中的经济效益分析

1、对膜的经济分析

目前,对膜生物反应器系统的技术经济分析的结论存在较大的差别。主要是由于在膜生物反应器系统设计中,对膜的处理能力与膜使用寿命的估计存在很大的差别,直接影响对膜生物反应器的经济评价。影响MBR系统运行费用的主要因素是动力费用与膜的更换费用。膜的更换费用是影响MBR系统运行费用的关键因素;而动力费用是影响分离式膜生物反应器系统运行费用的关键因素。居民生活用水价格约为1.3~1.8元/m;宾馆、洗车、洗浴等行业供水价格为1.8~3.5元/m。一体式膜生物反应器总运行成本为1.4元/m,用于中水回用具有明显的竞争优势。同时可节省水资源,具有环境效益和经济效益。

2、膜生物反应器对整体工艺经济分析

该工艺由于其具有出水水质好、运行稳定、节省占地面积等特点,与传统的中水处理工艺相比具有明显的经济优势,其主要表现在:

(1)膜生物反应器工艺无二沉池,基建投资省;

(2)剩余污泥量很少,污泥处理和处置费用低。由于生物反应器起到了污泥好氧消化池的作用,可取消污泥浓缩池和污泥消化池,也节省了污泥处理的基础投资和运行费用;

(3)出水水质达到国家回用标准,省去了三级处理;

(4)随着科学技术的发展,膜性能提高及价格不断下降,更有利于推广;

(5)占地面积小,在大城市寸土寸金的今天,更显优越;

(6)因工艺简单、自动化程度高,运行管理费用较低。

六、结束语

综上所述,中水回用已成为世界范围内大趋势, 膜生物反应器作为一种新型高效的污水处理与回用工艺,在水资源短缺,水体污染日益严重,环境意识不断增强的情况下蕴藏着巨大的生机。由于国家对膜生物反应器越来越重视,同时膜生物反应器的技术应用也日趋成熟和完善,我们有理由相信,其投资、运行费用也会大幅降低。加之目前膜生物反应器已实现商业化生产,其市场规模正以前所未有的速度不断扩大。因此,膜生物反应器作为中水回用的实用技术将越来越具有技术上、经济上的竞争优势,其应用前景将十分广阔。

参考文献

[1]黄霞等,膜生物反应器废水处理工艺的研究进展[J].环境科学研究,2011.11(1):40~44.

篇9

关键词:污水处理 生物脱氮 生物除磷

水体富营养化是世界性问题,大量的研究已经证明,污水中的氮和磷是导致受纳水体富营养化的主要原因之一。常规的污水处理技术主要去除有机物和悬浮固体,对氮和磷的去处效率较低。许多发达国家对排放污水中的氮和磷含量都做了限定,并要求污水处理厂达到除氮除磷的要求。污水脱氮除磷的技术可分为物理法、化学法和生物法。相对而言,生物脱氮除磷技术投资少、运行操作简单、无二次污染而被广泛应用。常用的生物脱氮除磷工艺有:缺氧-好氧脱氮工艺;厌氧-好氧除磷工艺;厌氧-缺氧-好氧生物脱氮除磷工艺等。但是,在常规的生物脱氮除磷工艺中,污泥在厌氧、缺氧和好氧段之间往复循环。该污泥由硝化菌、反硝化菌、除磷菌以及其它多种微生物组成,由于不同菌的最佳生长环境不同,脱氮与除磷之间存在着矛盾。实际应用中经常出现脱氮效果好时除磷效果较差,而除磷效果好时脱氮效果不佳。因此,常规生物脱氮除磷工艺流程存在着影响该工艺有效运行的相互影响和制约的因素,主要表现为:①厌氧与缺氧段污泥量的分配比影响磷释放或硝态氮反硝化的效果,厌氧段污泥量比例大则磷释放效果好,但反硝化效果差;反之,则反硝化效果好,而磷释放效果差;②原污水经厌氧段进入缺氧段,磷释放与硝态氮反硝化争夺碳源,当原水中碳源不足时,磷释放或反硝化不完全;③硝化菌世代繁殖时间长,要求较长的污泥龄,但磷从系统中被去除主要是通过剩余污泥的排放,因此要提高除磷效率则要求短污泥龄。对于某些含高浓度氨氮的工业废水,由于碳源不足,总氮的去除率较低。

根据生物脱氮除磷原理,针对常规污水生物脱氮除磷工艺技术存在的问题,本报告将介绍作者在污水脱氮除磷新技术方面的几项科研成果。

一、生物脱氮除磷原理

篇10

关键词:废物处理;城市污水;处理技术

中图分类号: TV 文献标识码: A

一、城市污水处理技术发展历程

最早的污水处理技术是英国发明的现在称之为生物膜法的污水处理技术,称之为Moris池,是利用微生物分解污水中的有机物。这个技术在现在称作生物滤池,是生物膜法中的一种,现在还有生物流化床法和生物转盘法等。

中国的污水处理技术发展比较晚,在五六十年代基本还是直接排放到河道之中靠河水的自净来处理污水。随着我国经济的发展,人们开始意识到光靠河水的净化是不能够达到污水的处理要求的,国家开始修建相关的污水处理厂,从八十年代污水处理厂的建立到现在,我国污水处理技术在不断发展,但污水处理能力距离欧美国家还有很大的距离,我国整体的污水处理率还较低,大部分污水得不到净化就排放到自然环境之中,对自然环境造成破坏,因此发展污水处理技术刻不容缓。

二、城市污水处理技术发展回顾

城市废水包括生活污水、工业废水和大气降水,其性质与气候条件、城市规模和排水体制等有关,城市中工业的多少和性质、工业废水预处理程度对其的影响作用明显,尤其当排放重金属、酸、碱、有毒物质、油类等特殊污染物时作用更加明显。一般的城市废水的性质比较相似。城市水污染以水体中的BOD5、COD超标等有机污染最为严重,而难以被生物降解的或有毒有害的有机物都是城市水污染的处理难点和重点。

现在城市的污水处理厂所应用的污水处理技术大体上有几种,下面将着重介绍一下这几种方法。

(一)、生物膜法

生物膜法就是通过微生物附着在污水中的有机杂质上从而氧化为水、二氧化碳等这些对环境无害的化学物质。生物膜法占地面积小而且处理效率高,便于进行管理非常适于中小城市的污水处理,在我国的应用也十分广泛,比起活性污泥处理法更易控制,因而发展的十分迅速。

(二)、活性污泥法

活性污泥法则是微生物悬浮在处理池的水中,因为微生物在悬浮时聚集在一起而使整个看起来像是泥悬浮在水中,因此被称作是活性污泥法。按空间分割的连续流活性污泥法,是指各种功能在不同的空间内完成的活性污泥法。其较成熟的工艺有氧化沟工艺和AB法等,氧化沟工艺与传统工艺相比,其氧化沟为封闭的环状沟,即连续循环曝气池,由于其流态具备推流式和完全混合式的双重特点,因而耐冲击负荷能力强。AB法是吸附生物降解法的简称,属超高负荷活性污泥法,在技术上有突破。其对COD、SS、氮磷的去除率高于常规活性污泥法,并能节省基建投资约20%和能耗15%左右,适合经济水平不高的中小城市。

(三)、氧化法

氧化法有很多种,像是化学氧化的方法、光催化的氧化方法和接触氧化法等。化学氧化的方法主要是向处理池中加入强氧化剂,使污水中的物质在强氧化剂的作用下氧化分解达到净化污水的目的。这种方法的处理效果一般不理想,现在很少有采用这种氧化的方式的。光催化的氧化方法的最基本原理就是光合作用,污水中的有机物在光的照射下进行化学反应,使有机物分解为二氧化碳和水等物质,这种方法操作简单,处理效率高,便于操作,现在很多都在应用这一方法,也促使了这一方法的不断进步。而接触氧化法则是一种介于生物膜法和活性污泥法之间的一种方法,不仅在处理池的滤料上放上微生物,在水中也放上微生物悬浮,可以说是生物膜法和活性污泥法的综合。

(四)、过滤法

过滤法的主要作用是把污水中的悬浮状态污染物进行隔离,常用的设备有格栅和筛网。格栅主要用来截留污水中大于栅条间隙的漂浮物,一般情况下都会布置在污水处理厂或者泵站的进水口。筛网的网孔比较小,主要用来滤除废水中的纤维和纸浆等细小悬浮物。

(五)、沉淀法

沉淀法主要是通过重力作用对水中呈现漂浮状的较大污染物

进行沉降分离。这种方法简单可行,而且分离效果比较好,主要用于挖成沉砂池和沉淀池中的污水处理。

(六)上浮法

上浮法主要用于清除污水中漂浮的污染物,通过投加药剂和加压溶气等措施使一些污染物上浮,从而得到有效处理。在一级处理工艺中,上浮法主要是用来去除污水中的油类杂质。污水中的油粒很小,当其呈现出乳化状态时,应该用加压溶气或者投加混凝剂等措施,让油粒凝集浮升,然后撇除。整个过程都是在隔油池中完成的。

三、城市污水处理技术展望

(一)、水质处理新目标展望

城市废水处理的任务是去除城市废水的悬浮物和BOD5,一般包括3段处理工序,即先去除悬浮固体、粗粒固体、大粒径胶体,然后除城市废水BOD5的30%,对微生物的生命活动过程加以利用,从而对废水中的污染物进行转移和转化,从而使包括细菌在内的微生物充分发挥微生物的作用,然后在生化反应器中将废水中的污染物转化为微生物细胞以及简单形式的无机物,随着环境质量要求的提高,人们开始对污水进行三级处理,使污水成为可用的新的资源。

(二)、污水处理新技术展望

近年来城市污水处理技术的发展方向主要包括对传统的活性污泥法流程和技术进行革新和代替活性污泥法的处理流程和技术的研究,这为城市废水回用的处理流程和技术开发了许多新工艺。

1、间歇式活性污泥法

近几年来,序批式活性污泥法,或间歇式活性污泥法,已发展成多种改良型,主要有传统SBR工艺、CAST工艺等。

CAST工艺是一种循环式活性污泥法,其在传统SBR工艺和ICEAS工艺基础上有一定发展,每组CAST系统包括4个池轮流运转,完成进水、沉淀、反应、闲置和出水工序。该工艺具备SBR工艺一般特,还兼有推流式和完全混合式活性污泥法的优点。处理效果较好,适应水质变化的能力较强。SBR法是间歇式活性污泥法的简称,由于操作烦琐,空气扩散装置容易堵塞,此工艺没有得到推广,随着电子工业的发展,污水处理系统实现了自控运行,间歇式污泥法在美国、日本、德国和加拿大等工业发达国家得到广泛运用。

2、联合生物处理技术

采用单一的活性污染法或生物膜法处理生活污水时,由于方法上的差异,各自的优点和缺点都十分明显。但两者结合使用,可做到优缺点互补。如采用生物膜和悬浮生长工艺相结合的联合处理工艺可以克服单一生物膜法或活性污泥法工艺的不足。对经典AB工艺进行联合工艺的改进,在去除城市污水中的有机碳、氮、和磷方面效果显著。

(三)、工业废水处理与城市污水合并处理

工业废水和城市污水究竟是合并处理还是分别处理, 这个问题在我国显得尤为突出。工业废水和城市污水处理的关系是否能够得到合理的解决, 直接关系到如何发挥投资效益。目前,大多数人已经认识到应该优先考虑工业废水和城市污水的合并处理, 规定工业废水进入城市下水道的水质标准, 同时在厂内采取必要的预处理, 从而控制并处理容易造成的问题, 工厂和城市应该共同负责对城市下水道和污水处理厂的投资费用和运行费用,可以按水量、水质进行合理分摊。

(四)、 城市污水再生利用

污水在经过不同深度的处理后,会成为人们的第二水资源。污水经过处理后如果不能得到合理的使用, 就会淡化污水处理的意义。实践证明,来源比较可靠的再生水是第二水资源之一,然而人们对再生水的认识存在偏见,认为再生水是由污水经过处理后获得的,归根结底还属于污水,所以无法得到重用,这给再生水利用渠道的开发带来了很大困难。面对淡水资源的宝贵要求,人们应该重新认识再生水,并且把再生水利用的渠道拓宽, 因地制宜根据需要确定其利用途径。

(五)、 建设环保型的污水处理厂

污水处理厂是消除污染、化害为利、造福于民的产业,建设污水处理厂首先要消除自身对环境的污染,尤其是随着《环保法》地位在人们心中的提升以及全民环保意识的增强,污水处理厂应该引起对自身污染高度的重视。城市污水处理厂的建设可以从低级到高级、从少到多。所以应结合我国实际,尽可能的开发高效低耗的处理技术,以便在财力和物力不充足的条件下,经济有效地解决城市水污染防治问题。

三、我国城市污水处理对策

水是人类珍贵的地球资源,没有了水人类就无法生存,所以保护水资源,改善水资源环境就刻不容缓。发展污水的处理技术将污水变废为宝是未来污水处理发展的目标。现在对于污水处理技术的研究主要应该一是放在降低处理污水所需要的能源消耗上面,节约能源,尽量运用光和生物这样的生态能源。二是放在改善污水净化后的水质上面,提高污水净化后的水质使水中的污染物减少到最少,同时要注意脱氮脱磷。而且研究减少污泥量的方法,减少污泥的排出。

总之,城市的污水处理技术经过了百年的发展已经取得了一定的成就,随着科技的不断发展,城市的污水处理技术也会不断的进行改进,更好更彻底的对污水进行处理。相信在不久的未来,污水处理技术会使城市的污水不再是应该排放的废水,而是可以再次使用的再生水,为保护淡水资源提供关键技术。

参考文献:

[1]郭卫华.中国百年城市污水处理技术发展简史[D].山西大学,2009.

[2]陈荣.城市污水再生利用系统的构建理论与方法[D].西安建筑科技大学,2011.